
(12) United States Patent

US008131792B1

(10) Patent No.: US 8.131,792 B1
Koudas et al. (45) Date of Patent: *Mar. 6, 2012

(54) APPARATUS AND METHOD FOR (56) References Cited
CORRELATING SYNCHRONOUSAND
ASYNCHRONOUS DATASTREAMS U.S. PATENT DOCUMENTS

7,437,397 B1 * 10/2008 Koudas et al. TO8/422
(75) Inventors: Nikolaos Koudas, Florham Park, NJ 7,475,027 B2* 1/2009 Brand 705/7.29

(US); Sudipto Guha, Philadelphia, PA 2003/0200.097 A1* 10, 2003 Brand TO4,500

(US) OTHER PUBLICATIONS

(73) Assignee: AT&T Intellectual Property II, L.P., Guha et al., “Approximating a Data Stream for Querying and Esti
Atlanta, GA (US) mation: Algorithms and Performance Evaluation', pp. 1-10, Feb

20O2.*
(*) Notice: Subject to any disclaimer, the term of this Sudipto Guha, D. Gunopulos, and Nick Koudas, “Correlating Syn

patent is extended or adjusted under 35 chronous and asynchronous data streams'. In Proceedings of the
U.S.C. 154(b) by 927 days. ninth ACM SIGKDD international conference on Knowledge dis

covery and data mining, pp. 529-534, 2003.*
This patent is Subject to a terminal dis- M. Brand, “Fast online SVD revisions for lightweight recommender
claimer. systems”, in SDM, pp. 37-48, 2003.*

(21) Appl. No.: 12/125,973 * cited by examiner

(22) Filed: May 23, 2008 Primary Examiner — Lewis Bullock, Jr.
Assistant Examiner — Matthew Sandifer

Related U.S. Application Data (74) Attorney, Agent, or Firm — Akerman Senterfitt:
(63) Continuation of application No. 10/822.316, filed on Michael K. Dixon; Roy Zachariah

(60) Provisional application No. 60/461,910, filed on Apr. Certain exemplary embodiments provide a method compris
10, 2003. ing: automatically: receiving a plurality of elements for each

of a plurality of continuous data streams; treating the plurality
(51) Int. Cl. of elements as a first data stream matrix that defines a first

G06F 7/5 (2006.01) dimensionality; reducing the first dimensionality of the first
G06F II/00 (2006.01) data stream matrix to obtain a second data stream matrix:
G06F 2/14 (2006.01) computing a singular value decomposition of the second data
G06F 2/16 (2006.01) stream matrix; and based on the singular value decomposition
GSB 23/00 (2006.01) of the second data stream matrix, quantifying approximate

(52) U.S. Cl. .. 708/422; 726/22 linear correlations between the plurality of elements.
(58) Field of Classification Search 708/422 426

See application file for complete search history.

9000

Receive elements of continuous data
seas

18 Claims, 12 Drawing Sheets

9100

Treating elements as a first matrix 92.00

Reduce dimensionality of first matrix to
obtain second matrix

Compute SWD of second matrix

Receive accuracy metric for approximate
linear correlations between elements

Quantify approximate linear correlations
between elements

Output linear correlations

9300

94.00

9500

96.00

9700

U.S. Patent Mar. 6, 2012 Sheet 1 of 12 US 8,131,792 B1

(3,3)

(1,1)

Fig. 1

Not yet seen

Fig. 2

U.S. Patent Mar. 6, 2012 Sheet 2 of 12 US 8,131,792 B1

Fig. 3

Fig. 4

U.S. Patent Mar. 6, 2012 Sheet 3 of 12 US 8,131,792 B1

TZ
4 0.

s
O

a

20

U.S. Patent Mar. 6, 2012 Sheet 4 of 12 US 8,131,792 B1

O
O

M 7

Gaussian Linear-M Linear-L Real
1

Es=10| 0.66 1 0.99 0.99 0.99 0.96
1

7

2

2 M
M

%
% M

L

Fig.5c

O

O O.OOOO3 0.0001 0.0001 |0.0001 5
0.00006 0.0001

0.00001 0.0000 40 00006 0.00009

Fig. 5d

U.S. Patent Mar. 6, 2012 Sheet 5 of 12

N N

US 8,131,792 B1 U.S. Patent

U.S. Patent Mar. 6, 2012 Sheet 7 of 12 US 8,131,792 B1

5
:
E

US 8,131,792 B1 Sheet 8 of 12 Mar. 6, 2012 U.S. Patent

Spu000S

(G=s) suuea]]s go JequunN

U.S. Patent Mar. 6, 2012 Sheet 9 of 12 US 8,131,792 B1

%
3 % % 3

Number of Streams

NaiveSVD FSVD

Fig. 7c

U.S. Patent Mar. 6, 2012 Sheet 10 of 12 US 8,131,792 B1

8000

Continuous Continuous Continuous
Data Stream Data Stream Data Stream

Source Source Source
81 10 820 8130

Information
Device
8300

Information Device 8400

Fig. 8

U.S. Patent Mar. 6, 2012 Sheet 11 of 12 US 8,131,792 B1

9000
u-l-m-

9100
Receive elements of continuous data

StreamS

Treating elements as a first matrix

Reduce dimensionality of first matrix to
obtain second matrix

Compute SVD of second matrix

92.00

9300

94.00

Receive accuracy metric for approximate
linear correlations between elements

Quantify approximate linear correlations
between elements

Output linear correlations

Fig. 9

9500

9600

9700

U.S. Patent Mar. 6, 2012 Sheet 12 of 12 US 8,131,792 B1

10000

User Interface

Instructions

Processor

Network Interface

Fig. 10

US 8, 131,792 B1
1.

APPARATUS AND METHOD FOR
CORRELATING SYNCHRONOUSAND
ASYNCHRONOUS DATASTREAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of claims priority to, and
incorporates by reference herein in its entirety, pending U.S.
patent application Ser. No. 10/822.316, filed 12 Apr. 2004,
which is a Non-Provisional of U.S. Provisional Patent Appli
cation Ser. No. 60/461,910, filed 10 Apr. 2003.

SUMMARY

Certain exemplary embodiments provide a method com
prising: automatically: receiving a plurality of elements for
each of a plurality of continuous data streams; treating the
plurality of elements as a first data stream matrix that defines
a first dimensionality; reducing the first dimensionality of the
first data stream matrix to obtain a second data stream matrix:
computing a singular value decomposition of the second data
stream matrix; and based on the singular value decomposition
of the second data stream matrix, quantifying approximate
linear correlations between the plurality of elements.

BRIEF DESCRIPTION OF THE DRAWINGS

A wide variety of potential embodiments will be more
readily understood through the following detailed descrip
tion, with reference to the accompanying drawings in which:

FIG. 1 is a plot of an exemplary set of linearly correlated
data points;

FIG. 2 is a plot of an exemplary set of asynchronous
streams demonstrating out-of-sync behavior;

FIG. 3 is a plot of an exemplary set of asynchronous
streams demonstrating out-of-order behavior;

FIG. 4 is a plot of the structure of an exemplary set of
blocks created by StreamSVD:

FIGS. 5(a)-(d) are plots of various exemplary accuracy
measures for exemplary eigenvalues and eigenvectors com
puted with an exemplary embodiment of algorithm
StreamSVD;

FIGS. 6(a) and (b) are plots of exemplary performance
measures for an exemplary embodiment of algorithm
StreamSVD;

FIGS. 7(a)-(d) are plots of exemplary performance mea
Sures for an exemplary embodiment of algorithm
StreamSVD;

FIG. 8 is a block diagram of an exemplary embodiment of
a telecommunications system 8000;

FIG. 9 is a flow diagram of an exemplary embodiment of a
method 9000; and

FIG. 10 is a block diagram of an exemplary embodiment of
an information device 10000.

DEFINITIONS

When the following terms are used herein, the accompa
nying definitions apply:

database—an organized collection of information. A data
base can comprise a mirror of a primary database. For
example, an ALI database can comprise a mirror of a
primary ALI database.

firmware—machine-readable instructions that are stored
in a read-only memory (ROM). ROM’s can comprise
PROMs and EPROMs.

10

15

25

30

35

40

45

50

55

60

65

2
haptic—both the human sense of kinesthetic movement

and the human sense of touch. Among the many poten
tial haptic experiences are numerous sensations, body
positional differences in sensations, and time-based
changes in sensations that are perceived at least partially
in non-visual, non-audible, and non-olfactory manners,
including the experiences of tactile touch (being
touched), active touch, grasping, pressure, friction, trac
tion, slip, stretch, force, torque, impact, puncture, vibra
tion, motion, acceleration, jerk, pulse, orientation, limb
position, gravity, texture, gap, recess, Viscosity, pain,
itch, moisture, temperature, thermal conductivity, and
thermal capacity.

information device—any device capable of processing
information, Such as any general purpose and/or special
purpose computer, Such as a personal computer, work
station, server, minicomputer, mainframe, Supercom
puter, computer terminal, laptop, wearable computer,
and/or Personal Digital Assistant (PDA), mobile termi
nal, Bluetooth device, communicator, “smart” phone
(such as a Handspring Treo-like device), messaging Ser
vice (e.g., Blackberry) receiver, pager, facsimile, cellu
lar telephone, a traditional telephone, telephonic device,
a programmed microprocessor or microcontroller and/
or peripheral integrated circuit elements, an ASIC or
other integrated circuit, a hardware electronic logic cir
cuit Such as a discrete element circuit, and/or a program
mable logic device such as a PLD, PLA, FPGA, or PAL,
or the like, etc. In general any device on which resides a
finite state machine capable of implementing at least a
portion of a method, structure, and/or or graphical user
interface described herein may be used as an informa
tion device. An information device can include well
known components such as one or more network inter
faces, one or more processors, one or more memories
containing instructions, and/or one or more input/output
(I/O) devices, one or more user interfaces, etc.

Internet—an interconnected global collection of networks
that connect information devices.

I/O device—any sensory-oriented input and/or output
device. Such as an audio, visual, haptic, olfactory, and/or
taste-oriented device, including, for example, a monitor,
display, projector, overhead display, keyboard, keypad,
mouse, trackball, joystick, gamepad, wheel, touchpad,
touch panel, pointing device, microphone, speaker,
video camera, camera, Scanner, printer, haptic device,
vibrator, tactile simulator, and/or tactile pad, potentially
including a port to which an I/O device can be attached
or connected.

memory device—any device capable of storing analog or
digital information, for example, a non-volatile memory,
volatile memory, Random Access Memory, RAM, Read
Only Memory, ROM, flash memory, magnetic media, a
hard disk, a floppy disk, a magnetic tape, an optical
media, an optical disk, a compact disk, a CD, a digital
versatile disk, a DVD, and/or a raid array, etc. The
memory device can be coupled to a processor and can
store instructions adapted to be executed by the proces
Sor according to an embodiment disclosed herein.

network interface—any device, system, or Subsystem
capable of coupling an information device to a network.
For example, a network interface can be a telephone,
cellular phone, cellular modem, telephone data modem,
fax modem, wireless transceiver, ethernet card, cable
modem, digital Subscriber line interface, bridge, hub,
router, or other similar device.

US 8, 131,792 B1
3

processor—a device for processing machine-readable
instruction. A processor can be a central processing unit,
a local processor, a remote processor, parallel proces
Sors, and/or distributed processors, etc. The processor
can be a general-purpose microprocessor, Such the Pen
tium III series of microprocessors manufactured by the
Intel Corporation of Santa Clara, Calif. In another
embodiment, the processor can be an Application Spe
cific Integrated Circuit (ASIC) or a Field Programmable
Gate Array (FPGA) that has been designed to implement
in its hardware and/or firmware at least a part of an
embodiment disclosed herein.

system—A collection of devices and/or instructions, the
collection designed to perform one or more specific
functions.

user interface—any device for rendering information to a
user and/or requesting information from the user. A user
interface includes at least one of textual, graphical,
audio, video, animation, and/or haptic elements. A tex
tual element can be provided, for example, by a printer,
monitor, display, projector, etc. A graphical element can
be provided, for example, via a monitor, display, projec
tor, and/or visual indication device. Such as a light, flag,
beacon, etc. An audio element can be provided, for
example, via a speaker, microphone, and/or other Sound
generating and/or receiving device. A video element or
animation element can be provided, for example, via a
monitor, display, projector, and/or other visual device. A
haptic element can be provided, for example, via a very
low frequency speaker, vibrator, tactile stimulator, tac
tile pad, simulator, keyboard, keypad, mouse, trackball,
joystick, gamepad, wheel, touchpad, touch panel, point
ing device, and/or other haptic device, etc. A user inter
face can include one or more textual elements such as,
for example, one or more letters, number, symbols, etc.
A user interface can include one or more graphical ele
ments such as, for example, an image, photograph,
drawing, icon, window, title bar, panel, sheet, tab,
drawer, matrix, table, form, calendar, outline view,
frame, dialog box, static text, text box, list, pick list,
pop-up list, pull-down list, menu, tool bar, dock, check
box, radio button, hyperlink, browser, button, control,
palette, preview panel, color wheel, dial, slider, scroll
bar, cursor, status bar, stepper, and/or progress indicator,
etc. A textual and/or graphical element can be used for
Selecting, programming, adjusting, changing, specify
ing, etc. an appearance, background color, background
style, border style, border thickness, foreground color,
font, font style, font size, alignment, line spacing,
indent, maximum data length, validation, query, cursor
type, pointer type, autosizing, position, and/or dimen
sion, etc. A user interface can include one or more audio
elements such as, for example, a Volume control, pitch
control, speed control, Voice selector, and/or one or more
elements for controlling audio play, speed, pause, fast
forward, reverse, etc. A user interface can include one or
more video elements such as, for example, elements
controlling video play, speed, pause, fast forward,
reverse, Zoom-in, Zoom-out, rotate, and/or tilt, etc. A
user interface can include one or more animation ele
ments such as, for example, elements controlling anima
tion play, pause, fast forward, reverse, Zoom-in, Zoom
out, rotate, tilt, color, intensity, speed, frequency,
appearance, etc. A user interface can include one or more
haptic elements such as, for example, elements utilizing
tactile stimulus, force, pressure, vibration, motion, dis
placement, temperature, etc.

10

15

25

30

35

40

45

50

55

60

65

4
wireless—any means to transmit a signal that does not

require the use of a wire or guide connecting a transmit
ter and a receiver, Such as radio waves, electromagnetic
signals at any frequency, lasers, microwaves, etc., but
excluding purely visual signaling, such as semaphore,
Smoke signals, sign language, etc.

wireline—any means to transmit a signal comprising the
use of a wire or waveguide (e.g., optical fiber) connect
ing a transmitter and receiver. Wireline communications
can comprise, for example, telephone communications
over a POTS network.

DETAILED DESCRIPTION

1. Introduction
In a variety of modern applications, data are commonly

viewed as infinite time ordered data streams rather as finite
data sets stored on disk. This view challenges fundamental
assumptions in data management and poses interesting ques
tions for processing and optimization.

Certain exemplary embodiments approach and/or address
the problem of identifying correlations between multiple data
streams. Certain exemplary embodiments provide algorithms
capable of capturing correlations between multiple continu
ous data streams in a highly efficient and accurate manner.
Certain exemplary embodiments provide algorithms and/or
techniques that are applicable in the case of both synchronous
and asynchronous data streaming environments. Certain
exemplary embodiments capture correlations between mul
tiple streams using the well known technique of Singular
Value Decomposition (SVD). Correlations between data
items, and the SVD technique in particular, have been repeat
edly utilized in an off-line (non stream) context in the data
base community, for a variety of problems, for example,
approximate query answering, mining, and indexing.

Certain exemplary embodiments provide a methodology
based on a combination of dimensionality reduction and Sam
pling to make the SVD technique suitable for a data stream
context. Certain exemplary techniques are approximate, trad
ing accuracy with performance, and this tradeoff can be ana
lytically quantified. Presented herein is an experimental
evaluation, using both real and synthetic data sets, from a
prototype implementation of certain exemplary embodi
ments, investigating the impact of various parameters in the
accuracy of the overall computation. The results indicate that
correlations between multiple data streams can be identified,
in Some cases very efficiently and accurately. The algorithms
proposed herein, are presented as generic tools, with a mul
titude of applications on data streaming problems.

In many modern applications, data are commonly viewed
as an infinite, possibly ordered data sequences rather as a
finite data set stored on disk. Such a view, challenges funda
mental assumptions related to the analysis and mining of such
data, for example, the ability to examine each data element
multiple times, through random or sequential access. In many
traditional applications, such as networking and multimedia,
as well as in new and emerging applications, like sensor
networks and pervasive computing, this view of application
data is prevalent. Commonly such (potentially) infinite
ordered sequences of data, are referred to as data streams.

Networking infrastructure. Such as routers, hubs, and traf
fic aggregation stations, can produce vast amounts of perfor
mance and fault related data in a streaming fashion. Such
information can be vital for network management operations
and sometimes needs to be collected and analyzed online.

US 8, 131,792 B1
5

Network operators can require precise characterizations of
the temporal evolutions of such data and/or identification of
abnormal events.

Sensor networks are becoming increasingly common
place. The vision of pervasive computing can involve hun
dreds of autonomous devices collecting data (Such as high
way traffic, temperature, etc.) from dispersed geographic
locations. Such data, Subsequently can be made available to
inter-operating applications which can utilize them to make
intelligent decisions.

Data elements in real data sets are rarely independent (see
Reference 15). Correlations commonly exist and are prima
rily due to the nature of the applications that generate the data.
In settings involving multiple data streams, correlations
between stream elements are encountered as well. Effectively
quantifying correlations between multiple streams can be of
Substantial utility to a variety of applications, including but
not limited to:
Network Security Monitoring: Various forms of bandwidth

attacks can introduce highly correlated traffic Volumes
between collections of router interfaces. Efficiently identify
ing Such correlations as they occur can trigger prevention
mechanisms for severe problems such as flash crowds and
denial of service attacks without address spoofing.

Network Traffic engineering: A large amount of correlation
can exist between faults reported by the links of network
elements to the central fault management system. Identifica
tion of such correlations as they develop can be of utility for
fault management automation. Similarly monitoring the sta
bility of network protocols (such as, e.g., BGP (see Reference
28)) can utilize on-line monitoring of correlations between
the fault messages produced.

Sensor Data Management: Traditional data processing and
analysis on data collected from sensor networks can benefit,
in terms of space and/or time, from reduced data representa
tions, derived from correlations (see Reference 4). For
example, consider a number of sensors in the same geo
graphical area collecting and reporting temperature. In some
circumstances, it might be expected that temperatures in the
same region are related, thus the values reported by the sen
sors for that region are highly correlated. Utilizing these
correlations, one can derive reduced data representations and
reason about the state of a system under sensor Surveillance
using less data, with immediate performance benefits.

Multimedia: In multimedia applications, correlations
across different cues have become and will likely continue to
be of significant benefit. Typically, a visual scene is pictured
by a multitude of inexpensive cameras and microphones, and
the resulting streams are analyzed to focus cameras and apply
Sound filters to allow applications such as tele-conferencing
over limited bandwidth. In most scenarios the different cues
are correlated, and a promising approach to this problem
appears to be the recognizing the correlations in real time.

Certain exemplary embodiments provide fast and/or effi
cient techniques to identify correlations between multiple
data streams. Certain exemplary embodiments focus on a
fundamental form of correlations between multiple streams,
namely linear correlations, and adapt a technique widely uti
lized for identifying linear correlations. In particular, certain
exemplary embodiments adapt the Singular Value Decompo
sition (SVD) (see Reference 7) in a data stream context.
Certain exemplary embodiments make at least the following
contributions:
An investigation of the SVD operation on streams and

propose algorithms to support the SVD computation on Data
Streams. Certain exemplary embodiments are orthogonal to
the specific SVD computation technique used.
A construction of a probabilistic map of the stream to a

space different than that of the input, computing the SVD in
the mapped space. This mapping can be amenable to efficient

10

15

25

30

35

40

45

50

55

60

65

6
updating, which can be of benefit in a streaming context.
Also, the accuracy tradeoffs this mapping offers in the case of
SVD computations is analytically quantified.
An enhancement this mapped space with sampling and the

introduction of very fast algorithms for SVD maintenance in
the various data stream models proposed.

Complementation of certain exemplary algorithms and
analysis with a thorough experimental evaluation, realizing
the accuracy and performance benefits certain exemplary
embodiments have to offer using both real and synthetic data
SetS
The next portion of this description is organized as follows:

In Section 2 we present background material and definitions.
Section 3 demonstrates the difficulties of adapting known
SVD computation techniques to a streaming context. In Sec
tion 4 we present certain exemplary embodiments of our
techniques and analysis enabling adaptation of SVD to a
continuous stream environment. In section 5 we present the
streamSVD algorithm. In section 6 we present the results of
our experimental evaluation of certain proposed algorithms.
Section 7 concludes this portion of the description, raising
issues for further work in this area.

2. Background and Additional Definitions

2.1 Data Stream Models
A data stream S is an ordered sequence of data points that

can be read only once. Formally, a data stream is a sequence
of data items ... x, ... read in increasing order of the indices
i. On seeing a new item X, two situations of interest arise:
either we are interested in all Nitems seen or weare interested
on a sliding window of the last in items, X, , , X. The
former is defined as the standard data stream model and the
latter as a sliding window data stream model (see Reference
3). The central aspect of most data stream computation is
modeling in Small space relevant to the parameter of interest
N or n.

For the purposes of this description, data points in a single
stream, have the form (i.A) representing a sequence of
updates or modifications (increment or decrement) of a vector
U. In the case of an update Ui-A. Similarly, for modifica
tions Ui-Ui--A. Notice that an evolving time series can be
represented by elements of updates (i.A) with the restriction
that data arrives in increasing order of i, (indicating time of
observation). Thus, for a time series model. A corresponds to
the observed value at time i.

Let S, ..., S. S., be a collection of m data streams. In
certain envisioned applications, msn; that is, the number of
streams is usually much smaller than the number of items or
points of observation in each stream. We use the notation
Aij to refer to the j-th point of the i-th stream. Thus, we
treat the data streams as a matrix, A. Notice that our treatment
of the streams as a matrix A is purely conceptual. Our tech
niques neither require nor materialize matrix A at any point.
At each point in time, data elements (tuples) (i, t, A) appear,
which denote that in the t” observation of stream i, the entry
Ait is either updated to A or modified (incremented or
decremented) by A. In the sliding window model, at timet we
are interested in Ait" for all t-nist'st; we refer to all other
items as expired.

If there are no restrictions on the tuples (i.t.A), then the
streams are considered asynchronous. For example, we can
observe a sequence ..., (1,3,3), (2.3.1), (11.5), for two
streams which denotes that the streams are modified arbi
trarily without any coordination between Successive tuples.
Assuming a collection of m streams, we will say that these
streams are synchronous if at every time t, m values, each
corresponding to one of the streams arrive. It is not necessary
that the tuples be ordered according to the stream i, but it is
required that the tuples be ordered in time. If a tuple (i.t,A) is

US 8, 131,792 B1
7

not present at time t for stream i, the tuple (i, t.0) is assumed
present, allowing streaming of “sparse' streams.

Given this structure, observe that modifications are super
fluous in Synchronous streams since all modifications to the
element Ait (t" element of i' stream) have to be grouped
together. In a sense. A values in the tuple (i.t.A) in synchro
nous streams always expresses updates. Since we wish to
present stream algorithms for both asynchronous and Syn
chronous streams, we will proceed with the assumption of
arbitrary arrivals of (i.t.A) (no restriction on t) assuming that
A values express modifications. This, naturally expresses
asynchronous as well as (Suitably restricted requiring ordered
t values and A values expressing updates) synchronous
StreamS.

2.2 Correlations and SVD
The Singular Value Decomposition (SVD) is a very popu

lar technique to identify correlations, with many applications
in signal processing, visualization, and databases. Informally
the SVD of a collection of points (high dimensional vectors)
identifies the “best subspace to project the point collection in
away that the relative point distances are preserved as well as
possible under linear projection. Distances are quantified
using the L norm. More formally:

Theorem 1 (SVD). Let AeR"" be an arbitrary m-by-n
matrix with man. Then we can write A-UXV where U is
m-by-rand satisfies UU=I, V is m-by-rand satisfies VV=I
and X=diag(O,..., O.), where O2 ... 2 O,20. The columns
u. . . . , u, of U are called left eigenvectors. The columns
V. . . . V, of V are called right eigenvectors. The O are called
eigenvalues and ris the rank of matrix A, that is the number of
linearly independent rows (if men, the SVD is defined by
considering A.).

For each eigenvalue there is an associated eigenvector;
commonly we refer to the largest eigenvalue as the principal
eigenvalue and to the associated eigenvector as the principal
eigenvector. Notice that if u is the principal eigenvector,
| A, 2A, Wu', u'F1.

This theorem has an intuitive geometric interpretation.
Given any m-by-n matrix A, think of it as a mapping of a
vector x6R" to a vector yeR". Then we can choose one
orthogonal coordinate system for R' (where the unit axes are
the columns of V) and another orthogonal coordinate system
for R" (where the unit axes are the columns of U) such that A
is diagonal (X), i.e., maps a vector

tO a

According to theorem 1,

Matrix A has small rank when data are correlated (rism).
Consequently, using kisr eigenvectors (projecting to a Sub
space of dimension k) we have

k

A as X Oiii; v.
i=1

5

10

15

25

30

35

40

45

50

55

60

65

8
Such a projection introduces error which is quantified by

k

A - X Ouv;
i=1

The guarantee of SVD however, is that among all possible k
dimensional projections, the one derived by SVD has the
minimum error, i.e., minimizes

k

A - X Ou; vi.
i=1

The basis of the “best k-dimensional subspace to project,
consists of the k left eigenvectors of U. Essentially, this sub
space identifies the strongest linear correlations in the under
lying data set.

Definition 1 (Linear Correlations). Given a matrix A, let
UXV be its Singular Value Decomposition; we refer to the set
oflinear combinations of the keigenvectors, corresponding to
the klargest eigenvalues of A as the k strongest linear corre
lations in A.
The relative magnitude of the eigenvalues determine the

relative “strength of correlations along the direction of the
associated eigenvectors. This means that if one eigenvalue, O
is very large compared to the others, the eigenvector corre
sponding to O signifies a stronger linear correlation towards
the direction of the eigenvector in the Subspace spanned by
the k strongest linear correlations. We formalize this intuition
by quantifying the relative magnitude of the eigenvalues with
the following definition:

Definition 2 (e-separated eigenvalues) Let Abe a matrix of
rank rand O, ... O, its eigenvalues. Assume, without loss of
generality, that O2 ... 2 O,. The e-separating value for the
collection of eigenvalues, is the Smallest es0, such that (fi,
1sisr, O, s(1+e)lo, . For this e, we say that the eigenval
ues are e-separated.

Notice that such an e always exists; its magnitude however,
specifies how significant are the eigenvectors in the linear
combination. Ife is Small, eigenvalues are close in magnitude
and all the eigenvectors are significant. Ife is large, the linear
correlations along the directions of the eigenvectors associ
ated with the largest eigenvalues are more significant in the
linear combination.

FIG. 1 visually reveals linear correlation between the
points along the axis y'. SVD on the point set of FIG. 1 will
result in identification of vectory' as the first eigenvector (axis
y" in FIG. 1 is the second eigenvector). Such correlations
could be a great asset in a variety of applications, for example,
query processing. Consider projecting onto axis y'; this
results in low error and thus reasoning about and querying the
point set can take place on Such projections. For example, the
two dimensional range-count query (1,1)x(3.3), provided that
we project the point set into axis y', can be answered by
performing the one dimensional range query on axisy' based
on the projections of (1,1) and (3.3) onto y'. Notice that to
enable Such a strategy the left eigenvectors are essential. The
advantage is that we are operating in the lower dimensional
space obtained after projection. Our approach consists of
identifying Such correlations existing between stream values
dynamically.

Given amatrix A m-by-nthere exists a O(m,n) algorithm to
compute the SVD of A using the following celebrated theo
rem (see Reference 7 for full details and a proof)

US 8, 131,792 B1

Theorem 2. Let A=UXV be the SVD of the m-by-n matrix
A, with eigenvalues O, and orthonormal eigenvectors u.
where m2n. (There are analogous results for msn.) The
eigenvalues of the symmetric matrix AA’ are o, . The left
eigenvectors u, are corresponding orthonormal eigenvectors
of the eigenvalues O,.
The benefit of the above theorem appears incomputation of

SVD of sparse matrices. If the number of entries in a column
is r<m then the matrix AA can be computed in time O(r^n)
which is O(r) times the number of nonzero entries in the
matrix. The pseudo code is provided below. The algorithm
remains a good candidate for computing incremental SVD
since the number of operations performed on an update is (on
an average) the number of non-Zero entries in a column.
What follows is psuedo-code for an algorithm we call

NaiveSVD. Note that Function SVDO can implement any
SVD technique:

Algorithm NaiveSVD(A.M.U.X.V.T){
AeRx, M=AA'eR"*",
UV the set of left, right eigenvectors
X, the eigenvalues, T (i.t.A) is current input

for all nonzero entries in columnt, i.e. j|Aitz0} do {
Mi+=AAIt ifjzi
Mij-i-2AAIt]+A ifji
At+=A

observe that the above for synchronous streams
becomes Ailt=A and Mili=A
under the assumption that AIt is initially
0 and changed only once.

}
SVD(M.U.X.V)}
2.3 Low Rank Approximations
The quadratic space requirement of O(m) can be prohibi

tive and the approach is expensive even if we are interested in
just the top eigenvector. The computation for non sparse
matrices requires O(m,n) no matter if we are interested injust
the topmost eigenvector. A step in this direction is the follow
ing column sampling result of (see References 9, 8).

Theorem 3. Given a matrix A with columns C, if with
probability C.I./ AI - we sample O(k/e') columns
then we can construct a matrix D of rank k such that for any
matrix D*

Note that the subscript on the probability indicates that the
norm is Frobenius. AI is the sum of squares of the ele
ments in the matrix A. Note that if nice bounds on the ratios
are known then sampling can be performed in one pass else in
tWO.

The exact parameters of the process are somewhat large
theoretically; (see Reference 9) requires constants ~107
which are improved but not explicitly stated in Reference 8.
Note that Reference 8 suggests alternate “test and sample'
schemes for practical considerations, thus making the algo
rithm multi-pass. A problem of the above result is that the
approximation of the matrix need not be a good approxima
tion of the eigenvalue which denotes the strength of the cor
relations. For example Suppose we are interested in the top
most eigenvalue O. Following the results of (see Reference
8) one can relate mino A-D*I'-O,. Thus, IA-DI gives
us an estimate of O. If A is large, as is the case in non
sparse matrices, the above is a bad approximation since
k1A can be m times O. Thus, e cannot be a constant to
provide a good guarantee for the topmost eigenvalue. The
result is useful in the context of approximating the entries of
a matrix and as pointed out by the authors in (see Reference
8), the approach is used if the matrix is sparse.

5

10

15

25

30

35

40

45

50

55

60

65

10
3. Problems with SVD on Streams
We will now discuss potential problems associated with

SVD computation on streams. The fundamental potential
problem with most approaches to SVD is the reliance on the
matrix A for the computation. We will elaborate on the issues
arising from this reliance in the cases of synchronous and
asynchronous streams.

3.1 Synchronous Streams
In this case, m values arrive at each time step each speci

fying a new value for each of them streams and the same time
unitt. Maintaining the SVD decomposition of A will either
involve recomputation of the SVD on matrix A (suitably
adjusted depending on the specific streaming model, standard
or sliding window) at every time step. This has two main
potential drawbacks namely (a) the memory requirements
can be significant as matrix A has to be memory resident and
(b) the computational overhead associated with maintenance
of the SVD decomposition at every time step can be high.

3.2 Asynchronous Streams
In this case we discuss three problems, which are inter

related butarise out of different concerns. The discussion will
establish that in the case of asynchronous streams, the
memory and computational overheads for maintaining the
SVD persist, albeit for different reasons.

3.2.0.1 Out of Sync arrival
FIG. 2 is a plot of an exemplary set of asynchronous

streams demonstrating out-of-sync behavior. Thus, the prob
lem is depicted in FIG. 2, where data in different streams
arrive at different rates and create a “Front”. Such a phenom
enon is common in networking applications due to network
delays. Known offline SVD computations will have to store
the data corresponding to the entire shaded area. This is a
typical “bursty’ behavior and the length of the burst will
determine the space required by the known algorithms.

3.2.0.2 Stream of Sparse Transactions
If the data sources produce stream values infrequently then

only non-zero entries are streamed. This is a favorable con
dition for the SVD computation. But even if every individual
stream is in order, there is no way to foretell that the entry (it)
is zero till an entry (it') arrives with t'et. If for stream i one
definest, to be last time an observation is seen, known algo
rithms will have to remember all the entries after time mint,
which is akin to FIG. 2, but due to sparsity, the rectangle can
be sizeable. This is a more frustrating scenario, since if a
sparse matrix is represented in a (row.colum, value) format,
although significantly better from a computational point of
view for known algorithms, it creates a significant problem in
streaming. In fact a possible solution can be to intersperse the
implied Zero entries, but that would increase processing time
significantly.

3.2.0.3 Out of Order Arrival
FIG. 3 is a plot of an exemplary set of asynchronous

streams demonstrating out-of-order behavior. Consider FIG.
3 and Suppose the entry corresponding to stream i and obser
vation t is modified. Out of order arrival can be assumed as
modification of an initial 0 value—the effect of the change
depends on the values of all other streams at the observation
t (denoted by the shaded region in FIG. 3). But since t is not
known a priori, effectively one has to store the entire matrix A.

4. Stream SVD
We will present an approximate technique to obtain the k

largest eigenvalues and associated eigenvectors trading accu
racy for computation speed. We will first present the case for
the principal eigenvalue and the associated principal eigen
vector, and then generalize to arbitrary k eigenvalues and
eigenvectors.

US 8, 131,792 B1
11

Given a matrix A6R"' the set of all k correlations is
defined as the set of linear combinations of the left eigenvec
tors corresponding to the klargest eigenvalues. Recall that u
is a left eigenvector with eigenvalue O if and only ifu'A=Ou'.
Theorem 1 asserts that we can find a set of orthonormal
eigenvectors of any matrix A. The number of such vectors is
the rank r of the matrix concerned. Before we proceed in the
discussion let us assume that the eigenvectors of A are u.
u. . . . u, with respective eigenvalues O. O. . . . O. Let us
assume, without loss of generality that O2O2 ... 2 O.I.
Our methodology will make use of the Johnson-Linden

strauss Lemma (JL Lemma) (see Reference 20) to reduce the
dimension in a Euclidean space.
Lemma 1 (JL Lemma). Given a set of N vectors V in space

R", if we have a matrix S6R" where

S ology)

such that each element S, is drawn from a Gaussian distribu
tion, appropriately scaled, for any vector X6V, then bxs
Sxs(1+e)x holds true with vanishingly high probability,
1-o(1/N).
We discuss issues in computation and storage of maintain

ing AS' in Section 4.1. For the present we investigate how
matrix AS allows us to compute SVD.

Informally, the JL lemma states that if we distort vectors of
dimensionality in with a matrix whose elements are Suitably
chosen from a Gaussian distribution we can preserve the
relative distances between the vectors in the resulting space
(of dimensionality s) upto (1+e) with arbitrarily high prob
ability. Intuitively, suppose every vector is represented by a
line segment starting from the origin. The length of the vector
is the distance between the origin and the endpoint of the
vector. The intuition behind the algorithm is that if we pre
serve distances between points (the origin and the endpoints
of the vectors), then we preserve the length of the vectors.

4.0.0.4 The Single Eigenvalue case
We make the simple observation that |x|| ||x||. So the JL

lemma rewrites to, |x's||(Sx)" ||x'S's (1+e)|x"(1)
Both lemma 1 and theorem 2 are concerned with linear

operations on the underlying vector space. It appears natural
to first apply lemma 1 on A to reduce the dimensionality and
then apply SVD on the “smaller matrix obtained. This could
be beneficial, because we will be running SVD on a much
Smaller matrix. Under Such an approach, the relationship
between the eigenvalues and eigenvectors of A before and
after the application of lemma 1 needs to be established. This
gives rise to the following:
Lemma 2. Suppose u is the principal left eigenvector of A

and u the principal left eigenvector of AS' for a matrix S
satisfying the JL Lemma with

1

S olo) a log

Then ful 'As (1+e)||u'Al,
Proof: Since u is the principal left eigenvector of AS', we

have ful AS's lu'AS. Substitutingxu, A in equation
1, we get ful "Asu AS's (1+e)lu, Al, and similarly
x'u' A. From these we have ful As
?u, AS's|u'AS's (1+e)|u'Al. This proves the lemma

Leto, the principal eigenvalue of AS'. From lemma2 it is
evident that Oslo's (1+e)|Ol. Thus, the first eigenvalue
is approximated within (1+e) factor in magnitude by applica
tion of lemma 1.

10

15

25

30

35

40

45

50

55

60

65

12
4.0.0.5 The Single Eigenvector case
Lemma 2 shows that instead of computing the SVD of the

matrix AA applying theorem 2, we can compute the SVD of
AS' to get a vector such that the columns of A have a large
projection along it. The dimension of the matrix AA is mxm
whereas the dimension of AS is

1
in X-login. a log

For large m compared to

l S = -login, a log

one has achieved a significant saving in computing the SVD.
In particular the time to perform SVD has been reduced from
O(m) to O(ms). Also we have saved the space and update
time in the data stream context, from O(m) to O(ms).
Lemma 2 shows that the projections of a matrix are pre

served under the application of lemma 1. We now show what
is the quality of the approximation obtained to the actual
principal eigenvector. A measure of quality of approximation
of the principal eigenvector, is the inner product with the
actual principal eigenvector. Assuming all vectors are repre
sented with unit length, a large value of the projection indi
cates a better approximation. Notice that such an approxima
tion is meaningful only if the principal eigenvector is unique.
Consider the case of a matrix A with Oslo. Then any
linear combination of u and u, say u-au--bu (where
a+b=1 to preserve length of Iull=1) is a principal eigenvec
tor, since there are a lot of vectors preserving the variation in
the data, in this case. To see this, observe that in this case

This is best illustrated if the data are uniformly distributed
along a circle; any vector in the plane containing the circle is
a good eigenvector. To clarify the situation, we assume that
there is a significant linear trend in the data. This means that
the eigenvalues are separated in magnitude. In case of the
principal eigenvector this would imply O'Dol; we will
address multiple eigenvectors in the Subsequent Subsections.
In particular assume Ol=(1+öe)lo for some 64.

For two vectors u, v, let (u,v) denote their inner product. If
O, O, are the first and second eigenvalues and u, u,the
associated eigenvectors, then

since the coefficients (ulu,) represent the projection of u to
an orthogonal basis defined by {u}, the sum of their squares
evaluate to 1. Thus

ital

The above rewrites to

(2)

For a specific value of e, equation 2 shows the quality of the
approximation tou obtained. Notice that if Öde (that is, the
strength of linearity is greater than the precision lemma 1
guarantees) then Kulu)=(1+e) which approaches 1. Thus,

US 8, 131,792 B1
13

if the first two eigenvalues are Öe-separated, u the approxi
mated eigenvectorandu the true eigenvector are very close.
Effectively this establishes that if there is a significant linear
trend in the data, performing SVD on matrix AS as opposed
to matrix AA results in the same principal eigenvector.
Smaller values of e increase the time to compute the SVD of
matrix AS, but yield a better approximation to the principal
eigenvector and Vice versa.
Lemma 3. If the data have a unique strong linear correla

tion, we can approximate the principal eigenvector.
It is evident, that to guarantee a good approximation of the

eigenvectors we have to compute at a greater precision than
we need to identify the eigenvalues. That is e, the precision set
by lemma 1 has to significantly smaller than the separating
value of the eigenvalues.

4.0.0.6 The Multiple Eigenvalues case
We consider the case of obtaining an approximation to

multiple eigenvalues and eigenvectors of the original matrix
A. We will extend the above process to multiple eigenvalues
and eigenvectors. In Such a case what one can guarantee is that
with a similar application of lemma 1, the entire Subspace
spanned by the largest k eigenvectors can be approximated.
Let Ube the Subspace spanned by kapproximated eigenvec
tors. Assume that we desire to obtain a space USuch that the
finest granularity on a basis axis is

1
, Ge N.

G

We claim the following,
Lemma 4. Given a matrix A6R"", and a matrix SeR' in

accordance to lemma 1 such that

k S of logo),

and any fixed subspace U spanned by at most k (not neces
sarily known) vectors. Such that the finest granularity on an
axis is

1
G

ifuel J then with high probability (vanishingly close to 1)

The above lemma is a generalization of lemma 1, with the
observation that if we are trying to preserve the distance
between objects specified by a linear combination with pre
cision G, then we have at most G' objects. Applying n=G' in
the statement of lemma 1 gives the result. Intuitively lemma 4
states that a larger matrix S (Smaller distortion to matrix A) is
required in order to obtain an approximation to the largest k
eigenvectors.
Assume that via the application of lemma 2 we find a vector

u with |url=1 and maximum lu"AS". According to
lemma 2 (1+e)"lo, Elul Alslo, . Now consider the sub
space of all vectors u such that (u, u)=0 (the subspace of all
vectors orthogonal to u). Consider the second largest eigen
vector of AS", denoted by u. Denote y to be normalized
component of u which is orthogonal to u. Notice y can be
a candidate for the second largest eigenvector for AS".

5

10

15

25

30

35

40

45

50

55

60

65

14
Lemma 5. Iflo, D(1+e)lo, then ly, Alelol, and there

fore we get a vectoru. Such that lu"AI.2(1+e)"lol.
This lemma establishes that if|OD(1+e)|O (i.e., O and

O are e-separated) an excellent approximation to the second
largest eigenvalue of A exists. Generalizing fork eigenvalues,
we have:

Lemma 6. If for eachi, 1 sisk we have O, ID(1+e)lo, we
can find a u, such that lu, "Al2(1+e)'lo,

4.0.0.7 The Multiple Eigenvector case
The reasoning about the quality of u, as an approximation

carries over in this case. We would need the eigenvalues to be
more than e-separated (say Öe-separated) to obtain a good
approximation. Following similar reasoning as in the case of
u one can show thatu gets arbitrarily close tou, depending
on the separation between O. and O. For a specific value of e.
and 8 the quality of approximation to u is obtained from an
equation similar to equation 2. As in the single eigenvector
case, to achieve approximation of the eigenvectors we have to
compute at a greater precision than we need to identify the
eigenvalues.

Thus, the Subspace obtained via this approximation can be
arbitrarily close to the subspace obtained by the true klargest
eigenvectors, given that the eigenvalues are at least e-sepa
rated. For a specific value of e the quality of the approxima
tion obtained to each u, is dictated by equations similar to
equation 2. Larger values of e decrease the SVD computation
time but decrease the quality to the Subspace approximation
one obtains. This gives rise to a tradeoff that we will experi
mentally quantify in section 6.

4.1 Discussion

The analysis of the previous section established that it is
possible to compute eigenvalues and eigenvectors of a matrix
A (of size mxn) up to desired accuracy, by computing the
SVD decomposition (using any applicable technique) of a
much smaller matrix AS (of size mxs). This could have
significant performance benefits, independently of the spe
cific technique used to compute the SVD, since the procedure
would operate on a much smaller matrix.

Matrix S is populated initially from a suitably scaled Gaus
sian distribution in accordance to lemma 1. The full matrix S
is not realized, instead it is stored as a collection of S hash
functions hj such that St=h(t). This is one of the
central techniques in streaming computation and Reference 1
phrases the inner product Mij=XAit Sit as sketches
of the data.

Thus, as new stream elements arrive, matrix AS can be
updated in a very efficient fashion. Let us first assume that we
are in the standard stream model. For synchronous streams a
single tuple (i.t.A) arrives for element Ait and the correct
value Ait St gets added to Mijl. For the asynchro
nous case the value Ait accepts (possibly multiple) modi
fications. But the contribution to Mij over all the modifi
cations is again Ait St which is the correct value. The
entire procedure is presented below as the MapSVD algo
rithm for the standard stream model. Notice that updates/
modifications are provided in an incremental fashion to
matrix AS', and that matrix A is not explicitly materialized.
The problem with the computation of the MapSVD algo

rithm is that although the SVD computation performed is
expected to be faster (because it operates on a smaller matrix),
one still has to perform the computation each time matrix AS
changes. This is required to assure that the eigenvector and
eigenvalues maintained stay within desired accuracy levels.

US 8, 131,792 B1
15

Algorithm MapSVD((i.t.A).M.U.X.V.P) {
M=AS' eRx, UeR*.xeR*s
VeRx, PeR”
SeR' in accordance to lemma 1, it is a product of
Suitable hash functions, only the functions are stored
T=(i.t.A) is current input (representing Ait)

for (j=0; j<s; j++) {
Mij=Mi+ASIt

/* For synchronous streams Mij+=AitSt.
resulting in computation of AS'. For asynchronous
streams the same result is arrived at since At
is the sum of the modification */

}
SVD(M.U.X.V)/* favorite SVD algorithm */
}

4.2 Recomputations and Sampling
We will develop a sampling strategy that will select stream

tuples and periodically apply SVD while, at the same time, is
able to preserve the quality of the underlying eigenvectors and
eigenvalues obtained.

Suppose the stream has not changed significantly from a
certain time when we computed the SVD for it. Then, the
matrix corresponding to the stream has also not changed
significantly. Suppose we recomputed the SVD last when the
matrix corresponding to the stream was A. Suppose the
stream currently corresponds to matrix A. These matrixes are
used conceptually only; in practice we never store them.
Suppose the two matrices agree almost everywhere, and thus
their eigenvectors/values agree as well. This is captured by
the following lemma:
Lemma 7. Ifly ASIO and ||y|=1 theniy AI.2O/(1+

e)-|A-A. Al-Ali is the square of the Frobenius norm of
A-A and is equal to the Sum of squares of all elements.

Proof: From the previous section we are guaranteed that if
|ly AS'-O then by Lemma (see Reference 20) (1+e)
|ly AI.2|ly ASIO. From Linear Algebra, Ily'AIL
|ly'A|sly (Ai-A)||s|y|A-A. Since ||y|| ||y|-1.
the proof follows.

This means that ify was an eigenvector with a large pro
jection in A and A-A is small compared to O, theny still
has a large projection. In other words it is an approximate
eigenvector. We first show that
Lemma 8. Suppose we computed SVD for the stream

which corresponds to the matrix A at time t and did not
recompute SVD since. Suppose after that we saw tuples (i.t,
A) and currently the matrix corresponding to the stream is A.
Suppose further that no tuple expired (which is always true in
standard streaming model), if

A = D
(i.i.A)seen since it

then Al-AsD.
Proof: Let us focus on one element Ait which is modi

fied by several A. A. Based on the specific model
standard or sliding window, synchronous or asynchronous the
number u will vary. But we will give the most general proof
which holds for all cases. Thus Ait Ait+A1+...+A.

:

Aiii - Ailt = A + ... + As X Ayl

10

15

25

30

35

40

45

50

55

60

65

16
Adding this overi, t, the right hand side is the D, the sum of

all magnitudes of changes seen. Now

2

is D’
Ait - Air

|A - A1: =X|Ai(t) - Airls (?
i.it

Therefore Al-AsD. D.
If we do not recompute the SVD and A-A is small

compared to O the eigenvectors of A are still reasonable for
our current stream matrix A. Suppose we are interested in
preserving the principal eigenvector (for other eigenvectors
the discussion is similar). Since we are interested in lite
approximation, we will have to ensure that D-eO. An excel
lent way to achieve this is by randomly recomputing the SVD
depending on the magnitude AI seen. If A is large compared
to eO, we should choose to recompute, otherwise we would
not. Thus the recomputation should be done with probability
Al/(eO).
The e factor in the probability ensures that after we have

seen enough new information which satisfies XIA.2eO we
would have very likely

1
(probability 1 - - -0.63 8

(probability have recomputed the SVD. If we did not, then by
the time X|A|22eo, we would have recomputed the SVD
with probability

The probability of not having computed the SVD for long,
decreases exponentially. The Expected value is 1.4 eO. Thus
from Lemma 7 and Lemma 8 the principal eigenvector of
AS would have a projection on A which is at least 1-O(e)
with some high probability.

5. The StreamSVD Algorithm
The sampling procedure introduced leads to an effective

way to save on the number of times the SVD is computed.
Instead of computing the SVD of matrix AS7 every time an
item arrives, in accordance to lemma 7, we can compute it less
often and still get a good approximation to eigenvectors and
eigenvalues of matrix A.
Combining the results of Section 4 we can now realize

efficient algorithms for maintaining the SVD decomposition
on the various stream models, namely the standard and the
sliding window stream model. The algorithm is provided
below for the case of the sliding window model as the
StreamSVD algorithm. The algorithm for the standard model
is the same, there is no expiry and that condition is neverused.
The StreamSVD algorithm starts from MapSVD and

probabilistically recomputes the SVD depending on the mag
nitude A of the value seen compared to the eigenvalue O
(assuming that we are interested in the topmost eigenvalue; if
interested in all the k-th largest eigenvalues, we substitute O
with O.). For the case of the synchronous model, the sampling
procedure breaks the stream into several Sub-matrices, B. . .
B. depending on when we sample. This is shown in FIG. 4.
which plots the structure of blocks created by StreamSVD for
the case of the synchronous sliding window stream model.

US 8, 131,792 B1
17

The sub-matrix B starts at time t when we sampled in the
probabilistic step in StreamSVD and ended when we sampled
the next time (att). We store the products of the sub matrices
BS in the blocks M' in the algorithm StreamSVD. For the
standard streaming model it is easy to see that XM' is the
entire inner product, namely matrix M. For sliding window
streams if t<t-nst then the block B is partially relevant—
some of its entries have expired. Now the sum of the |A| for
the entries in each sub matrix B' is 0(eO) as follows from the
discussion in the previous section, since we did not recom
pute the SVD in the middle. If we computed the SVD last
when the matrix was A using a certain number of blocks and
none of the blocks expired (otherwise we would recompute
SVD)—the two matrices A and A agree everywhere except
in the current block. Now the XIA of each block is 1.4 eO. By
Lemma 8 we have a (1+1.4e) approximation. Therefore the
eigenvalue if preserved.
Lemma 9. The maximum number of blocks created in case

of synchronous sliding window streams is at most O(m/e).
The above follows from the fact that we have an estimate of

the Frobenius norm of the blocks related to O and likewise
the Frobenius norm A is related to O. The proof is completed
by relating the norms of the blocks to norms of A.

The case of asynchronous streams is more involved. Since
the data do not arrive in order, the pieces of matrix whose
inner product is in the different blocks overlap. The eigen
value is still preserved up to 1-1.4e. A lemma analogous to
lemma 9 can be proved under certain restrictions. We omit
details due to lack of space.

The StreamSVD algorithm for the sliding window model is
as follows. A similar algorithm can be designed for the case of
the standard stream model.

Algorithm StreamSVD((i.t.A).M.U.X.V.P) {
M=AS' eRx, UeRx, xeR*.
VeR*, PeR', SXR" as in lemma 1
O largest eigenvalue of M computed in a previous
invocation of StreamSVD, Current time is t
The inner productXAitSIt is maintained through at
most c blocks where XMIiji=XAit St
Block M is Current. On arrival of (it.A), with tet-n{

If ((stamp of M is t-n) or (with probability

Block M is closed with stamp T.
If (stamp of M" it t-n/* M' expires */for

for (u-1; u-c; u++)
Ma-M'l
ce-c-1

}
Start a new block M* and set it Current
Recompute the SVD(M.U.X, V).
/* use favorite algorithm */
}
for (=0; j<s; j++)
Current Blockij---ASIt

}
Independently, this sampling step could be applied to algo

rithm NaiveSVD surpassing the dimensionality reduction
step. This would provide an (1-e) approximation to the eigen
values, for Some ele(). Following reasoning related to that in
Section 4 the eigenvectors are preserved well also. Indeed we
explore this option for algorithm NaiveSVD in section 6.

10

15

25

30

35

40

45

50

55

60

65

18
6. Experimental Evaluation
In this section we present a performance analysis of the

algorithms and techniques discussed thus far. We seek to
quantify the benefits both in terms of accuracy and perfor
mance of the proposed techniques. We present the data sets
we experimented on, as well as the metrics used to quantify
accuracy.

Description of Data Sets: Correlation affects the sampling
component of our algorithms and thus is vital for the perfor
mance of our schemes. In addition to real data sets, we used
synthetic data sets, in which we had the freedom to vary the
degree of the underlying correlations and gain additional
intuition about the performance of our proposal. We describe
the data sets below:

Gaussian: The values of each data stream are chosen inde
pendently from a Gaussian distribution N(50.50) (mean
50 and variance 50). We expect no correlations between
the streams.

Linear: The values between the streams are linearly corre
lated.

Linear-S: Starting from data set Linear we distort each data
stream value by adding noise. In particular we add a
sample from N(2.2).

Linear-M: Similar to data set Linear-S but we add samples
from N(10,10).

Linear-L: Similar to data set Linear-S but we add samples
from N(30.30).

Real: Real data representing the number of packets through
various interfaces of several network cards of an opera
tional router.

Measurement Metrics:
Several parameters affect the accuracy and performance of

our approach and should be quantified. We evaluate the accu
racy of the SVD computed with algorithm StreamSVD by
reporting on the accuracy of the eigenvalues and eigenvectors
computed. We quantify the accuracy of eigenvalues using the
Average Absolute Relative Error (AARE) defined as follows:

Definition 3. Let V be an eigenvalue computed with algo
rithm NaiveStreamSVD and V the corresponding eigenvalue
computed using algorithm StreamSVD. The Absolute Rela
tive Error (ARE) between the two eigenvalues is defined as

V
ARE =

In the experiments that follow we report the Average Abso
lute Relative Error (AARE) as the average over a large num
ber of stream tuples (100K) of the ARE. We also report the
standard deviation of ARE over the same number of stream
tuples.

Let u be an eigenvector computed using algorithm
NaiveSVD and u' the corresponding eigenvector computed
using StreamSVD. If the vectors were identical, then (u, u')=1.
To quantify the accuracy of eigenvectors computed using
algorithm StreamSVD, we report the average value of (u.u')
as well as the standard deviation of (u.u") over a large number
(100K) stream tuples.

6.1 Evaluating StreamSVD
The first set of experiments we present, evaluate the accu

racy of the approximation on eigenvalues and eigenvectors.
We present results for the largest eigenvalue and the corre
sponding principal eigenvector. These results are indicative
of the overall accuracy. Results of similar quality are obtained
for additional eigenvalues and eigenvectors as described in
section 4. Moreover, results of similar quality are obtained for

US 8, 131,792 B1
19

the case of performing StreamSVD on arbitrary subsets of
streams, as discussed in section 4 We omit these results for
brevity.

6.2 Accuracy and Space Tradeoff
In these experiments, algorithm NaiveSVD is applied to

obtain the exact eigenvalues and eigenvectors. That is, Sam
pling stream tuples in not enabled and thus the eigenvalues
and eigenvectors computed are exact. Recall that StreamSVD
makes use of a matrix S., in accordance to lemma 1 as well
as sampling. We vary the value of S in these experiments and
observe the accuracy implications. Thus, we change the val
ues of e of our approximation, by changing the value of S.
Largers means smallere and vice versa. We use n=10 and
m=100 in these experiments.

FIG. 5 provides plots of accuracy of approximation to
exemplary eigenvalues and eigenvectors. FIG. 5(a) presents
the AARE for the principal eigenvalue for the data sets used in
out study. Increasing S improves accuracy in accordance to
lemma 1. In the case of the Gaussian data set, the AARE
appears high, since we expect no correlation between the
streams. For data set Linear, the error is very low, and gradu
ally increases as noise is added to the data set (data sets
Linear-S to Linear-L). This, provides experimental evidence
that algorithm StreamSVD is capable of preserving a good
approximation to the principal eigenvalue, even for data sets
artificially constructed to contain weak linear correlations, as
in the case of Linear-L. In this case, as is evident in FIG. 5(a)
the principal eigenvalue is at most 10% away from the real
value. Accuracy is much better in all the other cases that linear
correlations exist. In the case of data set Real, the error
appears to be low, providing additional evidence that corre
lations exist in real data distributions. Moreover, the error
drops quickly with increasing values of S, as dictated by
lemma 1. Notice for even smalls we are able to attain high
accuracy for principal eigenvalues. This behavior was con
sistent throughout our experiments, with additional eigenval
ues, not just the principal, we omit those experiments in
interest of space.

FIG. 5(b) presents the standard deviation of ARE as the
value of S increases for the data sets used in our study. In all
cases, the trends are related to those observed for AARE, with
deviation tailing off for largers values. Notably, in the case of
data set Real, standard deviation appears very low, demon
strating the quality of the approximation our technique offers
on real data sets as well.

FIG. 5(c) presents the mean value of the inner product for
the principal eigenvector computed with algorithm
NaiveSVD and the principal eigenvector computed with algo
rithm StreamSVD. FIG. 5(d) presents the standard deviation
of this product. For the case of data set Gaussian, the vectors
appear far apart matching our expectation. In all other cases
however, where some form of linear correlation exists
between the underlying streams, algorithm StreamSVD is
able to uncover it and the principal eigenvectors remain very
close. For data set Real the reported quality of the principal
eigenvector computed with StreamSVD is excellent, with
precision increasing as a function of s. The standard deviation
of this product (FIG. 5(d)) is very small as well. Thus, the
quality of the approximation to the principal eigenvector
reported, appears 'stable' over time, i.e., as the data stream
evolves. For the case of data set Linear, the vectors are essen
tially identical and appear to be nominally affected as noise is
added to the data.

6.3 Performance Issues
The second set of experiments we report, evaluate the

performance of algorithm StreamSVD compared with that of
NaiveSVD. We report on the average time spent per stream

10

15

25

30

35

40

45

50

55

60

65

20
tuple during the execution of the algorithms. This time con
sists of the time to update matrix M (AA in the case of
NaiveSVD and AS' in case of StreamSVD) as well as the time
to perform SVD on M, if required, amortized over a large
number of stream tuples (100K). In these experiments algo
rithm NaiveSVD employs sampling of stream tuples, as pro
posed in section 4, boosting its performance. The perfor
mance gain is arising out of the fact that we require O(m) time
as opposed to O(m) required by NaiveSVD to update the
necessary matrices and not from Sampling.
As far as performance is concerned two parameters are of

interest; the number of streams involved m, as well as the
value of S that affects the quality of the approximation.

Varyings: The results are presented in FIG. 6, in which is
plotted the average time spend per stream tuple as the value of
Sincreases, for various data sets, m=100. To Summarize:

FIG. 6(a) presents the time per stream tuple for data set
Gaussian, as Sincreases, for m=100 streams. Since there is no
correlation between the streams, both algorithms compute the
SVD for each new tuple arriving in the stream.

FIG. 6(b), presents the result of the same experiment for
data sets Linear-Mand Real. In this case, sampling is applied
by both algorithms. The savings in response time per stream
tuple achieved by StreamSVD, are profound.

Varying number of streams m: In FIG. 7 we present the
results of a scalability experiment varying the number of
streams m, by plotting an average time spent per stream tuple
as the number of streams increases. We present both scenarios
assis small or sufficiently larger. In particular, FIGS. 7(a) and
7(b) vary the number of streams from 10 to 40 for a value of
s=5, for data sets Gaussian, Linear-M and Real. Similarly,
FIGS. 7(c) and 7(d) vary the number of streams from 50 to
200 for S-30 and for the same data sets.
The effects of sampling remain the same as in the experi

ment associated with FIG. 6; data set Gaussian forces SVD
computation almost on every tuple. In contrast, in data sets
Linear-M and Real sampling is utilized and we observe a
clear performance benefit. For a specific value of s when we
increase the number of streams, it is evident that the perfor
mance advantage of StreamSVD increases significantly. This
trend can be observed both in the case of a small (FIGS. 7(a)
and 7(b)) as well as a larger (FIGS. 7(c) and 7(d)).
To Summarize, there are two main conclusions from our

experiments with StreamSVD. First, the performance impli
cations of the application of lemma 1 to StreamSVD can be
considered to be profound. Even Small values of s are enough
to potentially provide excellent accuracy providing large Sav
ings in time spent per tuple to maintain the SVD in a stream
context. Second, even for a small number of streams
StreamSVD currently appears to be the algorithm of choice.

7. Conclusions
We considered the problem of identifying correlations

between multiple data streams using Singular Value Decom
position. We have proposed one or more exemplary algo
rithms to maintain the SVD of multiple data streams and
identify correlations between the streams. We have quantified
the accuracy of our proposalboth analytically and experimen
tally and through detailed experimental results using real and
synthetic data sets evaluated its performance. We also pre
sented a case study of the application of our technique to the
problem of querying multiple data streams.

This study raises various issues for further research and
exploration. The algorithms and techniques presented herein
are likely to be of interest to other forms of computation over
multiple streams. In particular, reasoning and mining
dynamically multiple data streams is a problem of central
interest in network data management. Identification of corre

US 8, 131,792 B1
21

lations between streams, via the proposed StreamSVD algo
rithm, can be a first step in designing mining procedures over
multiple streams and/or advanced querying processing tech
niques, such as queries over arbitrary Subsets of streams. We
plan to investigate these directions in our future work.

Thus, certain exemplary embodiments provide a method
comprising: automatically: receiving a plurality of elements
for each of a plurality of continuous data streams; treating the
plurality of elements as a first data stream matrix that defines
a first dimensionality; reducing the first dimensionality of the
first data stream matrix to obtain a second data stream matrix:
computing a singular value decomposition of the second data
stream matrix; and based on the singular value decomposition
of the second data stream matrix, quantifying approximate
linear correlations between the plurality of elements.

FIG. 8 is a block diagram of an exemplary embodiment of
a telecommunications system 8000 that can implement an
exemplary embodiment of the StreamSVD algorithm. Sys
tem 8000 can comprise any number of continuous data stream
sources 8100, such as continuous data stream sources 8110,
8120, 8130. Any continuous data stream source 8100 can be
an information device. From any continuous data stream
source 8110, 8120, 8130 can flow a continuous data stream
8112, 8122,8132, respectively. Any continuous data stream
can include any number of data stream elements, such as
elements 8114, 8115,8116 of continuous data stream 8112.
Any of the continuous data stream sources 8100 can be

coupled to a network 8200. Coupled to network 8200 can be
any number of information devices 8300 to which continuous
data streams are directed. Coupled to network 8200 can be an
information device 8400 which can identify linear correla
tions between data stream elements, and which can comprise
a stream element processor 8410, a first matrix processor
8420, and a second matrix processor 8430. Coupled to infor
mation device 8400 can be a memory device 8500 that can
store a first matrix, a second matrix, and/or linear correlations
between data stream elements.

FIG. 9 is a flow diagram of an exemplary embodiment of a
method 9000 for automatically implementing an exemplary
embodiment of the StreamSVD algorithm. At activity 9100,
elements of multiple continuous data streams can be received.
The received elements can be actively sought and obtained or
passively received. At activity 9200, the received elements
can be treated as a first data stream matrix defining a first
dimensionality. At activity 9300, the dimensionality of the
first data stream matrix can be reduced to obtain a second data
stream matrix. At activity 9400, a singular value decomposi
tion of the second data stream matrix can be computed.

At activity 9500, a user-specified accuracy metric can be
obtained, the accuracy metric related to the degree of approxi
mation of linear correlations between elements of the con
tinuous data streams. At activity 9600, based on the singular
value decomposition of the second data stream matrix,
approximate linear correlations between the plurality of ele
ments can be quantified. The approximate linear correlations
can meet the user-specified accuracy metric. At activity 9700,
the approximate linear correlations between the plurality of
elements can be output and/or reported. In certain exemplary
embodiments, the approximate linear correlations can com
prise a plurality of eigenvalues that approximate principal
eigenvalues of the first data stream matrix. In certain exem
plary embodiments, the approximate linear correlations can
comprise a plurality of eigenvectors that approximate princi
pal eigenvectors of the first data stream matrix.

10

15

25

30

35

40

45

50

55

60

65

22
In certain exemplary embodiments, any portion of method

9000 can be repeated in any defined manner, including peri
odically, pseudo-randomly, and randomly. In certain exem
plary embodiments, any portion of method 9000 can occur
dynamically.

In certain exemplary embodiments, at least one of the
plurality of continuous data streams can be synchronous,
asynchronous, bursty, sparse, and/or contain out-of-orderele
mentS.

In certain exemplary embodiments, the reducing activity
can apply the Johnson-Lindenstrauss Lemma.

FIG.10 is a block diagram of an exemplary embodiment of
an information device 10000, which in certain operative
embodiments can represent, for example, continuous data
stream source 8100, information device 8300, and/or infor
mation device 8400 of FIG. 8. Information device 10000 can
comprise any of numerous well-known components. Such as
for example, one or more network interfaces 10100, one or
more processors 10200, one or more memories 10300 con
taining instructions 10400, one or more input/output (I/O)
devices 10500, and/or one or more user interfaces 10600
coupled to I/O device 10500, etc.

In certain exemplary embodiments, via one or more user
interfaces 10600. Such as a graphical user interface, a user can
implement an exemplary embodiment of the StreamSVD
algorithm.

Still other embodiments will become readily apparent to
those skilled in this art from reading the above-recited
detailed description and drawings of certain exemplary
embodiments. It should be understood that numerous varia
tions, modifications, and additional embodiments are pos
sible, and accordingly, all such variations, modifications, and
embodiments are to be regarded as being within the spirit and
Scope of the appended claims. For example, regardless of the
content of any portion (e.g., title, field, background, Sum
mary, abstract, drawing figure, etc.) of this application, unless
clearly specified to the contrary, there is no requirement for
the inclusion in any claim of the application of any particular
described or illustrated activity or element, any particular
sequence of such activities, or any particular interrelationship
of such elements. Moreover, any activity can be repeated, any
activity can be performed by multiple entities, and/or any
element can be duplicated. Further, any activity or element
can be excluded, the sequence of activities can vary, and/or
the interrelationship of elements can vary. Accordingly, the
descriptions and drawings are to be regarded as illustrative in
nature, and not as restrictive. Moreover, when any number or
range is described herein, unless clearly stated otherwise, that
number or range is approximate. When any range is described
herein, unless clearly stated otherwise, that range includes all
values therein and all Subranges therein. Any information in
any material (e.g., a United States patent, United States patent
application, book, article, etc.) that has been incorporated by
reference herein, is only incorporated by reference to the
extent that no conflict exists between such information and
the other statements and drawings set forth herein. In the
event of such conflict, including a conflict that would render
a claim invalid, then any Such conflicting information in Such
incorporated by reference material is specifically not incor
porated by reference herein.

References

The following references are incorporated by reference
herein in their entirety:

US 8, 131,792 B1
23

1. N. Alon, Y. Matias, and M. Szegedy, “The space complexity
of approximating the frequency moments. Proceedings of
the Symposium on Theory of Computing, 1996, pages
20-29.

2. Brian Babcock, and Mayur Datar, and Rajeev Motwani,
“Sampling From a Moving Window Over Streaming
Data, 2002, SODA.

3. S. Babu and J. Widom, “Continuous Queries Over Data
Streams', September 2001, SIGMOD Record.

4. D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H. V.
Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross, and K. C.
Sevcik, “The New Jersey Data Reduction Report', Sep.
1996, Data Engineering Bulletin.

5. Yixin Chen, Guozhu Dong, Jiawei Han, B. Wah, and J.
Wang, “Multidimensional Regression Analysis of Time
Series Data Streams”, 2002, Proceedings of VLDB.

6. M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintain
ing Stream Statistics over Sliding Windows'. SODA,
2002.

7. J. Demmel, Applied Numerical Linear Algebra’, 1997,
Society of Industrial and Applied Mathematics.

8. P. Drineas, R. Kannan, A. Frieze, V. Vinay, “Clustering in
Large Graphs and Matrices’, SODA, 1999.

9. A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-Carlo
Algorithms for Finding Low-Rank Approximations'.
FOCS, 1998.

10. V. Ganti, J. Gehrke, and R. Ramakrishnan, “Mining and
Monitoring Evolving Data'. Knowledge and Data Engi
neering, Vol. 13, No. 1, pages 50-63, 2001.

11. L. Gao and X. Wang, “Continually Evaluating Similarity
Based Pattern Queries on a Streaming Time Series”, 2002,
Proceedings of ACM SIGMOD.

12. J. Gerhke, F. Korn, and D. Srivastava, “Correlated Aggre
gate Queries Over Continual Data Streams’, May 2001,
Proceedings of ACM SIGMOD.

13. A. Gilbert, S. Guha, P. Indyk, Y. Kotadis, S.Muthukrish
nan, and M. Strauss, “Fast, Small-Space Algorithms for
Approximate Histogram Maintenance', 2002, STOC.

14. A. Gilbert, Y. Kotidis, S.Muthukrishnan, and M. Strauss,
“How to Summarize the Universe: Dynamic Maintenance
of Quantiles'. Proceedings of the International Conference
on Very Large Databases VLDB, 2002.

15. J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P.
Weinberger, “Quickly Generating a Billion-Record Syn
thetic Database', June 1994, Proceesings of ACM SIG
MOD, pages 243-252.

16. M. Greenwald and S. Khanna, “Space-Efficient Online
Computation of Quantile Summaries’, May 2001, Pro
ceedings of ACM SIGMOD, Santa Barbara.

17. S. Guha and N. Koudas, “Approximating a Data Stream
for Querying and Estimation: Algorithms and Performance
Evaluation’, February 2002, ICDE.

18. S. Guha, N. Koudas, and K. Shim, "Data Streams and
Histograms”, July 2001, Symposium on the Theory of
Computing, STOC.

19. M. Henzinger, P. Raghavan, S. Rajagopalan, “Computing
on Data Streams”, August 1997, Digital Equipment Cor
poration, TR-1998-011.

20. W. B. Johnson and J. Lindenstrauss, “Extensions of Lip
shitz Mapping Into Hilbert Space', May 1984, Contempo
rary Mathematics, Vol. 26, pages 189-206.

21. Kothuri Venkata Ravi Kanth and A. Singh, "Dimension
ality Reduction For Similarity Searching. In Dynamic
Databases, June 1998, Proceedings of ACM SIGMOD,
pages 97-105.

5

10

15

25

30

35

40

45

50

55

60

65

24
22. F. Korn, H. V. Jagadish, and C. Faloutsos, “Efficiently

Supporting Ad Hoc Queries in Large Datasets of Time
Sequences’, May 1997, Proceedings of ACM SIGMOD,
Tuscon Ariz., pages 289-300.

23. S. Madden and M. Franklin, “Fjording the Stream: An
Architecture for Queries Over Streaming Sensor Data”,
February 2002, Proceedings of ICDE.

24. Y. Mattias, J. S. Vitter, and M. Wang, “Dynamic Mainte
nance of Wavelet-Based Histograms”, September 2000,
Proceedings of the International Conference on Very Large
Databases, VLDB, Cairo, Egypt, pages 101-111.

25. J. Munro and M. Paterson, “Selection and Sorting with
Limited Storage', 1980. Theoretical Computer Science,
pages 315-323.

26. G. Singh, S. Rajagopalan, and B. Lindsay."Random Sam
pling Techniques For Space Efficient Computation Of
Large Datasets”, June 1999, Proceedings of SIGMOD,
Philadelphia, Pa., pages 251-262.

27. G. Singh, S. Rajagopalan, and B. Lindsay, 'Approximate
Medians and Other Quantiles In One Pass and With Lim
ited Memory”, June 1998, Proceedings of ACM SIGMOD,
pages 426-435.

28. John W. Stewart, III, “Inter-domain Routing in the Inter
net'. Addison-Wesley, Reading, Mass., pages xiii and 137,
1999.

29. N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic
Multidimensional Histograms”, SIGMOD, 2002.

30. B. K. Yi and C. Faloutsos, “Fast Time Sequence Indexing
for Arbitrary Lp Norms”, September 2000, Proceedings of
VLDB, Cairo, Egypt.

31.Y. Zhu and D. Shasha, “StatStream: Statistical Monitoring
of Thousands of Streams in RealTime”, 2002, Proceedings
of VLDB.
What is claimed is:
1. A method comprising:
detecting a denial of service attack based upon quantified

approximate linear correlations between a plurality of
elements determined via randomly computed singular
value decomposition of a first data stream matrix by
utilizing a processor, wherein the first data stream matrix
is obtained via a reduction of a dimensionality of a
second data stream matrix, wherein the first data stream
matrix comprises a plurality of sampled values of the
second data stream matrix, wherein the second data
stream matrix is based upon a plurality of elements of
each of a plurality of continuous data streams; and

generating a report of a detection of the denial of service
attack by utilizing the processor, wherein the denial of
service attack does not involve address spoofing.

2. The method of claim 1, further comprising storing the
plurality of elements as a collection of hash functions.

3. The method of claim 1, wherein
at least one of the plurality of continuous data streams is

synchronous.
4. The method of claim 1, wherein
at least one of the plurality of continuous data streams is

asynchronous.
5. The method of claim 1, wherein
at least one of the plurality of continuous data streams

comprises out of order elements.
6. The method of claim 1, further comprising
obtaining values for the first data stream matrix from a

Gaussian distribution and preserving relative distances
between vectors in a resulting space of the first data
stream matrix as compared to the second data stream
matrix, the first matrix determined via a sliding window
stream model.

US 8, 131,792 B1
25

7. The method of claim 1, further comprising
repeatedly computing the singular value decomposition in

response to a change in the first data stream matrix
caused by additional data sampled from a data stream of
the plurality of continuous data streams.

8. The method of claim 1, further comprising
periodically computing the singular value decomposition

in response to an expiration of entries in the second data
stream matrix.

9. The method of claim 1, further comprising
randomly computing the singular value decomposition.
10. The method of claim 1, further comprising
quantifying the approximate linear correlations in response

to a sliding window stream that varies over time.
11. The method of claim 1, wherein
the approximate linear correlations comprise a plurality of

eigenvalues that approximate principal eigenvalues of
the second data stream matrix.

12. The method of claim 1, wherein
the approximate linear correlations comprise a plurality of

eigenvectors that approximate principal eigenvectors of
the second data stream matrix.

13. The method of claim 1, further comprising receiving a
user-specified accuracy metric for the approximate linear cor
relations.

14. The method of claim 1, wherein
the approximate linear correlations meet a user-specified

accuracy metric.
15. The method of claim 1, further comprising
outputting the approximate linear correlations.
16. The method of claim 1, further comprising
reporting the approximate linear correlations.
17. A method comprising:
determining a plurality of elements via a randomly com

puted singular value decomposition of a first data stream

5

10

15

25

30

26
matrix by utilizing a processor, wherein the first data
stream matrix is obtained via a reduction of a dimen
sionality of a second data stream matrix, wherein the
second data stream matrix is based upon a plurality of
elements of each of a plurality of continuous data
Streams;

determining a probability of computation based upon a
ratio of a magnitude of a sampled value of a plurality of
sampled values to a calculated product of a determined
separating value of eigenvalues and a determined eigen
value of the first data stream matrix by utilizing the
processor, and

applying a sound filter to a multimedia application, based
upon a quantified approximate linear correlation
between the plurality of elements determined via the
randomly computed singular value decomposition and
upon the probability of computation.

18. A method comprising:
determining a plurality of elements via a randomly com

puted singular value decomposition of a first data stream
matrix by utilizing a processor, wherein the first data
matrix is obtained via a reduction of a dimensionality of
a second data stream matrix, wherein the second data
stream matrix is based upon a plurality of elements of
each of a plurality of continuous data streams; and

detecting a denial of service attack not involving address
spoofing by utilizing the processor, wherein the denial of
service attack is detected based upon quantified approxi
mate linear correlation between the plurality of elements
determined via the randomly computed singular value
decomposition.

