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1. 

APPARATUS AND METHOD FOR 
CORRELATING SYNCHRONOUSAND 
ASYNCHRONOUS DATASTREAMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of claims priority to, and 
incorporates by reference herein in its entirety, pending U.S. 
patent application Ser. No. 10/822.316, filed 12 Apr. 2004, 
which is a Non-Provisional of U.S. Provisional Patent Appli 
cation Ser. No. 60/461,910, filed 10 Apr. 2003. 

SUMMARY 

Certain exemplary embodiments provide a method com 
prising: automatically: receiving a plurality of elements for 
each of a plurality of continuous data streams; treating the 
plurality of elements as a first data stream matrix that defines 
a first dimensionality; reducing the first dimensionality of the 
first data stream matrix to obtain a second data stream matrix: 
computing a singular value decomposition of the second data 
stream matrix; and based on the singular value decomposition 
of the second data stream matrix, quantifying approximate 
linear correlations between the plurality of elements. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A wide variety of potential embodiments will be more 
readily understood through the following detailed descrip 
tion, with reference to the accompanying drawings in which: 

FIG. 1 is a plot of an exemplary set of linearly correlated 
data points; 

FIG. 2 is a plot of an exemplary set of asynchronous 
streams demonstrating out-of-sync behavior; 

FIG. 3 is a plot of an exemplary set of asynchronous 
streams demonstrating out-of-order behavior; 

FIG. 4 is a plot of the structure of an exemplary set of 
blocks created by StreamSVD: 

FIGS. 5(a)-(d) are plots of various exemplary accuracy 
measures for exemplary eigenvalues and eigenvectors com 
puted with an exemplary embodiment of algorithm 
StreamSVD; 

FIGS. 6(a) and (b) are plots of exemplary performance 
measures for an exemplary embodiment of algorithm 
StreamSVD; 

FIGS. 7(a)-(d) are plots of exemplary performance mea 
Sures for an exemplary embodiment of algorithm 
StreamSVD; 

FIG. 8 is a block diagram of an exemplary embodiment of 
a telecommunications system 8000; 

FIG. 9 is a flow diagram of an exemplary embodiment of a 
method 9000; and 

FIG. 10 is a block diagram of an exemplary embodiment of 
an information device 10000. 

DEFINITIONS 

When the following terms are used herein, the accompa 
nying definitions apply: 

database—an organized collection of information. A data 
base can comprise a mirror of a primary database. For 
example, an ALI database can comprise a mirror of a 
primary ALI database. 

firmware—machine-readable instructions that are stored 
in a read-only memory (ROM). ROM’s can comprise 
PROMs and EPROMs. 
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2 
haptic—both the human sense of kinesthetic movement 

and the human sense of touch. Among the many poten 
tial haptic experiences are numerous sensations, body 
positional differences in sensations, and time-based 
changes in sensations that are perceived at least partially 
in non-visual, non-audible, and non-olfactory manners, 
including the experiences of tactile touch (being 
touched), active touch, grasping, pressure, friction, trac 
tion, slip, stretch, force, torque, impact, puncture, vibra 
tion, motion, acceleration, jerk, pulse, orientation, limb 
position, gravity, texture, gap, recess, Viscosity, pain, 
itch, moisture, temperature, thermal conductivity, and 
thermal capacity. 

information device—any device capable of processing 
information, Such as any general purpose and/or special 
purpose computer, Such as a personal computer, work 
station, server, minicomputer, mainframe, Supercom 
puter, computer terminal, laptop, wearable computer, 
and/or Personal Digital Assistant (PDA), mobile termi 
nal, Bluetooth device, communicator, “smart” phone 
(such as a Handspring Treo-like device), messaging Ser 
vice (e.g., Blackberry) receiver, pager, facsimile, cellu 
lar telephone, a traditional telephone, telephonic device, 
a programmed microprocessor or microcontroller and/ 
or peripheral integrated circuit elements, an ASIC or 
other integrated circuit, a hardware electronic logic cir 
cuit Such as a discrete element circuit, and/or a program 
mable logic device such as a PLD, PLA, FPGA, or PAL, 
or the like, etc. In general any device on which resides a 
finite state machine capable of implementing at least a 
portion of a method, structure, and/or or graphical user 
interface described herein may be used as an informa 
tion device. An information device can include well 
known components such as one or more network inter 
faces, one or more processors, one or more memories 
containing instructions, and/or one or more input/output 
(I/O) devices, one or more user interfaces, etc. 

Internet—an interconnected global collection of networks 
that connect information devices. 

I/O device—any sensory-oriented input and/or output 
device. Such as an audio, visual, haptic, olfactory, and/or 
taste-oriented device, including, for example, a monitor, 
display, projector, overhead display, keyboard, keypad, 
mouse, trackball, joystick, gamepad, wheel, touchpad, 
touch panel, pointing device, microphone, speaker, 
video camera, camera, Scanner, printer, haptic device, 
vibrator, tactile simulator, and/or tactile pad, potentially 
including a port to which an I/O device can be attached 
or connected. 

memory device—any device capable of storing analog or 
digital information, for example, a non-volatile memory, 
volatile memory, Random Access Memory, RAM, Read 
Only Memory, ROM, flash memory, magnetic media, a 
hard disk, a floppy disk, a magnetic tape, an optical 
media, an optical disk, a compact disk, a CD, a digital 
versatile disk, a DVD, and/or a raid array, etc. The 
memory device can be coupled to a processor and can 
store instructions adapted to be executed by the proces 
Sor according to an embodiment disclosed herein. 

network interface—any device, system, or Subsystem 
capable of coupling an information device to a network. 
For example, a network interface can be a telephone, 
cellular phone, cellular modem, telephone data modem, 
fax modem, wireless transceiver, ethernet card, cable 
modem, digital Subscriber line interface, bridge, hub, 
router, or other similar device. 
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processor—a device for processing machine-readable 
instruction. A processor can be a central processing unit, 
a local processor, a remote processor, parallel proces 
Sors, and/or distributed processors, etc. The processor 
can be a general-purpose microprocessor, Such the Pen 
tium III series of microprocessors manufactured by the 
Intel Corporation of Santa Clara, Calif. In another 
embodiment, the processor can be an Application Spe 
cific Integrated Circuit (ASIC) or a Field Programmable 
Gate Array (FPGA) that has been designed to implement 
in its hardware and/or firmware at least a part of an 
embodiment disclosed herein. 

system—A collection of devices and/or instructions, the 
collection designed to perform one or more specific 
functions. 

user interface—any device for rendering information to a 
user and/or requesting information from the user. A user 
interface includes at least one of textual, graphical, 
audio, video, animation, and/or haptic elements. A tex 
tual element can be provided, for example, by a printer, 
monitor, display, projector, etc. A graphical element can 
be provided, for example, via a monitor, display, projec 
tor, and/or visual indication device. Such as a light, flag, 
beacon, etc. An audio element can be provided, for 
example, via a speaker, microphone, and/or other Sound 
generating and/or receiving device. A video element or 
animation element can be provided, for example, via a 
monitor, display, projector, and/or other visual device. A 
haptic element can be provided, for example, via a very 
low frequency speaker, vibrator, tactile stimulator, tac 
tile pad, simulator, keyboard, keypad, mouse, trackball, 
joystick, gamepad, wheel, touchpad, touch panel, point 
ing device, and/or other haptic device, etc. A user inter 
face can include one or more textual elements such as, 
for example, one or more letters, number, symbols, etc. 
A user interface can include one or more graphical ele 
ments such as, for example, an image, photograph, 
drawing, icon, window, title bar, panel, sheet, tab, 
drawer, matrix, table, form, calendar, outline view, 
frame, dialog box, static text, text box, list, pick list, 
pop-up list, pull-down list, menu, tool bar, dock, check 
box, radio button, hyperlink, browser, button, control, 
palette, preview panel, color wheel, dial, slider, scroll 
bar, cursor, status bar, stepper, and/or progress indicator, 
etc. A textual and/or graphical element can be used for 
Selecting, programming, adjusting, changing, specify 
ing, etc. an appearance, background color, background 
style, border style, border thickness, foreground color, 
font, font style, font size, alignment, line spacing, 
indent, maximum data length, validation, query, cursor 
type, pointer type, autosizing, position, and/or dimen 
sion, etc. A user interface can include one or more audio 
elements such as, for example, a Volume control, pitch 
control, speed control, Voice selector, and/or one or more 
elements for controlling audio play, speed, pause, fast 
forward, reverse, etc. A user interface can include one or 
more video elements such as, for example, elements 
controlling video play, speed, pause, fast forward, 
reverse, Zoom-in, Zoom-out, rotate, and/or tilt, etc. A 
user interface can include one or more animation ele 
ments such as, for example, elements controlling anima 
tion play, pause, fast forward, reverse, Zoom-in, Zoom 
out, rotate, tilt, color, intensity, speed, frequency, 
appearance, etc. A user interface can include one or more 
haptic elements such as, for example, elements utilizing 
tactile stimulus, force, pressure, vibration, motion, dis 
placement, temperature, etc. 
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4 
wireless—any means to transmit a signal that does not 

require the use of a wire or guide connecting a transmit 
ter and a receiver, Such as radio waves, electromagnetic 
signals at any frequency, lasers, microwaves, etc., but 
excluding purely visual signaling, such as semaphore, 
Smoke signals, sign language, etc. 

wireline—any means to transmit a signal comprising the 
use of a wire or waveguide (e.g., optical fiber) connect 
ing a transmitter and receiver. Wireline communications 
can comprise, for example, telephone communications 
over a POTS network. 

DETAILED DESCRIPTION 

1. Introduction 
In a variety of modern applications, data are commonly 

viewed as infinite time ordered data streams rather as finite 
data sets stored on disk. This view challenges fundamental 
assumptions in data management and poses interesting ques 
tions for processing and optimization. 

Certain exemplary embodiments approach and/or address 
the problem of identifying correlations between multiple data 
streams. Certain exemplary embodiments provide algorithms 
capable of capturing correlations between multiple continu 
ous data streams in a highly efficient and accurate manner. 
Certain exemplary embodiments provide algorithms and/or 
techniques that are applicable in the case of both synchronous 
and asynchronous data streaming environments. Certain 
exemplary embodiments capture correlations between mul 
tiple streams using the well known technique of Singular 
Value Decomposition (SVD). Correlations between data 
items, and the SVD technique in particular, have been repeat 
edly utilized in an off-line (non stream) context in the data 
base community, for a variety of problems, for example, 
approximate query answering, mining, and indexing. 

Certain exemplary embodiments provide a methodology 
based on a combination of dimensionality reduction and Sam 
pling to make the SVD technique suitable for a data stream 
context. Certain exemplary techniques are approximate, trad 
ing accuracy with performance, and this tradeoff can be ana 
lytically quantified. Presented herein is an experimental 
evaluation, using both real and synthetic data sets, from a 
prototype implementation of certain exemplary embodi 
ments, investigating the impact of various parameters in the 
accuracy of the overall computation. The results indicate that 
correlations between multiple data streams can be identified, 
in Some cases very efficiently and accurately. The algorithms 
proposed herein, are presented as generic tools, with a mul 
titude of applications on data streaming problems. 

In many modern applications, data are commonly viewed 
as an infinite, possibly ordered data sequences rather as a 
finite data set stored on disk. Such a view, challenges funda 
mental assumptions related to the analysis and mining of such 
data, for example, the ability to examine each data element 
multiple times, through random or sequential access. In many 
traditional applications, such as networking and multimedia, 
as well as in new and emerging applications, like sensor 
networks and pervasive computing, this view of application 
data is prevalent. Commonly such (potentially) infinite 
ordered sequences of data, are referred to as data streams. 

Networking infrastructure. Such as routers, hubs, and traf 
fic aggregation stations, can produce vast amounts of perfor 
mance and fault related data in a streaming fashion. Such 
information can be vital for network management operations 
and sometimes needs to be collected and analyzed online. 



US 8, 131,792 B1 
5 

Network operators can require precise characterizations of 
the temporal evolutions of such data and/or identification of 
abnormal events. 

Sensor networks are becoming increasingly common 
place. The vision of pervasive computing can involve hun 
dreds of autonomous devices collecting data (Such as high 
way traffic, temperature, etc.) from dispersed geographic 
locations. Such data, Subsequently can be made available to 
inter-operating applications which can utilize them to make 
intelligent decisions. 

Data elements in real data sets are rarely independent (see 
Reference 15). Correlations commonly exist and are prima 
rily due to the nature of the applications that generate the data. 
In settings involving multiple data streams, correlations 
between stream elements are encountered as well. Effectively 
quantifying correlations between multiple streams can be of 
Substantial utility to a variety of applications, including but 
not limited to: 
Network Security Monitoring: Various forms of bandwidth 

attacks can introduce highly correlated traffic Volumes 
between collections of router interfaces. Efficiently identify 
ing Such correlations as they occur can trigger prevention 
mechanisms for severe problems such as flash crowds and 
denial of service attacks without address spoofing. 

Network Traffic engineering: A large amount of correlation 
can exist between faults reported by the links of network 
elements to the central fault management system. Identifica 
tion of such correlations as they develop can be of utility for 
fault management automation. Similarly monitoring the sta 
bility of network protocols (such as, e.g., BGP (see Reference 
28)) can utilize on-line monitoring of correlations between 
the fault messages produced. 

Sensor Data Management: Traditional data processing and 
analysis on data collected from sensor networks can benefit, 
in terms of space and/or time, from reduced data representa 
tions, derived from correlations (see Reference 4). For 
example, consider a number of sensors in the same geo 
graphical area collecting and reporting temperature. In some 
circumstances, it might be expected that temperatures in the 
same region are related, thus the values reported by the sen 
sors for that region are highly correlated. Utilizing these 
correlations, one can derive reduced data representations and 
reason about the state of a system under sensor Surveillance 
using less data, with immediate performance benefits. 

Multimedia: In multimedia applications, correlations 
across different cues have become and will likely continue to 
be of significant benefit. Typically, a visual scene is pictured 
by a multitude of inexpensive cameras and microphones, and 
the resulting streams are analyzed to focus cameras and apply 
Sound filters to allow applications such as tele-conferencing 
over limited bandwidth. In most scenarios the different cues 
are correlated, and a promising approach to this problem 
appears to be the recognizing the correlations in real time. 

Certain exemplary embodiments provide fast and/or effi 
cient techniques to identify correlations between multiple 
data streams. Certain exemplary embodiments focus on a 
fundamental form of correlations between multiple streams, 
namely linear correlations, and adapt a technique widely uti 
lized for identifying linear correlations. In particular, certain 
exemplary embodiments adapt the Singular Value Decompo 
sition (SVD) (see Reference 7) in a data stream context. 
Certain exemplary embodiments make at least the following 
contributions: 
An investigation of the SVD operation on streams and 

propose algorithms to support the SVD computation on Data 
Streams. Certain exemplary embodiments are orthogonal to 
the specific SVD computation technique used. 
A construction of a probabilistic map of the stream to a 

space different than that of the input, computing the SVD in 
the mapped space. This mapping can be amenable to efficient 
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6 
updating, which can be of benefit in a streaming context. 
Also, the accuracy tradeoffs this mapping offers in the case of 
SVD computations is analytically quantified. 
An enhancement this mapped space with sampling and the 

introduction of very fast algorithms for SVD maintenance in 
the various data stream models proposed. 

Complementation of certain exemplary algorithms and 
analysis with a thorough experimental evaluation, realizing 
the accuracy and performance benefits certain exemplary 
embodiments have to offer using both real and synthetic data 
SetS 
The next portion of this description is organized as follows: 

In Section 2 we present background material and definitions. 
Section 3 demonstrates the difficulties of adapting known 
SVD computation techniques to a streaming context. In Sec 
tion 4 we present certain exemplary embodiments of our 
techniques and analysis enabling adaptation of SVD to a 
continuous stream environment. In section 5 we present the 
streamSVD algorithm. In section 6 we present the results of 
our experimental evaluation of certain proposed algorithms. 
Section 7 concludes this portion of the description, raising 
issues for further work in this area. 

2. Background and Additional Definitions 

2.1 Data Stream Models 
A data stream S is an ordered sequence of data points that 

can be read only once. Formally, a data stream is a sequence 
of data items ... x, ... read in increasing order of the indices 
i. On seeing a new item X, two situations of interest arise: 
either we are interested in all Nitems seen or weare interested 
on a sliding window of the last in items, X, , . . . . , X. The 
former is defined as the standard data stream model and the 
latter as a sliding window data stream model (see Reference 
3). The central aspect of most data stream computation is 
modeling in Small space relevant to the parameter of interest 
N or n. 

For the purposes of this description, data points in a single 
stream, have the form (i.A) representing a sequence of 
updates or modifications (increment or decrement) of a vector 
U. In the case of an update Ui-A. Similarly, for modifica 
tions Ui-Ui--A. Notice that an evolving time series can be 
represented by elements of updates (i.A) with the restriction 
that data arrives in increasing order of i, (indicating time of 
observation). Thus, for a time series model. A corresponds to 
the observed value at time i. 

Let S, ..., S. S., be a collection of m data streams. In 
certain envisioned applications, msn; that is, the number of 
streams is usually much smaller than the number of items or 
points of observation in each stream. We use the notation 
Aij to refer to the j-th point of the i-th stream. Thus, we 
treat the data streams as a matrix, A. Notice that our treatment 
of the streams as a matrix A is purely conceptual. Our tech 
niques neither require nor materialize matrix A at any point. 
At each point in time, data elements (tuples) (i, t, A) appear, 
which denote that in the t” observation of stream i, the entry 
Ait is either updated to A or modified (incremented or 
decremented) by A. In the sliding window model, at timet we 
are interested in Ait" for all t-nist'st; we refer to all other 
items as expired. 

If there are no restrictions on the tuples (i.t.A), then the 
streams are considered asynchronous. For example, we can 
observe a sequence ..., (1,3,3), (2.3.1), (11.5), . . . . for two 
streams which denotes that the streams are modified arbi 
trarily without any coordination between Successive tuples. 
Assuming a collection of m streams, we will say that these 
streams are synchronous if at every time t, m values, each 
corresponding to one of the streams arrive. It is not necessary 
that the tuples be ordered according to the stream i, but it is 
required that the tuples be ordered in time. If a tuple (i.t,A) is 
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not present at time t for stream i, the tuple (i, t.0) is assumed 
present, allowing streaming of “sparse' streams. 

Given this structure, observe that modifications are super 
fluous in Synchronous streams since all modifications to the 
element Ait (t" element of i' stream) have to be grouped 
together. In a sense. A values in the tuple (i.t.A) in synchro 
nous streams always expresses updates. Since we wish to 
present stream algorithms for both asynchronous and Syn 
chronous streams, we will proceed with the assumption of 
arbitrary arrivals of (i.t.A) (no restriction on t) assuming that 
A values express modifications. This, naturally expresses 
asynchronous as well as (Suitably restricted requiring ordered 
t values and A values expressing updates) synchronous 
StreamS. 

2.2 Correlations and SVD 
The Singular Value Decomposition (SVD) is a very popu 

lar technique to identify correlations, with many applications 
in signal processing, visualization, and databases. Informally 
the SVD of a collection of points (high dimensional vectors) 
identifies the “best subspace to project the point collection in 
away that the relative point distances are preserved as well as 
possible under linear projection. Distances are quantified 
using the L norm. More formally: 

Theorem 1 (SVD). Let AeR"" be an arbitrary m-by-n 
matrix with man. Then we can write A-UXV where U is 
m-by-rand satisfies UU=I, V is m-by-rand satisfies VV=I 
and X=diag(O,..., O.), where O2 ... 2 O,20. The columns 
u. . . . , u, of U are called left eigenvectors. The columns 
V. . . . V, of V are called right eigenvectors. The O are called 
eigenvalues and ris the rank of matrix A, that is the number of 
linearly independent rows (if men, the SVD is defined by 
considering A.). 

For each eigenvalue there is an associated eigenvector; 
commonly we refer to the largest eigenvalue as the principal 
eigenvalue and to the associated eigenvector as the principal 
eigenvector. Notice that if u is the principal eigenvector, 
| A, 2A, Wu', u'F1. 

This theorem has an intuitive geometric interpretation. 
Given any m-by-n matrix A, think of it as a mapping of a 
vector x6R" to a vector yeR". Then we can choose one 
orthogonal coordinate system for R' (where the unit axes are 
the columns of V) and another orthogonal coordinate system 
for R" (where the unit axes are the columns of U) such that A 
is diagonal (X), i.e., maps a vector 

tO a 

According to theorem 1, 

Matrix A has small rank when data are correlated (rism). 
Consequently, using kisr eigenvectors (projecting to a Sub 
space of dimension k) we have 

k 

A as X Oiii; v. 
i=1 
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8 
Such a projection introduces error which is quantified by 

k 

A - X Ouv; 
i=1 

The guarantee of SVD however, is that among all possible k 
dimensional projections, the one derived by SVD has the 
minimum error, i.e., minimizes 

k 

A - X Ou; vi. 
i=1 

The basis of the “best k-dimensional subspace to project, 
consists of the k left eigenvectors of U. Essentially, this sub 
space identifies the strongest linear correlations in the under 
lying data set. 

Definition 1 (Linear Correlations). Given a matrix A, let 
UXV be its Singular Value Decomposition; we refer to the set 
oflinear combinations of the keigenvectors, corresponding to 
the klargest eigenvalues of A as the k strongest linear corre 
lations in A. 
The relative magnitude of the eigenvalues determine the 

relative “strength of correlations along the direction of the 
associated eigenvectors. This means that if one eigenvalue, O 
is very large compared to the others, the eigenvector corre 
sponding to O signifies a stronger linear correlation towards 
the direction of the eigenvector in the Subspace spanned by 
the k strongest linear correlations. We formalize this intuition 
by quantifying the relative magnitude of the eigenvalues with 
the following definition: 

Definition 2 (e-separated eigenvalues) Let Abe a matrix of 
rank rand O, ... O, its eigenvalues. Assume, without loss of 
generality, that O2 ... 2 O,. The e-separating value for the 
collection of eigenvalues, is the Smallest es0, such that (fi, 
1sisr, O, s(1+e)lo, . For this e, we say that the eigenval 
ues are e-separated. 

Notice that such an e always exists; its magnitude however, 
specifies how significant are the eigenvectors in the linear 
combination. Ife is Small, eigenvalues are close in magnitude 
and all the eigenvectors are significant. Ife is large, the linear 
correlations along the directions of the eigenvectors associ 
ated with the largest eigenvalues are more significant in the 
linear combination. 

FIG. 1 visually reveals linear correlation between the 
points along the axis y'. SVD on the point set of FIG. 1 will 
result in identification of vectory' as the first eigenvector (axis 
y" in FIG. 1 is the second eigenvector). Such correlations 
could be a great asset in a variety of applications, for example, 
query processing. Consider projecting onto axis y'; this 
results in low error and thus reasoning about and querying the 
point set can take place on Such projections. For example, the 
two dimensional range-count query (1,1)x(3.3), provided that 
we project the point set into axis y', can be answered by 
performing the one dimensional range query on axisy' based 
on the projections of (1,1) and (3.3) onto y'. Notice that to 
enable Such a strategy the left eigenvectors are essential. The 
advantage is that we are operating in the lower dimensional 
space obtained after projection. Our approach consists of 
identifying Such correlations existing between stream values 
dynamically. 

Given amatrix A m-by-nthere exists a O(m,n) algorithm to 
compute the SVD of A using the following celebrated theo 
rem (see Reference 7 for full details and a proof) 
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Theorem 2. Let A=UXV be the SVD of the m-by-n matrix 
A, with eigenvalues O, and orthonormal eigenvectors u. 
where m2n. (There are analogous results for msn.) The 
eigenvalues of the symmetric matrix AA’ are o, . The left 
eigenvectors u, are corresponding orthonormal eigenvectors 
of the eigenvalues O,. 
The benefit of the above theorem appears incomputation of 

SVD of sparse matrices. If the number of entries in a column 
is r<m then the matrix AA can be computed in time O(r^n) 
which is O(r) times the number of nonzero entries in the 
matrix. The pseudo code is provided below. The algorithm 
remains a good candidate for computing incremental SVD 
since the number of operations performed on an update is (on 
an average) the number of non-Zero entries in a column. 
What follows is psuedo-code for an algorithm we call 

NaiveSVD. Note that Function SVDO can implement any 
SVD technique: 

Algorithm NaiveSVD(A.M.U.X.V.T){ 
AeRx, M=AA'eR"*", 
UV the set of left, right eigenvectors 
X, the eigenvalues, T (i.t.A) is current input 

for all nonzero entries in columnt, i.e. j|Aitz0} do { 
Mi+=AAIt ifjzi 
Mij-i-2AAIt]+A ifji 
At+=A 

observe that the above for synchronous streams 
becomes Ailt=A and Mili=A 
under the assumption that AIt is initially 
0 and changed only once. 

} 
SVD(M.U.X.V)} 
2.3 Low Rank Approximations 
The quadratic space requirement of O(m) can be prohibi 

tive and the approach is expensive even if we are interested in 
just the top eigenvector. The computation for non sparse 
matrices requires O(m,n) no matter if we are interested injust 
the topmost eigenvector. A step in this direction is the follow 
ing column sampling result of (see References 9, 8). 

Theorem 3. Given a matrix A with columns C, if with 
probability C.I./ AI - we sample O(k/e') columns 
then we can construct a matrix D of rank k such that for any 
matrix D* 

Note that the subscript on the probability indicates that the 
norm is Frobenius. AI is the sum of squares of the ele 
ments in the matrix A. Note that if nice bounds on the ratios 
are known then sampling can be performed in one pass else in 
tWO. 

The exact parameters of the process are somewhat large 
theoretically; (see Reference 9) requires constants ~107 
which are improved but not explicitly stated in Reference 8. 
Note that Reference 8 suggests alternate “test and sample' 
schemes for practical considerations, thus making the algo 
rithm multi-pass. A problem of the above result is that the 
approximation of the matrix need not be a good approxima 
tion of the eigenvalue which denotes the strength of the cor 
relations. For example Suppose we are interested in the top 
most eigenvalue O. Following the results of (see Reference 
8) one can relate mino A-D*I'-O,. Thus, IA-DI gives 
us an estimate of O. If A is large, as is the case in non 
sparse matrices, the above is a bad approximation since 
k1A can be m times O. Thus, e cannot be a constant to 
provide a good guarantee for the topmost eigenvalue. The 
result is useful in the context of approximating the entries of 
a matrix and as pointed out by the authors in (see Reference 
8), the approach is used if the matrix is sparse. 
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10 
3. Problems with SVD on Streams 
We will now discuss potential problems associated with 

SVD computation on streams. The fundamental potential 
problem with most approaches to SVD is the reliance on the 
matrix A for the computation. We will elaborate on the issues 
arising from this reliance in the cases of synchronous and 
asynchronous streams. 

3.1 Synchronous Streams 
In this case, m values arrive at each time step each speci 

fying a new value for each of them streams and the same time 
unitt. Maintaining the SVD decomposition of A will either 
involve recomputation of the SVD on matrix A (suitably 
adjusted depending on the specific streaming model, standard 
or sliding window) at every time step. This has two main 
potential drawbacks namely (a) the memory requirements 
can be significant as matrix A has to be memory resident and 
(b) the computational overhead associated with maintenance 
of the SVD decomposition at every time step can be high. 

3.2 Asynchronous Streams 
In this case we discuss three problems, which are inter 

related butarise out of different concerns. The discussion will 
establish that in the case of asynchronous streams, the 
memory and computational overheads for maintaining the 
SVD persist, albeit for different reasons. 

3.2.0.1 Out of Sync arrival 
FIG. 2 is a plot of an exemplary set of asynchronous 

streams demonstrating out-of-sync behavior. Thus, the prob 
lem is depicted in FIG. 2, where data in different streams 
arrive at different rates and create a “Front”. Such a phenom 
enon is common in networking applications due to network 
delays. Known offline SVD computations will have to store 
the data corresponding to the entire shaded area. This is a 
typical “bursty’ behavior and the length of the burst will 
determine the space required by the known algorithms. 

3.2.0.2 Stream of Sparse Transactions 
If the data sources produce stream values infrequently then 

only non-zero entries are streamed. This is a favorable con 
dition for the SVD computation. But even if every individual 
stream is in order, there is no way to foretell that the entry (it) 
is zero till an entry (it') arrives with t'et. If for stream i one 
definest, to be last time an observation is seen, known algo 
rithms will have to remember all the entries after time mint, 
which is akin to FIG. 2, but due to sparsity, the rectangle can 
be sizeable. This is a more frustrating scenario, since if a 
sparse matrix is represented in a (row.colum, value) format, 
although significantly better from a computational point of 
view for known algorithms, it creates a significant problem in 
streaming. In fact a possible solution can be to intersperse the 
implied Zero entries, but that would increase processing time 
significantly. 

3.2.0.3 Out of Order Arrival 
FIG. 3 is a plot of an exemplary set of asynchronous 

streams demonstrating out-of-order behavior. Consider FIG. 
3 and Suppose the entry corresponding to stream i and obser 
vation t is modified. Out of order arrival can be assumed as 
modification of an initial 0 value—the effect of the change 
depends on the values of all other streams at the observation 
t (denoted by the shaded region in FIG. 3). But since t is not 
known a priori, effectively one has to store the entire matrix A. 

4. Stream SVD 
We will present an approximate technique to obtain the k 

largest eigenvalues and associated eigenvectors trading accu 
racy for computation speed. We will first present the case for 
the principal eigenvalue and the associated principal eigen 
vector, and then generalize to arbitrary k eigenvalues and 
eigenvectors. 
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Given a matrix A6R"' the set of all k correlations is 
defined as the set of linear combinations of the left eigenvec 
tors corresponding to the klargest eigenvalues. Recall that u 
is a left eigenvector with eigenvalue O if and only ifu'A=Ou'. 
Theorem 1 asserts that we can find a set of orthonormal 
eigenvectors of any matrix A. The number of such vectors is 
the rank r of the matrix concerned. Before we proceed in the 
discussion let us assume that the eigenvectors of A are u. 
u. . . . u, with respective eigenvalues O. O. . . . O. Let us 
assume, without loss of generality that O2O2 ... 2 O.I. 
Our methodology will make use of the Johnson-Linden 

strauss Lemma (JL Lemma) (see Reference 20) to reduce the 
dimension in a Euclidean space. 
Lemma 1 (JL Lemma). Given a set of N vectors V in space 

R", if we have a matrix S6R" where 

S ology) 

such that each element S, is drawn from a Gaussian distribu 
tion, appropriately scaled, for any vector X6V, then bxs 
Sxs(1+e)x holds true with vanishingly high probability, 
1-o(1/N). 
We discuss issues in computation and storage of maintain 

ing AS' in Section 4.1. For the present we investigate how 
matrix AS allows us to compute SVD. 

Informally, the JL lemma states that if we distort vectors of 
dimensionality in with a matrix whose elements are Suitably 
chosen from a Gaussian distribution we can preserve the 
relative distances between the vectors in the resulting space 
(of dimensionality s) upto (1+e) with arbitrarily high prob 
ability. Intuitively, suppose every vector is represented by a 
line segment starting from the origin. The length of the vector 
is the distance between the origin and the endpoint of the 
vector. The intuition behind the algorithm is that if we pre 
serve distances between points (the origin and the endpoints 
of the vectors), then we preserve the length of the vectors. 

4.0.0.4 The Single Eigenvalue case 
We make the simple observation that |x|| ||x||. So the JL 

lemma rewrites to, |x's||(Sx)" ||x'S's (1+e)|x"(1) 
Both lemma 1 and theorem 2 are concerned with linear 

operations on the underlying vector space. It appears natural 
to first apply lemma 1 on A to reduce the dimensionality and 
then apply SVD on the “smaller matrix obtained. This could 
be beneficial, because we will be running SVD on a much 
Smaller matrix. Under Such an approach, the relationship 
between the eigenvalues and eigenvectors of A before and 
after the application of lemma 1 needs to be established. This 
gives rise to the following: 
Lemma 2. Suppose u is the principal left eigenvector of A 

and u the principal left eigenvector of AS' for a matrix S 
satisfying the JL Lemma with 

1 

S olo ) a log 

Then ful 'As (1+e)||u'Al, 
Proof: Since u is the principal left eigenvector of AS', we 

have ful AS's lu'AS. Substitutingxu, A in equation 
1, we get ful "Asu AS's (1+e)lu, Al, and similarly 
x'u' A. From these we have ful As 
?u, AS's|u'AS's (1+e)|u'Al. This proves the lemma 

Leto, the principal eigenvalue of AS'. From lemma2 it is 
evident that Oslo's (1+e)|Ol. Thus, the first eigenvalue 
is approximated within (1+e) factor in magnitude by applica 
tion of lemma 1. 
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12 
4.0.0.5 The Single Eigenvector case 
Lemma 2 shows that instead of computing the SVD of the 

matrix AA applying theorem 2, we can compute the SVD of 
AS' to get a vector such that the columns of A have a large 
projection along it. The dimension of the matrix AA is mxm 
whereas the dimension of AS is 

1 
in X-login. a log 

For large m compared to 

l S = -login, a log 

one has achieved a significant saving in computing the SVD. 
In particular the time to perform SVD has been reduced from 
O(m) to O(ms). Also we have saved the space and update 
time in the data stream context, from O(m) to O(ms). 
Lemma 2 shows that the projections of a matrix are pre 

served under the application of lemma 1. We now show what 
is the quality of the approximation obtained to the actual 
principal eigenvector. A measure of quality of approximation 
of the principal eigenvector, is the inner product with the 
actual principal eigenvector. Assuming all vectors are repre 
sented with unit length, a large value of the projection indi 
cates a better approximation. Notice that such an approxima 
tion is meaningful only if the principal eigenvector is unique. 
Consider the case of a matrix A with Oslo. Then any 
linear combination of u and u, say u-au--bu (where 
a+b=1 to preserve length of Iull=1) is a principal eigenvec 
tor, since there are a lot of vectors preserving the variation in 
the data, in this case. To see this, observe that in this case 

This is best illustrated if the data are uniformly distributed 
along a circle; any vector in the plane containing the circle is 
a good eigenvector. To clarify the situation, we assume that 
there is a significant linear trend in the data. This means that 
the eigenvalues are separated in magnitude. In case of the 
principal eigenvector this would imply O'Dol; we will 
address multiple eigenvectors in the Subsequent Subsections. 
In particular assume Ol=(1+öe)lo for some 64. 

For two vectors u, v, let (u,v) denote their inner product. If 
O, O, are the first and second eigenvalues and u, u,the 
associated eigenvectors, then 

since the coefficients (ulu,) represent the projection of u to 
an orthogonal basis defined by {u}, the sum of their squares 
evaluate to 1. Thus 

ital 

The above rewrites to 

(2) 

For a specific value of e, equation 2 shows the quality of the 
approximation tou obtained. Notice that if Öde (that is, the 
strength of linearity is greater than the precision lemma 1 
guarantees) then Kulu)=(1+e) which approaches 1. Thus, 
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if the first two eigenvalues are Öe-separated, u the approxi 
mated eigenvectorandu the true eigenvector are very close. 
Effectively this establishes that if there is a significant linear 
trend in the data, performing SVD on matrix AS as opposed 
to matrix AA results in the same principal eigenvector. 
Smaller values of e increase the time to compute the SVD of 
matrix AS, but yield a better approximation to the principal 
eigenvector and Vice versa. 
Lemma 3. If the data have a unique strong linear correla 

tion, we can approximate the principal eigenvector. 
It is evident, that to guarantee a good approximation of the 

eigenvectors we have to compute at a greater precision than 
we need to identify the eigenvalues. That is e, the precision set 
by lemma 1 has to significantly smaller than the separating 
value of the eigenvalues. 

4.0.0.6 The Multiple Eigenvalues case 
We consider the case of obtaining an approximation to 

multiple eigenvalues and eigenvectors of the original matrix 
A. We will extend the above process to multiple eigenvalues 
and eigenvectors. In Such a case what one can guarantee is that 
with a similar application of lemma 1, the entire Subspace 
spanned by the largest k eigenvectors can be approximated. 
Let Ube the Subspace spanned by kapproximated eigenvec 
tors. Assume that we desire to obtain a space USuch that the 
finest granularity on a basis axis is 

1 
, Ge N. 

G 

We claim the following, 
Lemma 4. Given a matrix A6R"", and a matrix SeR' in 

accordance to lemma 1 such that 

k S of logo), 

and any fixed subspace U spanned by at most k (not neces 
sarily known) vectors. Such that the finest granularity on an 
axis is 

1 
G 

ifuel J then with high probability (vanishingly close to 1) 

The above lemma is a generalization of lemma 1, with the 
observation that if we are trying to preserve the distance 
between objects specified by a linear combination with pre 
cision G, then we have at most G' objects. Applying n=G' in 
the statement of lemma 1 gives the result. Intuitively lemma 4 
states that a larger matrix S (Smaller distortion to matrix A) is 
required in order to obtain an approximation to the largest k 
eigenvectors. 
Assume that via the application of lemma 2 we find a vector 

u with |url=1 and maximum lu"AS". According to 
lemma 2 (1+e)"lo, Elul Alslo, . Now consider the sub 
space of all vectors u such that (u, u)=0 (the subspace of all 
vectors orthogonal to u). Consider the second largest eigen 
vector of AS", denoted by u. Denote y to be normalized 
component of u which is orthogonal to u. Notice y can be 
a candidate for the second largest eigenvector for AS". 
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14 
Lemma 5. Iflo, D(1+e)lo, then ly, Alelol, and there 

fore we get a vectoru. Such that lu"AI.2(1+e)"lol. 
This lemma establishes that if|OD(1+e)|O (i.e., O and 

O are e-separated) an excellent approximation to the second 
largest eigenvalue of A exists. Generalizing fork eigenvalues, 
we have: 

Lemma 6. If for eachi, 1 sisk we have O, ID(1+e)lo, we 
can find a u, such that lu, "Al2(1+e)'lo, 

4.0.0.7 The Multiple Eigenvector case 
The reasoning about the quality of u, as an approximation 

carries over in this case. We would need the eigenvalues to be 
more than e-separated (say Öe-separated) to obtain a good 
approximation. Following similar reasoning as in the case of 
u one can show thatu gets arbitrarily close tou, depending 
on the separation between O. and O. For a specific value of e. 
and 8 the quality of approximation to u is obtained from an 
equation similar to equation 2. As in the single eigenvector 
case, to achieve approximation of the eigenvectors we have to 
compute at a greater precision than we need to identify the 
eigenvalues. 

Thus, the Subspace obtained via this approximation can be 
arbitrarily close to the subspace obtained by the true klargest 
eigenvectors, given that the eigenvalues are at least e-sepa 
rated. For a specific value of e the quality of the approxima 
tion obtained to each u, is dictated by equations similar to 
equation 2. Larger values of e decrease the SVD computation 
time but decrease the quality to the Subspace approximation 
one obtains. This gives rise to a tradeoff that we will experi 
mentally quantify in section 6. 

4.1 Discussion 

The analysis of the previous section established that it is 
possible to compute eigenvalues and eigenvectors of a matrix 
A (of size mxn) up to desired accuracy, by computing the 
SVD decomposition (using any applicable technique) of a 
much smaller matrix AS (of size mxs). This could have 
significant performance benefits, independently of the spe 
cific technique used to compute the SVD, since the procedure 
would operate on a much smaller matrix. 

Matrix S is populated initially from a suitably scaled Gaus 
sian distribution in accordance to lemma 1. The full matrix S 
is not realized, instead it is stored as a collection of S hash 
functions hj such that St=h(t). This is one of the 
central techniques in streaming computation and Reference 1 
phrases the inner product Mij=XAit Sit as sketches 
of the data. 

Thus, as new stream elements arrive, matrix AS can be 
updated in a very efficient fashion. Let us first assume that we 
are in the standard stream model. For synchronous streams a 
single tuple (i.t.A) arrives for element Ait and the correct 
value Ait St gets added to Mijl. For the asynchro 
nous case the value Ait accepts (possibly multiple) modi 
fications. But the contribution to Mij over all the modifi 
cations is again Ait St which is the correct value. The 
entire procedure is presented below as the MapSVD algo 
rithm for the standard stream model. Notice that updates/ 
modifications are provided in an incremental fashion to 
matrix AS', and that matrix A is not explicitly materialized. 
The problem with the computation of the MapSVD algo 

rithm is that although the SVD computation performed is 
expected to be faster (because it operates on a smaller matrix), 
one still has to perform the computation each time matrix AS 
changes. This is required to assure that the eigenvector and 
eigenvalues maintained stay within desired accuracy levels. 
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Algorithm MapSVD((i.t.A).M.U.X.V.P) { 
M=AS' eRx, UeR*.xeR*s 
VeRx, PeR” 
SeR' in accordance to lemma 1, it is a product of 
Suitable hash functions, only the functions are stored 
T=(i.t.A) is current input (representing Ait) 

for (j=0; j<s; j++) { 
Mij=Mi+ASIt 

/* For synchronous streams Mij+=AitSt. 
resulting in computation of AS'. For asynchronous 
streams the same result is arrived at since At 
is the sum of the modification */ 

} 
SVD(M.U.X.V)/* favorite SVD algorithm */ 
} 

4.2 Recomputations and Sampling 
We will develop a sampling strategy that will select stream 

tuples and periodically apply SVD while, at the same time, is 
able to preserve the quality of the underlying eigenvectors and 
eigenvalues obtained. 

Suppose the stream has not changed significantly from a 
certain time when we computed the SVD for it. Then, the 
matrix corresponding to the stream has also not changed 
significantly. Suppose we recomputed the SVD last when the 
matrix corresponding to the stream was A. Suppose the 
stream currently corresponds to matrix A. These matrixes are 
used conceptually only; in practice we never store them. 
Suppose the two matrices agree almost everywhere, and thus 
their eigenvectors/values agree as well. This is captured by 
the following lemma: 
Lemma 7. Ifly ASIO and ||y|=1 theniy AI.2O/(1+ 

e)-|A-A. Al-Ali is the square of the Frobenius norm of 
A-A and is equal to the Sum of squares of all elements. 

Proof: From the previous section we are guaranteed that if 
|ly AS'-O then by Lemma (see Reference 20) (1+e) 
|ly AI.2|ly ASIO. From Linear Algebra, Ily'AIL 
|ly'A|sly (Ai-A)||s|y|A-A. Since ||y|| ||y|-1. 
the proof follows. 

This means that ify was an eigenvector with a large pro 
jection in A and A-A is small compared to O, theny still 
has a large projection. In other words it is an approximate 
eigenvector. We first show that 
Lemma 8. Suppose we computed SVD for the stream 

which corresponds to the matrix A at time t and did not 
recompute SVD since. Suppose after that we saw tuples (i.t, 
A) and currently the matrix corresponding to the stream is A. 
Suppose further that no tuple expired (which is always true in 
standard streaming model), if 

A = D 
(i.i.A)seen since it 

then Al-AsD. 
Proof: Let us focus on one element Ait which is modi 

fied by several A. . . . . A. Based on the specific model 
standard or sliding window, synchronous or asynchronous the 
number u will vary. But we will give the most general proof 
which holds for all cases. Thus Ait Ait+A1+...+A. 

: 

Aiii - Ailt = A + ... + As X Ayl 
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16 
Adding this overi, t, the right hand side is the D, the sum of 

all magnitudes of changes seen. Now 

2 

is D’ 
Ait - Air 

|A - A1: =X|Ai(t) - Airls (? 
i.it 

Therefore Al-AsD. D. 
If we do not recompute the SVD and A-A is small 

compared to O the eigenvectors of A are still reasonable for 
our current stream matrix A. Suppose we are interested in 
preserving the principal eigenvector (for other eigenvectors 
the discussion is similar). Since we are interested in lite 
approximation, we will have to ensure that D-eO. An excel 
lent way to achieve this is by randomly recomputing the SVD 
depending on the magnitude AI seen. If A is large compared 
to eO, we should choose to recompute, otherwise we would 
not. Thus the recomputation should be done with probability 
Al/(eO). 
The e factor in the probability ensures that after we have 

seen enough new information which satisfies XIA.2eO we 
would have very likely 

1 
(probability 1 - - -0.63 8 

(probability have recomputed the SVD. If we did not, then by 
the time X|A|22eo, we would have recomputed the SVD 
with probability 

The probability of not having computed the SVD for long, 
decreases exponentially. The Expected value is 1.4 eO. Thus 
from Lemma 7 and Lemma 8 the principal eigenvector of 
AS would have a projection on A which is at least 1-O(e) 
with some high probability. 

5. The StreamSVD Algorithm 
The sampling procedure introduced leads to an effective 

way to save on the number of times the SVD is computed. 
Instead of computing the SVD of matrix AS7 every time an 
item arrives, in accordance to lemma 7, we can compute it less 
often and still get a good approximation to eigenvectors and 
eigenvalues of matrix A. 
Combining the results of Section 4 we can now realize 

efficient algorithms for maintaining the SVD decomposition 
on the various stream models, namely the standard and the 
sliding window stream model. The algorithm is provided 
below for the case of the sliding window model as the 
StreamSVD algorithm. The algorithm for the standard model 
is the same, there is no expiry and that condition is neverused. 
The StreamSVD algorithm starts from MapSVD and 

probabilistically recomputes the SVD depending on the mag 
nitude A of the value seen compared to the eigenvalue O 
(assuming that we are interested in the topmost eigenvalue; if 
interested in all the k-th largest eigenvalues, we substitute O 
with O.). For the case of the synchronous model, the sampling 
procedure breaks the stream into several Sub-matrices, B. . . 
B. depending on when we sample. This is shown in FIG. 4. 
which plots the structure of blocks created by StreamSVD for 
the case of the synchronous sliding window stream model. 
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The sub-matrix B starts at time t when we sampled in the 
probabilistic step in StreamSVD and ended when we sampled 
the next time (att). We store the products of the sub matrices 
BS in the blocks M' in the algorithm StreamSVD. For the 
standard streaming model it is easy to see that XM' is the 
entire inner product, namely matrix M. For sliding window 
streams if t<t-nst then the block B is partially relevant— 
some of its entries have expired. Now the sum of the |A| for 
the entries in each sub matrix B' is 0(eO) as follows from the 
discussion in the previous section, since we did not recom 
pute the SVD in the middle. If we computed the SVD last 
when the matrix was A using a certain number of blocks and 
none of the blocks expired (otherwise we would recompute 
SVD)—the two matrices A and A agree everywhere except 
in the current block. Now the XIA of each block is 1.4 eO. By 
Lemma 8 we have a (1+1.4e) approximation. Therefore the 
eigenvalue if preserved. 
Lemma 9. The maximum number of blocks created in case 

of synchronous sliding window streams is at most O(m/e). 
The above follows from the fact that we have an estimate of 

the Frobenius norm of the blocks related to O and likewise 
the Frobenius norm A is related to O. The proof is completed 
by relating the norms of the blocks to norms of A. 

The case of asynchronous streams is more involved. Since 
the data do not arrive in order, the pieces of matrix whose 
inner product is in the different blocks overlap. The eigen 
value is still preserved up to 1-1.4e. A lemma analogous to 
lemma 9 can be proved under certain restrictions. We omit 
details due to lack of space. 

The StreamSVD algorithm for the sliding window model is 
as follows. A similar algorithm can be designed for the case of 
the standard stream model. 

Algorithm StreamSVD((i.t.A).M.U.X.V.P) { 
M=AS' eRx, UeRx, xeR*. 
VeR*, PeR', SXR" as in lemma 1 
O largest eigenvalue of M computed in a previous 
invocation of StreamSVD, Current time is t 
The inner productXAitSIt is maintained through at 
most c blocks where XMIiji=XAit St 
Block M is Current. On arrival of (it.A), with tet-n{ 

If ((stamp of M is t-n) or (with probability 

Block M is closed with stamp T. 
If (stamp of M" it t-n/* M' expires */for 

for (u-1; u-c; u++) 
Ma-M'l 
ce-c-1 

} 
Start a new block M* and set it Current 
Recompute the SVD(M.U.X, V). 
/* use favorite algorithm */ 
} 
for (=0; j<s; j++) 
Current Blockij---ASIt 

} 
Independently, this sampling step could be applied to algo 

rithm NaiveSVD surpassing the dimensionality reduction 
step. This would provide an (1-e) approximation to the eigen 
values, for Some ele(). Following reasoning related to that in 
Section 4 the eigenvectors are preserved well also. Indeed we 
explore this option for algorithm NaiveSVD in section 6. 
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6. Experimental Evaluation 
In this section we present a performance analysis of the 

algorithms and techniques discussed thus far. We seek to 
quantify the benefits both in terms of accuracy and perfor 
mance of the proposed techniques. We present the data sets 
we experimented on, as well as the metrics used to quantify 
accuracy. 

Description of Data Sets: Correlation affects the sampling 
component of our algorithms and thus is vital for the perfor 
mance of our schemes. In addition to real data sets, we used 
synthetic data sets, in which we had the freedom to vary the 
degree of the underlying correlations and gain additional 
intuition about the performance of our proposal. We describe 
the data sets below: 

Gaussian: The values of each data stream are chosen inde 
pendently from a Gaussian distribution N(50.50) (mean 
50 and variance 50). We expect no correlations between 
the streams. 

Linear: The values between the streams are linearly corre 
lated. 

Linear-S: Starting from data set Linear we distort each data 
stream value by adding noise. In particular we add a 
sample from N(2.2). 

Linear-M: Similar to data set Linear-S but we add samples 
from N(10,10). 

Linear-L: Similar to data set Linear-S but we add samples 
from N(30.30). 

Real: Real data representing the number of packets through 
various interfaces of several network cards of an opera 
tional router. 

Measurement Metrics: 
Several parameters affect the accuracy and performance of 

our approach and should be quantified. We evaluate the accu 
racy of the SVD computed with algorithm StreamSVD by 
reporting on the accuracy of the eigenvalues and eigenvectors 
computed. We quantify the accuracy of eigenvalues using the 
Average Absolute Relative Error (AARE) defined as follows: 

Definition 3. Let V be an eigenvalue computed with algo 
rithm NaiveStreamSVD and V the corresponding eigenvalue 
computed using algorithm StreamSVD. The Absolute Rela 
tive Error (ARE) between the two eigenvalues is defined as 

V 
ARE = 

In the experiments that follow we report the Average Abso 
lute Relative Error (AARE) as the average over a large num 
ber of stream tuples (100K) of the ARE. We also report the 
standard deviation of ARE over the same number of stream 
tuples. 

Let u be an eigenvector computed using algorithm 
NaiveSVD and u' the corresponding eigenvector computed 
using StreamSVD. If the vectors were identical, then (u, u')=1. 
To quantify the accuracy of eigenvectors computed using 
algorithm StreamSVD, we report the average value of (u.u') 
as well as the standard deviation of (u.u") over a large number 
(100K) stream tuples. 

6.1 Evaluating StreamSVD 
The first set of experiments we present, evaluate the accu 

racy of the approximation on eigenvalues and eigenvectors. 
We present results for the largest eigenvalue and the corre 
sponding principal eigenvector. These results are indicative 
of the overall accuracy. Results of similar quality are obtained 
for additional eigenvalues and eigenvectors as described in 
section 4. Moreover, results of similar quality are obtained for 
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the case of performing StreamSVD on arbitrary subsets of 
streams, as discussed in section 4 We omit these results for 
brevity. 

6.2 Accuracy and Space Tradeoff 
In these experiments, algorithm NaiveSVD is applied to 

obtain the exact eigenvalues and eigenvectors. That is, Sam 
pling stream tuples in not enabled and thus the eigenvalues 
and eigenvectors computed are exact. Recall that StreamSVD 
makes use of a matrix S., in accordance to lemma 1 as well 
as sampling. We vary the value of S in these experiments and 
observe the accuracy implications. Thus, we change the val 
ues of e of our approximation, by changing the value of S. 
Largers means smallere and vice versa. We use n=10 and 
m=100 in these experiments. 

FIG. 5 provides plots of accuracy of approximation to 
exemplary eigenvalues and eigenvectors. FIG. 5(a) presents 
the AARE for the principal eigenvalue for the data sets used in 
out study. Increasing S improves accuracy in accordance to 
lemma 1. In the case of the Gaussian data set, the AARE 
appears high, since we expect no correlation between the 
streams. For data set Linear, the error is very low, and gradu 
ally increases as noise is added to the data set (data sets 
Linear-S to Linear-L). This, provides experimental evidence 
that algorithm StreamSVD is capable of preserving a good 
approximation to the principal eigenvalue, even for data sets 
artificially constructed to contain weak linear correlations, as 
in the case of Linear-L. In this case, as is evident in FIG. 5(a) 
the principal eigenvalue is at most 10% away from the real 
value. Accuracy is much better in all the other cases that linear 
correlations exist. In the case of data set Real, the error 
appears to be low, providing additional evidence that corre 
lations exist in real data distributions. Moreover, the error 
drops quickly with increasing values of S, as dictated by 
lemma 1. Notice for even smalls we are able to attain high 
accuracy for principal eigenvalues. This behavior was con 
sistent throughout our experiments, with additional eigenval 
ues, not just the principal, we omit those experiments in 
interest of space. 

FIG. 5(b) presents the standard deviation of ARE as the 
value of S increases for the data sets used in our study. In all 
cases, the trends are related to those observed for AARE, with 
deviation tailing off for largers values. Notably, in the case of 
data set Real, standard deviation appears very low, demon 
strating the quality of the approximation our technique offers 
on real data sets as well. 

FIG. 5(c) presents the mean value of the inner product for 
the principal eigenvector computed with algorithm 
NaiveSVD and the principal eigenvector computed with algo 
rithm StreamSVD. FIG. 5(d) presents the standard deviation 
of this product. For the case of data set Gaussian, the vectors 
appear far apart matching our expectation. In all other cases 
however, where some form of linear correlation exists 
between the underlying streams, algorithm StreamSVD is 
able to uncover it and the principal eigenvectors remain very 
close. For data set Real the reported quality of the principal 
eigenvector computed with StreamSVD is excellent, with 
precision increasing as a function of s. The standard deviation 
of this product (FIG. 5(d)) is very small as well. Thus, the 
quality of the approximation to the principal eigenvector 
reported, appears 'stable' over time, i.e., as the data stream 
evolves. For the case of data set Linear, the vectors are essen 
tially identical and appear to be nominally affected as noise is 
added to the data. 

6.3 Performance Issues 
The second set of experiments we report, evaluate the 

performance of algorithm StreamSVD compared with that of 
NaiveSVD. We report on the average time spent per stream 
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tuple during the execution of the algorithms. This time con 
sists of the time to update matrix M (AA in the case of 
NaiveSVD and AS' in case of StreamSVD) as well as the time 
to perform SVD on M, if required, amortized over a large 
number of stream tuples (100K). In these experiments algo 
rithm NaiveSVD employs sampling of stream tuples, as pro 
posed in section 4, boosting its performance. The perfor 
mance gain is arising out of the fact that we require O(m) time 
as opposed to O(m) required by NaiveSVD to update the 
necessary matrices and not from Sampling. 
As far as performance is concerned two parameters are of 

interest; the number of streams involved m, as well as the 
value of S that affects the quality of the approximation. 

Varyings: The results are presented in FIG. 6, in which is 
plotted the average time spend per stream tuple as the value of 
Sincreases, for various data sets, m=100. To Summarize: 

FIG. 6(a) presents the time per stream tuple for data set 
Gaussian, as Sincreases, for m=100 streams. Since there is no 
correlation between the streams, both algorithms compute the 
SVD for each new tuple arriving in the stream. 

FIG. 6(b), presents the result of the same experiment for 
data sets Linear-Mand Real. In this case, sampling is applied 
by both algorithms. The savings in response time per stream 
tuple achieved by StreamSVD, are profound. 

Varying number of streams m: In FIG. 7 we present the 
results of a scalability experiment varying the number of 
streams m, by plotting an average time spent per stream tuple 
as the number of streams increases. We present both scenarios 
assis small or sufficiently larger. In particular, FIGS. 7(a) and 
7(b) vary the number of streams from 10 to 40 for a value of 
s=5, for data sets Gaussian, Linear-M and Real. Similarly, 
FIGS. 7(c) and 7(d) vary the number of streams from 50 to 
200 for S-30 and for the same data sets. 
The effects of sampling remain the same as in the experi 

ment associated with FIG. 6; data set Gaussian forces SVD 
computation almost on every tuple. In contrast, in data sets 
Linear-M and Real sampling is utilized and we observe a 
clear performance benefit. For a specific value of s when we 
increase the number of streams, it is evident that the perfor 
mance advantage of StreamSVD increases significantly. This 
trend can be observed both in the case of a small (FIGS. 7(a) 
and 7(b)) as well as a larger (FIGS. 7(c) and 7(d)). 
To Summarize, there are two main conclusions from our 

experiments with StreamSVD. First, the performance impli 
cations of the application of lemma 1 to StreamSVD can be 
considered to be profound. Even Small values of s are enough 
to potentially provide excellent accuracy providing large Sav 
ings in time spent per tuple to maintain the SVD in a stream 
context. Second, even for a small number of streams 
StreamSVD currently appears to be the algorithm of choice. 

7. Conclusions 
We considered the problem of identifying correlations 

between multiple data streams using Singular Value Decom 
position. We have proposed one or more exemplary algo 
rithms to maintain the SVD of multiple data streams and 
identify correlations between the streams. We have quantified 
the accuracy of our proposalboth analytically and experimen 
tally and through detailed experimental results using real and 
synthetic data sets evaluated its performance. We also pre 
sented a case study of the application of our technique to the 
problem of querying multiple data streams. 

This study raises various issues for further research and 
exploration. The algorithms and techniques presented herein 
are likely to be of interest to other forms of computation over 
multiple streams. In particular, reasoning and mining 
dynamically multiple data streams is a problem of central 
interest in network data management. Identification of corre 



US 8, 131,792 B1 
21 

lations between streams, via the proposed StreamSVD algo 
rithm, can be a first step in designing mining procedures over 
multiple streams and/or advanced querying processing tech 
niques, such as queries over arbitrary Subsets of streams. We 
plan to investigate these directions in our future work. 

Thus, certain exemplary embodiments provide a method 
comprising: automatically: receiving a plurality of elements 
for each of a plurality of continuous data streams; treating the 
plurality of elements as a first data stream matrix that defines 
a first dimensionality; reducing the first dimensionality of the 
first data stream matrix to obtain a second data stream matrix: 
computing a singular value decomposition of the second data 
stream matrix; and based on the singular value decomposition 
of the second data stream matrix, quantifying approximate 
linear correlations between the plurality of elements. 

FIG. 8 is a block diagram of an exemplary embodiment of 
a telecommunications system 8000 that can implement an 
exemplary embodiment of the StreamSVD algorithm. Sys 
tem 8000 can comprise any number of continuous data stream 
sources 8100, such as continuous data stream sources 8110, 
8120, 8130. Any continuous data stream source 8100 can be 
an information device. From any continuous data stream 
source 8110, 8120, 8130 can flow a continuous data stream 
8112, 8122,8132, respectively. Any continuous data stream 
can include any number of data stream elements, such as 
elements 8114, 8115,8116 of continuous data stream 8112. 
Any of the continuous data stream sources 8100 can be 

coupled to a network 8200. Coupled to network 8200 can be 
any number of information devices 8300 to which continuous 
data streams are directed. Coupled to network 8200 can be an 
information device 8400 which can identify linear correla 
tions between data stream elements, and which can comprise 
a stream element processor 8410, a first matrix processor 
8420, and a second matrix processor 8430. Coupled to infor 
mation device 8400 can be a memory device 8500 that can 
store a first matrix, a second matrix, and/or linear correlations 
between data stream elements. 

FIG. 9 is a flow diagram of an exemplary embodiment of a 
method 9000 for automatically implementing an exemplary 
embodiment of the StreamSVD algorithm. At activity 9100, 
elements of multiple continuous data streams can be received. 
The received elements can be actively sought and obtained or 
passively received. At activity 9200, the received elements 
can be treated as a first data stream matrix defining a first 
dimensionality. At activity 9300, the dimensionality of the 
first data stream matrix can be reduced to obtain a second data 
stream matrix. At activity 9400, a singular value decomposi 
tion of the second data stream matrix can be computed. 

At activity 9500, a user-specified accuracy metric can be 
obtained, the accuracy metric related to the degree of approxi 
mation of linear correlations between elements of the con 
tinuous data streams. At activity 9600, based on the singular 
value decomposition of the second data stream matrix, 
approximate linear correlations between the plurality of ele 
ments can be quantified. The approximate linear correlations 
can meet the user-specified accuracy metric. At activity 9700, 
the approximate linear correlations between the plurality of 
elements can be output and/or reported. In certain exemplary 
embodiments, the approximate linear correlations can com 
prise a plurality of eigenvalues that approximate principal 
eigenvalues of the first data stream matrix. In certain exem 
plary embodiments, the approximate linear correlations can 
comprise a plurality of eigenvectors that approximate princi 
pal eigenvectors of the first data stream matrix. 
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In certain exemplary embodiments, any portion of method 

9000 can be repeated in any defined manner, including peri 
odically, pseudo-randomly, and randomly. In certain exem 
plary embodiments, any portion of method 9000 can occur 
dynamically. 

In certain exemplary embodiments, at least one of the 
plurality of continuous data streams can be synchronous, 
asynchronous, bursty, sparse, and/or contain out-of-orderele 
mentS. 

In certain exemplary embodiments, the reducing activity 
can apply the Johnson-Lindenstrauss Lemma. 

FIG.10 is a block diagram of an exemplary embodiment of 
an information device 10000, which in certain operative 
embodiments can represent, for example, continuous data 
stream source 8100, information device 8300, and/or infor 
mation device 8400 of FIG. 8. Information device 10000 can 
comprise any of numerous well-known components. Such as 
for example, one or more network interfaces 10100, one or 
more processors 10200, one or more memories 10300 con 
taining instructions 10400, one or more input/output (I/O) 
devices 10500, and/or one or more user interfaces 10600 
coupled to I/O device 10500, etc. 

In certain exemplary embodiments, via one or more user 
interfaces 10600. Such as a graphical user interface, a user can 
implement an exemplary embodiment of the StreamSVD 
algorithm. 

Still other embodiments will become readily apparent to 
those skilled in this art from reading the above-recited 
detailed description and drawings of certain exemplary 
embodiments. It should be understood that numerous varia 
tions, modifications, and additional embodiments are pos 
sible, and accordingly, all such variations, modifications, and 
embodiments are to be regarded as being within the spirit and 
Scope of the appended claims. For example, regardless of the 
content of any portion (e.g., title, field, background, Sum 
mary, abstract, drawing figure, etc.) of this application, unless 
clearly specified to the contrary, there is no requirement for 
the inclusion in any claim of the application of any particular 
described or illustrated activity or element, any particular 
sequence of such activities, or any particular interrelationship 
of such elements. Moreover, any activity can be repeated, any 
activity can be performed by multiple entities, and/or any 
element can be duplicated. Further, any activity or element 
can be excluded, the sequence of activities can vary, and/or 
the interrelationship of elements can vary. Accordingly, the 
descriptions and drawings are to be regarded as illustrative in 
nature, and not as restrictive. Moreover, when any number or 
range is described herein, unless clearly stated otherwise, that 
number or range is approximate. When any range is described 
herein, unless clearly stated otherwise, that range includes all 
values therein and all Subranges therein. Any information in 
any material (e.g., a United States patent, United States patent 
application, book, article, etc.) that has been incorporated by 
reference herein, is only incorporated by reference to the 
extent that no conflict exists between such information and 
the other statements and drawings set forth herein. In the 
event of such conflict, including a conflict that would render 
a claim invalid, then any Such conflicting information in Such 
incorporated by reference material is specifically not incor 
porated by reference herein. 
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What is claimed is: 
1. A method comprising: 
detecting a denial of service attack based upon quantified 

approximate linear correlations between a plurality of 
elements determined via randomly computed singular 
value decomposition of a first data stream matrix by 
utilizing a processor, wherein the first data stream matrix 
is obtained via a reduction of a dimensionality of a 
second data stream matrix, wherein the first data stream 
matrix comprises a plurality of sampled values of the 
second data stream matrix, wherein the second data 
stream matrix is based upon a plurality of elements of 
each of a plurality of continuous data streams; and 

generating a report of a detection of the denial of service 
attack by utilizing the processor, wherein the denial of 
service attack does not involve address spoofing. 

2. The method of claim 1, further comprising storing the 
plurality of elements as a collection of hash functions. 

3. The method of claim 1, wherein 
at least one of the plurality of continuous data streams is 

synchronous. 
4. The method of claim 1, wherein 
at least one of the plurality of continuous data streams is 

asynchronous. 
5. The method of claim 1, wherein 
at least one of the plurality of continuous data streams 

comprises out of order elements. 
6. The method of claim 1, further comprising 
obtaining values for the first data stream matrix from a 

Gaussian distribution and preserving relative distances 
between vectors in a resulting space of the first data 
stream matrix as compared to the second data stream 
matrix, the first matrix determined via a sliding window 
stream model. 
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7. The method of claim 1, further comprising 
repeatedly computing the singular value decomposition in 

response to a change in the first data stream matrix 
caused by additional data sampled from a data stream of 
the plurality of continuous data streams. 

8. The method of claim 1, further comprising 
periodically computing the singular value decomposition 

in response to an expiration of entries in the second data 
stream matrix. 

9. The method of claim 1, further comprising 
randomly computing the singular value decomposition. 
10. The method of claim 1, further comprising 
quantifying the approximate linear correlations in response 

to a sliding window stream that varies over time. 
11. The method of claim 1, wherein 
the approximate linear correlations comprise a plurality of 

eigenvalues that approximate principal eigenvalues of 
the second data stream matrix. 

12. The method of claim 1, wherein 
the approximate linear correlations comprise a plurality of 

eigenvectors that approximate principal eigenvectors of 
the second data stream matrix. 

13. The method of claim 1, further comprising receiving a 
user-specified accuracy metric for the approximate linear cor 
relations. 

14. The method of claim 1, wherein 
the approximate linear correlations meet a user-specified 

accuracy metric. 
15. The method of claim 1, further comprising 
outputting the approximate linear correlations. 
16. The method of claim 1, further comprising 
reporting the approximate linear correlations. 
17. A method comprising: 
determining a plurality of elements via a randomly com 

puted singular value decomposition of a first data stream 
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matrix by utilizing a processor, wherein the first data 
stream matrix is obtained via a reduction of a dimen 
sionality of a second data stream matrix, wherein the 
second data stream matrix is based upon a plurality of 
elements of each of a plurality of continuous data 
Streams; 

determining a probability of computation based upon a 
ratio of a magnitude of a sampled value of a plurality of 
sampled values to a calculated product of a determined 
separating value of eigenvalues and a determined eigen 
value of the first data stream matrix by utilizing the 
processor, and 

applying a sound filter to a multimedia application, based 
upon a quantified approximate linear correlation 
between the plurality of elements determined via the 
randomly computed singular value decomposition and 
upon the probability of computation. 

18. A method comprising: 
determining a plurality of elements via a randomly com 

puted singular value decomposition of a first data stream 
matrix by utilizing a processor, wherein the first data 
matrix is obtained via a reduction of a dimensionality of 
a second data stream matrix, wherein the second data 
stream matrix is based upon a plurality of elements of 
each of a plurality of continuous data streams; and 

detecting a denial of service attack not involving address 
spoofing by utilizing the processor, wherein the denial of 
service attack is detected based upon quantified approxi 
mate linear correlation between the plurality of elements 
determined via the randomly computed singular value 
decomposition. 


