US 20210216590A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0216590 A1

DELAMARE et al.

43) Pub. Date: Jul. 15, 2021

(54) OPTIMIZING GRAPH QUERIES BY
PERFORMING EARLY PRUNING

(71)

(72)

@

(22)

(1)

Applicant:

Inventors:

Appl. No.:

Filed:

ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

ARNAUD DELAMARE, Zurich (CH);
VASILEIOS TRIGONAKIS, Zurich
(CH); JEAN-PIERRE LOZI, Zurich
(CH); VLAD IOAN HAPRIAN,
Zurich (CH); PETR KOUPY, Blansko
(CZ); HASSAN CHAFI, San Mateo,
CA (US); SUNGPACK HONG, Palo
Alto, CA (US)

16/738,972

Jan. 9, 2020

Publication Classification

Int. CL.
GO6F 16/901 (2006.01)
GO6F 16/9032 (2006.01)
500
N

GOGF 16/903 (2006.01)
GOGF 16/2453 (2006.01)
(52) US.CL
CPC ... GOGF 16/9024 (2019.01); GOGF 16/2454

(2019.01); GOG6F 16/90335 (2019.01); GO6F
1679032 (2019.01)

(57) ABSTRACT

Techniques are described herein for early pruning of poten-
tial graph query results. Specifically, based on determining
that property values of a path through graph data cannot
affect results of a query, the path is pruned from a set of
potential query solutions prior to fully exploring the path.
Early solution pruning is performed on prunable queries that
project prunable functions including MIN, MAX, SUM, and
DISTINCT, the results of which are not tied to a number of
paths explored for query execution. A database system
implements early solution pruning for a prunable query
based on intermediate results maintained for the query
during query execution. Specifically, when a system deter-
mines that property values of a given potential solution path
cannot affect the query results reflected in intermediate
results maintained for the query, the path is discarded from
the set of possible query solutions without further explora-
tion of the path.

502
//~

EXECUTE AQUERY, AS A PRUNABLE QUERY, OVER GRAPH DATA MAINTAINED IN A
GRAPH DATABASE, WHERE THE GRAPH DATA COMPRISES A PLURALITY
OF VERTICES AND A PLURALITY OF EDGES THAT REPRESENT RELATIONSHIPS
BETWEEN THE PLURALITY OF VERTICES, WHERE THE QUERY INCLUDES A
PRUNABLE EXPRESSION OVER A PARTICULAR VERTEX PROPERTY, AND WHERE
THE GRAPH DATABASE IS MAINTAINED, AT LEAST IN PART, BY APARTICULAR
COMPUTING DEVICE

-~ 504

-

THE PARTICULAR COMPUTING DEVICE DETERMINING THAT A FIRST PATH, THROUGH
THE GRAPH DATA, SATISFIES THE QUERY

o 508

i

BASED AT LEAST IN PART ON A FIRST VALUE, OF THE PARTICULAR VERTEX
PROPERTY, OF AVERTEX IN THE FIRST PATH, THE PARTICULAR COMPUTING
DEVICE DERIVING INTERMEDIATE RESULTS FOR THE PRUNABLE EXPRESSION

508
L

THE PARTICULAR COMPUTING DEVICE DETERMINING THAT A SECOND VALUE, OF
THE PARTICULAR VERTEX PROPERTY, OF A PREVIOUSLY-UNEXPLORED VERTEXIN
THE GRAPH DATA DOES NOT AFFECT THE INTERMEDIATE RESULTS FOR THE

PRUNABLE EXPRESSION

510
/—

IN RESPONSE 7O DETERMINING THAT THE SECOND VALUE DOES NOT AFFECT
THE INTERMEDIATE RESULTS FOR THE PRUNABLE EXPRESSION, THE PARTICULAR
COMPUTING DEVICE DISCARDING THE PREVIOUSLY-UNEXPLORED VERTEX FROM A

SET OF POTENTIAL SOLUTIONS FOR THE QUERY

US 2021/0216590 A1

Jul. 15,2021 Sheet 1 of 9

Patent Application Publication

G <« 2Dv D HAEHM
(D)< {uy<—{8) HOoIwW 2y ‘(Bhe qiuns {ebe e)yyl 10918

0% < ebe o SEEEM (P)<-{0) < () < (8]}
Hoovn ebe p ‘{ebe oinrx ‘ebe g ‘ebe-wv I10WTES

TOT Aaend

0% « Bbe g WuEHM ()<~ (8) HDILYAW (8be-e)yvyW Lo9TES

—

R A R, L SRR PR R PN AR LS, R, S L, 0 P, P B R KIS P, OB R O ORI, AR O, I P, A SR AR, O PR, AN, SR P, R, S B B S NS, . B, O, N, Rl S R I B, A, SO N A, AR RO AR A,

%

A A A A AN N

CLeYING ASvaEYIvE

Pi Y IV EEVEY LY
048 A5VHY LY

R R e P R P PP

US 2021/0216590 A1

667 30WH0LS INILSISHAd 1S3

¢ 057 39¥H01S IN3LSISHId ONOOIS

bz ININD
HH44NE 397N

Y72 SANTYA
WO TINHOYIN

g1z ANAND
43449 IDVSSIN

¥l SANA
WIOTINHOVIA

Jul. 15,2021 Sheet 2 of 9

Y57 SANTVA
OO T-OYIHHL

YyeZ SANTYA
WOOT-OV3dHL

4257 OVl

Ygat QvaeHL

gv¢g SINA
WIOT-QVAHHL

Yied SANTVA
TWOOTAYadHL

dete Ov-ddHl

Yedd QYduHL

022 JONVISNI ¥IAMIS ISvaviva
212 AMOWIN THLYTOA

067 ADNVLISNI H3AMIS 38vaviva

2p¢ AMOWEN AHLYION

0¥ 30IA30 ONILNGINOD YIAMIS ISvaYLv(LSYId 012 J01A30 HNILNGINOD H3AYTS ISvayLya LSl

QUMD LS AS 3BVEVIVO Q3 INGRLEH

A E

Patent Application Publication

US 2021/0216590 A1

Jul. 15, 2021 Sheet 3 of 9

Patent Application Publication

FIG. 3

£y
LE
L1 2
oy B
Ll =
b e
o
bt 2
£
e
H i,
Lif o
& b
i} L
&3 =
< w..“:,.
23
Lo
.\».\»N“ -
=

US 2021/0216590 A1

Jul. 15,2021 Sheet 4 of 9

Patent Application Publication

AOYLE SNOIATHG Y LY Q31 2N8YRIVA Hd4404

B MO
=L AR

A0S SIHL LY GETHS 2N8YikdvA wid440Y
G474 134 LON 2N8YIHYA Y344N8

wmm mﬁ&mQ
L ADYlS

06 = 30y

R
Ly

¥ Ol

e EDE N

wm» m.fm@
LHADYES

\m@w = YR

!%

Patent Application Publication Jul. 15,2021 Sheet 5 of 9 US 2021/0216590 A1

500

N FIG. 5
5

EXECUTE A QUERY, AS A PRUNABLE QUERY, OVER GRAPH DATAMAINTAINED IN A
GRAPH DATABASE, WHERE THE GRAPH DATA COMPRISES A PLURALITY
OF VERTICES AND A PLURALITY OF EDGES THAT REPRESENT RELATIONSHIPS
BETWEEN THE PLURALITY OF VERTICES, WHERE THE QUERY INCLUDES A
PRUNABLE EXPRESSION OVER A PARTICULAR VERTEX PROPERTY, AND WHERE
THE GRAPH DATABASE IS MAINTAINED, AT LEAST IN PART, BY A PARTICULAR
COMPUTING DEVICE

% o

THE PARTICULAR COMPUTING DEVICE DETERMINING THAT A FIRST PATH, THROUGH
THE GRAPH DATA, SATISFIES THE QUERY

% /»—— 506

BASED AT LEAST IN PART ON A FIRST VALUE, OF THE PARTICULAR VERTEX
PROPERTY, OF AVERTEX IN THE FIRST PATH, THE PARTICULAR COMPUTING
DEVICE DERIVING INTERMEDIATE RESULTS FOR THE PRUNABLE EXPRESSION

é 0

THE PARTICULAR COMPUTING DEVICE DETERMINING THAT A SECOND VALUE, OF
THE PARTICULAR VERTEX PROPERTY, OF A PREVIOUSLY-UNEXPLORED VERTEX IN
THE GRAPH DATA DOES NOT AFFECT THE INTERMEDIATE RESULTS FOR THE

PRUNABLE EXPRESSION

$ /5?6

IN RESPONSE TO DETERMINING THAT THE SECOND VALUE DOES NOT AFFECT
THE INTERMEDIATE RESULTS FOR THE PRUNABLE EXPRESSION, THE PARTICULAR
COMPUTING DEVICE DISCARDING THE PREVIOUSLY-UNEXPLORED VERTEX FROM A

SET OF POTENTIAL SOLUTIONS FOR THE QUERY

Patent Application Publication Jul. 15,2021 Sheet 6 of 9 US 2021/0216590 A1

FIG. 6

.‘“fg;”

AGE AGE
SROPERTY \ PROPERTY

Patent Application Publication

STAGE Y
ONg’

e, "«E
s

STAGE 1
ON &’

STAGE 1
ON ‘&'

Jul. 15,2021 Sheet 7 of 9

US 2021/0216590 A1

7
7
H

Uix

AR R A S A

FLAG SUMB.AGEY

N N NN N NN,

STAGE 2
ON'D

STAGE 2
ON'Y

STAGE 3
QN

STAGE R
ONY

US 2021/0216590 A1

Jul. 15,2021 Sheet 8 of 9

Patent Application Publication

yig
1SOH
...... - .
e —
s ﬂ g 708
YHOMIAN /NI VN o N
/ SHOMLIN NOLLYINAWNOD HOSSHo0dd V1 301A30 TOHINOD
208 % V 718
WILSASENS O] "~ I0IA3A LNdNI
LINYIINI
e w | L N
...... 0£8 V1 391A30 1NdLNO
IS IOVHOLS WOY AHOWIN

0ce /// m am%&

US 2021/0216590 A1

(=)}
=] (WA) HOLINOW INIHOVIN TVNLNIA i
& Qi —_ T m mw aa
7 N\
= {iN9) DVRIILNI
m, HIASH TWOHHLYED
"o
m {2917 HO ‘CIOHANY ‘SO!'SO SV YNNIT YINA ‘SMOONIM “Bs)
WNILSAS ONILYHILO
n
S -
2
& < N HYHS0Nd [£ NYND0Nd 2 VD0 L NYND0N
E 706 NOLLYOMddY NOLLYOIddY NOLLYOIddY NOLLYDIddY
=
[*)
= ..
m NZ06 - 3706 - gz06 - vZ08 -/
z 006
=
=W

US 2021/0216590 Al

OPTIMIZING GRAPH QUERIES BY
PERFORMING EARLY PRUNING

FIELD OF THE INVENTION

[0001] The present invention relates to querying graph
database data and, more specifically, to optimizing imple-
mentation of graph data queries by using early pruning to
discard potential solution paths that cannot affect query
results.

BACKGROUND

[0002] Graph processing is a method in data processing
where the fine-grained relationships between data entities
are materialized, in a graph database, as graph edges (or
simply “edges”) between graph vertices (or simply “verti-
ces”). Graph databases may be implemented by single-node
database systems, multi-node shared-memory database sys-
tems, multi-node distributed-memory database systems,
multi-tenant database systems, etc. Information about the
entities, represented by vertices, and relationships between
the entities, represented by edges, may be queried and
analyzed to gain insights into the represented data.

[0003] The most prominent model of representing graph
data is the “property-graph model”. In the property-graph
model, both vertices and edges that represent connections
between the vertices can be associated with properties. For
example, in particular property-graph modeled graph data, a
vertex has a property, ‘age’, with an integer value, such as
‘20°. A graph query may be run over the particular graph
data to analyze the represented information, e.g., a query
that returns the maximum value of the ‘age’ property of
vertices that have an outgoing neighbor with a value of the
‘age’ property that is greater than 40.

[0004] Herein, graph queries are represented using prop-
erty graph query language (PGQL), which is a graph query
language with a syntax close to structured query language
(SQL). (Additional information about PGQL can be found in
“PGQL: a Property Graph Query Language”, by Oskar van
Rest et al., GRADES 2016, Jun. 24, 2016, the entire contents
of which is incorporated by reference as if fully set forth
herein.) To illustrate, the query described above can be
expressed in PGQL as query 100 of FIG. 1. Note that the
construct (a)->(b) in query 100 is referred to herein as the
query path pattern.

[0005] Graph data tends to be very extensive. As such,
efficient execution of graph queries is important to success-
ful graph database implementations. Further, performance is
a critical point of graph database and analysis infrastruc-
tures, where large delays in query response time can make
the difference between commercial success and failure.

[0006] Graph query execution within a single-node data-
base system or a multi-node shared-memory database sys-
tem is generally much more efficient than query execution
within a distributed database system because execution of
graph queries on a distributed system generally requires
communication among the different machines implementing
the system. Such communication subjects query execution
to network latencies, which generally represent a bottleneck
for query execution. For example, if vertices of particular
graph data are maintained by different machines, where a
particular vertex is stored on machine A and its neighbor is
stored on machine B, execution of query 100 (FIG. 1)

Jul. 15, 2021

against this path requires machine A to send information
regarding the particular vertex to machine B (in this case, the
value of ‘a.age’).

[0007] Many techniques to speed up graph query execu-
tion are helpful for all implementations of graph databases.
For example, indices can be used to speed up query execu-
tion. Also, intelligent query planning can reduce the number
of paths that need to be explored for a given query. An
example of intelligent query planning is starting exploration
of potential solutions for query 100 from vertices corre-
sponding to vertex ‘b’ in the query 100 path pattern, which
eliminates the need to explore paths that do not satisfy the
filter over vertex ‘b’. This technique of intelligent query
planning can reduce the number of inter-machine hops
required to explore the graph data when the graph database
is implemented in a distributed database system. Another
technique for mitigating inter-machine communication-
based latency, for a distributed system, is grouping inter-
machine messages. Grouping of messages enables sending
large chunks of information in large packet groups instead of
sending many smaller information packets between the
machines.

[0008] Furthermore, the evaluation of queries on any
implementation of a graph database may be performed in an
asynchronous manner, where machines and threads need not
wait for completion of a given query execution stage across
all potentially-matching vertices in the graph data before
starting the execution of a subsequent query execution stage.
Specifically, in asynchronous query execution, threads of the
database system pick up work (e.g., testing filters, sending
data to another machine for a distributed system, etc.)
independently from other threads. The main benefit of
asynchronous query execution is the reduced memory foot-
print of the query, given that the query execution engine
need not store all intermediate results of earlier query
execution stages for all explored vertices to facilitate per-
formance of subsequent query execution stages. Thus, asyn-
chronous query execution allows graph database systems to
more efficiently execute queries that would otherwise use a
tremendous amount of memory in maintaining intermediate
query results.

[0009] Notwithstanding existing techniques to improve
the execution time of queries in graph database systems, it
would be beneficial for any implementation of a graph
database management system to further optimize execution
of graph data queries by reducing the size of the set of
explored paths.

[0010] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section. Further, it should not be assumed that any of the
approaches described in this section are well-understood,
routine, or conventional merely by virtue of their inclusion
in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In the drawings:
[0012] FIG. 1 depicts example graph data queries.
[0013] FIG. 2 is a block diagram that depicts an example

arrangement for a database management system.
[0014] FIG. 3 depicts example graph data.

US 2021/0216590 Al

[0015] FIG. 4 depicts message buffers with path-specific
intermediate results for various stages of query execution.
[0016] FIG. 5 depicts a flowchart for performing early
solution pruning by utilizing expression-specific intermedi-
ate results to eliminate, from a set of potential query
solutions, paths whose property values cannot influence the
final result of the query.

[0017] FIG. 6 depicts an example expression tree.
[0018] FIG. 7 depicts message buffers with path-specific
intermediate results for various stages of query execution
and boolean flags associated with values stored in the
buffers.

[0019] FIG. 8 is a block diagram of a computer system on
which embodiments may be implemented.

[0020] FIG. 9 depicts a software system that may be used
in an embodiment.

DETAILED DESCRIPTION

[0021] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

General Overview

[0022] Techniques are described herein for early pruning
of potential graph query results to increase the efficiency of
graph query execution. Specifically, based on determining
that one or more paths through graph data that represent
potential solutions to a query cannot affect the results of the
query, those paths are pruned from the set of potential query
solutions prior to fully exploring the paths.

[0023] Early solution pruning is performed on prunable
queries, the results of which are not tied to a number of paths
explored for query execution. More specifically, the results
of prunable queries are determined using prunable expres-
sions, which employ one or more of a set of prunable
functions that includes: MIN and MAX (with or without
GROUP BY); SUM (with or without GROUP BY); and
DISTINCT. Once a database system has determined that a
given query is prunable based on the projected expressions
of the query being prunable, the system uses intermediate
results maintained for the query during query execution to
implement early solution pruning. When the system deter-
mines that property values of a given potential solution path
cannot affect the query results reflected in intermediate
results maintained for the query, the path is discarded from
the set of possible query solutions without further explora-
tion of the path.

[0024] For example, a database server instance executes
query 100 (FIG. 1) against a graph database. At a given point
in time, the database server instance maintains expression-
specific intermediate results indicating that the current
‘MAX(a.age)’ encountered by the instance is ‘100°. Based
on such intermediate results, the database server instance is
able to determine that any potential solution path that has
vertex ‘a’, according to the query 100 path pattern, with a
value of the ‘age’ property that is less than ‘100’ cannot
affect the final query result. Such potential solution paths can

Jul. 15, 2021

be discarded from the set of possible solutions for query 100
without further analysis of the paths.

[0025] Early pruning of potential solutions for prunable
queries improves query response times and reduces hard-
ware and energy costs. In the context of a distributed system,
early solution pruning also decreases the volume of inter-
machine communication, which alleviates network conges-
tion that is often a limiting factor in distributed systems. The
performance gains resulting from application of techniques
described herein are especially noticeable when exploration
of pruned paths would require inter-machine communication
and when paths are pruned before requiring exploration of a
large number (e.g., several thousands) of hops.

Distributed Graph Data

[0026] Embodiments herein are described in the context of
a distributed database system 200 comprising multiple data-
base server instances that maintain database data on disks
that are not shared among the multiple database server
instances, as depicted in FIG. 2. Nevertheless, techniques
described herein for early solution pruning may be per-
formed by any implementation of a database system, e.g., on
a single-node database system that comprises a single data-
base server instance, one a multi-node shared-memory data-
base system that comprises multiple database server
instances that access the same shared storage, on a multi-
tenant database system comprising a single database server
instance that serves multiple distinct databases, etc.

[0027] FIG. 2 depicts an example distributed database
system 200 comprising a first database server instance 220
running on a first database server computing device 210, and
a second database server instance 250 running on a second
database server computing device 240. Instances 220 and
250 maintain portions of a graph database 270, i.e., database
data 272 maintained in persistent storage 230 by instance
220, and database data 274 maintained in persistent storage
260 by instance 250. Examples of graph database imple-
mentations include Spatial and Graph Analytics Oracle
RDBMS, Big Data Appliance, Parallel Graph AnalytiX
(PGX), and Oracle Graph Cloud Service. (More information
regarding Spatial and Graph Analytics Oracle RDBMS may
be found in “Spatial and Graph Analytics with Oracle
Database 18c”, an Oracle White Paper, February 2018, the
entire contents of which are hereby incorporated as if fully
set forth herein.)

[0028] FIG. 3 depicts example graph data from database
270. Herein, a machine “owns” data that is maintained by a
database server instance running on the machine. Thus, the
vertices and edges defined in database data 272 are “owned”
by computing device 210, and the vertices and edges defined
in database data 274 are “owned” by computing device 240.
According to a non-limiting embodiment, an edge is owned
by the machine that owns the source vertex of the edge.
Thus, the owner of an edge maintains an identifier of a
destination vertex of the edge, and an identifier of the owner
of the destination vertex, as well as any properties of the
edge. To illustrate in the context of FIG. 3, device 210 owns
vertices 302, 304, and 320 and edges 310, 314, 316, 324, and
328, and device 240 owns vertices 306, 308, and 322 and
edges 312, 318, 326, 330, 332, and 334. Information for an
edge (such as an identifier of the source vertex of the edge,
and an identifier of the owner of the source vertex) may also
be stored with the destination vertex of the edge as a
“reverse” edge.

US 2021/0216590 Al

Querying Graph Data

[0029] Execution a query against database 270 is split into
one or more execution stages, where each stage of query
execution comprises one of (a) exploration of a hop (going
from one vertex to another) in a path that is a potential
solution for the query, or (b) processing of a final vertex in
a path that is a potential solution for the query. These stages
may be performed asynchronously and in parallel by mul-
tiple processing entities, e.g., multiple instances of a multi-
node database system, multiple threads on a single-node
database system, multiple threads running on multiple
machines of a multi-node database system, etc. References
to “processing entities” herein refer to computer system
processes, threads running within a computer system pro-
cess, and/or database server instances, depending upon
implementation.

[0030] In the context of distributed system 200 depicted in
FIG. 2, both machines initiate path exploration for a given
query on every vertex that the machine owns, excluding any
vertices that are determined to be excluded by the query. At
each stage of query execution, if property values of a given
path do not match query requirements, the processing entity
ceases exploration of the path and discards the path from the
set of potential query solutions.

[0031] To illustrate, database system 200 receives a query
102 (FIG. 1) over database 270. The path pattern for query
102 is (a)->(b)->(c)->(d). Note that query 102 is not prun-
able, as described in further detail below. Database system
200 organizes execution of query 102 into four execution
stages illustrated in FIG. 4, where each stage corresponds to
a corresponding vertex in the query 102 path pattern. In this
case, because there are no limitations on vertex ‘a’ in the
query 102 path pattern, database system 200 causes the first
execution stage of query 102 to be initiated for all vertices
in database 270.

[0032] As a further illustration, during the first stage of
query 102 execution (corresponding to vertex ‘a’ in the
query path pattern), thread 222A, of database server instance
220, performs a look up of the value of the ‘age’ property of
vertex 302 in database data 272 (‘age’=="100’), and inserts
the ‘age’ property value into a message buffer 410 that is
allocated to store path-specific intermediate results for query
102. Thread 222 A then looks up the neighbors of vertex 302
(i.e., destination vertices for edges that originate with vertex
302), which are vertex 304 (connected by edge 314) and
vertex 306 (connected by edge 310). Device 210 sends a
copy of message buffer 410 to the owner machine of each
neighbor of vertex 302 with information identifying the
target neighbor vertex for the second phase of query 102
processing (corresponding to vertex ‘b’ in the query path
pattern). Thus, thread 222 A sends a copy of message buffer
410 to device 240 with information identifying vertex 306,
and also causes message buffer 410 to be stored, with
information identifying vertex 304, in a buffer queue 216 in
volatile memory 212. Specifically, a thread causes a message
buffer to be stored in a buffer queue in any way, e.g., by
saving the message buffer to the buffer queue, by allowing
a service that manages the queue to access a copy of the
message buffer, etc.

[0033] Buffer queue 216 stores message buffers that hold
path-specific intermediate results for paths that require fur-
ther exploration in database data 272. As they become
available for additional work, threads 222A and 222B ini-
tiate the first stage of query 102 execution (corresponding to

Jul. 15, 2021

vertex ‘a’ in the query path pattern) over vertices in database
data 272, and initiate more advanced execution stages of
query 102 (corresponding to vertices ‘b’, ‘c’, and ‘d’ in the
query path pattern) based on message buffers in buffer queue
216. Similarly, buffer queue 246 in volatile memory 242
stores message buffers that hold path-specific intermediate
results for paths that require further exploration in database
data 274.

[0034] Continuing the example with respect to the poten-
tial solution path (vertex 302)->(vertex 306), device 240
receives the copy of the message buffer with the record of
the completed first execution stage (corresponding to vertex
‘a’ in the query path pattern) and places the message buffer
copy in buffer queue 246. Thread 252A becomes available
and initiates second stage processing for query 102 (corre-
sponding to vertex ‘b’ in the query path pattern) based on
information for the message buffer. Specifically, according
to the second execution stage of Query 102, thread 252A
inserts the ‘age’ property value of vertex 306 (‘age’=='40")
into a message buffer 420. Thread 252A determines that the
neighbor vertices of vertex 306 are vertex 308 (via edge 318)
and vertex 322 (via edge 344). As such, thread 252A causes
a first copy of the message buffer to be stored in buffer queue
246 with an identifier of vertex 308 and a second copy of the
message buffer to be stored in buffer queue 246 with an
identifier of vertex 322.

[0035] Subsequently, thread 252B picks up the message
buffer associated with the identifier of vertex 308 from
buffer queue 246. In connection with the third stage of
processing for query 102 (corresponding to vertex ‘c’ in the
query path pattern), thread 252B looks up the value of the
‘age’ property of vertex 308 and inserts this value into
message buffer 430. In preparation for the final query
execution stage for the path (corresponding to vertex ‘d’ in
the query path pattern), thread 252B sends a copy of
message buffer 430 to the owner machines of each neighbor
of vertex 308. In this case, vertices 304 and 320 are
neighbors to vertex 308 (connected by edges 312 and 330,
respectively). Thus, thread 252B sends two copies of mes-
sage buffer 430 to the owner machine of vertices 304 and
320 (i.e., device 210), where a first copy of the message
buffer is associated with an identifier of vertex 304 and a
second copy of the message buffer is associated with an
identifier of vertex 320. Instance 220 stores the received
message buffers in buffer queue 216.

[0036] Thread 222A retrieves, from buffer queue 216,
message buffer 440 that is associated with the identifier of
vertex 304. Thread 222A initiates processing of the final
execution stage of query 102 (corresponding to vertex ‘d’ in
the query path pattern) for the indicated path. Specifically, in
accordance with the filter WHERE d.age>40 in query 102,
thread 222A determines whether the value of the ‘age’
property of vertex 304 is greater than ‘40’ and only contin-
ues with the final stage of query 102 execution for vertex
304 if the ‘age’ property is larger than ‘40°. In this case, the
‘age’ property of vertex 304 is ‘60’. Thus, at the final stage
of query execution, thread 222A inserts the values of ‘a.age’,
‘b.age’, and ‘d.age’, which are the results of the property
access-type projected expressions of query 102, into a result
table for query 102. Furthermore, thread 222A aggregates,
based on the MIN aggregation function, the value of c.age'
with other values of ‘c.age’ from any other paths that have
been validated for query 102. After all solutions for query

US 2021/0216590 Al

102 have been identified in database 270, the final result for
MIN(c.age) is inserted into the result table for query 102.

Prunable Queries

[0037] According to one or more embodiments, database
server instances use early solution pruning to expedite
computation of prunable queries. A prunable query is a
query whose results are calculated based on expressions that
are prunable, the results of which are unrelated to a number
of paths that are explored during query execution. An
expression is a construct that expresses how to compute a
value, and can be comprised of mathematical functions,
literals, vertex and edge property accesses, etc.

[0038] Examples of functions for prunable expressions
include MAX and MIN aggregation, DISTINCT, and SUM.
According to an embodiment, a prunable expression is an
expression of the form ‘MAX(sub_expression)’, ‘MIN(sub_
expression)’, SUM(sub_expression)', or ‘DISTINCT(sub_
expression)’, where ‘sub_expression’ is any other expres-
sion. An expression is prunable if all sub-expressions of the
expression are prunable. For example, the following expres-
sion is prunable because it employs only prunable functions:
‘MAX(sub_expression)’+ MIN(sub_expression)’. A non-
prunable expression is an expression whose result is deter-
mined by exploring all paths in the applicable graph data set,
such as property accesses, count-based aggregation func-
tions such as ‘COUNT(sub_expression)’ and ‘AVG(sub_
expression)’, etc.

[0039] The following queries are examples of prunable
queries, where the result of the query is calculated using
prunable expressions:
[0040] SELECT MAX(a.age) MATCH (a)->(b)->(c)->
(d) WHERE d.age>40
[0041] Specifically, a database server instance is able to
prune a given potential solution path, from a set of
potential solutions for the query, if the instance has
record of a validated solution path in which the value
of ‘a.age’ was equal to or larger than the value of
‘a.age’ in the potential solution path.
[0042] SELECT SUM(a.age) MATCH (a)->(b)->(c)->
(d) WHERE d.age>40
[0043] Specifically, a database server instance is able to
prune a given potential solution path, from a set of
potential solutions for the query, if the value of ‘a.age’
for the potential solution path is 0’.

[0044] SELECT DISTINCT(a.age) MATCH (a)->(b)->
(c)->(d) WHERE d.age>40
[0045] Specifically, a database server instance is able to
prune a given potential solution path, from a set of
potential solutions for the query, if the value of ‘a.age’
for the potential solution path is already in a set of
distinct ‘a.age’ values from solution paths that have
been validated for the query.
[0046] SELECT MAX(a.age) MATCH (a)->(b)->(c)->
(d) GROUP BY b.age WHERE d.age>40
[0047] Specifically, a database server instance is able to
prune a given potential solution path, from a set of potential
solutions for the query, if the instance has record of a
validated solution path with the same value of “b.age’ as the
potential solution path, in which the value of ‘a.age’ is equal
to or larger than the value of ‘a.age’ in the potential solution
path.

Jul. 15, 2021

Detecting Prunable Queries

[0048] FIG. 5 depicts a flowchart 500 for performing early
solution pruning by utilizing expression-specific intermedi-
ate results to eliminate, from a set of potential query
solutions, paths whose property values cannot influence the
final result of the query, according to one or more embodi-
ments. At step 502, a query is executed, as a prunable query,
over graph data maintained in a graph database, where the
graph data comprises a plurality of vertices and a plurality
of edges that represent relationships between the plurality of
vertices, where the query includes a prunable expression
over a particular vertex property, and where the graph
database is maintained, at least in part, by a particular
computing device. For example, system 200 receives a
query 104 (FIG. 1) over database 270. Query 104 includes
the following projected expressions (i.e., the expressions in
the SELECT clause of the query), which define the results
requested by the user: ‘MAX(a.age)’, ‘SUM(b.age)’, and the
literal ‘42°.

[0049] According to an embodiment, as part of processing
a received query, system 200 determines whether the
received query is a prunable query. Specifically, system 200
inspects the projected expressions for the received query,
which can range in complexity from literals to complex
user-defined functions.

[0050] Projected expressions for a query may be repre-
sented by system 200 as a set of expression trees. FIG. 6
depicts example expression trees 610, 620, and 630 that
represent the projected expressions of query 104. To analyze
whether query 104 is prunable, a query optimizer for system
200 traverses the expression tree for each projected expres-
sion of query 104 to compute the set of prunable expressions
for the query. In the case of query 104, because all of the
expressions in the SELECT clause of query 104 are prunable
(MAX, SUM, and a literal, which is not affected by the
contents of graph database 270), system 200 determines that
query 104 is prunable.

[0051] In response to determining that a received query is
prunable, system 200 determines at which stage, during
query execution, the query is eligible for early solution
pruning. The determined stage at which the query is eligible
for early solution pruning is referred to herein as the “early
pruning-eligible” stage. Returning to the example of query
104, system 200 determines that both vertex ‘a’ and vertex
‘b’ of the query 104 path pattern must be traversed in order
to determine whether a given path may be pruned according
to techniques described herein. Specifically, traversal of
vertex ‘a’ is required to determine whether the ‘age’ property
of vertex ‘a’ affects intermediate results for the MAX
function, and traversal of vertex ‘b’ is required to determine
whether the ‘age’ property of vertex ‘b’ affects the interme-
diate results for the SUM function. Thus, system 200 deter-
mines that the early pruning-eligible stage for query 104 is
the second query execution stage on vertex ‘b’.

[0052] According to an embodiment, if the early pruning-
eligible stage for a query is within a threshold number (e.g.,
0) of the last stage of query execution, early pruning is not
implemented for the query despite the query being prunable.
In the case of query 104, the early pruning-eligible stage is
the second of four stages. Based on a threshold number of
0, system 200 determines to utilize early solution pruning
techniques for query 104.

[0053] A further illustration is presented based on system
200 receiving query 102. As part of processing the received

US 2021/0216590 Al

query, system 200 reviews all projected expressions of query
102 to determine whether the query is prunable. A query is
not prunable if any number of non-prunable expressions are
projected by the query. In the case of query 102, the
projected expressions are property access-type expressions
targeting ‘a.age’, ‘b.age’, ‘d.age’, and a MIN aggregation
function. The property access expressions-type are not prun-
able, and inclusion of these non-prunable expressions in the
projected expressions of query 102 renders the query non-
prunable (despite the inclusion of a prunable expression
based on the MIN function) given that solutions for query
102 would need to be positively identified and traversed in
order to compute the non-prunable projected expressions.
[0054] The following example pseudocode (in C++ style)
illustrates an operation for detection of prunable queries, by
which the list of expressions that can be pruned is known
during the compilation of a query:

Jul. 15, 2021

[0056] At step 506, based at least in part on a first value,
of' the particular vertex property, of a vertex in the first path,
the particular computing device derives intermediate results
for the prunable expression. For example, based on validat-
ing path (vertex 302)->(vertex 306)->(vertex 308) as a
solution for query 104, instance 250 derives two expression-
specific intermediate results indicating the current aggregate
values known for the projected expressions in query 104:
‘MAX(a.age)’=="100"; and ‘SUM(b.age)’=="40". These
expression-specific intermediate results are used to effi-
ciently compute aggregate values projected by a query, and
also to affect early solution pruning, as described in further
detail below.

[0057] According to an embodiment, the expression-spe-
cific intermediate results are maintained in machine-local
values, such as machine local values 214 in volatile memory
212 of device 210 and machine-local values 244 in volatile

set<expression> get_ prunable_ expressions(vector<expression™>
projected__expressions) {
set<expression prunable_ expressions;
bool at_least_one_ non_ prunable = false;
for (expression projected__expression : projected__expressions) {
prunable__expressions.insert(
get_ prunable_ expressions(projected__expression,
at_least_one_ non_ prunable)

);

/* Note that ‘at_least one_ non_ prunable’ is passed by reference to

the function*/
if (at_least one_ non_ prunable) {
return set<expression>();

return prunable_ expressions;

}

set<expression> get_ prunable_ expressions(expression

projected__expression, bool &at_least _one_ non_prunable) {

if (projected__expression.type == MAX || projected__expression.type ==

MIN || projected__expression.type == SUM ||
projected__expression.type == DISTINCT) {
return set<expression>({projected__expression});

else if (projected__expression.is_leaf()) {
at_ least_one_non_ prunable = true;
return set<expression>();

¥

set<expression prunable_ expressions;

for (expression child_ expression :

projected__expression.get_ children()) {
prunable__expressions.insert__many(get_ prunable_ expressions(
child_ expression));

return prunable_ expressions;

Machine-Local and Thread-Local Intermediate Results

[0055] Returning to the discussion of flowchart 500 of
FIG. 5, executing a query, as a prunable query, over graph
data comprises steps 504-510. Specifically, at step 504, the
particular computing device determines that a first path,
through the graph data, satisfies the query. For example,
after system 200 receives query 104 and determines that it
is a prunable query, database server instance 220 initiates the
first stage of query 104 against vertices in database data 272
and database server instance 250 initiates the first stage of
query 104 against vertices in database data 274. In connec-
tion with executing the query, database server instance 250
validates the following path (vertex 302)->(vertex 306)->
(vertex 308) as a solution for query 104.

memory 242 of device 240. According to an embodiment, in
the case of a distributed graph database system, these
machine-local values are periodically synchronized with the
machine-local values from other machines in the system.
For example, every machine in a distributed database system
broadcasts its machine-local values periodically (such as
after a predetermined number of updates). When a machine
receives a broadcast from another machine indicating an
expression-specific intermediate result, the corresponding
machine-local value is updated, if needed. For example, for
expression-specific intermediate results for a MAX function,
the machine-local value that corresponds to the broadcast
value is updated if the broadcast value is higher than the
machine-local value. These updated expression-specific
intermediate values increase the accuracy of the local inter-

US 2021/0216590 Al

mediate values maintained by the various machines of the
distributed system, thereby facilitating more effective early
pruning of potential solution paths.

[0058] According to an embodiment, since query explo-
ration is generally performed in parallel by a large number
of threads, each thread running on a given machine avoids
contention for machine-local value access by keeping
expression-specific intermediate results in thread-local val-
ues (such as thread-local values 224A for thread 222A),
when possible. Maintenance of thread-local values avoids
the requirement to access the machine-local values for every
update by every thread. According to an embodiment, to
gain performance, thread-local values are periodically syn-
chronized with the corresponding machine-local values. The
periodic synchronization may be performed after a certain
number of updates by a given thread. Such periodic syn-
chronization allows for a balance between performance and
up-to-date intermediate results that provide for discarding
the most paths possible via early pruning.

[0059] According to an embodiment, intermediate results
that are set-type values are stored as machine-local values
and not as thread-local values because, in general, it would
be too costly and ineffective to have a per-thread set of
values. For example, in the case of a DISTINCT-type
expression, the set of distinct values required for DISTINCT
expression-specific intermediate results is maintained in
machine-local values in a way to support concurrent
accesses by multiple threads.

[0060] Returning to a discussion of step 506 of flowchart
500, in the context of the distributed system 200 of FIG. 2
executing query 104, each device 210 and 240 stores an
expression-specific intermediate value for each of ‘MAX(a.
age)’ and ‘SUM(b.age)’. When a given instance validates a
given path as a solution to query 104, the instance updates
the local expression-specific intermediate results maintained
by the instance based on the property values of the validated
solution. At the end of query execution by a distributed
database system, all local values from the machines in the
system are used to calculate the final value for each expres-
sion projected by the query.

Early Pruning of a Potential Solution Path

[0061] At step 508, the particular computing device deter-
mines that a second value, of the particular vertex property,
of a previously-unexplored vertex in the graph data does not
affect the intermediate results for the prunable expression.
For example, thread 222 A maintains, in thread-local values
224A, the following expression-specific intermediate results
for the projected expressions in query 104: ‘MAX(a.age)
’=="100"; and ‘SUM(b.age)’=="40. While maintaining
these expression-specific intermediate results, thread 222A
performs the first query execution stage for query 104
against vertex 304. Thread 222A determines that the ‘age’
property of vertex 304, i.e., ‘60’, is less than ‘100’, and thus
does not affect the intermediate results for ‘MAX(a.age)’
stored in machine-local values 224A.

[0062] Since the early pruning-eligible stage for query 104
is the second execution stage, thread 222A moves on evalu-
ation of the neighbors of vertex 304 (i.e., vertex 322)
according to the second execution stage of query 104. Thus,
thread 222A populates a message buffer, as described in
further detail below, with the value of the ‘age’ property of
vertex 304 and sends the message buffer with an identifier of

Jul. 15, 2021

vertex 322 to the owner of vertex 322 (device 240). Upon
receipt of the message buffer, device 240 places the message
buffer in buffer queue 246.

[0063] While thread 252A maintains, in thread-local val-
ues 254A, ‘MAX(a.age)’="100’, and ‘SUM(b.age)’=="40"
as the expression-specific intermediate results for the pro-
jected expressions in query 104, thread 252A picks up the
message buffer from buffer queue 246 and performs the
second execution stage for query 104 against vertex 322. At
this stage, thread 252A determines that the ‘age’ property of
vertex 322, ie., ‘0’°, does not affect expression-specific
intermediate results for ‘SUM(b.age)’ maintained by thread
252A for query 104. Specifically, a value of ‘0’ for ‘b.age’
does not affect intermediate results stored for a SUM-type
expression no matter the value of the intermediate results.
[0064] At step 510, in response to determining that the
second value does not affect the intermediate results for the
prunable expression, the particular computing device dis-
cards the previously-unexplored vertex from a set of poten-
tial solutions for the query. For example, because query
execution for the current path has reached the early pruning-
eligible stage for query 104, and it has been determined that
none of the properties of (vertex 304)->(vertex 322) affect
the expression-specific intermediate results maintained for
the query, thread 252A discards, from the set of potential
solutions for query 104, all paths that start with (vertex
304)->(vertex 322).

[0065] In this case, discarding this subset of paths from
consideration for query 104 prevents instance 250 from
having to determine whether vertex 308 is a match for vertex
‘¢’ of the query 104 path pattern, thus saving processing
power. Furthermore, instance 250 need not send information
for the path exploration to instance 220 to cause instance 220
to explore vertex 320 as a potential match for vertex ‘¢’ of
the query 104 path pattern, thus saving processing power
and network bandwidth that would be required for that
further path exploration.

[0066] According to an embodiment, a database server
instance prunes message buffers, from the buffer queue
maintained by the instance, based on current and/or past
pruning decisions. For example, when a thread has detected
that a sub-path can be pruned, the thread reviews the
pending message buffers and discards those message buffers
whose paths start with the pruned sub-path. In this example,
a message buffer that matches the pruned sub-path but is
placed in the buffer queue after the thread reviews the queue
based on the pruned sub-path, the message buffer is not
discarded. This technique does not require maintenance of
previously-pruned sub-paths, which conserves instance
resources.

[0067] As a further example, a database server instance
maintains (e.g., in a cache) a set of pruned sub-paths based
on which message buffers in the message buffer queue may
be discarded. The maintained pruned sub-paths are deter-
mined based on one of: a pruning decision made by the
instance that maintains the set of pruned sub-paths, and/or
periodic sharing, by database server instances of a distrib-
uted database system of which the instance is a part, of
sub-paths that have been pruned, which allows instances to
leverage pruning decisions made by other processing enti-
ties.

[0068] To illustrate proactive pruning of buffer messages
based on a cache of saved sub-paths, instance 250 deter-
mines that (vertex 304)->(vertex 322) is a pruned sub-path

US 2021/0216590 Al

from the set of potential solution paths for query 104 (either
based on a pruning decision made by instance 250 or based
on information shared by instance 220), and stores the
sub-path in a pruned sub-path cache. Instance 250 periodi-
cally reviews message buffer queue 246 to determine if any
of the message buffers in the queue match a sub-path in the
maintained set of pruned sub-paths. The instance discards
any message buffer identified to incorporate the pruned
sub-path without performing any further processing based
on the message buffer.

Group-by

[0069] According to techniques described herein, having a
GROUP BY clause in a query indicates that the aggregation
function associated with the GROUP BY clause will be
performed on every distinct group given by an argument of
the GROUP BY clause. For instance, the query ‘SELECT
MAX (a.salary) MATCH (a) GROUP BY a.age’ returns the
highest salary for each age category. Not having such a
GROUP BY clause means that the aggregation is to be
performed once on all elements.

[0070] Early pruning of a query with a GROUP BY clause
is similar to implementation of early pruning techniques for
an equivalent query without the GROUP BY clause. For a
GROUP BY-based expression, processing entities store sets
of'local results per ‘group’, instead of a single local result for
the expression.

[0071] Further, the early pruning-eligible stage for a query
having a GROUP BY clause is at or after a stage at which
the required one or more grouping categories have been
determined. To illustrate, the following query ‘SELECT
MAX (a.age) MATCH (a)->(b)->(c) GROUP BY b.age
WHERE c.age>40’ selects the maximum value of the ‘age’
property of vertex ‘a’ for each ‘age’ property value category
of vertex ‘b’ in cases where the value of the ‘age’ property
of vertex ‘c’ is over ‘40°.

[0072] For this query, in the absence of the GROUP BY
expression and based only on the MAX expression, the early
pruning-eligible stage would be the first stage of execution
(i.e., the stage that represents exploration of the ‘a’ vertex in
the query path pattern). However, because the GROUP BY
expression requires determining groups based on a property
of vertex ‘b’ of the query path pattern, the early pruning-
eligible stage is the second stage of execution (i.e., the stage
that represents exploration of the ‘b’ vertex in the query path
pattern) to allow expression-specific intermediate results for
the query to reflect ‘MAX(a.age)’ correlated with the age
groups of the ‘b’ vertex.

[0073] Because expressions that are affected by a GROUP
BY clause produce a set of results, maintenance, in thread-
local values, of expression-specific intermediate results for
such expressions may be too costly. Thus, according to an
embodiment, intermediate results for expressions that are
affected by a GROUP BY clause are maintained in machine-
local values.

Early Pruning Based on Additional Boolean Flags

[0074] According to an embodiment, processing entities
include, in message buffers that store path-specific interme-
diate results for query solution exploration, a boolean flag
for each prunable expression in the query. The boolean flags
in the message buffer for a particular path are used to
communicate, among processing entities, whether property

Jul. 15, 2021

values associated with the boolean flags affected local
expression-specific intermediate results. Because each pro-
cessing entity maintains and updates a respective set of local
expression-specific intermediate results for the query, each
processing entity may maintain different expression-specific
intermediate results between periodic synchronization
events. Including such flags in message buffers allows for
discarding the maximum number of solution paths that
cannot affect query results.

[0075] A flag in a given message buffer is set to TRUE if
the associated message buffer variable would affect the
corresponding expression-specific intermediate result main-
tained by the current processing entity and all previous
processing entities. Thus, the presence of a flag set to TRUE
in a message buffer for a given path indicates that there is a
chance that the property values of the path could change the
final results of the query.

[0076] Conversely, a flag in a given message buffer has a
value of FALSE if the value of the associated message buffer
variable would not affect the corresponding expression-
specific intermediate result maintained by a previous or
current processing entity. It is noted that, if the value of a
path property does not affect a local expression-specific
intermediate result, the value necessarily does not affect the
final result for the expression. If, upon completion of the
early pruning-eligible stage of a query for a given path, all
of the flags in the message buffer maintained for the path are
FALSE, then the potential solution path may safely be
discarded from the set of possible query solutions because
the values of the path cannot affect the final query result.
[0077] At every processing stage, the processing entity for
that stage attempts to set any TRUE flags in the message
buffer to FALSE, i.e., the processing entity sets a TRUE flag
to FALSE when the property value associated with the flag
does not affect the corresponding expression-specific inter-
mediate results maintained by the current processing entity.
This additional optimization is not costly since the previ-
ously identified values required for prunable expressions
from a given path are stored in the message buffer main-
tained for the path. Furthermore, the verification required for
additional pruning is inexpensive in terms of computation
since such verification involves one of: (a) a comparison
between locally-stored expression-specific intermediate
results and a value (for MAX and MIN); (b) a comparison
between a value and 0 (for SUM); or (c) an ‘exists’ test to
determine if a value is in a set of values for an expression-
specific intermediate result (for DISTINCT).

[0078] Once a boolean flag is set to FALSE, subsequent
processing entities leave the flag as FALSE, even if the
associated message buffer variable would change the corre-
sponding expression-specific intermediate results main-
tained by the current processing entity. According to an
embodiment, when a property value in a received message
buffer, which is associated with a flag that is set to FALSE,
would change the corresponding expression-specific inter-
mediate results maintained by a current processing entity,
the entity updates the expression-specific intermediate
results based on the property value (thereby increasing the
processing entity’s power to discard future potential solution
paths). The local expression-specific intermediate results
may be safely updated because the property value, on which
the update is based, is necessarily a value that would not
affect the final results for the corresponding prunable expres-
sion, as determined by one of the previous processing

US 2021/0216590 Al

entities. Such an update can be safely performed even if the
path is later discarded (either by early pruning or because of
a query filter) because it is based on intermediate results
from another processing entity.

[0079] To illustrate, when executing query 104, compila-
tion of the query by system 200 identifies three execution
stages for query 104, one for each vertex in the query 104
path pattern. FIG. 7 depicts message buffers 702, 704, and
706, including boolean flags, at the three execution stages
for evaluation of query 104. The legend depicted in FIG. 4
is also applicable to FIG. 7. A message buffer 702 is created
upon initiation of the first execution stage of query 104 over
a given vertex, with a message buffer variable storing the
value of the ‘age’ property of the vertex and a corresponding
boolean message buffer variable with the flag indicating
whether the associate value affected the corresponding
expression-specific intermediate value maintained by the
processing entity. When a processing entity initiates the
second execution stage of query 104, the processing entity
inserts, into message buffer 704, a message buffer variable
with the value of the ‘age’ property of the vertex being
evaluated as the ‘b’ vertex in the query 104 path pattern, and
also a corresponding boolean message buffer variable with
the flag for the stored ‘b.age’. (According to another
embodiment, a boolean flag is not used for SUM-type
expressions given that the value of ‘b.age’ is sufficient to
determine whether the value affected the intermediate results
maintained by a previous processing entity.) When a pro-
cessing entity initiates the third execution stage of query 104
based on message buffer 706, any values for vertex ‘c’ of the
query 104 path pattern would not need to be sent to any other
processing entity and, as such, are not included in the
message buffer.

[0080] To illustrate utilization of flags for execution of
query 104 in the context of database data 272 and 274 as
depicted in FIG. 3, thread 252A maintains the following
expression-specific intermediate results for query 104:
‘MAX(a.age)’=="100"; ‘SUM(b.age)’=="40". These inter-
mediate results may be maintained in thread-local values
254A, or may be maintained in machine-local values 244.
[0081] While maintaining those expression-specific inter-
mediate results, thread 252A initiates the first execution
stage for query 104 against vertex 306. Thread 252A deter-
mines that the ‘age’ property of vertex 306 does not change
the local intermediate results for ‘MAX(a.age)’ since the
expression-specific intermediate results show a ‘MAX(a.
age)’ of ‘100’ and the ‘age’ property of vertex 306 is ‘40°.
As such, as shown in message buffer 712 at the first stage of
query 104 execution, thread 252 A populates message buffer
712 with a variable 712A that indicates an a.age' value of
‘40’, and also sets an associated boolean message buffer
variable 712B to FALSE. The flag at variable 712B shows
that message buffer variable 712A does not affect the local
expression-specific intermediate results for ‘MAX(a.age)’
that is maintained by thread 252A.

[0082] Thread 252A identifies vertex 322 as a neighbor of
vertex 306, and a potential match for vertex ‘b’ of the query
104 path pattern. Thus, thread 252A causes message buffer
712 to be stored in buffer queue 246 with an identifier of
vertex 322. Thread 252B picks up the message buffer 714
from buffer queue 246 and performs the second stage of
query execution against vertex 322. At the time that thread
252B performs the second stage of execution for query 104,
thread 252B maintains the following expression-specific

Jul. 15, 2021

intermediate values for query 104 in thread-local values
254B: ‘MAX(a.age)’=—"20"; ‘SUM(b.age)’=="60". In this
example, thread-local values 254B are different from thread-
local values 254A because one or both of the thread-local
values have changed since they were initialized or since they
were last synchronized to machine-local values 244.
[0083] Thread 252B determines that the buffer variable
714A in message buffer 714 is higher than the expression-
specific intermediate value for ‘MAX(a.age)’ in thread-local
values 254B. Thread 252B does not change the flag in buffer
variable 714B (associated with buffer variable 714A), since
the flag indicates that the ‘a.age’ stored in buffer variable
714A did not affect the expression-specific intermediate
value for ‘MAX(a.age)’ of the previous processing entity.
According to an embodiment, based on this determination,
thread 252B updates the expression-specific intermediate
value for ‘MAX(a.age)’ in thread-local values 254B based
on the value for a.age' in buffer variable 714A, i.e., ‘MAX
(a.age)’=="40’. The expression-specific intermediate results
maintained by thread 252B may be safely updated based on
this information because the value of ‘a.age’ in the buffer
variable 714A is necessarily less than or equal to the
intermediate results for ‘MAX(a.age)’ maintained by the
previous processing entity.

[0084] Thread 252B also determines that the value of the
‘age’ property of vertex 322, i.e., ‘0, does not affect the
intermediate results maintained in thread-local values 2548,
i.e., SUM(b.age)’=="60’. Since the current (second) stage of
execution for query 104 is the early pruning-eligible stage
for the query, and because neither of the age properties of the
explored vertices affect the local expression-specific inter-
mediate results for the query, thread 252B discards all paths,
from the potential path matches for query 104, that start with
(vertex 306)->(vertex 322). Thread 252B need not update
message buffer 714 with the results of the second execution
stage given that the path is pruned from the set of potential
solutions for query 104, and the message buffer is not used
to perform any further stages of query 104 execution.
[0085] As a further example, while thread 252B maintains
expression-specific intermediate results for query 104 of
‘MAX(a.age)’=="40"; ‘SUM(b.age)’=="60, thread 252B
initializes the first stage of query 104 evaluation against
vertex 308. Thread 252B determines that the value of the
‘age’ property of vertex 308, ie., ‘50°, would affect the
expression-specific intermediate results in thread-local val-
ues 254B for ‘MAX(a.age)’, ie, ‘MAX(a.age)’=—40".
Thread 252B populates a message buffer 722 (FIG. 7) with
a message buffer variable 722A indicating ‘a.age’=—*50".
Thread 252B further inserts a message buffer variable 722B
with a boolean flag set to TRUE, which indicates that the
value of ‘a.age’ in buffer variable 722A affected the expres-
sion-specific intermediate results maintained by thread
252B.

[0086] Thread 252B identifies vertex 320, maintained in
database data 272, as a neighbor of vertex 308 that is a
possible candidate to match the ‘b’ vertex of the query 104
path pattern. Accordingly, thread 252B sends a copy of
message buffer 722, with an identifier of vertex 320, to
database server instance 220. Instance 220 places the copy
of the message buffer in message buffer queue 216.

[0087] Thread 222A picks up the copy of the message
buffer (depicted in FIG. 7 as message buffer 724) based on
which the thread will perform the second phase of query 104
execution against vertex 320. When thread 222A picks up

US 2021/0216590 Al

the message buffer, thread-local values 224A indicate the
following expression-specific intermediate values for query
104: ‘MAX(a.age)’=="100"; ‘SUM(b.age)’=="110". Thread
222A determines that the value of ‘a.age’ in message buffer
variable 724A, i.e., ‘50°, does not affect the expression-
specific intermediate results for ‘MAX(a.age)’ maintained
by thread 222A. Based on this determination, thread 222A
changes the flag in buffer variable 724B, associated with
‘a.age’, to FALSE.

[0088] Thread 222A then performs the second execution
phase of query 104 against vertex 320. The value of the ‘age’
property of vertex 320 is ‘20, which, as a non-zero number,
would affect the expression-specific intermediate results for
‘SUM(b.age)’ maintained by thread 222A, i.e., ‘110°. The
second stage of execution of query 104 is the early pruning-
eligible stage. However, because one of the values of the
currently-explored path affects the intermediate results
maintained by the processing entities for path, the current
path is not pruned. Thus, thread 222A populates message
buffer 724 with the value of ‘b.age’ (20") in buffer variable
724C, and a boolean flag set to TRUE in buffer variable
724D to indicate that the value in buffer variable 724C
affected the expression-specific intermediate results for
‘SUM(b.age)’.

[0089] Thread 222A identifies vertex 304 (maintained by
instance 220) as a neighbor of vertex 320 that is a potential
match for vertex ‘c’ in the query 104 path pattern. As such,
thread 222 A causes a copy of message buffer 724, associated
with an identifier of vertex 304, to be stored in buffer queue
216.

Jul. 15, 2021

changes caused by the property values of the validated path.
For example, based on validating the path (vertex 308)->
(vertex 320)->(vertex 304) as a solution to query 104, thread
222B updates the expression-specific intermediate results
maintained by the thread based on the property values in the
validated path. When all potential solution paths for query
104 have been explored by system 200, the results main-
tained by the processing entities are shared, and the final
values of ‘MAX(a.age)’ and ‘SUM(b.age)’ are computed
and returned as a result of query 104.

[0092] According to an embodiment, a processing entity
that processes a query execution stage after the early prun-
ing-eligible stage of a query determines whether the values
in the path-specific intermediate results would affect the
expression-specific intermediate results maintained by that
processing entity. The processing entity updates the flags in
the message buffer if some, but not all, values marked with
a TRUE flag would not affect the expression-specific inter-
mediate values maintained by the processing entity. Further,
the processing entity prunes the path from the set of potential
solutions for the query (at the later query execution stage) if
all of the message buffer variables associated with TRUE
flags would not affect the intermediate results maintained by
the entity. This optimization saves processing power
required to perform further query evaluation, and is espe-
cially useful if there are multiple processing stages required
to be performed after the early pruning-eligible processing
stage.

[0093] The following pseudocode illustrates the technique
of pruning for previously-computed values:

// Returns true iff the path exploration needs to be continued
bool update_ prunable_ flags(set<expression™> prunable_ expressions,

buffer query_ buffer) {

if (prunable__expressions.empty()) {

return true;

bool need__to_ continue_ path = false;

for (expression prunable__expression : prunable_expressions) {

if (query__buffer.get_ flag(prunable__expression) == true) {
// Value would change all previous local values
if (prunable__expression.get_ local_ value().would__be_ changed(
query__buffer.get value (prunable_ expression)))
{
need_ to_ continue_ path = true;

}else {

query__buffer.set_ flag(prunable_ expression, false);

}

return need_ to_ continue_ path;

}

[0090] Thread 222B picks up the copy of the message
buffer (depicted in FIG. 7 as message buffer 726) from
message buffer queue 216 based on which thread 222B
performs the third execution stage of query 104 for the
current path. Specifically, the value of the ‘age’ property of
vertex 304 is ‘60°, and, as such, vertex 304 satisfies the
condition on vertex ‘c’ in query 104, i.e., c.age>40". Based
on this determination, thread 222B validates the path (vertex
308)->(vertex 320)->(vertex 304) as a solution to query 104.

[0091] According to an embodiment, when a path is
validated as a solution to the query, the expression-specific
intermediate results maintained, by the processing entity of
the final query execution stage, are updated to reflect any

[0094] The following is pseudocode describing the imple-
mentation of verifying whether a path is prunable after
evaluation of prunable expressions, i.e., at the early pruning-
eligible stage:

// Returns true iff the path exploration needs to be continued
bool verify_ prunable_ after evaluation(expression evaluated__expression,
value evaluated_ value, set<expression>
prunable__expressions, buffer query_ buffer) {
if (fevaluated__expression.is_prunable()) {
return true;

query__buffer.set_ value(evaluated__expression, evaluated_ value);

US 2021/0216590 Al

-continued

if (evaluated__expression.get_local_value().would_be_ changed(
evaluated__value)) {
query__buffer.set_ flag(evaluated__expression, true);
return true;
}else {
query__buffer.set_ flag(evaluated__expression, false);
for (expression prunable__expression : prunable__expressions) {
if (query_ buffer.get_flag(prunable_ expression) == true) {
// Value would change all previous local values
return true;
¥

return false;

}

Query Planning & Optimization

[0095] For simplicity of illustration herein, no additional
query optimizations, such as reordering of explored vertices,
are described. However, query optimization is orthogonal to
techniques described herein, and may be implemented as
desired in connection with techniques described herein. For
example, when integrating early solution pruning techniques
described herein into a database management system, the
query optimizer of the system should be carefully modified
to integrate early pruning techniques with existing optimi-
zations, such as vertex match re-ordering and utilization of
indices. In many instances, the benefits from techniques
described herein are amplified when solution path explora-
tions start at (or close to) a vertex on which a prunable result
is computed.

[0096] To illustrate, when optimizing query 104 (FIG. 1),
a query optimizer might choose to start the path exploration
from vertex ‘c’ of the query path pattern because this vertex
is associated with a filter in the query. In this case, the query
optimizer uses reverse edges to go to vertices ‘b’ and ‘a’ in
the query pattern.

[0097] If such an optimization is applied, early pruning
could not be used. However, for example, if the query
optimizer has information that all vertices in the graph data
have a value of the ‘age’ property that is larger than 40, and
that there is a large range of different values for the ‘age’
property, the query optimizer may decide that it would be
more beneficial to execute the query starting at vertex ‘a’ in
the query pattern, and to use an early pruning optimization.
In this example, reordering the query would not optimize
query execution because the filter c.age>40 is true for all
vertices in the graph data, and the existence of different
values of the ‘age’ property means that there will likely be
many opportunities to prune the query early.

Database System Configuration

[0098] A database client, not depicted in FIG. 2, connects
to database system 200. The client may comprise a database
application running on a client node. The client interacts
with an instance of database system 200, such as one of
instances 220 and 250, by submitting commands that cause
the instance to perform operations on data stored in the
database. For example, a command may be a request to
access or modify data from the database, perform operations
on the data, and/or return the data to the client.

[0099] Typically, distributed database system 200 is
implemented by multiple machines (including device 210

10

Jul. 15, 2021

and device 240) that are remotely connected. Referring to
FIG. 2, database server instance 220, running on device 210,
maintains first database data 272 in persistent storage 230,
and database server instance 250, running on device 240,
maintains second database data 274 in persistent storage
260. Both database data 272 and database data 274 include
graph database data for database 270.

[0100] According to an embodiment, devices 210 and 240
correspond to clustered machines known as nodes, each
running a database server instance, as described above. A
database server instance (or “instance™) is a server that
comprises a combination of the software and allocation of
resources from a machine node. Specifically, a server, such
as a database server, or any other process is a combination
of integrated software components and an allocation of
computational resources, such as memory, a node (i.e., a
computing device and/or memory accessible to the comput-
ing device), and/or sub-processes on the node for executing
the integrated software components on a processor, the
combination of the software and computational resources
being dedicated to performing a particular function on
behalf of one or more clients. Instances 220 and 250
collectively implement server-side functions of distributed
database system 200.

[0101] Database data 272 and 274 may each reside in
volatile and/or non-volatile storage, such as first volatile
memory 212, second volatile memory 242, first persistent
storage 230, and second persistent storage 260. Each node
implementing distributed database system 200 may include
a virtual disk and/or a set of physical disks. Additionally or
alternatively, database data 272 and 274 may each be stored,
at least in part, in main memory of a database server
computing device.

[0102] Database data for database 270 may be stored in
any type of computer-readable storage media, such as flash
storage or non-volatile memory. In some embodiments,
database 270 is a distributed database comprising a plurality
of databases each stored in a respective one or more storage
media. In other embodiments, machines implementing the
database system have shared access to database 270 via
shared access to storage storing database data for database
270.

[0103] One or more of the functions attributed to any
process described herein, may be performed any other
logical entity that may or may not be depicted in FIG. 2,
according to one or more embodiments. In an embodiment,
each of the techniques and/or functionality described herein
is performed automatically and may be implemented using
one or more computer programs, other software elements,
and/or digital logic in any of a general-purpose computer or
a special-purpose computer, while performing data retrieval,
transformation, and storage operations that involve interact-
ing with and transforming the physical state of memory of
the computer.

Hardware Overview

[0104] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or

US 2021/0216590 Al

more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

[0105] For example, FIG. 8 is a block diagram that illus-
trates a computer system 800 upon which an embodiment of
the invention may be implemented. Computer system 800
includes a bus 802 or other communication mechanism for
communicating information, and a hardware processor 804
coupled with bus 802 for processing information. Hardware
processor 804 may be, for example, a general purpose
Mmicroprocessor.

[0106] Computer system 800 also includes a main
memory 806, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 802 for storing
information and instructions to be executed by processor
804. Main memory 806 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
804. Such instructions, when stored in non-transitory storage
media accessible to processor 804, render computer system
800 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0107] Computer system 800 further includes a read only
memory (ROM) 808 or other static storage device coupled
to bus 802 for storing static information and instructions for
processor 804. A storage device 810, such as a magnetic
disk, optical disk, or solid-state drive is provided and
coupled to bus 802 for storing information and instructions.
[0108] Computer system 800 may be coupled via bus 802
to a display 812, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
814, including alphanumeric and other keys, is coupled to
bus 802 for communicating information and command
selections to processor 804. Another type of user input
device is cursor control 816, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 804 and for
controlling cursor movement on display 812. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0109] Computer system 800 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 800 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 800 in response to
processor 804 executing one or more sequences of one or
more instructions contained in main memory 806. Such
instructions may be read into main memory 806 from
another storage medium, such as storage device 810. Execu-
tion of the sequences of instructions contained in main
memory 806 causes processor 804 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

Jul. 15, 2021

[0110] The term “storage media™ as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 810. Volatile media includes dynamic
memory, such as main memory 806. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

[0111] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 802. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
[0112] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 804 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid-state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 800 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 802. Bus 802 carries the
data to main memory 806, from which processor 804
retrieves and executes the instructions. The instructions
received by main memory 806 may optionally be stored on
storage device 810 either before or after execution by
processor 804.

[0113] Computer system 800 also includes a communica-
tion interface 818 coupled to bus 802. Communication
interface 818 provides a two-way data communication cou-
pling to a network link 820 that is connected to a local
network 822. For example, communication interface 818
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
818 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 818 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.
[0114] Network link 820 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data
equipment operated by an Internet Service Provider (ISP)
826. ISP 826 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 828. Local
network 822 and Internet 828 both use electrical, electro-
magnetic or optical signals that carry digital data streams.

US 2021/0216590 Al

The signals through the various networks and the signals on
network link 820 and through communication interface 818,
which carry the digital data to and from computer system
800, are example forms of transmission media.

[0115] Computer system 800 can send messages and
receive data, including program code, through the network
(s), network link 820 and communication interface 818. In
the Internet example, a server 830 might transmit a
requested code for an application program through Internet
828, ISP 826, local network 822 and communication inter-
face 818.

[0116] The received code may be executed by processor
804 as it is received, and/or stored in storage device 810, or
other non-volatile storage for later execution.

Software Overview

[0117] FIG. 9 is a block diagram of a basic software
system 900 that may be employed for controlling the opera-
tion of computer system 800. Software system 900 and its
components, including their connections, relationships, and
functions, is meant to be exemplary only, and not meant to
limit implementations of the example embodiment(s). Other
software systems suitable for implementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

[0118] Software system 900 is provided for directing the
operation of computer system 800. Software system 900,
which may be stored in system memory (RAM) 806 and on
fixed storage (e.g., hard disk or flash memory) 810, includes
a kernel or operating system (OS) 910.

[0119] The OS 910 manages low-level aspects of com-
puter operation, including managing execution of processes,
memory allocation, file input and output (I/O), and device
1/0. One or more application programs, represented as
902A, 902B, 902C . . . 902N, may be “loaded” (e.g.,
transferred from fixed storage 810 into memory 806) for
execution by the system 900. The applications or other
software intended for use on computer system 800 may also
be stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., a Web server, an app store,
or other online service).

[0120] Software system 900 includes a graphical user
interface (GUI) 915, for receiving user commands and data
in a graphical (e.g., “point-and-click” or “touch gesture”)
fashion. These inputs, in turn, may be acted upon by the
system 900 in accordance with instructions from operating
system 910 and/or application(s) 902. The GUI 915 also
serves to display the results of operation from the OS 910
and application(s) 902, whereupon the user may supply
additional inputs or terminate the session (e.g., log off).
[0121] OS 910 can execute directly on the bare hardware
920 (e.g., processor(s) 804) of computer system 800. Alter-
natively, a hypervisor or virtual machine monitor (VMM)
930 may be interposed between the bare hardware 920 and
the OS 910. In this configuration, VMM 930 acts as a
software “cushion” or virtualization layer between the OS
910 and the bare hardware 920 of the computer system 800.
[0122] VMM 930 instantiates and runs one or more virtual
machine instances (“guest machines™). Each guest machine
comprises a “guest” operating system, such as OS 910, and
one or more applications, such as application(s) 902,
designed to execute on the guest operating system. The

Jul. 15, 2021

VMM 930 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

[0123] In some instances, the VMM 930 may allow a
guest operating system to run as if it is running on the bare
hardware 920 of computer system 800 directly. In these
instances, the same version of the guest operating system
configured to execute on the bare hardware 920 directly may
also execute on VMM 930 without modification or recon-
figuration. In other words, VMM 930 may provide full
hardware and CPU virtualization to a guest operating system
in some instances.

[0124] In other instances, a guest operating system may be
specially designed or configured to execute on VMM 930 for
efficiency. In these instances, the guest operating system is
“aware” that it executes on a virtual machine monitor. In
other words, VMM 930 may provide para-virtualization to a
guest operating system in some instances.

[0125] A computer system process comprises an allotment
of hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing instructions executed by the hardware processor, for
storing data generated by the hardware processor executing
the instructions, and/or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
is not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.

Cloud Computing

[0126] The term “cloud computing” is generally used
herein to describe a computing model which enables on-
demand access to a shared pool of computing resources,
such as computer networks, servers, software applications,
and services, and which allows for rapid provisioning and
release of resources with minimal management effort or
service provider interaction.

[0127] A cloud computing environment (sometimes
referred to as a cloud environment, or a cloud) can be
implemented in a variety of different ways to best suit
different requirements. For example, in a public cloud
environment, the underlying computing infrastructure is
owned by an organization that makes its cloud services
available to other organizations or to the general public. In
contrast, a private cloud environment is generally intended
solely for use by, or within, a single organization. A com-
munity cloud is intended to be shared by several organiza-
tions within a community; while a hybrid cloud comprises
two or more types of cloud (e.g., private, community, or
public) that are bound together by data and application
portability.

[0128] Generally, a cloud computing model enables some
of those responsibilities which previously may have been
provided by an organization’s own information technology
department, to instead be delivered as service layers within
a cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature). Depending on the particular implementa-
tion, the precise definition of components or features pro-
vided by or within each cloud service layer can vary, but
common examples include: Software as a Service (SaaS), in
which consumers use software applications that are running

US 2021/0216590 Al

upon a cloud infrastructure, while a SaaS provider manages
or controls the underlying cloud infrastructure and applica-
tions. Platform as a Service (PaaS), in which consumers can
use software programming languages and development tools
supported by a PaaS provider to develop, deploy, and
otherwise control their own applications, while the PaaS
provider manages or controls other aspects of the cloud
environment (i.e., everything below the run-time execution
environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary software applica-
tions, and/or provision processing, storage, networks, and
other fundamental computing resources, while an IaaS pro-
vider manages or controls the underlying physical cloud
infrastructure (i.e., everything below the operating system
layer). Database as a Service (DBaaS) in which consumers
use a database server or Database Management System that
is running upon a cloud infrastructure, while a DbaaS
provider manages or controls the underlying cloud infra-
structure, applications, and servers, including one or more
database servers.

[0129] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A computer-executed method comprising:

executing a query, as a prunable query, over graph data

maintained in a graph database;

wherein the graph data comprises a plurality of vertices

and a plurality of edges that represent relationships
between the plurality of vertices;

wherein the query includes a prunable expression over a

particular vertex property;

wherein the graph database is maintained, at least in part,

by a particular computing device;

wherein executing the query, as a prunable query, over the

graph data comprises:

the particular computing device determining that a first
path, through the graph data, satisfies the query;

based at least in part on a first value, of the particular
vertex property, of a vertex in the first path, the
particular computing device deriving intermediate
results for the prunable expression;

the particular computing device determining that a
second value, of the particular vertex property, of a
previously-unexplored vertex in the graph data does
not affect the intermediate results for the prunable
expression;

in response to determining that the second value does
not affect the intermediate results for the prunable
expression, the particular computing device discard-
ing the previously-unexplored vertex from a set of
potential solutions for the query.

2. The computer-executed method of claim 1, wherein
data for the previously-unexplored vertex, including the
second value, is stored in storage that is local to the
particular computing device.

Jul. 15, 2021

3. The computer-executed method of claim 1, wherein:

the graph database is a distributed graph database that is

maintained by a plurality of computing devices that
includes the particular computing device and a second
computing device;

the previously-unexplored vertex includes edge data that

refers to a second vertex stored by the second comput-

ing device; and

exploring the previously-unexplored vertex, for the query,

requires sending intermediate results to the second

computing device.

4. The computer-executed method of claim 1, wherein the
prunable expression is of a type included in a group of
prunable expression types comprising: max-type expres-
sions, min-type expressions, sum-type expressions, and dis-
tinct-type expressions.

5. The computer-executed method of claim 4, wherein:

the query includes one or more expressions; and

the method further comprises determining whether the

query is prunable by:

determining that types of the one or more expressions
are included in the group of prunable expression
types, and

determining that there are no expressions, in the query,
having a type that is not included in the group of
prunable expression types;

executing the query as a prunable query is performed in

response to determining that the query is prunable.

6. The computer-executed method of claim 5, wherein the
one or more expressions, in the query, are sub-expressions to
an expression in the query.

7. The computer-executed method of claim 1, wherein
executing the query, as a prunable query, over the graph data
further comprises:

the particular computing device determining that a third

value, of the particular vertex property, of a second

previously-unexplored vertex in the graph data affects
the intermediate results for the prunable expression;

in response to determining that the third value affects the
intermediate results for the prunable expression, the
particular computing device causing one or more
edges, from the second previously-unexplored vertex in
the graph data, to be traversed for the query.

8. The computer-executed method of claim 7, wherein
causing the one or more edges, from the second previously-
unexplored vertex in the graph data, to be traversed for the
query comprises storing, in a message buffer, at least the
third value and information indicating that the third value
affected the intermediate results for the prunable expression.

9. The computer-executed method of claim 1, wherein:

the prunable expression is a first prunable expression;

the query comprises a second prunable expression over a

second vertex property;

the graph database is a distributed graph database that is

maintained by a plurality of computing devices that

includes the particular computing device; and
executing the query, as a prunable query, over the graph
data further comprises:

a first thread, running on a computing device of the
plurality of computing devices, populating a mes-
sage buffer with, at least, a value of the second vertex
property and a flag that indicates whether the value
of the second vertex property affects intermediate
results maintained by the first thread;

US 2021/0216590 Al

a second thread, running on the particular computing
device:
receiving the message buffer;
performing said discarding the previously-unex-

plored vertex from the set of potential solutions
for the query in response to both determining that
the second value does not affect the intermediate
results for the prunable expression and determin-
ing that the flag, of the message buffer, indicates
that the value of the second vertex property does
not affect intermediate results maintained by the
first thread.
10. The computer-executed method of claim 1, wherein:
the prunable expression is a first prunable expression;
the query comprises a second prunable expression over a
second vertex property;
the graph database is a distributed graph database that is
maintained by a plurality of computing devices that
includes the particular computing device; and
executing the query, as a prunable query, over the graph
data further comprises:

a first thread, running on a computing device of the
plurality of computing devices, populating a mes-
sage buffer with, at least, a value of the second vertex
property and a flag that indicates that the value of the
second vertex property affects intermediate results
maintained by the first thread;

a second thread, running on the particular computing
device:
maintaining second intermediate results for the sec-

ond prunable expression,
receiving the message buffer,
determining that the flag, in the message buffer,
indicates that the value of the second vertex prop-
erty affects intermediate results maintained by the
first thread,
in response to determining that the flag, in the
message buffer, indicates that the value of the
second vertex property affects intermediate results
maintained by the first thread, determining
whether the value of the second vertex property, in
the message buffer, affects the second intermediate
results for the second prunable expression, and
in response to determining that the value of the
second vertex property, in the message buffer,
does not affect the second intermediate results for
the second prunable expression maintained by the
second thread, the particular computing device
changing the flag to indicate that the value of the
second vertex property, in the message buffer,
does not affect intermediate results.
11. The computer-executed method of claim 1, wherein
the query is a first query, the method further comprising:
receiving a second query over the graph data;
determining that the second query includes at least one
expression that is non-prunable;
in response to determining that the second query includes
at least one expression that is non-prunable, executing
the second query, over the graph data, as a non-
prunable query.
12. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more
processors, cause:

14

Jul. 15, 2021

executing a query, as a prunable query, over graph data

maintained in a graph database;

wherein the graph data comprises a plurality of vertices

and a plurality of edges that represent relationships
between the plurality of vertices;

wherein the query includes a prunable expression over a

particular vertex property;

wherein the graph database is maintained, at least in part,

by a particular computing device;

wherein executing the query, as a prunable query, over the

graph data comprises:

the particular computing device determining that a first
path, through the graph data, satisfies the query;

based at least in part on a first value, of the particular
vertex property, of a vertex in the first path, the
particular computing device deriving intermediate
results for the prunable expression;

the particular computing device determining that a
second value, of the particular vertex property, of a
previously-unexplored vertex in the graph data does
not affect the intermediate results for the prunable
expression;

in response to determining that the second value does
not affect the intermediate results for the prunable
expression, the particular computing device discard-
ing the previously-unexplored vertex from a set of
potential solutions for the query.

13. The one or more non-transitory computer-readable
media of claim 12, wherein data for the previously-unex-
plored vertex, including the second value, is stored in
storage that is local to the particular computing device.

14. The one or more non-transitory computer-readable
media of claim 12, wherein:

the graph database is a distributed graph database that is

maintained by a plurality of computing devices that
includes the particular computing device and a second
computing device;

the previously-unexplored vertex includes edge data that

refers to a second vertex stored by the second comput-
ing device; and

exploring the previously-unexplored vertex, for the query,

requires sending intermediate results to the second
computing device.

15. The one or more non-transitory computer-readable
media of claim 12, wherein the prunable expression is of a
type included in a group of prunable expression types
comprising: max-type expressions, min-type expressions,
sum-type expressions, and distinct-type expressions.

16. The one or more non-transitory computer-readable
media of claim 15, wherein:

the query includes one or more expressions; and

the instructions further comprise instructions that, when

executed by one or more processors, cause determining

whether the query is prunable by:

determining that types of the one or more expressions
are included in the group of prunable expression
types, and

determining that there are no expressions, in the query,
having a type that is not included in the group of
prunable expression types;

executing the query as a prunable query is performed in

response to determining that the query is prunable.

US 2021/0216590 Al

17. The one or more non-transitory computer-readable
media of claim 16, wherein the one or more expressions, in
the query, are sub-expressions to an expression in the query.

18. The one or more non-transitory computer-readable
media of claim 12, wherein executing the query, as a
prunable query, over the graph data further comprises:

the particular computing device determining that a third

value, of the particular vertex property, of a second

previously-unexplored vertex in the graph data affects
the intermediate results for the prunable expression;

in response to determining that the third value affects the
intermediate results for the prunable expression, the
particular computing device causing one or more
edges, from the second previously-unexplored vertex in
the graph data, to be traversed for the query.

19. The one or more non-transitory computer-readable
media of claim 18, wherein causing the one or more edges,
from the second previously-unexplored vertex in the graph
data, to be traversed for the query comprises storing, in a
message buffer, at least the third value and information
indicating that the third value affected the intermediate
results for the prunable expression.

20. The one or more non-transitory computer-readable
media of claim 12, wherein:

the prunable expression is a first prunable expression;

the query comprises a second prunable expression over a

second vertex property;

the graph database is a distributed graph database that is

maintained by a plurality of computing devices that

includes the particular computing device; and
executing the query, as a prunable query, over the graph
data further comprises:

a first thread, running on a computing device of the
plurality of computing devices, populating a mes-
sage buffer with, at least, a value of the second vertex
property and a flag that indicates whether the value
of the second vertex property affects intermediate
results maintained by the first thread;

a second thread, running on the particular computing
device:
receiving the message buffer;
performing said discarding the previously-unex-

plored vertex from the set of potential solutions
for the query in response to both determining that
the second value does not affect the intermediate
results for the prunable expression and determin-
ing that the flag, of the message buffer, indicates
that the value of the second vertex property does
not affect intermediate results maintained by the
first thread.

21. The one or more non-transitory computer-readable
media of claim 12, wherein:

Jul. 15, 2021

the prunable expression is a first prunable expression;

the query comprises a second prunable expression over a

second vertex property;

the graph database is a distributed graph database that is

maintained by a plurality of computing devices that

includes the particular computing device; and
executing the query, as a prunable query, over the graph
data further comprises:
a first thread, running on a computing device of the
plurality of computing devices, populating a mes-
sage buffer with, at least, a value of the second vertex
property and a flag that indicates that the value of the
second vertex property affects intermediate results
maintained by the first thread;
a second thread, running on the particular computing
device:
maintaining second intermediate results for the sec-
ond prunable expression,

receiving the message buffer,

determining that the flag, in the message buffer,
indicates that the value of the second vertex prop-
erty affects intermediate results maintained by the
first thread,

in response to determining that the flag, in the
message buffer, indicates that the value of the
second vertex property affects intermediate results
maintained by the first thread, determining
whether the value of the second vertex property, in
the message buffer, affects the second intermediate
results for the second prunable expression, and

in response to determining that the value of the
second vertex property, in the message buffer,
does not affect the second intermediate results for
the second prunable expression maintained by the
second thread, the particular computing device
changing the flag to indicate that the value of the
second vertex property, in the message buffer,
does not affect intermediate results.

22. The one or more non-transitory computer-readable
media of claim 12, wherein the query is a first query, and the
instructions further comprise instructions that, when
executed by one or more processors, cause:

receiving a second query over the graph data;

determining that the second query includes at least one

expression that is non-prunable;

in response to determining that the second query includes

at least one expression that is non-prunable, executing

the second query, over the graph data, as a non-
prunable query.

