

US008131792B1

(12) **United States Patent**
Koudas et al.

(54) APPARATUS AND METHOD FOR (56) References Cited CORRELATING SYNCHRONOUSAND ASYNCHRONOUS DATA STREAMS U.S. PATENT DOCUMENTS

- (75) Inventors: Nikolaos Koudas, Florham Park, NJ (US); Sudipto Guha, Philadelphia, PA (US) OTHER PUBLICATIONS
-
- (*) Notice: Subject to any disclaimer, the term of this Sudipto Guha, D. Gunopulos, and Nick Koudas, "Correlating Syn

- (21) Appl. No.: 12/125,973 * cited by examiner
-

- (63) Continuation of application No. 10/822,316, filed on Apr. 12, 2004, now Pat. No. 7,437,397.
- (60) Provisional application No. 60/461,910, filed on Apr. Certain exemplary embodiments provide a method compris
-

- (52) U.S. Cl. .. 708/422; 726/22 linear correlations between the plurality of elements.
- Field of Classification Search 708/422-426 See application file for complete search history.

(10) Patent No.: US 8,131,792 B1
(45) Date of Patent: *Mar. 6, 2012

(45) Date of Patent:

(73) Assignee: **AT&T Intellectual Property II, L.P.**, Guha et al., "Approximating a Data Stream for Querying and Esti-
Atlanta, GA (US) mation: Algorithms and Performance Evaluation", pp. 1-10, Feb mation: Algorithms and Performance Evaluation", pp. 1-10, Feb 20O2.*

> chronous and asynchronous data streams". In Proceedings of the U.S.C. 154(b) by 927 days. ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 529-534, 2003.*

> This patent is subject to a terminal dis-
M. Brand, "Fast online SVD revisions for lightweight recommender
systems", in SDM, pp. 37-48, 2003.* systems", in SDM, pp. 37-48, 2003.*

(22) Filed: May 23, 2008 Primary Examiner — Lewis Bullock, Jr.

Assistant Examiner — Matthew Sandifer

Related U.S. Application Data (74) Attorney, Agent, or Firm — Akerman Senterfitt;
Michael K. Dixon; Roy Zachariah

(57) **ABSTRACT**

ing: automatically: receiving a plurality of elements for each of a plurality of continuous data streams; treating the plurality (51) Int. Cl. of elements as a first data stream matrix that defines a first dimensionality; reducing the first dimensionality of the first data stream matrix to obtain a second data stream matrix; computing a singular value decomposition of the second data stream matrix; and based on the singular value decomposition GSB 23/00 (2006.01) of the second data stream matrix, quantifying approximate

18 Claims, 12 Drawing Sheets

Fig. 1

Fig. 5a

Fig. 5b

Fig.5c

Fig. 5d

Fig. 7d

Fig. 7c

Fig. 8

Fig. 9

Fig. 10

15

60

APPARATUS AND METHOD FOR CORRELATING SYNCHRONOUSAND ASYNCHRONOUS DATA STREAMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, claims priority to, and incorporates by reference herein in its entirety, pending U.S. patent application Ser. No. 10/822.316, filed 12 Apr. 2004, which is a Non-Provisional of U.S. Provisional Patent Appli cation Ser. No. 60/461,910, filed 10 Apr. 2003. 10

SUMMARY

Certain exemplary embodiments provide a method com prising: automatically: receiving a plurality of elements for each of a plurality of continuous data streams; treating the plurality of elements as a first data stream matrix that defines a first dimensionality; reducing the first dimensionality of the first data stream matrix to obtain a second data stream matrix: computing a singular value decomposition of the second data stream matrix; and based on the singular value decomposition of the second data stream matrix, quantifying approximate linear correlations between the plurality of elements. 25

BRIEF DESCRIPTION OF THE DRAWINGS

A wide variety of potential embodiments will be more readily understood through the following detailed descrip- 30 tion, with reference to the accompanying drawings in which:

FIG. 1 is a plot of an exemplary set of linearly correlated data points;

FIG. 2 is a plot of an exemplary set of asynchronous streams demonstrating out-of-sync behavior; 35

FIG. 3 is a plot of an exemplary set of asynchronous streams demonstrating out-of-order behavior;

FIG. 4 is a plot of the structure of an exemplary set of blocks created by StreamSVD:

FIGS. $5(a)-(d)$ are plots of various exemplary accuracy 40 measures for exemplary eigenvalues and eigenvectors com puted with an exemplary embodiment of algorithm StreamSVD;

FIGS. $6(a)$ and (b) are plots of exemplary performance measures for an exemplary embodiment of algorithm 45 StreamSVD;

FIGS. $7(a)-(d)$ are plots of exemplary performance measures for an exemplary embodiment of algorithm StreamSVD;

FIG. 8 is a block diagram of an exemplary embodiment of 50 a telecommunications system 8000;

FIG. 9 is a flow diagram of an exemplary embodiment of a method 9000; and

FIG. 10 is a block diagram of an exemplary embodiment of an information device 10000. 55

DEFINITIONS

When the following terms are used herein, the accompanying definitions apply:

- database—an organized collection of information. A data base can comprise a mirror of a primary database. For example, an ALI database can comprise a mirror of a primary ALI database.
- firmware—machine-readable instructions that are stored 65 in a read-only memory (ROM). ROM's can comprise PROMs and EPROMs.

2

- haptic—both the human sense of kinesthetic movement and the human sense of touch. Among the many poten tial haptic experiences are numerous sensations, body positional differences in sensations, and time-based changes in sensations that are perceived at least partially in non-visual, non-audible, and non-olfactory manners, including the experiences of tactile touch (being touched), active touch, grasping, pressure, friction, trac tion, slip, stretch, force, torque, impact, puncture, vibra tion, motion, acceleration, jerk, pulse, orientation, limb position, gravity, texture, gap, recess, Viscosity, pain, itch, moisture, temperature, thermal conductivity, and thermal capacity.
- information device—any device capable of processing information, Such as any general purpose and/or special purpose computer, such as a personal computer, workstation, server, minicomputer, mainframe, supercomputer, computer terminal, laptop, wearable computer, and/or Personal Digital Assistant (PDA), mobile termi nal, Bluetooth device, communicator, "smart" phone (such as a Handspring Treo-like device), messaging service (e.g., Blackberry) receiver, pager, facsimile, cellu lar telephone, a traditional telephone, telephonic device, a programmed microprocessor or microcontroller and/ or peripheral integrated circuit elements, an ASIC or other integrated circuit, a hardware electronic logic cir cuit Such as a discrete element circuit, and/or a program mable logic device such as a PLD, PLA, FPGA, or PAL, or the like, etc. In general any device on which resides a finite state machine capable of implementing at least a portion of a method, structure, and/or or graphical user interface described herein may be used as an informa tion device. An information device can include well known components such as one or more network inter faces, one or more processors, one or more memories containing instructions, and/or one or more input/output (I/O) devices, one or more user interfaces, etc.
- Internet—an interconnected global collection of networks that connect information devices.
- I/O device—any sensory-oriented input and/or output device, such as an audio, visual, haptic, olfactory, and/or
taste-oriented device, including, for example, a monitor, display, projector, overhead display, keyboard, keypad, mouse, trackball, joystick, gamepad, wheel, touchpad, touch panel, pointing device, microphone, speaker, video camera, camera, scanner, printer, haptic device, vibrator, tactile simulator, and/or tactile pad, potentially including a port to which an I/O device can be attached or connected.
- memory device—any device capable of storing analog or digital information, for example, a non-volatile memory, volatile memory, Random Access Memory, RAM, Read Only Memory, ROM, flash memory, magnetic media, a hard disk, a floppy disk, a magnetic tape, an optical media, an optical disk, a compact disk, a CD, a digital versatile disk, a DVD, and/or a raid array, etc. The memory device can be coupled to a processor and can store instructions adapted to be executed by the proces sor according to an embodiment disclosed herein.
- network interface—any device, system, or subsystem capable of coupling an information device to a network. For example, a network interface can be a telephone, cellular phone, cellular modem, telephone data modem, fax modem, wireless transceiver, ethernet card, cable modem, digital subscriber line interface, bridge, hub, router, or other similar device.

processor—a device for processing machine-readable instruction. A processor can be a central processing unit, a local processor, a remote processor, parallel proces sors, and/or distributed processors, etc. The processor can be a general-purpose microprocessor, such the Pen-5 tium III series of microprocessors manufactured by the Intel Corporation of Santa Clara, Calif. In another eific Integrated Circuit (ASIC) or a Field Programmable Gate Array (FPGA) that has been designed to implement 10 in its hardware and/or firmware at least a part of an embodiment disclosed herein.

system—A collection of devices and/or instructions, the collection designed to perform one or more specific functions.

user interface—any device for rendering information to a user and/or requesting information from the user. A user interface includes at least one of textual, graphical, audio, video, animation, and/or haptic elements. A textual element can be provided, for example, by a printer. 20 monitor, display, projector, etc. A graphical element can be provided, for example, via a monitor, display, projec tor, and/or visual indication device, such as a light, flag, beacon, etc. An audio element can be provided, for example, via a speaker, microphone, and/or other Sound 25 generating and/or receiving device. A video element or animation element can be provided, for example, via a monitor, display, projector, and/or other visual device. A haptic element can be provided, for example, via a very low frequency speaker, vibrator, tactile stimulator, tac- 30 tile pad, simulator, keyboard, keypad, mouse, trackball, joystick, gamepad, wheel, touchpad, touch panel, point ing device, and/or other haptic device, etc. A user inter face can include one or more textual elements such as, for example, one or more letters, number, symbols, etc. 35 A user interface can include one or more graphical ele ments such as, for example, an image, photograph, drawing, icon, window, title bar, panel, sheet, tab, drawer, matrix, table, form, calendar, outline view, frame, dialog box, static text, text box, list, pick list, 40 pop-up list, pull-down list, menu, tool bar, dock, check box, radio button, hyperlink, browser, button, control, palette, preview panel, color wheel, dial, slider, scroll bar, cursor, status bar, stepper, and/or progress indicator, etc. A textual and/or graphical element can be used for 45 selecting, programming, adjusting, changing, specifying, etc. an appearance, background color, background style, border style, border thickness, foreground color, font, font style, font size, alignment, line spacing, indent, maximum data length, validation, query, cursor 50 type, pointer type, autosizing, position, and/or dimen sion, etc. A user interface can include one or more audio elements such as, for example, a Volume control, pitch control, speed control, Voice selector, and/or one or more elements for controlling audio play, speed, pause, fast 55 forward, reverse, etc. A user interface can include one or more video elements such as, for example, elements controlling video play, speed, pause, fast forward, reverse, zoom-in, zoom-out, rotate, and/or tilt, etc. A user interface can include one or more animation elements such as, for example, elements controlling anima tion play, pause, fast forward, reverse, Zoom-in, Zoom out, rotate, tilt, color, intensity, speed, frequency, appearance, etc. A user interface can include one or more haptic elements such as, for example, elements utilizing 65 tactile stimulus, force, pressure, vibration, motion, dis placement, temperature, etc.

- wireless—any means to transmit a signal that does not require the use of a wire or guide connecting a transmit ter and a receiver, such as radio waves, electromagnetic signals at any frequency, lasers, microwaves, etc., but excluding purely visual signaling, such as semaphore, Smoke signals, sign language, etc.
- wireline—any means to transmit a signal comprising the use of a wire or waveguide (e.g., optical fiber) connect ing a transmitter and receiver. Wireline communications can comprise, for example, telephone communications over a POTS network.

DETAILED DESCRIPTION

1. Introduction

In a variety of modern applications, data are commonly viewed as infinite time ordered data streams rather as finite data sets stored on disk. This view challenges fundamental assumptions in data management and poses interesting ques tions for processing and optimization.

Certain exemplary embodiments approach and/or address the problem of identifying correlations between multiple data streams. Certain exemplary embodiments provide algorithms capable of capturing correlations between multiple continu ous data streams in a highly efficient and accurate manner. Certain exemplary embodiments provide algorithms and/or techniques that are applicable in the case of both synchronous and asynchronous data streaming environments. Certain exemplary embodiments capture correlations between mul tiple streams using the well known technique of Singular Value Decomposition (SVD). Correlations between data items, and the SVD technique in particular, have been repeat edly utilized in an off-line (non stream) context in the data base community, for a variety of problems, for example, approximate query answering, mining, and indexing.

Certain exemplary embodiments provide a methodology based on a combination of dimensionality reduction and Sam pling to make the SVD technique suitable for a data stream context. Certain exemplary techniques are approximate, trad ing accuracy with performance, and this tradeoff can be ana lytically quantified. Presented herein is an experimental evaluation, using both real and synthetic data sets, from a prototype implementation of certain exemplary embodi ments, investigating the impact of various parameters in the accuracy of the overall computation. The results indicate that in some cases very efficiently and accurately. The algorithms proposed herein, are presented as generic tools, with a mul titude of applications on data streaming problems.

In many modern applications, data are commonly viewed as an infinite, possibly ordered data sequences rather as a finite data set stored on disk. Such a view, challenges funda mental assumptions related to the analysis and mining of such data, for example, the ability to examine each data element multiple times, through random or sequential access. In many traditional applications, such as networking and multimedia, as well as in new and emerging applications, like sensor data is prevalent. Commonly such (potentially) infinite ordered sequences of data, are referred to as data streams.

Networking infrastructure. Such as routers, hubs, and traf fic aggregation stations, can produce vast amounts of perfor mance and fault related data in a streaming fashion. Such information can be vital for network management operations and sometimes needs to be collected and analyzed online.

15

40

55

 60

Network operators can require precise characterizations of the temporal evolutions of such data and/or identification of abnormal events.

Sensor networks are becoming increasingly common place. The vision of pervasive computing can involve hun dreds of autonomous devices collecting data (such as highway traffic, temperature, etc.) from dispersed geographic locations. Such data, subsequently can be made available to inter-operating applications which can utilize them to make intelligent decisions.

Data elements in real data sets are rarely independent (see
Reference 15). Correlations commonly exist and are primarily due to the nature of the applications that generate the data. In settings involving multiple data streams, correlations between stream elements are encountered as well. Effectively quantifying correlations between multiple streams can be of substantial utility to a variety of applications, including but not limited to:

Network Security Monitoring: Various forms of bandwidth attacks can introduce highly correlated traffic volumes
between collections of router interfaces. Efficiently identifying such correlations as they occur can trigger prevention mechanisms for severe problems such as flash crowds and denial of service attacks without address spoofing.

Network Traffic engineering: A large amount of correlation can exist between faults reported by the links of network 25 elements to the central fault management system. Identifica tion of such correlations as they develop can be of utility for fault management automation. Similarly monitoring the sta bility of network protocols (such as, e.g., BGP (see Reference 28)) can utilize on-line monitoring of correlations between 30 the fault messages produced.

Sensor Data Management: Traditional data processing and in terms of space and/or time, from reduced data representations, derived from correlations (see Reference 4). For $_{35}$ example, consider a number of sensors in the same geographical area collecting and reporting temperature. In some circumstances, it might be expected that temperatures in the same region are related, thus the values reported by the sen sors for that region are highly correlated. Utilizing these correlations, one can derive reduced data representations and reason about the state of a system under sensor surveillance using less data, with immediate performance benefits.

Multimedia: In multimedia applications, correlations across different cues have become and will likely continue to by a multitude of inexpensive cameras and microphones, and
the resulting streams are analyzed to focus cameras and apply sound filters to allow applications such as tele-conferencing over limited bandwidth. In most scenarios the different cues are correlated, and a promising approach to this problem 50 appears to be the recognizing the correlations in real time. be of significant benefit. Typically, a visual scene is pictured 45

Certain exemplary embodiments provide fast and/or effi cient techniques to identify correlations between multiple data streams. Certain exemplary embodiments focus on a fundamental form of correlations between multiple streams, namely linear correlations, and adapt a technique widely utilized for identifying linear correlations. In particular, certain exemplary embodiments adapt the Singular Value Decompo sition (SVD) (see Reference 7) in a data stream context. Certain exemplary embodiments make at least the following contributions:

An investigation of the SVD operation on streams and propose algorithms to support the SVD computation on Data Streams. Certain exemplary embodiments are orthogonal to the specific SVD computation technique used.

A construction of a probabilistic map of the stream to a 65 space different than that of the input, computing the SVD in the mapped space. This mapping can be amenable to efficient

updating, which can be of benefit in a streaming context. Also, the accuracy tradeoffs this mapping offers in the case of SVD computations is analytically quantified.

An enhancement this mapped space with sampling and the introduction of very fast algorithms for SVD maintenance in

Complementation of certain exemplary algorithms and analysis with a thorough experimental evaluation, realizing the accuracy and performance benefits certain exemplary embodiments have to offer using both real and synthetic data SetS

The next portion of this description is organized as follows: In Section 2 we present background material and definitions. Section 3 demonstrates the difficulties of adapting known SVD computation techniques to a streaming context. In Sec tion 4 we present certain exemplary embodiments of our techniques and analysis enabling adaptation of SVD to a continuous stream environment. In section 5 we present the streamSVD algorithm. In section 6 we present the results of our experimental evaluation of certain proposed algorithms. Section 7 concludes this portion of the description, raising issues for further work in this area.

2. Background and Additional Definitions

2.1 Data Stream Models

A data stream S is an ordered sequence of data points that can be read only once. Formally, a data stream is a sequence of data items $\dots x_i$, \dots read in increasing order of the indices i. On seeing a new item x_i , two situations of interest arise: either we are interested in all Nitems seen or weare interested on a sliding window of the last n items, x_{i-n}, \ldots, x_i . The former is defined as the standard data stream model and the latter as a sliding window data stream model (see Reference 3). The central aspect of most data stream computation is modeling in Small space relevant to the parameter of interest N or n.

For the purposes of this description, data points in a single stream, have the form (i,Δ) representing a sequence of updates or modifications (increment or decrement) of a vector U. In the case of an update U[i]= Δ . Similarly, for modifications U[i]=U[i]+ Δ . Notice that an evolving time series can be represented by elements of updates (i,Δ) with the restriction that data arrives in increasing order of i, (indicating time of observation). Thus, for a time series model, Δ corresponds to the observed value at time i.

Let $S_1, \ldots, S_{m-1}, S_m$ be a collection of m data streams. In certain envisioned applications, $m \leq n$; that is, the number of streams is usually much smaller than the number of items or points of observation in each stream. We use the notation $A[i][j]$ to refer to the j-th point of the *i*-th stream. Thus, we treat the data streams as a matrix, A. Notice that our treatment of the streams as a matrix A is purely conceptual. Our tech niques neither require nor materialize matrix A at any point.
At each point in time, data elements (tuples) (i, t, Δ) appear, which denote that in the tth observation of stream i, the entry A[i][t] is either updated to Δ or modified (incremented or decremented) by Δ . In the sliding window model, at time τ we are interested in A[i][t'] for all τ -n \leq t' \leq τ ; we refer to all other items as expired.

If there are no restrictions on the tuples (i, t, Δ) , then the streams are considered asynchronous. For example, we can observe a sequence \dots , $(1,3,3)$, $(2,3,1)$, $(1,1,5)$, \dots , for two streams which denotes that the streams are modified arbitrarily without any coordination between successive tuples. Assuming a collection of m streams, we will say that these streams are synchronous if at every time t, m values, each corresponding to one of the streams arrive. It is not necessary that the tuples be ordered according to the stream i, but it is required that the tuples be ordered in time. If a tuple (i, t, Δ) is

35

45

not present at time t for stream i, the tuple (i, t.0) is assumed present, allowing streaming of "sparse" streams.

Given this structure, observe that modifications are super fluous in synchronous streams since all modifications to the together. In a sense, Δ values in the tuple (i,t, Δ) in synchronous streams always expresses updates. Since we wish to present stream algorithms for both asynchronous and synchronous streams, we will proceed with the assumption of arbitrary arrivals of $(1,1,\Delta)$ (no restriction on t) assuming that $|10\rangle$ Δ values express modifications. This, naturally expresses asynchronous as well as (Suitably restricted requiring ordered t values and Δ values expressing updates) synchronous streams. element A[i][t] (t^h element of i^h stream) have to be grouped 5

2.2 Correlations and SVD

The Singular Value Decomposition (SVD) is a very popu lar technique to identify correlations, with many applications in signal processing, visualization, and databases. Informally the SVD of a collection of points (high dimensional vectors) identifies the "best" subspace to project the point collection in 20 a way that the relative point distances are preserved as well as possible under linear projection. Distances are quantified using the L₂ norm. More formally: Theorem 1 (SVD). Let $A \in \mathbb{R}^{m \times n}$ be an arbitrary m-by-n

m-by-r and satisfies $U^TU=I$, V is m-by-r and satisfies $V^TV=I$ and Σ =diag($\sigma_1, \ldots, \sigma_r$), where $\sigma_1 \geq \ldots \geq \sigma_r \geq 0$. The columns u_1, \ldots, u_r of U are called left eigenvectors. The columns $v_1, \ldots v_r$ of V are called right eigenvectors. The σ_1 are called eigenvalues and ris the rank of matrix A, that is the number of linearly independent rows (if m \geq n, the SVD is defined by considering A^T.).
For each eigenvalue there is an associated eigenvector; matrix with m \geq n. Then we can write A=U Σ V^T where U is ₂₅

commonly we refer to the largest eigenvalue as the principal
eigenvalue and to the associated eigenvector as the principal
eigenvector. Notice that if u is the principal eigenvector,
 $|\mathbf{A}_u| \geq |\mathbf{A}_{u'}| \mathbf{V}_u$, $|\mathbf{u'}$

Given any m-by-n matrix A, think of it as a mapping of a vector $x \in R^n$ to a vector $y \in R^m$. Then we can choose one orthogonal coordinate system for R' (where the unit axes are 40 the columns of V) and another orthogonal coordinate system for R^m (where the unit axes are the columns of U) such that A is diagonal (Σ) , i.e., maps a vector

$$
x = \sum_{i=1}^r \mu_1 v_1
$$

tO a

$$
y = Ax = \sum_{i=1}^{r} \sigma_1 \mu_1 u_1
$$

According to theorem 1,

$$
A = \sum_{i=1}^r \sigma_i u_i v_i^T.
$$

Consequently, using $k \leq r$ eigenvectors (projecting to a subspace of dimension k) we have Matrix A has small rank when data are correlated ($r \leq m$). 60

$$
A \approx \sum_{i=1}^k \sigma_i u_i v_i^T.
$$

Such a projection introduces error which is quantified by

$$
\left| A - \sum_{i=1}^k \sigma u_i v_i^T \right| \right|.
$$

The guarantee of SVD however, is that among all possible k dimensional projections, the one derived by SVD has the minimum error, i.e., minimizes

$$
\left| A - \sum_{i=1}^k \sigma u_i v_i^T \right| \, .
$$

15 The basis of the "best" k-dimensional subspace to project, consists of the k left eigenvectors of U. Essentially, this sub space identifies the strongest linear correlations in the under lying data set.

Definition 1 (Linear Correlations). Given a matrix A, let UZV be its Singular Value Decomposition; we refer to the set oflinear combinations of the keigenvectors, corresponding to the klargest eigenvalues of A as the k strongest linear corre lations in A.

The relative magnitude of the eigenvalues determine the relative "strength" of correlations along the direction of the associated eigenvectors. This means that if one eigenvalue, σ is very large compared to the others, the eigenvector corre sponding to σ signifies a stronger linear correlation towards the direction of the eigenvector in the subspace spanned by the k strongest linear correlations. We formalize this intuition by quantifying the relative magnitude of the eigenvalues with the following definition:

Definition 2 (ϵ -separated eigenvalues) Let A be a matrix of rank r and $\sigma_1, \ldots, \sigma_r$ its eigenvalues. Assume, without loss of generality, that $|\sigma_1| \geq \ldots \geq |\sigma_r|$. The ϵ -separating value for the collection of eigenvalues, is the smallest $\epsilon \leq 0$, such that $\neq i$, $1 \leq i \leq r, |\sigma_i| \leq (1+\epsilon)|\sigma_{i+1}|$. For this ϵ , we say that the eigenvalues are e-separated.

Notice that such an e always exists; its magnitude however, specifies how significant are the eigenvectors in the linear combination. Ife is Small, eigenvalues are close in magnitude and all the eigenvectors are significant. If ϵ is large, the linear correlations along the directions of the eigenvectors associ ated with the largest eigenvalues are more significant in the linear combination.

 $_{50}$ result in identification of vector y' as the first eigenvector (axis) 55 point set can take place on Such projections. For example, the FIG. 1 visually reveals linear correlation between the points along the axis y'. SVD on the point set of FIG. 1 will y" in FIG. 1 is the second eigenvector). Such correlations could be a great asset in a variety of applications, for example, query processing. Consider projecting onto axis y'; this results in low error and thus reasoning about and querying the two dimensional range-count query $(1,1)\times(3,3)$, provided that we project the point set into axis y', can be answered by performing the one dimensional range query on axis y' based on the projections of $(1,1)$ and $(3,3)$ onto y'. Notice that to enable Such a strategy the left eigenvectors are essential. The advantage is that we are operating in the lower dimensional space obtained after projection. Our approach consists of identifying such correlations existing between stream values dynamically.

65 Given a matrix A m-by-n there exists a $O(m^2n)$ algorithm to compute the SVD of A using the following celebrated theo rem (see Reference 7 for full details and a proof)

Theorem 2. Let $A=U\Sigma V^T$ be the SVD of the m-by-n matrix A, with eigenvalues σ , and orthonormal eigenvectors u. where m \geq n. (There are analogous results for m \leq n.) The eigenvalues of the symmetric matrix AA^T are $\sigma_i²$. The left eigenvectors u_i are corresponding orthonormal eigenvectors 5 of the eigenvalues σ_i^2 .

The benefit of the above theorem appears incomputation of SVD of sparse matrices. If the number of entries in a column is r \leq m then the matrix AA^T can be computed in time O(r²n) which is $O(r)$ times the number of nonzero entries in the $10₁₀$ matrix. The pseudo code is provided below. The algorithm remains a good candidate for computing incremental SVD since the number of operations performed on an update is (on an average) the number of non-Zero entries in a column.

What follows is psuedo-code for an algorithm we call 15 NaiveSVD. Note that Function SVD() can implement any SVD technique:

Algorithm NaiveSVD(A,M,U, Z, V, T) {
 $A \in \mathbb{R}^{m \times n}$, $M = AA^T \in \mathbb{R}^{m \times m}$, U.V the set of left, right eigenvectors

 Σ the eigenvalues, T=(i,t, Δ) is current input

for all nonzero entries in column t, i.e. $\{j|A[j][t]\neq 0\}$ do $\{M[i][j]+\Delta A[j][t]$ if $j\neq i$
M[i][j]+=2AA[j][t]+A² if j=i

 $A[j][t]{+=\Delta}$

observe that the above for synchronous streams becomes A[j][t]= Δ and M[i][i]= Δ^2 under the assumption that $A[j][t]$ is initially 0 and changed only once.

 $SVD(M,U,\Sigma,V)$
2.3 Low Rank Approximations

The quadratic space requirement of $O(m^2)$ can be prohibitive and the approach is expensive even if we are interested in matrices requires $O(m^2n)$ no matter if we are interested in just the topmost eigenvector. A step in this direction is the following column sampling result of (see References 9, 8). just the top eigenvector. The computation for non sparse 35

Theorem 3. Given a matrix A with columns C, if with probability $\lVert C_i \rVert_F^2 / \lVert A \rVert_F^2$ we sample $O(k/\epsilon^2)$ columns 40 then we can construct a matrix D of rank k such that for any matrix D^*

$$
|A-D||_F^2 \leq |A-D^*||_F^2 + \epsilon ||A||_F^2
$$

Note that the subscript on the probability indicates that the 45 norm is Frobenius. $\|A\|_F^2$ is the sum of squares of the elements in the matrix A. Note that if nice bounds on the ratios are known then sampling can be performed in one pass else in tWO.

theoretically; (see Reference 9) requires constants $~10^{7}$ which are improved but not explicitly stated in Reference 8. Note that Reference 8 suggests alternate "test and sample' schemes for practical considerations, thus making the algo rithm multi-pass. A problem of the above result is that the 55 approximation of the matrix need not be a good approxima tion of the eigenvalue which denotes the strength of the cor relations. For example suppose we are interested in the topmost eigenvalue σ_1 . Following the results of (see Reference 8) one can relate $\min_{D^*} |A-D^*||_F = \sigma_1^2$. Thus, $|A-D||_F$ gives 60 us an estimate of σ_1 . If $\text{A}\Vert_F$ is large, as is the case in nonsparse matrices, the above is a bad approximation since $k|A||_F^2$ can be m times σ_1^2 . Thus, ϵ cannot be a constant to provide a good guarantee for the topmost eigenvalue. The result is useful in the context of approximating the entries of 65 a matrix and as pointed out by the authors in (see Reference 8), the approach is used if the matrix is sparse. The exact parameters of the process are somewhat large 50

3. Problems with SVD on Streams

We will now discuss potential problems associated with SVD computation on streams. The fundamental potential problem with most approaches to SVD is the reliance on the matrix A for the computation. We will elaborate on the issues arising from this reliance in the cases of synchronous and asynchronous streams.

3.1 Synchronous Streams

In this case, m values arrive at each time step each speci fying a new value for each of them streams and the same time unit t. Maintaining the SVD decomposition of A will either involve recomputation of the SVD on matrix A (suitably adjusted depending on the specific streaming model, standard or sliding window) at every time step. This has two main potential drawbacks namely (a) the memory requirements can be significant as matrix A has to be memory resident and (b) the computational overhead associated with maintenance of the SVD decomposition at every time step can be high.

3.2 Asynchronous Streams

25 SVD persist, albeit for different reasons. In this case we discuss three problems, which are inter related but arise out of different concerns. The discussion will establish that in the case of asynchronous streams, the memory and computational overheads for maintaining the

3.2.0.1 Out of Sync arrival

30 arrive at different rates and create a "Front". Such a phenom FIG. 2 is a plot of an exemplary set of asynchronous streams demonstrating out-of-sync behavior. Thus, the prob lem is depicted in FIG. 2, where data in different streams enon is common in networking applications due to network delays. Known off line SVD computations will have to store the data corresponding to the entire shaded area. This is a typical "bursty' behavior and the length of the burst will determine the space required by the known algorithms.

3.2.0.2 Stream of Sparse Transactions

If the data sources produce stream values infrequently then only non-zero entries are streamed. This is a favorable con dition for the SVD computation. But even if every individual stream is in order, there is no way to foretell that the entry (i, t) is zero till an entry (i, t') arrives with $t' \geq t$. If for stream i one defines t , to be last time an observation is seen, known algorithms will have to remember all the entries after time min t_i which is akin to FIG. 2, but due to sparsity, the rectangle can be sizeable. This is a more frustrating scenario, since if a sparse matrix is represented in a (row, colum, value) format, although significantly better from a computational point of view for known algorithms, it creates a significant problem in streaming. In fact a possible solution can be to intersperse the implied Zero entries, but that would increase processing time significantly.

3.2.0.3 Out of Order Arrival

FIG. 3 is a plot of an exemplary set of asynchronous streams demonstrating out-of-order behavior. Consider FIG. 3 and suppose the entry corresponding to stream i and observation t is modified. Out of order arrival can be assumed as modification of an initial 0 value—the effect of the change depends on the values of all other streams at the observation t (denoted by the shaded region in FIG. 3). But since t is not known a priori, effectively one has to store the entire matrix A. 4. Stream SVD

We will present an approximate technique to obtain the k largest eigenvalues and associated eigenvectors trading accu racy for computation speed. We will first present the case for the principal eigenvalue and the associated principal eigen vector, and then generalize to arbitrary k eigenvalues and eigenvectors.

40

55

Given a matrix $A \in \mathbb{R}^{m \times n}$ the set of all k correlations is defined as the set of linear combinations of the left eigenvectors corresponding to the k largest eigenvalues. Recall that u is a left eigenvector with eigenvalue σ if and only if $u^T A = \sigma u^T$. Theorem 1 asserts that we can find a set of orthonormal eigenvectors of any matrix A. The number of such vectors is the rank r of the matrix concerned. Before we proceed in the discussion let us assume that the eigenvectors of A are \overline{u}_1 , $\overline{u}_2, \ldots, \overline{u}_r$ with respective eigenvalues $\sigma_1, \sigma_2, \ldots, \sigma_r$. Let us assume, without loss of generality that $|\sigma_1| \ge |\sigma_2| \ge ... \ge |\sigma_r|$.

Our methodology will make use of the Johnson-Linden strauss Lemma (JL Lemma) (see Reference 20) to reduce the dimension in a Euclidean space.

Lemma 1 (JL Lemma). Given a set of N vectors V in space $Rⁿ$, if we have a matrix S $\in R^{s\times n}$ where

$$
s = O\left(\frac{1}{\varepsilon^2} \log N\right)
$$

such that each element S_{ij} is drawn from a Gaussian distribution, appropriately scaled, for any vector x∈V, then $\|x\|_2 \leq$ $||Sx|, \leq (1+\epsilon)||x|$, holds true with vanishingly high probability, $1-o(1/N)$.

We discuss issues in computation and storage of maintain ing AS^T in Section 4.1. For the present we investigate how $_{25}$ matrix AS^T allows us to compute SVD.

Informally, the JL lemma states that if we distort vectors of dimensionality n with a matrix whose elements are suitably chosen from a Gaussian distribution we can preserve the (of dimensionality s) upto $(1+\epsilon)$ with arbitrarily high probability. Intuitively, suppose every vector is represented by a line segment starting from the origin. The length of the vector is the distance between the origin and the endpoint of the vector. The intuition behind the algorithm is that if we pre- $_{35}$ serve distances between points (the origin and the endpoints of the vectors), then we preserve the length of the vectors. relative distances between the vectors in the resulting space 30

4.0.0.4 The Single Eigenvalue case

We make the simple observation that $||x||_2 = ||x^T||_2$. So the JL
lemma rewrites to, $||x^T||_2 \leq ||(Sx)^T||_2 = ||x^TS^T||_2 \leq (1+\epsilon) ||x^T||_2(1)$

Both lemma 1 and theorem 2 are concerned with linear operations on the underlying vector space. It appears natural to first apply lemma 1 on A to reduce the dimensionality and then apply SVD on the "smaller" matrix obtained. This could be beneficial, because we will be running SVD on a much $_{45}$ smaller matrix. Under such an approach, the relationship between the eigenvalues and eigenvectors of A before and after the application of lemma 1 needs to be established. This gives rise to the following:

Lemma 2. Suppose \overline{u}_1 is the principal left eigenvector of A $_{50}$ and u the principal left eigenvector of AS^T for a matrix S satisfying the JL Lemma with

$$
s = O\left(\frac{1}{s^2}\log n\right).
$$

Then $\overline{u}_1^T A \|_2 \leq (1+\epsilon) \|u^T A\|_2$
Proof: Since u is the principal left eigenvector of AS^T, we have $\overline{u}_1^T A S^T \leq \frac{\ln^T A S^T}{\ln^T A}$. Substituting $x^T = \overline{u}_1^T A$ in equation 1 , we get $\overline{u}_1^T A \leq ||\overline{u}_1^T A S^T||_2 \leq (1+\epsilon) ||\overline{u}_1^T A \leq 1$ and similarly $x_i^T = u_i^T$ A. From these we have $\overline{u_i}$ $\overline{u_i$ $\|\mathbf{u}_1' A \mathbf{S}'\|_2 \leq \|\mathbf{u}' A \mathbf{S}'\|_2 \leq (1+\epsilon) \|\mathbf{u}' A\|_2.$ This proves the lemma 60

Let σ_1 ' the principal eigenvalue of AS^T. From lemma 2 it is is approximated within $(1+\epsilon)$ factor in magnitude by application of lemma 1. evident that $|\sigma_1| \leq |\sigma_1| \leq (1+\epsilon)|\sigma_1|$. Thus, the first eigenvalue 65 4.0.0.5 The Single Eigenvector case

Lemma 2 shows that instead of computing the SVD of the matrix AA^T applying theorem 2, we can compute the SVD of AS^T to get a vector such that the columns of A have a large projection along it. The dimension of the matrix AA^T is mxm whereas the dimension of AS^T is

$$
m \times \frac{1}{\varepsilon^2} \log n.
$$

For large m compared to

$$
s = \frac{1}{\varepsilon^2} \log n,
$$

one has achieved a significant saving in computing the SVD. In particular the time to perform SVD has been reduced from $O(m^3)$ to $O(m^2)$. Also we have saved the space and update time in the data stream context, from $O(m^2)$ to $O(ms)$.

Lemma 2 shows that the projections of a matrix are pre served under the application of lemma 1. We now show what is the quality of the approximation obtained to the actual principal eigenvector. A measure of quality of approximation of the principal eigenvector, is the inner product with the actual principal eigenvector. Assuming all vectors are repre sented with unit length, a large value of the projection indicates a better approximation. Notice that such an approximation is meaningful only if the principal eigenvector is unique. Consider the case of a matrix A with $|\sigma_1| \approx |\sigma_2|$. Then any linear combination of \bar{u}_1 and \bar{u}_2 , say $u = a\bar{u}_1 + b\bar{u}_2$ (where $a^2 + b^2 = 1$ to preserve length of $||u||_2 = 1$) is a principal eigenvector, since there are a lot of vectors preserving the variation in the data, in this case. To see this, observe that in this case

$$
u^{T}A||_{2}^{2}=u^{T}AA^{T}u=a^{2}\sigma_{1}^{2}+b^{2}\sigma_{2}^{2}\leq \min(\sigma_{1}^{2},\sigma_{2}^{2})
$$

This is best illustrated if the data are uniformly distributed along a circle; any vector in the plane containing the circle is a good eigenvector. To clarify the situation, we assume that there is a significant linear trend in the data. This means that the eigenvalues are separated in magnitude. In case of the principal eigenvector this would imply $|\sigma_1| \gg |\sigma_2|$; we will address multiple eigenvectors in the subsequent subsections. In particular assume $|\sigma_1| = (1+\delta \epsilon) |\sigma_2|$ for some $\delta > 4$.

For two vectors u, v, let $\langle u, v \rangle$ denote their inner product. If σ_i , σ_2 are the first and second eigenvalues and \overline{u}_1 , \overline{u}_2 the associated eigenvectors, then

$$
(1 + \varepsilon)^{-2} \sigma_1^2 \le ||u_1^T A||_2^2 = \sum_i \langle u_1, \overline{u}_i \rangle^2 \sigma_i^2 \le \langle u_1, \overline{u}_1 \rangle^2 \sigma_1^2 + (1 - \langle u_1, \overline{u}_1 \rangle^2) \sigma_2^2
$$

since the coefficients $\langle u_1, \overline{u}_i \rangle$ represent the projection of u_1 to an orthogonal basis defined by $\{\overline{u}_i\}$, the sum of their squares evaluate to 1. Thus

$$
\sum_{i=1} \langle u_1, \overline{u}_i \rangle^2 = 1 - \langle u_1, \overline{u}_1 \rangle^2.
$$

The above rewrites to

$$
\langle u_1, \overline{u}_1 \rangle^2 \ge \frac{1}{(1+\varepsilon^2)} \frac{\sigma_1^2 - (1+\varepsilon)^2 \sigma_2^2}{\sigma_1^2 - \sigma_2^2} \ge \frac{1}{(1+\varepsilon)^2} - \frac{1}{\delta} \tag{2}
$$

For a specific value of ϵ , equation 2 shows the quality of the approximation to \overline{u}_1 obtained. Notice that if $\delta \geq \epsilon$ (that is, the strength of linearity is greater than the precision lemma 1 guarantees) then $\langle u_1, \overline{u}_1 \rangle^2 \approx (1+\epsilon)^{-2}$ which approaches 1. Thus, $\mathcal{L}_{\mathcal{L}}$

10

30

20

45

50

if the first two eigenvalues are $\delta \epsilon$ -separated, u_1 the approximated eigenvector and \overline{u}_1 the true eigenvector are very close. Effectively this establishes that if there is a significant linear trend in the data, performing SVD on matrix AS^T as opposed to matrix AA^T results in the same principal eigenvector. Smaller values of ϵ increase the time to compute the SVD of matrix AS^T , but yield a better approximation to the principal eigenvector and Vice versa.

Lemma 3. If the data have a unique strong linear correla tion, we can approximate the principal eigenvector.

It is evident, that to guarantee a good approximation of the eigenvectors we have to compute at a greater precision than we need to identify the eigenvalues. That is ϵ , the precision set by lemma 1 has to significantly smaller than the separating $_{15}$ value of the eigenvalues.

4.0.0.6 The Multiple Eigenvalues case

We consider the case of obtaining an approximation to multiple eigenvalues and eigenvectors of the original matrix A. We will extend the above process to multiple eigenvalues and eigenvectors. In such a case what one can guarantee is that with a similar application of lemma 1, the entire subspace spanned by the largest k eigenvectors can be approximated. Let Ube the subspace spanned by k approximated eigenvectors. Assume that we desire to obtain a space U such that the $_{25}$ finest granularity on a basis axis is

$$
\frac{1}{G},\,G\in N^*.
$$

We claim the following,

Lemma 4. Given a matrix $A \in \mathbb{R}^{m \times n}$, and a matrix $S \in \mathbb{R}^{s \times n}$ in accordance to lemma 1 such that

$$
s=O\bigg(\frac{k}{\varepsilon^2}\text{log}G\bigg),
$$

and any fixed subspace U spanned by at most k (not neces- 40) sarily known) vectors, such that the finest granularity on an axis is

$$
\frac{1}{G},
$$

if $u \in U$ then with high probability (vanishingly close to 1)

$$
||u^T A||_2 \leq ||u^T A S^T||_2 \leq (1+\epsilon) ||u^T A||_2
$$

The above lemma is a generalization of lemma 1, with the observation that if we are trying to preserve the distance between objects specified by a linear combination with precision G, then we have at most G^k objects. Applying n= G^k in 55 the statement of lemma 1 gives the result. Intuitively lemma 4 states that a larger matrix S (Smaller distortion to matrix A) is required in order to obtain an approximation to the largest k eigenvectors.

Assume that via the application of lemma 2 we find a vector 60 u_1 with $||u_1||_2=1$ and maximum $||u_1^T A S^T||_2$. According to lemma 2 $(1+\epsilon)^{-1}$ lo₁ \leq ||u₁^TAl₂ \leq |o₁|. Now consider the subspace of all vectors u such that $\langle u, u_1 \rangle = 0$ (the subspace of all vectors orthogonal to u_i). Consider the second largest eigenvector of AS⁻, denoted by u_2 . Denote y_2 to be normalized 65 component of \overline{u}_2 which is orthogonal to u_1 . Notice y_2 can be a candidate for the second largest eigenvector for AS^T .

14

Lemma 5. If $|\sigma_1| > (1+\epsilon)|\sigma_2|$ then $\mathbf{y}_2^T \mathbf{A}||_2 \ge |\sigma_2|$, and therefore we get a vector u_2 such that $\|u_2^T A\|_2 \ge (1+\epsilon)^{-1} |\sigma_2|$.

This lemma establishes that if $|\sigma_1|>(1+\epsilon)|\sigma_2|$ (i.e., σ_1 and σ_2 are ϵ -separated) an excellent approximation to the second largest eigenvalue of A exists. Generalizing fork eigenvalues, we have:

Lemma 6. If for each i, $1 \le i \le k$ we have $|\sigma_i| > (1+\epsilon)|\sigma_{i+1}|$ we can find a u_{i+1} such that $\left| u_{i+1} \right|^{T} A_{2} \geq (1+\epsilon)^{-1} |\sigma_{i+1}|$

4.0.0.7 The Multiple Eigenvector case

The reasoning about the quality of u, as an approximation carries over in this case. We would need the eigenvalues to be more than e-separated (say Öe-separated) to obtain a good approximation. Following similar reasoning as in the case of u_1 one can show that u_2 gets arbitrarily close to \overline{u}_2 , depending on the separation between σ_2 and σ_3 . For a specific value of ϵ , and δ the quality of approximation to \overline{u}_2 is obtained from an equation similar to equation 2. As in the single eigenvector case, to achieve approximation of the eigenvectors we have to compute at a greater precision than we need to identify the eigenvalues.

Thus, the subspace obtained via this approximation can be arbitrarily close to the subspace obtained by the true k largest eigenvectors, given that the eigenvalues are at least ϵ -separated. For a specific value of ϵ the quality of the approximation obtained to each \overline{u}_i is dictated by equations similar to equation 2. Larger values of ϵ decrease the SVD computation time but decrease the quality to the subspace approximation one obtains. This gives rise to a tradeoff that we will experimentally quantify in section 6.

4.1 Discussion

35 possible to compute eigenvalues and eigenvectors of a matrix The analysis of the previous section established that it is A (of size mxn) up to desired accuracy, by computing the SVD decomposition (using any applicable technique) of a much smaller matrix AS^T (of size m×s). This could have significant performance benefits, independently of the spe cific technique used to compute the SVD, since the procedure would operate on a much smaller matrix.

Matrix S is populated initially from a suitably scaled Gaus sian distribution in accordance to lemma 1. The full matrix S is not realized, instead it is stored as a collection of s hash functions h[j] such that $S[j][t]=h[j](t)$. This is one of the central techniques in streaming computation and Reference 1 phrases the inner product M[i][j]= Σ_{τ} A[i][t]S[j][t] as sketches of the data.

Thus, as new stream elements arrive, matrix AS^T can be updated in a very efficient fashion. Let us first assume that we are in the standard stream model. For synchronous streams a single tuple (i,t, Δ) arrives for element A[i][t] and the correct value $A[i][t]S[j][t]$ gets added to $M[i][j]$. For the asynchronous case the value A[i][t] accepts (possibly multiple) modifications. But the contribution to $M[i][j]$ over all the modifications is again $A[i][t]S[j][t]$ which is the correct value. The entire procedure is presented below as the MapSVD algorithm for the standard stream model. Notice that updates/ modifications are provided in an incremental fashion to matrix AS^T , and that matrix A is not explicitly materialized.

The problem with the computation of the MapSVD algorithm is that although the SVD computation performed is expected to be faster (because it operates on a smaller matrix), one still has to perform the computation each time matrix $AS⁷$ changes. This is required to assure that the eigenvector and eigenvalues maintained stay within desired accuracy levels.

Algorithm MapSVD $((i,t,\Delta),M,U,\Sigma,V,P)$ { $M = AS^T \in \mathbb{R}^{m \times s}$, U $\in \mathbb{R}^{m \times s}$, $\Sigma \in \mathbb{R}^{s \times s}$

 $V \in \mathbb{R}^{s \times s}$, $P \in \mathbb{R}^m$

 $S \in \mathbb{R}^{s \times n}$ in accordance to lemma 1, it is a product of suitable hash functions, only the functions are stored

T=(i,t, Δ) is current input (representing A[i][t])
for (j=0; j<s; j++) {

- $M[i][j]=M[i][j]+ \Delta S[i][t]$
- /* For synchronous streams M[i][j]+=A[i][t]S[j][t], resulting in computation of AS^T. For asynchronous streams the same result is arrived at since A[j][t] is the sum of the modification $*\gamma$ 10

$$
\cdot \overline{1}
$$

SVD(M,U, Σ ,V)/* favorite SVD algorithm */

4.2 Recomputations and Sampling

We will develop a sampling strategy that will select stream tuples and periodically apply SVD while, at the same time, is able to preserve the quality of the underlying eigenvectors and $_{20}$ eigenvalues obtained.

Suppose the stream has not changed significantly from a certain time when we computed the SVD for it. Then, the matrix corresponding to the stream has also not changed significantly. Suppose we recomputed the SVD last when the 25 matrix corresponding to the stream was A_1 . Suppose the stream currently corresponds to matrix A. These matrixes are used conceptually only; in practice we never store them. Suppose the two matrices agree almost everywhere, and thus their eigenvectors/values agree as well. This is captured by 30

the following lemma:
Lemma 7. If $||y^T A_1 S^T||_2 = \sigma$ and $||y||_2 = 1$ then $||y^T A||_2 \ge \sigma/(1 + \sigma^2)$ ϵ)- $||A_1-A||_F$. $||A_1-A||_F^2$ is the square of the Frobenius norm of A_1 –A and is equal to the sum of squares of all elements.

Proof: From the previous section we are guaranteed that if 35 $||y^T A_1 S^T||_2 = \sigma$ then by Lemma (see Reference 20) (1+e)
 $||y^T A||_2 \le ||y^T A_1 S^T||_2 = \sigma$. From Linear Algebra, $||y^T A_1||_2 -$
 $||y^T A||_2 \le ||y^T (A_1 - A) ||_2 \le ||y^T ||_2 ||A_1 - A||_F$. Since $||y^T ||_2 = ||y||_2 = 1$, the proof follows. \Box

jection in A₁ and $||A_1-A||_F$ is small compared to σ , then y still has a large projection. In other words it is an approximate eigenvector. We first show that This means that if y was an eigenvector with a large pro- 40

Lemma 8. Suppose we computed SVD for the stream which corresponds to the matrix A_1 at time t_1 and did not 45 recompute SVD since. Suppose after that we saw tuples (i.t, Δ) and currently the matrix corresponding to the stream is A. Suppose further that no tuple expired (which is always true in standard streaming model), if

$$
\sum_{(i,t,\Delta)seen \text{ sin }ce t_1} |\Delta| = D
$$

then $||A_1 - A||_F \leq D$.

Proof: Let us focus on one element $A_1[i][t]$ which is modified by several $\Delta_1, \ldots, \Delta_n$. Based on the specific model standard or sliding window, synchronous or asynchronous the number u will vary. But we will give the most general proof $\,60$ which holds for all cases. Thus A[i][t]=A₁[i][t]+ $\Delta_1 + \ldots + \Delta_n$.

$$
|A_i[i][t] - A[i][t]| = |\Delta_1 + ... + \Delta_u| \leq \sum_{v=1}^{u} |\Delta_v|
$$

16

Adding this overi, t, the right hand side is the D, the sum of all magnitudes of changes seen. Now

$$
|A_1 - A||_F^2 = \sum_{i,t} |A_1[i][t] - A[i][t]|^2 \le \left(\sum_{i,t} |A_1[i][t] - A[i][t]|\right)^2 \le D^2
$$

Therefore $||A_1 - A||_F \leq D$. \Box .

15 the discussion is similar). Since we are interested in $1\pm\epsilon$ If we do not recompute the SVD and $||A_1 - A||_F$ is small compared to σ the eigenvectors of A_1 are still reasonable for our current stream matrix A. Suppose we are interested in preserving the principal eigenvector (for other eigenvectors approximation, we will have to ensure that $D \sim \epsilon \sigma_1$. An excellent way to achieve this is by randomly recomputing the SVD depending on the magnitude $|\Delta|$ seen. If $|\Delta|$ is large compared to $\epsilon \sigma_1$ we should choose to recompute, otherwise we would not. Thus the recomputation should be done with probability $|\Delta|/(\epsilon\sigma_1)$.

The ϵ factor in the probability ensures that after we have seen enough new information which satisfies $\Sigma|\Delta|\geq \epsilon \sigma_1$ we would have very likely

$$
\left(\text{probability 1} - \frac{1}{e} \sim 0.63\right)
$$

(probability have recomputed the SVD. If we did not, then by the time $\Sigma|\Delta|\geq 2\epsilon\sigma_1$, we would have recomputed the SVD with probability

$$
1 - \left(\frac{1}{e}\right)^2 \sim 0.86.
$$

55

The probability of not having computed the SVD for long, decreases exponentially. The Expected value is 1.4 $\epsilon \sigma_1$. Thus from Lemma 7 and Lemma 8 the principal eigenvector of A_1S^T would have a projection on A which is at least 1–O(ϵ) with some high probability.

5. The StreamSVD Algorithm

50 eigenvalues of matrix A. The sampling procedure introduced leads to an effective way to save on the number of times the SVD is computed. Instead of computing the SVD of matrix AS^T every time an item arrives, in accordance to lemma 7, we can compute it less often and still get a good approximation to eigenvectors and

Combining the results of Section 4 we can now realize efficient algorithms for maintaining the SVD decomposition on the various stream models, namely the standard and the sliding window stream model. The algorithm is provided below for the case of the sliding window model as the StreamSVD algorithm. The algorithm for the standard model is the same, there is no expiry and that condition is neverused.

The StreamSVD algorithm starts from MapSVD and probabilistically recomputes the SVD depending on the mag nitude $|\Delta|$ of the value seen compared to the eigenvalue σ_1 (assuming that we are interested in the topmost eigenvalue; if interested in all the k-th largest eigenvalues, we substitute σ_1 with σ_k). For the case of the synchronous model, the sampling procedure breaks the stream into several sub-matrices, B_1 ...

65 B_c depending on when we sample. This is shown in FIG. 4, which plots the structure of blocks created by StreamSVD for the case of the synchronous sliding window stream model.

The sub-matrix B_1 starts at time t_1 when we sampled in the probabilistic step in StreamSVD and ended when we sampled the next time (at t_2). We store the products of the sub matrices $B_{\nu}S^{T}$ in the blocks M^{ν} in the algorithm StreamSVD. For the standard streaming model it is easy to see that ΣM^u is the entire inner product, namely matrix M. For sliding window streams if $t_1 < \tau-n \leq t$, then the block B_1 is partially relevant some of its entries have expired. Now the sum of the $|\Delta|$ for the entries in each sub matrix B^u is $\theta(\epsilon \sigma_1)$ as follows from the discussion in the previous section, since we did not recom pute the SVD in the middle. If we computed the SVD last when the matrix was A_1 using a certain number of blocks and none of the blocks expired (otherwise we would recompute SVD)—the two matrices A_1 and A agree everywhere except $_{15}$ in the current block. Now the $\Sigma|\Delta|$ of each block is 1.4 $\epsilon\sigma_1$. By Lemma 8 we have a $(1\pm 1.4 \epsilon)$ approximation. Therefore the eigenvalue if preserved.

Lemma 9. The maximum number of blocks created in case of synchronous sliding window streams is at most $O(m/\epsilon)$. 20

The above follows from the fact that we have an estimate of the Frobenius norm of the blocks related to σ_1 and likewise the Frobenius norm A is related to σ_1 . The proof is completed by relating the norms of the blocks to norms of A.

The case of asynchronous streams is more involved. Since 25 the data do not arrive in order, the pieces of matrix whose inner product is in the different blocks overlap. The eigen value is still preserved up to $1\pm 1.4 \epsilon$. A lemma analogous to lemma 9 can be proved under certain restrictions. We omit details due to lack of space. 30

The StreamSVD algorithm for the sliding window model is as follows. A similar algorithm can be designed for the case of

the standard stream model.
Algorithm StreamSVD((i,t,Δ) ,M,U,Z,V,P) { Algorithm StreamS v $D((1,1,2),M,0,2, v,P)$ {
M=AS^T \in R^{*mxs*}, U \in R^{*mxs*}</sub>, $\Sigma \in$ R^{*sxs*} $V \in \mathbb{R}^{s \times s}$, $P \in \mathbb{R}^{m}$, $S \Sigma \mathbb{R}^{s \times n}$ as in lemma 1 σ_1 largest eigenvalue of M computed in a previous invocation of StreamSVD, Current time is τ The inner product Σ_{ϵ} A[i][t]S[j][t] is maintained through at $\frac{40}{}$ most c blocks where Σ_{μ} M_u[i][j]= Σ_{μ} A[i][t]S[j][t] Block M^c is Current. On arrival of (i,t, Δ), with t $\equiv \tau - n$ {
If ((stamp of M^t is $\tau - n$) or (with probability

Block M^c is closed with stamp τ . If (stamp of M^1 it $\tau-n$ {/* M^1 expires */for
for (u=1; u<c; u++) $M^u \leftarrow M^{u+1}$ $c \leftarrow c-1$ ${}$
Start a new block M^{c+1} and set it Current Recompute the $SVD(M,U,\Sigma,V)$. /* use favorite algorithm $*/$ for $(j=0; j\leq s; j++)$ Current $Block[i][j]$ += $\Delta S[j][t]$

Independently, this sampling step could be applied to algo rithm NaiveSVD surpassing the dimensionality reduction step. This would provide an $(1-\epsilon)$ approximation to the eigenvalues, for some $\epsilon \leq 0$. Following reasoning related to that in ϵ 65 Section 4 the eigenvectors are preserved well also. Indeed we explore this option for algorithm NaiveSVD in section 6.

6. Experimental Evaluation

In this section we present a performance analysis of the algorithms and techniques discussed thus far. We seek to quantify the benefits both in terms of accuracy and perfor mance of the proposed techniques. We present the data sets we experimented on, as well as the metrics used to quantify accuracy.

Description of Data Sets: Correlation affects the sampling component of our algorithms and thus is vital for the perfor mance of our schemes. In addition to real data sets, we used synthetic data sets, in which we had the freedom to vary the degree of the underlying correlations and gain additional intuition about the performance of our proposal. We describe the data sets below:

- Gaussian: The values of each data stream are chosen inde pendently from a Gaussian distribution N(50.50) (mean 50 and variance 50). We expect no correlations between the streams.
- Linear: The values between the streams are linearly corre lated.
- Linear-S: Starting from data set Linear we distort each data stream value by adding noise. In particular we add a sample from N(2,2).
- Linear-M: Similar to data set Linear-S but we add samples from N(10,10).
- Linear-L: Similar to data set Linear-S but we add samples
- Real: Real data representing the number of packets through various interfaces of several network cards of an operational router.

Measurement Metrics:

35 racy of the SVD computed with algorithm StreamSVD by reporting on the accuracy of the eigenvalues and eigenvectors Several parameters affect the accuracy and performance of our approach and should be quantified. We evaluate the accu computed. We quantify the accuracy of eigenvalues using the

Average Absolute Relative Error (AARE) defined as follows: Definition 3. Let V be an eigenvalue computed with algo

rithm NaiveStreamSVD and V' the corresponding eigenvalue computed using algorithm StreamSVD. The Absolute Rela tive Error (ARE) between the two eigenvalues is defined as

$$
ARE = \frac{|V - V'|}{V}
$$

50 ber of stream tuples (100K) of the ARE. We also report the In the experiments that follow we report the Average Abso lute Relative Error (AARE) as the average over a large num standard deviation of ARE over the same number of stream tuples.

55 using StreamSVD. If the vectors were identical, then $\langle u, u' \rangle = 1$. 60 Let u be an eigenvector computed using algorithm NaiveSVD and u' the corresponding eigenvector computed To quantify the accuracy of eigenvectors computed using algorithm StreamSVD, we report the average value of (u.u') as well as the standard deviation of (u.u") over a large number (100K) stream tuples.

6.1 Evaluating StreamSVD

The first set of experiments we present, evaluate the accu racy of the approximation on eigenvalues and eigenvectors. We present results for the largest eigenvalue and the corre sponding principal eigenvector. These results are indicative of the overall accuracy. Results of similar quality are obtained for additional eigenvalues and eigenvectors as described in section 4. Moreover, results of similar quality are obtained for the case of performing StreamSVD on arbitrary subsets of streams, as discussed in section 4 We omit these results for brevity.

6.2 Accuracy and Space Tradeoff

In these experiments, algorithm NaiveSVD is applied to obtain the exact eigenvalues and eigenvectors. That is, sampling stream tuples in not enabled and thus the eigenvalues and eigenvectors computed are exact. Recall that StreamSVD makes use of a matrix S_{sym} in accordance to lemma 1 as well as sampling. We vary the value of s in these experiments and 10 observe the accuracy implications. Thus, we change the val ues of ϵ of our approximation, by changing the value of s. Larger s means smaller ϵ and vice versa. We use n=10³ and m=100 in these experiments.

FIG. 5 provides plots of accuracy of approximation to 15 exemplary eigenvalues and eigenvectors. FIG. $5(a)$ presents the AARE for the principal eigenvalue for the data sets used in out study. Increasing s improves accuracy in accordance to lemma 1. In the case of the Gaussian data set, the AARE appears high, since we expect no correlation between the streams. For data set Linear, the error is very low, and gradu ally increases as noise is added to the data set (data sets Linear-S to Linear-L). This, provides experimental evidence that algorithm StreamSVD is capable of preserving a good approximation to the principal eigenvalue, even for data sets 25 artificially constructed to contain weak linear correlations, as in the case of Linear-L. In this case, as is evident in $FIG. 5(a)$ the principal eigenvalue is at most 10% away from the real value. Accuracy is much better in all the other cases that linear correlations exist. In the case of data set Real, the error 30 appears to be low, providing additional evidence that corre lations exist in real data distributions. Moreover, the error drops quickly with increasing values of s, as dictated by lemma 1. Notice for even small s we are able to attain high accuracy for principal eigenvalues. This behavior was con- 35 sistent throughout our experiments, with additional eigenval ues, not just the principal, we omit those experiments in interest of space.

FIG. $5(b)$ presents the standard deviation of ARE as the value of s increases for the data sets used in our study. In all 40 cases, the trends are related to those observed for AARE, with deviation tailing off for larger s values. Notably, in the case of data set Real, standard deviation appears very low, demon strating the quality of the approximation our technique offers on real data sets as well. 45

FIG. $5(c)$ presents the mean value of the inner product for the principal eigenvector computed with algorithm NaiveSVD and the principal eigenvector computed with algo rithm StreamSVD. FIG. $5(d)$ presents the standard deviation of this product. For the case of data set Gaussian, the vectors 50 appear far apart matching our expectation. In all other cases however, where some form of linear correlation exists between the underlying streams, algorithm StreamSVD is able to uncover it and the principal eigenvectors remain very eigenvector computed with StreamSVD is excellent, with precision increasing as a function of s. The standard deviation of this product (FIG. $5(d)$) is very small as well. Thus, the quality of the approximation to the principal eigenvector reported, appears 'stable' over time, i.e., as the data stream 60 evolves. For the case of data set Linear, the vectors are essen tially identical and appear to be nominally affected as noise is added to the data. close. For data set Real the reported quality of the principal 55

6.3 Performance Issues

The second set of experiments we report, evaluate the 65 performance of algorithm StreamSVD compared with that of NaiveSVD. We report on the average time spent per stream

tuple during the execution of the algorithms. This time con sists of the time to update matrix $M(AA^T)$ in the case of NaiveSVD and AS^T in case of StreamSVD) as well as the time to perform SVD on M, if required, amortized over a large number of stream tuples (100K). In these experiments algorithm NaiveSVD employs sampling of stream tuples, as proposed in section 4, boosting its performance. The performance gain is arising out of the fact that we require $O(m)$ time as opposed to $O(m^2)$ required by NaiveSVD to update the necessary matrices and not from Sampling.

As far as performance is concerned two parameters are of interest; the number of streams involved m, as well as the value of s that affects the quality of the approximation.

Varying s : The results are presented in FIG. 6, in which is plotted the average time spend per stream tuple as the value of s increases, for various data sets, $m=100$. To summarize:

FIG. $6(a)$ presents the time per stream tuple for data set Gaussian, as s increases, for m=100 streams. Since there is no correlation between the streams, both algorithms compute the SVD for each new tuple arriving in the stream.

FIG. 6(b), presents the result of the same experiment for data sets Linear-M and Real. In this case, sampling is applied by both algorithms. The savings in response time per stream tuple achieved by StreamSVD, are profound.

Varying number of streams m: In FIG. 7 we present the results of a scalability experiment varying the number of streams m, by plotting an average time spent per stream tuple as the number of streams increases. We present both scenarios as s is small or sufficiently larger. In particular, FIGS. $7(a)$ and $7(b)$ vary the number of streams from 10 to 40 for a value of s=5, for data sets Gaussian, Linear-M and Real. Similarly, FIGS. $7(c)$ and $7(d)$ vary the number of streams from 50 to 200 for s=30 and for the same data sets.

The effects of sampling remain the same as in the experi ment associated with FIG. 6; data set Gaussian forces SVD computation almost on every tuple. In contrast, in data sets Linear-M and Real sampling is utilized and we observe a clear performance benefit. For a specific value of s when we increase the number of streams, it is evident that the perfor mance advantage of StreamSVD increases significantly. This trend can be observed both in the case of a small (FIGS. $7(a)$) and $7(b)$) as well as a larger (FIGS. $7(c)$ and $7(d)$).

To Summarize, there are two main conclusions from our experiments with StreamSVD. First, the performance impli cations of the application of lemma 1 to StreamSVD can be considered to be profound. Even Small values of s are enough to potentially provide excellent accuracy providing large savings in time spent per tuple to maintain the SVD in a stream context. Second, even for a small number of streams StreamSVD currently appears to be the algorithm of choice. 7. Conclusions

We considered the problem of identifying correlations between multiple data streams using Singular Value Decom position. We have proposed one or more exemplary algo rithms to maintain the SVD of multiple data streams and identify correlations between the streams. We have quantified the accuracy of our proposal both analytically and experimentally and through detailed experimental results using real and synthetic data sets evaluated its performance. We also pre sented a case study of the application of our technique to the problem of querying multiple data streams.

This study raises various issues for further research and exploration. The algorithms and techniques presented herein are likely to be of interest to other forms of computation over multiple streams. In particular, reasoning and mining dynamically multiple data streams is a problem of central interest in network data management. Identification of corre

35

50

lations between streams, via the proposed StreamSVD algorithm, can be a first step in designing mining procedures over multiple streams and/or advanced querying processing tech niques, such as queries over arbitrary Subsets of streams. We plan to investigate these directions in our future work.

Thus, certain exemplary embodiments provide a method comprising: automatically: receiving a plurality of elements for each of a plurality of continuous data streams; treating the plurality of elements as a first data stream matrix that defines a first dimensionality; reducing the first dimensionality of the first data stream matrix to obtain a second data stream matrix: computing a singular value decomposition of the second data stream matrix; and based on the singular value decomposition of the second data stream matrix, quantifying approximate $_{15}$ linear correlations between the plurality of elements.

FIG. 8 is a block diagram of an exemplary embodiment of a telecommunications system 8000 that can implement an exemplary embodiment of the StreamSVD algorithm. Sys tem 8000 can comprise any number of continuous data stream $_{20}$ sources 8100, such as continuous data stream sources 8110, 8120, 8130. Any continuous data stream source 8100 can be an information device. From any continuous data stream source 8110, 8120, 8130 can flow a continuous data stream can include any number of data stream elements, such as elements 8114, 8115, 8116 of continuous data stream 8112.

Any of the continuous data stream sources 8100 can be coupled to a network 8200. Coupled to network 8200 can be any number of information devices 8300 to which continuous data streams are directed. Coupled to network 8200 can be an information device 8400 which can identify linear correla tions between data stream elements, and which can comprise a stream element processor 8410, a first matrix processor 8420, and a second matrix processor 8430. Coupled to infor mation device 8400 can be a memory device 8500 that can store a first matrix, a second matrix, and/or linear correlations between data stream elements.

FIG. **9** is a flow diagram of an exemplary embodiment of a $_{40}$ method 9000 for automatically implementing an exemplary embodiment of the StreamSVD algorithm. At activity 9100, elements of multiple continuous data streams can be received. The received elements can be actively sought and obtained or passively received. At activity 9200, the received elements 45 can be treated as a first data stream matrix defining a first dimensionality. At activity 9300, the dimensionality of the first data stream matrix can be reduced to obtain a second data stream matrix. At activity 9400, a singular value decomposi tion of the second data stream matrix can be computed.

At activity 9500, a user-specified accuracy metric can be obtained, the accuracy metric related to the degree of approxi mation of linear correlations between elements of the con tinuous data streams. At activity 9600, based on the singular value decomposition of the second data stream matrix, approximate linear correlations between the plurality of ele ments can be quantified. The approximate linear correlations can meet the user-specified accuracy metric. At activity 9700, the approximate linear correlations between the plurality of $\frac{60}{60}$ elements can be output and/or reported. In certain exemplary embodiments, the approximate linear correlations can com prise a plurality of eigenvalues that approximate principal eigenvalues of the first data stream matrix. In certain exem plary embodiments, the approximate linear correlations can 65 comprise a plurality of eigenvectors that approximate princi pal eigenvectors of the first data stream matrix.

In certain exemplary embodiments, any portion of method 9000 can be repeated in any defined manner, including peri odically, pseudo-randomly, and randomly. In certain exem plary embodiments, any portion of method 9000 can occur dynamically.

In certain exemplary embodiments, at least one of the plurality of continuous data streams can be synchronous, asynchronous, bursty, sparse, and/or contain out-of-orderele ments.

In certain exemplary embodiments, the reducing activity can apply the Johnson-Lindenstrauss Lemma.

FIG. 10 is a block diagram of an exemplary embodiment of an information device 10000, which in certain operative embodiments can represent, for example, continuous data stream source 8100, information device 8300, and/or infor mation device 8400 of FIG. 8. Information device 10000 can comprise any of numerous well-known components, such as for example, one or more network interfaces 10100, one or more processors 10200, one or more memories 10300 con taining instructions 10400, one or more input/output (I/O) devices 10500, and/or one or more user interfaces 10600 coupled to I/O device 10500, etc.

8112, 8122, 8132, respectively. Any continuous data stream 25 interfaces 10600, such as a graphical user interface, a user can In certain exemplary embodiments, via one or more user implement an exemplary embodiment of the StreamSVD algorithm.

> 30 55 Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous varia tions, modifications, and additional embodiments are pos sible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the appended claims. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim of the application of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all subranges therein. Any information in
any material (e.g., a United States patent, United States patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render a claim invalid, then any such conflicting information in such incorporated by reference material is specifically not incor porated by reference herein.

References

The following references are incorporated by reference herein in their entirety:

20

- 1. N. Alon, Y. Matias, and M. Szegedy, "The space complexity of approximating the frequency moments", Proceedings of the Symposium on Theory of Computing, 1996, pages 20-29.
- 2. Brian Babcock, and Mayur Datar, and Rajeev Motwani, "Sampling From a Moving Window Over Streaming Data", 2002, SODA.
- 3. S. Babu and J. Widom, "Continuous Queries Over Data Streams', September 2001, SIGMOD Record.
- 4. D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H. V. 10 Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross, and K. C. Sevcik, "The New Jersey Data Reduction Report', Sep. 1996, Data Engineering Bulletin.
- 5. Yixin Chen, Guozhu Dong, Jiawei Han, B. Wah, and J. $_{15}$ Wang, "Multidimensional Regression Analysis of Time Series Data Streams", 2002, Proceedings of VLDB.
- 6. M. Datar, A. Gionis, P. Indyk, and R. Motwani, "Maintain ing Stream Statistics over Sliding Windows'. SODA, 2002.
- 7. J. Demmel, "Applied Numerical Linear Algebra", 1997, Society of Industrial and Applied Mathematics.
- 8. P. Drineas, R. Kannan, A. Frieze, V. Vinay, "Clustering in Large Graphs and Matrices', SODA, 1999.
- 9. A. Frieze, R. Kannan, and S. Vempala, "Fast Monte-Carlo 25 Algorithms for Finding Low-Rank Approximations'. FOCS, 1998.
- 10. V. Ganti, J. Gehrke, and R. Ramakrishnan, "Mining and Monitoring Evolving Data", Knowledge and Data Engineering, Vol. 13, No. 1, pages 50-63, 2001. 30
- 11. L. Gao and X. Wang, "Continually Evaluating Similarity Based Pattern Queries on a Streaming Time Series", 2002, Proceedings of ACM SIGMOD.
- 12. J. Gerhke, F. Korn, and D. Srivastava, "Correlated Aggre- 35 gate Queries Over Continual Data Streams', May 2001, Proceedings of ACM SIGMOD.
- 13. A. Gilbert, S. Guha, P. Indyk, Y. Kotadis, S. Muthukrishnan, and M. Strauss, "Fast, Small-Space Algorithms for Approximate Histogram Maintenance', 2002, STOC. 40
- 14. A. Gilbert, Y. Kotidis, S.Muthukrishnan, and M. Strauss, "How to Summarize the Universe: Dynamic Maintenance of Quantiles'. Proceedings of the International Conference on Very Large Databases VLDB, 2002.
- 15. J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. 45 Weinberger, "Quickly Generating a Billion-Record Syn thetic Database', June 1994, Proceesings of ACM SIG MOD, pages 243-252.
- 16. M. Greenwald and S. Khanna, "Space-Efficient Online Computation of Quantile Summaries", May 2001, Pro- 50 ceedings of ACM SIGMOD, Santa Barbara.
- 17. S. Guha and N. Koudas, "Approximating a Data Stream for Querying and Estimation: Algorithms and Performance Evaluation', February 2002, ICDE.
- 18. S. Guha, N. Koudas, and K. Shim, "Data Streams and 55 Histograms", July 2001, Symposium on the Theory of Computing, STOC.
- 19. M. Henzinger, P. Raghavan, S. Rajagopalan, "Computing on Data Streams", August 1997, Digital Equipment Cor poration, TR-1998-011.
20. W. B. Johnson and J. Lindenstrauss, "Extensions of Lip-60
- shitz Mapping Into Hilbert Space", May 1984, Contemporary Mathematics, Vol. 26, pages 189-206.
- 21. Kothuri Venkata Ravi Kanth and A. Singh, "Dimension ality Reduction For Similarity Searching. In Dynamic 65 Databases", June 1998, Proceedings of ACM SIGMOD, pages 97-105.
- 22. F. Korn, H. V. Jagadish, and C. Faloutsos, "Efficiently Supporting Ad Hoc Queries in Large Datasets of Time Sequences', May 1997, Proceedings of ACM SIGMOD, Tuscon Ariz., pages 289-300.
- 23. S. Madden and M. Franklin, "Fjording the Stream: An Architecture for Queries Over Streaming Sensor Data", February 2002, Proceedings of ICDE.
- 24. Y. Mattias, J. S. Vitter, and M. Wang, "Dynamic Mainte nance of Wavelet-Based Histograms", September 2000, Proceedings of the International Conference on Very Large Databases, VLDB, Cairo, Egypt, pages 101-111.
- 25. J. Munro and M. Paterson, "Selection and Sorting with Limited Storage", 1980, Theoretical Computer Science, pages 315-323.
- pages 315-323. 26. G. Singh, S. Rajagopalan, and B. Lindsay."Random Sam pling Techniques For Space Efficient Computation Of Large Datasets", June 1999, Proceedings of SIGMOD, Philadelphia, Pa., pages 251-262.
- 27. G. Singh, S. Rajagopalan, and B. Lindsay, 'Approximate Medians and Other Quantiles In One Pass and With Lim ited Memory", June 1998, Proceedings of ACM SIGMOD, pages 426-435.
- 28. John W. Stewart, III, "Inter-domain Routing in the Inter net'. Addison-Wesley, Reading, Mass., pages xiii and 137, 1999.
- 29. N. Thaper, S. Guha, P. Indyk, and N. Koudas, "Dynamic Multidimensional Histograms", SIGMOD, 2002.
- for Arbitrary Lp Norms", September 2000, Proceedings of VLDB, Cairo, Egypt.
- 31.Y. Zhu and D. Shasha, "StatStream: Statistical Monitoring of Thousands of Streams in RealTime", 2002, Proceedings of VLDB.
	- What is claimed is:
	- 1. A method comprising:
	- detecting a denial of service attack based upon quantified approximate linear correlations between a plurality of elements determined via randomly computed singular
value decomposition of a first data stream matrix by utilizing a processor, wherein the first data stream matrix is obtained via a reduction of a dimensionality of a second data stream matrix, wherein the first data stream matrix comprises a plurality of sampled values of the second data stream matrix, wherein the second data stream matrix is based upon a plurality of elements of each of a plurality of continuous data streams; and
	- generating a report of a detection of the denial of service attack by utilizing the processor, wherein the denial of service attack does not involve address spoofing.
- 2. The method of claim 1, further comprising storing the plurality of elements as a collection of hash functions.
	- 3. The method of claim 1, wherein
	- at least one of the plurality of continuous data streams is synchronous.
	- 4. The method of claim 1, wherein
	- at least one of the plurality of continuous data streams is asynchronous.
	- 5. The method of claim 1, wherein
	- at least one of the plurality of continuous data streams comprises out of order elements.
	- 6. The method of claim 1, further comprising
	- obtaining values for the first data stream matrix from a Gaussian distribution and preserving relative distances between vectors in a resulting space of the first data stream matrix as compared to the second data stream matrix, the first matrix determined via a sliding window stream model.

10

25

30

7. The method of claim 1, further comprising repeatedly computing the singular value decomposition in

response to a change in the first data stream matrix caused by additional data sampled from a data stream of the plurality of continuous data streams.
8. The method of claim 1, further comprising

periodically computing the singular value decomposition in response to an expiration of entries in the second data stream matrix.
9. The method of claim 1, further comprising

randomly computing the singular value decomposition.
10. The method of claim 1, further comprising

- quantifying the approximate linear correlations in response to a sliding window stream that varies over time.
- 11. The method of claim 1, wherein
- the approximate linear correlations comprise a plurality of eigenvalues that approximate principal eigenvalues of the second data stream matrix. 15
- 12. The method of claim 1, wherein
- the approximate linear correlations comprise a plurality of eigenvectors that approximate principal eigenvectors of ²⁰ the second data stream matrix.

13. The method of claim 1, further comprising receiving a user-specified accuracy metric for the approximate linear cor relations.

14. The method of claim 1, wherein

the approximate linear correlations meet a user-specified accuracy metric.
15. The method of claim 1, further comprising

- 16. The method of claim 1, further comprising the method of claim 1, further comprising
	-

17. A method comprising:
17. A method comprising:

determining a plurality of elements via a randomly computed singular value decomposition of a first data stream matrix by utilizing a processor, wherein the first data stream matrix is obtained via a reduction of a dimen sionality of a second data stream matrix, wherein the second data stream matrix is based upon a plurality of elements of each of a plurality of continuous data

- determining a probability of computation based upon a ratio of a magnitude of a sampled value of a plurality of sampled values to a calculated product of a determined separating value of eigenvalues and a determined eigen value of the first data stream matrix by utilizing the processor, and
- applying a sound filter to a multimedia application, based upon a quantified approximate linear correlation between the plurality of elements determined via the randomly computed singular value decomposition and upon the probability of computation.

18. A method comprising:

- determining a plurality of elements via a randomly com puted singular value decomposition of a first data stream matrix by utilizing a processor, wherein the first data matrix is obtained via a reduction of a dimensionality of a second data stream matrix, wherein the second data stream matrix is based upon a plurality of elements of each of a plurality of continuous data streams; and
- detecting a denial of service attack not involving address spoofing by utilizing the processor, wherein the denial of service attack is detected based upon quantified approxi mate linear correlation between the plurality of elements determined via the randomly computed singular value decomposition.