
UN IN
US 20200226144A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0226144 A1

Chen et al . (43) Pub . Date : Jul . 16 , 2020

(54) RESOURCE SCALING FOR DISTRIBUTED
DATABASE SERVICES

(71) Applicant : Citrix Systems , Inc. , Fort Lauderdale ,
FL (US)

(72) Inventors : Yongyu Chen , Nanjing (CN) ; Lei Xu ,
Nanjing (CN) ; Wei Long , Nanjing
(CN) ; Liang Bao , Nanjing (CN)

(21) Appl . No .: 16 / 244,575

(52) U.S. CI .
CPC G06F 16/27 (2019.01) ; GO6F 16/21

(2019.01) ; G06F 16/258 (2019.01)
(57) ABSTRACT

Described embodiments provide systems and methods for
resource scaling . A computing device may include a data
processor . The data processor may receive , from a distrib
uted database service (DDS) , usage data on resource
request - units from a plurality of services that use resources
provided by the DDS . The computing device may include a
transform agent . The transform agent may transform at least
a subset of the N sets of data , into at least three transformed
datasets each corresponding to a different frequency range .
The computing device may include a predictor . The predic
tor may provide a predicted value of request - units according
to the at least three transformed datasets . The predictor may
request the DDS to provide the resources up to a number of
request - units at a given time instance according to the
predicted value .

(22) Filed : Jan. 10 , 2019

Publication Classification

(51) Int . Cl .
GOOF 16/27
G06F 16/25
GO6F 16/21

(2006.01)
(2006.01)
(2006.01)

Processor (s)
103

Volatile Memory
122

Communication
Interface (s)

KAPIKK

150

dopoodddodiado

Non - Volatile
Memory

User Interface
123

Operating
System
115

GUI
124

Application (s)

1/0 Device (s)
126 Data

101

Processor (s)
103

Volatile Memory

Communication Interface (s)

Patent Application Publication

150

Non - Volatile Memory 128

User Interface 123 wwwwwwwww

Operating System 115

Jul . 16 , 2020 Sheet 1 of 4

124

Application (s)
116

1/0 Device (s)
126

Data

US 2020/0226144 A1

FIG . 1

200

Distributed Database Service 220 mine Service Interface 235

Database 215a
Database 215b

Database 215n

Patent Application Publication

Storage 240

Service 210a

Usage Data 245a - n Resource Allocator 225

Service 210b

Data Processor 250

Network 230

Jul . 16 , 2020 Sheet 2 of 4

Transform Agent 255 Predictor 260

Service 210n

Storage 265 Message Queue 270

Client 205a

Client 205b

Client 205n

US 2020/0226144 A1

FIG . 2

? - 2

Patent Application Publication Jul . 16 , 2020 Sheet 3 of 4 US 2020/0226144 A1

325 305

320
310

300
315

FIG . 3

330

Request Units

Patent Application Publication Jul . 16 , 2020 Sheet 4 of 4 US 2020/0226144 A1

400

405

Receive Usage Data on
Resource Request Units

410

Provide Datasets for Each
Time Window

415

Transform Subset for Different
Frequency Ranges

420
Determine Predicted Value for

Each Subset

425

Provide Overall Predicted
Value of Request Units

430
Request Service to provide

Resources

FIG . 4

US 2020/0226144 A1 Jul . 16 , 2020
1

RESOURCE SCALING FOR DISTRIBUTED
DATABASE SERVICES

FIELD OF THE DISCLOSURE

[0001] The present application generally relates to data
base services management , including but not limited to
systems and methods for resource scaling of distributed
database services .

BACKGROUND

[0002] A database may store a collection of data in an
organized manner . A database management system may
maintain and control access to the data on the database via
a network . Through the database management system , an
application may access the database through the network to
retrieve or modify the data and add new data onto the
database . The accessing of the database may consume
resources of the database management system .

BRIEF SUMMARY

[0003] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This summary is not
intended to identify key features or essential features , nor is
it intended to limit the scope of the claims included here
with .
[0004] distributed database service (DDS) may admin
ister and maintain a multitude of databases to store data
through a network environment . The databases may be
distributed across several geographic locations all intercon
nected through the network environment . The databases
may store and organize data in accordance to various data
base models , such as relational models , column data storage ,
document - oriented databases , key - value stores , and graph
databases , among others . Separate services connected to the
network environment may also handle and manage the
storage of the data onto the databases . In arranging the data ,
each service may be dedicated to one or more of the database
management , and may run operations on the data using the
specified models . The operations may include , for example ,
reading data , writing onto the data , moving the data , adding
new data , deleting existing data , setting relations , and que
rying , among 4843-8712-3076.1 others . The services may
interface with the distributed database service to carry out
the operations on the data maintained on the databases .
[0005] Several challenges may arise in the interfacing
among the distributed database service , the separate ser
vices , and the databases . In executing the operation , the
service may use an application programming interface (API)
to invoke specific functions of the distributed database
service to access the databases as specified by the function .
The invocation of the function in turn may cause the
distributed database service to consume computation
resources , such as processor , memory , and / or network band
width . The distributed database service may set an allocated
threshold of computational resources to each service in
executing operations for the service . The consumption of
computational resources may be measured in terms of
request - units (RUS) . A request unit may be an aggregated
normalized sum of the consumption of the processor ,
memory , and / or network bandwidth in executing the opera
tion . The allocated threshold may be pre - set , and may be
fixed for all times for the particular service . Some of these

operations may use more computational resources than the
allocated threshold . This may be the case during especially
during peak usage times , and the allocation threshold may be
increased to combat the spikes in utilization of the compu
tational resources . However , the vast majority of the opera
tions may expend less computation resources than the allo
cated threshold , leading to wasted or under - utilized
resources reserved to the service .
[0006] To address the technical challenges in resource
management , a resource allocator connected to the network
environment may dynamically adjust the allocated threshold
by predicting the utilization of computational resources
requested by the services . To predict the utilization of
computational resources , the resource allocator may access
resource consumption data for each service from the dis
tributed database service . The resource consumption data
may indicate the number of request units used by the service
over time in carrying out various operations on the distrib
uted database service . The resource allocator may divide the
consumption data into N sets for instance , with each set
corresponding to a different time window . From the N sets
(e.g. , each of length n) , M subsets corresponding to M
previous time windows prior to the current time may be
transformed (e.g. , using wavelet transformation) into at least
k datasets (e.g. , with k23) . Each of the transformed datasets
(e.g. , of length my) may correspond to a differing frequency
range .
[0007] On each of the k - th transformed datasets , the
resource allocator may apply a model (e.g. , an autoregres
sive - moving average model (ARMA)) to generate or obtain
k new datasets (e.g. , each of length mz + r , where r can be 0
or 1) , to produce prediction data (e.g. , of length n + 1) for the
corresponding frequency range of each dataset . The resource
allocator may apply recomposing or reverse transformation
(e.g. , Reverse Wavelet Transform) to the prediction data
(e.g. , prediction data combined over / across the frequency
ranges) to generate an initial predicted value (Pre) .
[0008] For instance , if Wavelet Transform is used to
decompose or transform datasets of length n into 3 datasets ,
two of the 3 datasets can share the same data length . For
example , if n = 30 , the length of 3 datasets may be 18 , 12 , 12 .
Using these datasets , ARMA can be applied to generate new
datasets with lengths of 19 , 13 , 13. Then , recomposing the
new datasets can yield prediction data of length n + 1 = 31 . If
the lengths of the 3 datasets are 20 , 13 , 13 , recomposing the
corresponding new datasets can yield prediction data of
length 33. In this case , the predicted data is also useful but
2 extra data should be dropped . There may be no result if we
try to recompose new datasets with lengths of 20 , 14 , 14 .
[0009] The new datasets each has a length of mz + r , where
r can be 0 or 1 , such that there are only two possible lengths
for each new dataset . For example , if the lengths of the 3
datasets are A , B , B , ARMA can be applied to generate new
datasets with lengths of A + 1 , B , B or A + 1 , B + 1 , B + 1 .
Recomposing (e.g. , using revert Wavelet Transform) the
new datasets can produce prediction data of length n + 1 or
n + 2 or n + 3 .
[0010] To account for any spikes , other sudden increases
or other potential anomalies , a correction factor (a * Inc) may
be added to the initial predicted value to determine a
predicted value (Fin = Pre + a * Inc) . In some embodiments ,
such a correction factor is not added , and thus Fin = Pre . In
addition , an amount based on the standard deviation of the
resource consumption data over the M subsets may be added

US 2020/0226144 A1 Jul . 16 , 2020
2

by the resource allocator to the predicted value Fin as a
buffer to compute a final predicted value (Est = Finn , + 20) .
Using the final predicted value , the resource allocator may
determine or set an overall predicted value for the utilization
of the computation resources . With the overall predicted
value , the resource allocator may dynamically set the allo
cation threshold to request the distributed database service to
provide a specific number of request units to the service at
a given time . As the predicted value may more closely match
the actual consumption for the operations of the services , the
likelihood of under - utilization in computational resources
may be reduced . Hence , dollar costs associated with allo
cating the computational resources (e.g. , or request units)
can be substantially reduced by dynamically setting the
allocation threshold , as compared to a setup that sets and
uses a static allocation threshold . In this manner , resources
on the distributed database services may be saved , freeing up
computational resources for other functions .
[0011] At least one aspect of this disclosure is directed to
a server (sometimes referred herein as a computing device)
for resource scaling . The server may include a data proces
sor . The data processor may receive , from a distributed
database service (DDS) , usage data on resource request
units from a plurality of services that use resources provided
by the DDS . The server may include a transform agent . The
transform agent may transform at least a subset of the N sets
of data , into at least three transformed datasets each corre
sponding to a different frequency range . The server may
include a predictor . The predictor may provide a predicted
value of request - units according to the at least three trans
formed datasets . The predictor may request the DDS to
provide the resources up to a number of request - units at a
given time instance according to the predicted value .
[0012] In some embodiments , the data processor may
store the received usage data into a queue in memory . In
some embodiments , the data processor may perform a
map - and - reduce of at least a portion of the usage data in real
time , to provide a first set of the N sets of data . In some
embodiments , the transform agent may transform the at least
a subset of the N sets of data using Wavelet Transform . In
some embodiments , the transform agent may process the at
least a subset of the N sets of data as a stationary stochastic
process . In some embodiments , the at least three trans
formed datasets may correspond to a dataset indicative of a
trend , a dataset indicative of cyclic data , and a dataset
indicative of noise .
[0013] In some embodiments , the predictor may provide
the predicted value using at least one of : autoregressive
moving average model (ARMA) method , Kalman filtering ,
or Holt's Linear Trend method . In some embodiments , the
predictor may perform a prediction on each of the at least
three transformed datasets , and to provide the predicted
value of request - units according to the predictions . In some
embodiments , the predictor may determine a standard devia
tion of the at least a subset of the N sets of data . In some
embodiments , the predictor may request the DDS to provide
the resources up to an updated number of request - units at a
given time instance according to the predicted value
bounded by twice the standard deviation .
[0014] At least one aspect of this disclosure is directed to
a method of resource - scaling . The method may include
receiving , from a distributed database service (DDS) , usage
data on resource request - units from a plurality of services
that use resources provided by the DDS . The method may

include providing N sets of data corresponding to N time
windows , using the usage data . The method may include
transforming at least a subset of the N sets of data , into at
least three transformed datasets each corresponding to a
different frequency range . The method may include provid
ing a predicted value of request - units according to the at
least three transformed datasets . The method may include
requesting the DDS to provide the resources up to a number
of request - units at a given time instance according to the
predicted value .
[0015] In some embodiments , the method may include
storing the received usage data into a queue in memory . In
some embodiments , the method may include performing a
map - and - reduce of at least a portion of the usage data in real
time , to provide a first set of the N sets of data . In some
embodiments , the method may include transforming the at
least the subset of the N sets of data using Wavelet Trans
form .
[0016] In some embodiments , the method may include
processing the at least the subset of the N sets of data as a
stationary stochastic process . In some embodiments , the at
least three transformed datasets may correspond to a dataset
indicative of a trend , a dataset indicative of cyclic data , and
a dataset indicative of noise . In some embodiments , the
method may include providing the predicted value using
autoregressive - moving average model (ARMA) method ,
Kalman filtering , or Holt's Linear Trend method .
[0017] In some embodiments , the method may include
performing a prediction on each of the at least three trans
formed datasets , and providing the predicted value of
request - units according to the predictions . In some embodi
ments , the method may include determining a standard
deviation of the at least a subset of the N sets of processed
usage data . In some embodiments , the method may include
requesting the DDS to provide the resources up to an
updated number of request - units at a given time instance
according to the predicted value bounded by twice the
standard deviation .
[0018] At least one aspect of this disclosure is directed to
a non - transitory computer readable medium storing program
instructions . The program instructions may cause one or
more processors to receive , from a distributed database
service (DDS) , usage data on resource request - units from a
plurality of services that use resources provided by the DDS .
The program instructions may cause one or more processors
to provide N sets of data corresponding to N time windows ,
using the usage data . The program instructions may cause
one or more processors to transform at least a subset of the
N sets of data , into at least three transformed datasets each
corresponding to a different frequency range . The program
instructions may cause one or more processors to provide a
predicted value of request - units according to the at least
three transformed datasets . The program instructions may
cause one or more processors to request the DDS to provide
the resources up to a number of request - units at a given time
instance according to the predicted value .
[0019] In some embodiments , the program instructions
may further cause one or more processors to transform the
at least a subset of the N sets of data using Wavelet
Transform , into at least three transformed datasets each
corresponding to a different frequency range . In some
embodiments , the program instructions may further cause
one or more processors to provide a predicted value of

US 2020/0226144 A1 Jul . 16 , 2020
3

request - units according to the at least three transformed
datasets , using an autoregressive - moving average model
(ARMA) method .

BRIEF DESCRIPTION OF THE FIGURES

[0020] The foregoing and other objects , aspects , features ,
and advantages of the present solution will become more
apparent and better understood by referring to the following
description taken in conjunction with the accompanying
drawings , in which :
[0021] FIG . 1 is a block diagram of embodiments of a
computing device :
[0022] FIG . 2 is a block diagram of an illustrative embodi
ment of a system for resource scaling for distributed data
base services ;
[0023] FIG . 3 is an example graph of consumption of
computational resources on distributed database services ;
and
[0024] FIG . 4 is a flow diagram of an illustrative embodi
ment of a method of resource scaling for distributed data
base services .
[0025] The features and advantages of the present solution
will become more apparent from the detailed description set
forth below when taken in conjunction with the drawings , in
which like reference characters identify corresponding ele
ments throughout . In the drawings , like reference numbers
generally indicate identical , functionally similar , and / or
structurally similar elements .

103 out of volatile memory 122. Data may be entered using
an input device of GUI 124 or received from I / O device (s)
126. Various elements of computer 101 may communicate
via communication bus 150. Computer 101 as shown in FIG .
1 is shown merely as an example , as clients 102 , servers 106
and / or appliances 200 and 205 may be implemented by any
computing or processing environment and with any type of
machine or set of machines that may have suitable hardware
and / or software capable of operating as described herein .
[0031] Processor (s) 103 may be implemented by one or
more programmable processors executing one or more com
puter programs to perform the functions of the system . As
used herein , the term “ processor ” describes an electronic
circuit that performs a function , an operation , or a sequence
of operations . The function , operation , or sequence of opera
tions may be hard coded into the electronic circuit or soft
coded by way of instructions held in a memory device . A
" processor ” may perform the function , operation , or
sequence of operations using digital values or using analog
signals . In some embodiments , the “ processor ” can be
embodied in one or more application specific integrated
circuits (ASICs) , microprocessors , digital signal processors ,
microcontrollers , field programmable gate arrays (FPGAs) ,
programmable logic arrays (PLAs) , multi - core processors ,
or general - purpose computers with associated memory . The
“ processor ” may be analog , digital or mixed - signal . In some
embodiments , the “ processor ” may be one or more physical
processors or one or more “ virtual ” (e.g. , remotely located
or “ cloud ”) processors .
[0032] Communications interfaces 118 may include one or
more interfaces to enable computer 101 to access a computer
network such as a LAN , a WAN , or the Internet through a
variety of wired and / or wireless or cellular connections .
[0033] In described embodiments , the computing device
101 may execute an application on behalf of a user of a client
computing device , may execute a virtual machine , which
provides an execution session within which applications
execute on behalf of a user or a client computing device ,
such as a hosted desktop session , may execute a terminal
services session to provide a hosted desktop environment , or
may provide access to a computing environment including
one or more of : one or more applications , one or more
desktop applications , and one or more desktop sessions in
which one or more applications may execute .
[0034] Additional details of the implementation and
operation of network environment , computer 101 and client
and server computers may be as described in U.S. Pat . No.
9,538,345 , issued Jan. 3 , 2017 to Citrix Systems , Inc. of Fort
Lauderdale , Fla . , the teachings of which are hereby incor
porated herein by reference .

DETAILED DESCRIPTION

[0026] For purposes of reading the description of the
various embodiments below , the following descriptions of
the sections of the specification and their respective contents
may be helpful :
[0027] Section A describes a computing environment
which be useful for practicing embodiments described
herein ; and
[0028] Section B describes systems and methods for
resource scaling for distributed database services .

may

A. Computing Environment
[0029] Prior to discussing the specifics of embodiments of
the systems and methods of an appliance and / or client , it
may be helpful to discuss the computing environments in
which such embodiments may be deployed .
[0030] As shown in FIG . 1 , computer 101 may include one
or more processors 103 , volatile memory 122 (e.g. , RAM) ,
non - volatile memory 128 (e.g. , one or more hard disk drives
(HDDs) or other magnetic or optical storage media , one or
more solid state drives (SSDs) such as a flash drive or other
solid state storage media , one or more hybrid magnetic and
solid state drives , and / or one or more virtual storage vol
umes , such as a cloud storage , or a combination of such
physical storage volumes and virtual storage volumes or
arrays thereof) , user interface (UI) 123 , one or more com
munications interfaces 118 , and communication bus 150 .
User interface 123 may include graphical user interface
(GUI) 124 (e.g. , a touchscreen , a display , etc.) and one or
more input / output (1/0) devices 126 (e.g. , a mouse , a
keyboard , etc.) . Non - volatile memory 128 stores operating
system 115 , one or more applications 116 , and data 117 such
that , for example , computer instructions of operating system
115 and / or applications 116 are executed by processor (s)

B. Systems and Methods for Resource Scaling for
Distributed Database Services

[0035] Referring now to FIG . 2 , depicted is a block
diagram of an embodiment of a system 200 for resource
scaling for distributed database services . In brief overview ,
the system 200 may include one or more clients 205a - n
(hereinafter generally referred to as client 205) , one or more
services 210a - n (hereinafter generally referred to as service
210) , at least one distributed database service 220 , one or
more databases 215a - n (hereinafter generally referred to as
database 215) , and at least one resource allocator 225. The
clients 205 , the services 210 , the databases 220 , the distrib
uted database service 220 , and / or the resource allocator 225

US 2020/0226144 A1 Jul . 16 , 2020
4

may be situated or distributed across one or more differing
geographic locations . The clients 205 , the services 210 , the
databases 220 , the distributed database service 220 , and the
resource allocator 225 may be communicatively coupled to
one another via at least one network 230. In some embodi
ments , the network 230 may comprise or correspond to a
private network (e.g. , a virtual private network (VPN) , a
local area network (LAN) , or a wide area network (WAN)) .
In some embodiments , the network 230 may comprise or
correspond to a public network (e.g. , the Internet or public
switch telephone network (PSTN)) . In some embodiments ,
the services 210 , the databases 215 , the distributed database
service 220 , and / or the resource allocator 225 may reside on
the network 230 as part of a cloud computing system , with
which the one or more clients 205 may connect .
[0036] The distributed database service 220 may include
at least one service interface 235 and at least one storage 240
to store and maintain usage data 245a - n (hereinafter gener
ally referred to usage data 245) . The resource allocator 225
(sometimes herein generally referred to a server or a com
puting device) may include at least one data processor 250 ,
at least one transform agent 255 , at least one predictor 260 ,
and / or at least one storage 265 to store and maintain at least
one message queue 270. In some embodiments , the resource
allocator 225 may be separate from the distributed database
service 220. In some embodiments , the resource allocator
225 may be part of the distributed database service 220 , and
the distributed database service 220 may perform the func
tionalities of the resource allocator 225. In some embodi
ments , the functionalities of the data processor 250 , the
transform agent 255 , the predictor 260 , and the storage 265
may be distributed between the distributed database service
220 and the resource allocator 225 .
[0037] Each of the above - mentioned elements or entities is
implemented in hardware , or a combination of hardware and
software , in one or more embodiments . Each component of
the system 200 may be implemented using hardware or a
combination of hardware or software detailed above in
connection with FIG . 1. For instance , each of these elements
or entities can include any application , program , library ,
script , task , service , process or any type and form of
executable instructions executing on hardware of clients
205 , the services 210 , the databases 215 , the distributed
database service 220 (including the service interface 235 and
the storage 240) , and the resource allocator 225 (including
the data processor 250 , the transform agent 255 , the predic
tor 260 , and the storage 265) , among others . The hardware
includes circuitry such as one or more processors in one or
more embodiments .
[0038] In further detail , each database 215 may store and
maintain data . The data may include any type , value , or
symbol , among others that can be stored on a computer
readable storage unit . For example , the data may include
numbers (e.g. , binary , hexadecimal , decimal , double , float ,
or integer) or alphanumeric characters , or any combination
thereof . The data may be arranged on the databases 215 in
accordance with any database model . The database model
may include : a relational database (e.g. , Structured Query
Language (SQL)) , a column model (e.g. , Apache Cassan
draTM , Apache AccumuloTM , Amazon Dynamo DBTM , and
DruidTM) , a document - oriented model (e.g. , MongoDBTM ,
OrientDBTM , and Apache CouchDBTM) , a key - value model
(e.g. , Oracle NoSQL DatabaseTM , Apache RiverTM , Apache
IgniteTM , and FoundationDBTM) , and a graph model (e.g. ,

GremlinTM , ArangoDBTM , and Apache GiraphTM) among
others . In some embodiments , each database 215 may be
dedicated to or compatible with one or more of the database
models . The data stored on the database 215 may be
arranged or organized in accordance with one or more of the
database models .
[0039] Each service 210 may administer and manage the
data stored and maintained on one or more of the databases
215. The administering and managing of the data stored on
the databases 215 may be perform through the distributed
database service 220. In managing the data , the service 210
may arrange or organize the data on the one or more
databases 215. In some embodiments , the service 210 may
arrange the data on the databases 215 in accordance with one
or more of the database models . In some embodiments , the
service 210 may be assigned or dedicated to arranging the
data in accordance with the one or more of the database
models . For example , one service 210 may be dedicated to
relationship databases , while another service 210 may be
dedicated to a graph model in managing and organizing the
data in the databases 215. In some embodiments , the service
210 may be assigned or dedicated to a particular set of
databases 215 to manage over the network 230. In some
embodiments , the service 210 may be assigned or dedicated
to the databases 215 with data arranged in accordance with
the same database models . For example , one service 210
may be dedicated to handling data arranged in accordance
with the key - value model , and may manage the databases
215 with the data also arranged based on the key - value
model . In some embodiments , the service 210 may be
assigned or dedicated to the databases 215 in one or more
geographical regions . For example , the service 210 may be
assigned to manage databases 215 in North America .
[0040] Each service 210 may execute or carry out one or
more operations on the data stored and maintained on one or
more of the databases 215. The one or more operations on
the data on one or more of the databases 215 may include :
reading the data , writing onto the data , moving the data ,
adding new data onto the database 215 , deleting existing
data , defining relationships among the data , and querying for
a subset of the data . Each operation may be defined by a
function with one or more parameters . The function may
specify a type of operation to be carried out . The parameters
may include values or settings according to which the
operation is to be executed on the data maintained on the
database 215. For example , the function may be a query
operation to find a subset of data from the database 215 and
the parameters may be alphanumeric characters to search
for . In some embodiments , the service 210 may carry out the
operations in accordance with executable instri tions , such
as an application , program , library , script , task , or process ,
among others . The executable instructions may be config
ured on the service 210 (e.g. , by an administrator of the
service 210) or may be provided by one of the clients 205 .
In some embodiments , the service 210 may carry out the
operations in response to receipt of a request from one of the
clients 205 via the network . The request may specify the one
or more operations to be carried out by the service 210. The
request may also include the specified function with the one
or more parameters . For example , an end user through the
client 205 may send a request specifying the addition of an
entity onto the existing data maintained on the database 215 .
[0041] The execution of the one or more operations on the
data maintained on the databases 215 may be facilitated or

9

US 2020/0226144 A1 Jul . 16 , 2020
5

handled at least in part by the distributed database service
220. In carrying out operations on the data stored on the one
or more databases 215 , the service 210 may interface or
otherwise communicate the distributed database service 220 .
The service 210 may generate a request to send to the
distributed database 220 in furtherance of the operation . In
some embodiments , the generation of the request may be in
accordance with an application programming interface
(API) . The API may include a set of definitions for opera
tions for a particular database model (e.g. , relational , col
umn , document - orient , key - value , and graph model) . The
definitions may include the function with one or more
parameters corresponding to the operation . The request
generated by the service 210 may include the specified
function with one or more parameters . Upon generation , the
service 210 may transmit the request to the distributed
database service 220 via the network 230. In some embodi
ments , the client 205 interfaces with or otherwise commu
nicates directly with the distributed database service 220 to
carry out the operations . The client 205 may generate a
request to send to the distributed database 220 in furtherance
of the operation . The generation of the request by the client
205 may be in accordance with the API . The request
generated by the client 205 may include the specified
function with one or more parameters . One of the parameters
may specify a particular service 210 to carry out the opera
tion at least in part . Upon generation , the client 205 may
transmit the request to the distributed database service 220
via the network 230 .
[0042] The service interface 235 executing on the distrib
uted database service 220 may interface with the services
210 in carrying out the one or more operations on the data
maintained on one or more of the databases 215. The
distributed database service 220 may be a Database as a
Service (DBaaS) platform , such as Azure Cosmos DBTM ,
Amazon Dynamo DBTM , IBM Information Management
SystemTM , Google Cloud DatastoreTM , and Oracle Database
Cloud ServiceTM , among others . The service interface 235
may reserve , allocate , or otherwise set aside an amount of
computational resources on the distributed database service
220 to carrying out the operations for each service 210 on
the data on the databases 215 at a given time instance . The
service 210 may use the computation resources on the
distributed database service 220 up to the allocated amount .
The computation resources may include processing ,
memory , and network bandwidth , among other performance
metrics , on the distributed database service 220. The con
sumption of computational resources may be measured in
terms of request units . Each request unit may correspond to
an aggregated normalized sum of the consumption of pro
cessing power , memory space , and network bandwidth on
the distributed database service 220 to carry out the opera
tion . In some embodiments , the aggregated normalized sum
may be a weighted summation in accordance to a function
of the processing capacity , memory space , and network
bandwidth , among other performance metrics . The request
units may vary depending on the type of operation . For
example , a read operation may consume five request units
and a query operation may consume fifty request units . The
amount of computational resources allocated to the service
210 may be also measured in terms of the request units . The
service interface 235 may reserve , allocate , or otherwise
provide up to a maximum number of request unit corre
sponding to the allocated amount of computational resources

at a given time instance . The time instance may be measured
in terms of a time window or interval .
[0043] The service interface 235 may receive the request
to carry out the operation from the server 210 via the
network 230. In response to receipt of the request , the
service interface 235 may parse the request to identify the
operation to be executed . In some embodiments , the service
interface 235 may parse or process the request in accordance
with the API for the database model . By parsing in accor
dance with the API , the service interface 235 may identify
the specified function and the one or more parameters for the
function to carry out the operation . With the identification of
the function and the one or more parameters , the service
interface 235 may then execute the operation as specified in
the request . In some embodiments , the service interface 235
may invoke a process or routine on the distributed database
service 220 to carry out the operation as specified by the
function and the parameters for the function . In carrying out
the operation , the service interface 235 may consume com
putational resources of the distributed database service 220 .
For example , the service interface 235 may run computa
tions to carry out the operation , resulting in consumption of
processing power . The service interface 235 may temporar
ily store data on the distributed database service 220 , using
memory space . Furthermore , the service interface 235 may
access the databases 215 via the network 230 , leading to
expenditure of network bandwidth .
[0044] In addition , the service interface 235 may generate
the usage data 245 for each service 210. The usage data 245
may indicate or include the amount of computational
resources consumed in carrying out operations for the ser
vice 210 over time . The usage data 245 may indicate or
include the amount of computational resources in terms of
the request units provided by the distributed database service
220 to the service 210. In some embodiments , the usage data
245 may include the resources units provided by the dis
tributed database service 220 to the service 210 over a
sampling time window . The sampling time window may
range , for example , between 10 seconds to 60 minutes . To
generate the usage data 245 for each service 210 , the service
interface 235 may measure , determine , or identify a number
of request units consumed each time an operation is carried
out for the service 210. The service interface 235 may keep
track of the consumption of computational resources on the
distributed database service 220 , such as processing ,
memory , and network bandwidth . In some embodiments , the
service interface 235 may identify a margin of increase in
consumption of processing power on the distributed data
base service 220 during the execution of the operation . In
some embodiments , the service interface 235 may identify a
margin of increase in consumption of memory use at the
distributed database service 220 while the operation is
carried out . In some embodiments , the service interface 235
may identify a margin of increase in consumption of net
work bandwidth by the distributed database service 220 in
accessing the network 230 as the operation is executed .
Based on the margin of increase in consumption of process
ing , memory use , and network bandwidth , the service inter
face 235 may determine the number of request units
expended in carrying out the operation for the service 210 .
The service interface 235 may include or insert the deter
mined number of request units into the usage data 245 for
the service 210. In some embodiments , the service interface
235 may include number of resources units into the usage

US 2020/0226144 A1 Jul . 16 , 2020
6

data 245 for the corresponding sampling time window . In
some embodiments , the service interface 235 may maintain
the usage data 245 on the storage 240 .
[0045] The data processor 250 executing on the resource
allocator 225 may receive the usage data 245 for at least one
of the services 210 from the distributed database service
220. In some embodiments , the data processor 250 may
access the storage 240 of the distributed database service
220 to identify or retrieve the usage data 245 for the service
210. In some embodiments , the data processor 250 may send
a request for usage data to the distributed database 220. The
request may indicate the service 210 for which the usage
data 245 is to be received . Subsequent to the sending of the
request , the data processor 250 may receive the usage data
245 from the distributed database service 220 via the net
work 230. In some embodiments , the data processor 250
may receive the usage data 245 in a set time interval . The
time interval may correspond or be relative to the same
sampling time window as the service interface 235 in
generating the usage data 245. For example , the time inter
val may be equal to the sampling time window , a fraction of
the sampling window , or a multiple of the sampling window .
In some embodiments , the data processor 250 may receive
the usage data 245 in response to a request (e.g. , from a
network administrator of the resource allocator 225) . The
data processor 250 may store the received usage data 245
into the message queue 270 maintained on the storage 265 .
The message queue 270 may maintain the usage data 245 for
one or more of the services 210. The message queue 270
may arrange or index the usage data 245 by the correspond
ing service 210. In some embodiments , data processor 250
may insert or add the newly received usage data 245 into the
message queue 270 maintained on the storage 265 .
[0046] In some embodiments , the data processor 250 may
intercept , receive , or otherwise identify the request to carry
out the operations from each service 210 sent to the distrib
uted database service 220 via the network 230. The data
processor 250 may store each received request from the
service 210 into the message queue 270 maintained on the
storage 265. Using the requests stored on the message queue
270 , the data processor 250 may separately generate the
usage data 245 for the service 210. In some embodiments ,
the data processor 250 may generate the usage data 245 at
the sampling tine window . To generate the usage data 245
for each service 210 , the data processor 250 may estimate ,
determine , or identify a number of request units consumed
by the distributed database service 220 for the service 210 .
The data processor 250 may generate the usage data 245
using the requests stored on the message queue 270 in the
same manner as the service interface 235. The data proces
sor 250 may keep track of the consumption of computational
resources on the distributed database service 220 in carrying
out the operations requested by the service 210 , such as
processing , memory , and network bandwidth . Based on the
margin of increase in consumption of processing , memory
use , and network bandwidth identified by the data processor
250 , the data processor 250 may determine the number of
request units expended in carrying out the operation for the
service 210. The data processor 250 may include or insert
the determined number of request units into the usage data
245 for the service 210. In some embodiments , the data
processor 250 may include the number of resources units
into the usage data 245 for the corresponding sampling time

window . In some embodiments , the data processor 250 may
maintain the usage data 245 on the storage 265 .
[0047] With the receipt of the usage data 245 , the data
processor 250 may identify or otherwise provide N sets of
the usage data 245 for the service 210 corresponding to N
time windows . Each of the N sets may indicate or include the
number of request units consumed by the distributed data
base service 220 in carrying out the operation for the service
210 over the corresponding time window . The number of
sets (N) may be of any number , ranging from 5 to 50,000 for
instance . In some embodiments , the time window for the set
may be set or established based on to the sampling time
window for generating the usage data 245. For example , the
time window for the set may be equal to the sampling
window , a fraction of the sampling window , or a multiple of
the sampling window , among other values . In some embodi
ments , the data processor 250 may identify or otherwise
provide a set for the N sets of the usage data 245 , each time
the usage data 245 is received from the distributed database
service 220. In some embodiments , the data processor 250
may identify or otherwise provide a set for the N sets of the
usage data 245 , each time usage data 245 is generated from
the requests stored on the message queue 270 of the storage
265. In this manner , the data processor 250 may identify or
provide the N sets of the usage data 245 (e.g. , in real - time)
as the requests to carry out operations are received by the
distributed database service 220 from the services 210 via
the network 230. The data processor 250 may add , append ,
or otherwise include the set corresponding to the new usage
data 245 onto the N sets of the usage data 245 .
[0048] In providing the N sets of the usage data 245 for the
service 210 , the data processor 250 may perform one or
more functional programming techniques using the usage
data 245. In some embodiments , the data processor 250
(e.g. , based on Spark streaming processing) may perform a
map - and - reduce on at least a portion of the usage data 245
to provide at least one of the N sets from the usage data 245 .
The portion of the usage data 245 may correspond to a part
of the usage data 245 within a lookback window from the
present or the most recent sample of the usage data 245. The
lookback window may range between 15 seconds to 1 year .
In this manner , the functional programming techniques may
be applied to the usage data 245 in real - time , as additional
usage data 245 is received from the distributed database
service 220. In some embodiments , the data processor 250
may identify the portion of the usage data 245 to which the
map - and - reduce is to be performed . In performing the
map - and - reduce , the data processor 250 may apply a map
operation on the portion of the usage data 245. The map
operation may include generating a set of pairs from the
portion of the usage data 245. Each pair may be a key - value ,
and may include the number of request units consumed by
the distributed database service 220 in carrying out the
operations for the service 210 with a corresponding time
window . In addition , the data processor 250 may apply a
reduce operation onto the portion of the usage data 245. In
some embodiments , the data processor 250 may use the set
of pairs generated from the map operation . From the set of
pairs , the data processor 250 may identify a subset of pairs
that are equivalent in value . With the identification of the
subset of pairs with equivalent values , the data processor
250 may remove the redundant subset of pairs from the set
for further processing of the usage data 245. In this manner ,

US 2020/0226144 A1 Jul . 16 , 2020
7

the amount of data to process may be condensed and
reduced , thereby resulting in faster computations .
[0049] With the provision of the N sets of the usage data
245 for the service 210 (e.g. , each of length n) , the transform
agent 255 executing on the resource allocator 225 may
transform at a least M subsets of the N sets into k datasets
(e.g. , each of length mz) . The M subsets of the N sets may
correspond to the usage data 265 within a lookback window
from the present , and may include the most subsets in the N
set for the previous M time windows . The number of subsets
(M) may be of any number less than the total number of sets
(N) . In some embodiments , the transform agent 255 may
select or identify the M subsets from the N sets based on the
corresponding time windows of the N sets . For each set in
the N sets of the usage data 245 , the transform agent 255
may traverse through the N sets to identify a corresponding
time window . The transform agent 255 may compare the
corresponding time window to the lookback window to
determine whether the time window is within the lookback
window . If the corresponding time window of the set is
within the lookback window , the transform agent 255 may
include the set into the M subsets for further processing .
Otherwise , if the corresponding time window of the set is
outside the lookback window , the transform agent 255 may
exclude the set from the M subsets .
[0050] Using the M subsets from the N sets of the usage
data 245 , the transform agent 255 may apply at least one
decomposition (or transformation) operation on the M sub
sets to transform to or generate the k datasets . The decom
position operation may convert the M subsets from one
domain to another domain . For example , the M subsets may
be time - series data , and the transformed k datasets may be
a frequency domain representation of the data of the M
subsets . The decomposition operation may include a Wave
let transform , a Fourier transform (e.g. , discrete Fourier
transform for a cyclic series or a short - time Fourier trans
form) , Holt's Linear Trend method , and / or a Hilbert trans
form , among others . In some embodiments , the transform
agent 255 may apply the decomposition operation over the
entire M subsets . In some embodiments , the transform agent
255 may apply the decomposition operation to each of the M
subsets . For example , the transform agent 255 may apply the
decomposition operation (e.g. , Fourier transform , such as
Wavelet Transform) over the time - series usage data 245 in
each of the M subsets to generate a resultant k - th dataset .
The data in the k - th dataset may correspond to the frequency
domain of the time - series usage data 245 of the correspond
ing subset .
[0051] Applying the decomposition operation onto the M
subsets , the transform agent 255 may generate k datasets .
Each of the k datasets may correspond to a constituent
component of the M subsets . The number of k datasets may
vary , and , in some embodiments , may be at least three (or at
least two) . Each k dataset may correspond to a different
frequency component of the M subsets , such as low , median ,
and high frequency bands . In some embodiments , one of the
k datasets may correspond to a lower frequency component
of the M subsets . The k - th transformed dataset correspond
ing to the lower frequency component may indicate a trend
in the data of the M subsets . In some embodiments , one of
the k datasets may correspond to a median frequency
component of the M subsets . The median frequency com
ponent may be greater in frequency than the lower frequency
component . The k - th transformed dataset corresponding to

the median frequency component may indicate cycles of
periods (or periodicity or cycles) in the data of the M
subsets . In some embodiments , one of the k datasets may
correspond to a higher frequency component of the M
subsets . The higher frequency component may be greater in
frequency than the lower frequency component and the
median frequency component . The k - th transformed dataset
corresponding to the median frequency component may
indicate spikes or noise in the data of the M subsets .
[0052] In transforming the M subsets , the transform agent
255 may process the M subsets as a stochastic process , such
as a stationary stochastic process . By processing the M
subsets as a stationary stochastic process , the transform
agent 255 may modify the data in at least one of the k
datasets . In some embodiments , the transform agent 255
may amplify or increase the values of the data in the k - th
transformed dataset corresponding to the lower frequency
component in the data of the M subsets . In some embodi
ments , the transform agent 255 may increase a weight (e.g. ,
a multiplicative factor) for the values in the k - th transformed
dataset corresponding to the lower frequency component . In
some embodiments , the transform agent 255 may decrease
or suppress the values of the data in the k - th transformed
dataset corresponding to the higher frequency component . In
some embodiments , the transform agent 255 may decrease
a weight (e.g. , a multiplicative factor) for the values in the
k - th transformed dataset corresponding to the higher fre
quency component .
[0053] According to the k dataset from transforming the M
subsets of the usage data , the predictor 260 executing on the
resource allocator 225 may determine or provide a predicted
value of request units (Prex) . For each of the k datasets , the
predictor 260 may determine corresponding prediction data .
The corresponding prediction data may indicate or provide
a constituent contributory component from the correspond
ing transformed k - th dataset to the final predicted value of
request units at a given time instance . The time instance may
be within a look forward time of a present or the most recent
sampling of the usage data 245. In determining the corre
sponding prediction data , the predictor 260 may apply a
statistical model to the corresponding transformed dataset of
the k datasets . The statistical model may have the trans
formed dataset corresponding to one component of the
transformed usage data 245 as an input and have the
corresponding prediction data (e.g. , as a contributory factor
from the component) as an output . The statistical model may
include a time series model (e.g. , an autoregressive model
(AM) model , autoregressive integrated moving average
(ARIMA) model , autoregressive - moving average (ARMA)
model , and vector auto - regression (VAR) , Kalman filtering ,
and Holt's Linear Trend method , among others . As there are
k datasets , the predictor 260 may determine k corresponding
prediction data . The resource allocator 225 (e.g. , predictor
260) may combine the k corresponding prediction data (via
weighted combination or any function) , e.g. , over / across the
frequency ranges . The resource allocator 225 (e.g. , trans
form agent 255) may apply a recompose or reverse trans
formation (e.g. , Reverse Wavelet Transform) to the predic
tion data (e.g. , prediction data combined over / across the
frequency ranges) to generate an initial predicted value (Pre)
over / across the frequency ranges . In some embodiments , the
resource allocator 225 (e.g. , transform agent 255) may apply
a recompose or reverse transformation to the prediction data
(e.g. , for a particular frequency range) to generate an initial

US 2020/0226144 A1 Jul . 16 , 2020
8

predicted value (e.g. , for the particular frequency range) .
The resource allocator 225 may combine the initial predicted
values for the frequency ranges to produce an initial pre
dicted value over / across the frequency ranges .
[0054] In some embodiments , to account for spikes , other
sudden increases , or any other anomalous factors , the pre
dictor 260 may modify the initial predicted value by a
correction factor (Inc) . The initial predicted valued modified
by the correction factor may sometimes be referred to as an
intermediary predicted value (Fin) . In some embodiments ,
the predictor 260 may add the correction factor to the initial
predicted value for the transformed dataset . The correction
factor may differ for the initial predicted value each of the
components to address the effect of the spikes or other
anomalous factors varying across the k datasets . The cor
rection factor may be positive to increase the initial pre
dicted value or may be negative to decrease the initial
predictive value .
[0055] In some embodiments , the predictor 260 may
adjust the correction factor by a multiplicative factor
(a * Inc) . The multiplicative factor may be a function of the
data in one or more of the transformed dataset . In some
embodiments , the predictor 260 may set the multiplicative
factor using an adjustment prediction model . The adjustment
prediction model may include an artificial neural network
(ANN) , a support vector machine (SVM) , a naïve Bayesian
model , a linear regression model , and a logistic regression
model , among others . The adjustment prediction model may
be trained using a training dataset . The training dataset may
include sample numbers of request units decomposed into
constituent components and the associated multiplicative
factor for each sample number in the constituent component .
By applying the adjustment model , the predictor 260 may
determine the multiplicative factor . With the determination
of the multiplicative factor , the predictor 260 may add the
correction factor adjusted by the multiplicative factor to the
initial predicted value (Fin = Pre + a * Inc) . In some embodi
ments , such a correction factor is not added , and thus
Fin = Pre .
[0056] In some embodiments , the predictor 260 may
determine a standard deviation (e.g. , a standard deviation of
the resource consumption data over the M subsets , of the
resource consumption data over the N sets , or of one or more
of the k - th transformed dataset) (a) to buffer against potential
spikes or anomalies in the number of resources consumed
for carrying out the operations of the service 210. The
standard deviation may measure the dispersion , distribution
or deviation of the data in the corresponding dataset (s) /
subset (s) / set (s) . In some embodiments , the predictor 260
may modify the initial predicted value by the standard
deviation (Pre + a) . In some embodiments , the predictor 260
may modify the initial predicted value by a multiple of the
standard deviation (Pre + bo) . The multiple for the standard
deviation may range between 2 to 6. In some embodiments ,
the predictor 260 may modify the initial predicted value by
the correction factor and / or the standard deviation to pro
duce a final predicted value Fin , e.g. , (Fin = Pre + a * Inc + 20)
or (Fin = Pre + 20) .
[0057] Using the initial predicted values for the k datasets ,
the predictor 260 may determine the final predicted value
(sometimes referred herein as an overall predicted value) for
the number of request units to be consumed for carrying out
the functions of the service 210 at a given time instance . The
time instance may be within a look forward time of a present

or the most recent sampling of the usage data 245. In some
embodiments , the predictor 260 may use predicted values
for the k datasets to determine the final predicted value . The
predictor 260 may determine the final predicted value based
on a combination of the initial predicted values correspond
ing to the k datasets or frequency ranges . In some embodi
ments and for example , the predictor 260 may determine a
weighted summation of the initial predicted values for the k
datasets . The weight for the initial predicted value for the
k - th dataset corresponding to the lower frequency compo
nent of the M subsets may be higher than the weight for the
initial predicted value for the k - th dataset corresponding to
the higher frequency component of the M subsets . Upon
determination , the predictor 260 may set the weighted sum
as the final predicted value . The final predicted value may
indicate the number of request unit that is to be allocated to
the service 210 at the given time instance .
[0058] In accordance with the final predicted value , the
predictor 260 may request the distributed database service
220 to provide computational resources up to the number of
requests at the given time instance for service 210. In some
embodiments , the predictor 260 may generate a request to
allocate the number of request units . The request may
indicate or identify the service 210 for which the number of
request units are to be allocated . The request may also
include the new maximum number of request numbers up to
which the distributed database service 220 is to provide in
carrying out the operations for the service 210. In some
embodiments , the request may include the instance at which
the new number of request units is to be set . In some
embodiments , the request may include a set of request units ,
each with a corresponding time instance . Upon generation ,
the predictor 260 may transmit the request to the distributed
database service 220 over the network 230 .
[0059] Upon receipt of the request from the resource
allocator 225 , the service interface 235 may reserve , allo
cate , or otherwise provide up to the number of request units
in carrying out the operations of the service 210 in accor
dance with the request from the resource allocator 215. In
some embodiments , the service interface 235 may parse the
request to identify the specified number of request units and
the time instance . Based on the specified number of request
units , the service interface 235 may modify , change , or set
the number of request units to be provided in carrying out
the operations for the service 210. In some embodiments , the
service interface 235 may compare the current number of
request units allocated to the operations of the service 210
versus the specified number of request units of the request .
If the current number of request units is greater than the
specified number of request units , the service interface 235
may scale up or increase the number of request units for
carrying out the operations of the service 210. On the other
hand , if the current number of request units is less than the
specified number of request units , the service interface 235
may scale down or decrease the number of request units for
carrying out the operations of the service 210. If the current
number and the specified number are equal , the service
interface 235 may maintain the number of request units
allocated to carrying out the operations for the service 210 .
[0060] The service interface 235 may generate an instruc
tion based on the specified number of requests units for each
service 210 and database 215. The instruction may include
an indication of the specified number of request units for the
service 210. In some embodiments , the instruction may an

US 2020/0226144 A1 Jul . 16 , 2020
9

indication of whether the number of request units is to be
scaled up , scaled down , or maintained (e.g. , at various time
instances) . The service interface 235 may transmit the
instruction to the service 210 over the network 230. In this
manner , the service interface 235 may dynamically set the
number of request units and the amount of computational
resources set aside for executing the operations of the
services 210 , thereby reducing the costs from maintaining a
static threshold allocation that is not fully utilized from time
to time .
[0061] Referring now to FIG . 3 , depicted is a graph 300 of
consumption of computational resources on the distributed
database service 220 for a given service 210 over time . As
depicted in the graph 300 , a service 210 may use a varying
number of request units 305 across time on the distributed
database service 220. The varying number of request units
305 may indicate that the amount of computational
resources expended on the distributed database service 220
may also vary across time . The varying number of request
units 305 may have a peak usage point 310 confined within
a timeframe 315. The timeframe 315 may be , for example ,
when there may be peak demand for the computational
resources on the distributed database service 220 to execute
operations for the service 210 .
[0062] The distributed database service 220 may provide
a fixed number of request units 320 to the service 210 across
all time , which is not efficient and cost - effective . Alterna
tively , the distributed database service 220 may also predict ,
set and provide a dynamic number of request units 325
accordingly to the service 210. As detailed herein , the
resource allocator 225 may determine a predicted number of
request units to be consumed in the execution of the opera
tions for the service 210 using the past usage data 245. The
past usage data 245 may generally have a trend and / or be
cyclic to some extent , and may be used to predict or indicate
peak usage approximately within portions of the timeframe
315. By using the past usage data 245 to determine the
predicted number of request units , the resource allocator 225
may determine the dynamic number of request units 325 on
the distributed database service 220 to set aside for the
operations of the service 210. In this manner , the dynamic
number of request units 325 may more closely match the
actual number of request units 305 used by the service 210
across time , relative to assigning the fixed number of request
units 320. During non - peak times , the resource allocator 225
may save a number of request units 330 roughly equal to the
difference between the fixed allocation of the number of
request units 320 and the dynamic allocation of the number
of request units 325 .
[0063] Referring now to FIG . 4 , depicted is a flow diagram
of an embodiment of a method 400. The operations and
functionalities of the method 400 may be performed by the
components described in FIGS . 1-3 , such as the system 100
and 200. In brief overview , a server may receive usage data
on resource request units (405) . The server may provide
datasets for each time window (410) . The server may
transform a subset for different frequency ranges (415) . The
server may determine a predicted value for each subset
(420) . The server may provide an overall predicted value of
request units (425) . The server may request a service to
provide resources (430) .
[0064] In further detail , a server (e.g. , the resource allo
cator 225) may receive usage data (e.g. , the usage data 245)
on resource request units (405) . The usage data may indicate

or include the amount of computational resources consumed
on a distributed database service (e.g. , the distributed data
base service 220) in carrying out operations for a particular
service (e.g. , the service 210) over time . The amount of
computational resources consumed may be measured in
terms of request unit . Each may correspond an aggregated
normalized sum of the consumption of processing power ,
memory space , and / or network bandwidth on the distributed
database service in carrying out an operation . The distrib
uted database service or the server may record the number
of request units expended on behalf of the service over time .
[0065] The server may provide datasets for each time
window (410) . Using the usage data , the service may divide
the usage data into N sets of data over N corresponding time
windows . Each of the N sets may include the number of
request units consumed by the distributed database service
in carrying out the operations of the service over the
corresponding time window . The time window may be set
based on a sampling time frame of the usage data . The server
may perform functional programming techniques (e.g. , map
and - reduce operation) on the usage data to provide the N
sets .

[0066] The server may transform a subset for different
frequency ranges (415) . The server may identify or select M
sets (e.g. , forming a subset) from the N sets of usage data
(M < N) . The M sets may correspond to the usage data within
a lookback window from the current time or the previous M
windows from the most recent set in the usage data . The
server may apply a decomposition operation (e.g. , include a
Wavelet transform , a Fourier transform , or a Holt's Linear
Trend Method) to transform the M sets into k datasets . Each
of the k datasets may correspond to a constituent component
of the M subsets in the different domain (e.g. , frequency
domain) . One of the k datasets may correspond to a low
frequency component , another may correspond to a medium
frequency component , and another may correspond to a high
frequency component of the M sets of the usage data .
[0067] The server may determine predicted data for each
subset (420) . To determine the predicted data for each of the
k transformed datasets , the server may apply a statistical
model to the k - th dataset , such as autoregressive integrated
moving average (ARIMA) model , Kalman filtering , or
Holt's Linear Trend model . The predicted data for the k - th
dataset may correspond to a contributory factor to the
predicted number of request units to be consumed by the
distributed database services in carrying out the operations
at the given instance . The server may apply a reverse
transformation (e.g. , Reverse Wavelet Transform) to the
prediction data (e.g. , prediction data combined over / across
the frequency ranges) to generate an initial predicted value .
The server may also adjust the initial predicted value by a
correction factor and / or a multiple of a standard deviation
(e.g. , of one or more of the datasets , of one or more of the
N sets , or of one or more of the M subsets) .
[0068] The server may provide an overall predicted value
of request units (425) . The server may determine an overall
predicted value of the number of request units based on the
initial predicted values for the k transformed datasets . In
some embodiments , the server may apply a reverse trans
formation (e.g. , Reverse Wavelet Transform) to the predic tion data corresponding to each frequency range , to produce
an initial predicted value for each corresponding frequency
range . The server may combine the initial predicted values
to determine the overall predicted value . For example , the

US 2020/0226144 A1 Jul . 16 , 2020
10

embedded in a computer readable medium that is executed
by a processor . In general , the computer - readable programs
may be implemented in any programming language , such as
LISP , PERL , C , C ++ , C # , PROLOG , or in any byte code
language such as JAVA . The software programs may be
stored on or in one or more articles of manufacture as object
code .
[0071] While various embodiments of the methods and
systems have been described , these embodiments are illus
trative and in no way limit the scope of the described
methods or systems . Those having skill in the relevant art
can effect changes to form and details of the described
methods and systems without departing from the broadest
scope of the described methods and systems . Thus , the scope
of the methods and systems described herein should not be
limited by any of the illustrative embodiments and should be
defined in accordance with the accompanying claims and
their equivalents .
What is claimed is :
1. A computing device for resource - scaling , the server

comprising :
a data processor configured to :

receive , from a distributed database service (DDS) ,
usage data on resource request - units from a plurality
of services that use resources provided by the DDS ;
and

provide N sets of data corresponding to N time win
dows , using the usage data ;

a transform agent configured to transform at least a subset
of the N sets of ta , into at least three transformed
datasets each corresponding to a different frequency

server may calculate a weighted sum of the initial predicted
values to determine the overall predicted value . At least one
of the initial predicted values may be weighted less . At least
one of the initial predicted values may be weighted more for
instance . The server may adjust the combined predicted
value by a correction factor and / or a multiple of a standard
deviation (e.g. , of one or more of the datasets , of one or more
of the N sets , or of one or more of the M subsets) .
[0069] The server may request a service (e.g. , the distrib
uted database services 220) to provide resources (430) . The
server may generate a request to provide the number (e.g. ,
total number) of request units to service / allocate in accor
dance to the overall predicted value for the service for a
given time (or time instance) . The request may indicate the
number of request units to be provided , which service is to
be provided with the number of request units , and / or a time
instance at which the number of request units is to be
provided . Once generated , the server may send the request
to the distributed database service . Upon receipt , the dis
tributed database service may dynamically set the number of
request units allocated to carrying out the operations for the
service . The distributed database service may adjust (e.g. ,
scale up , scale down , or maintain) the number of request
units allocated to each service . The distributed database
service may generate an instruction to each service and / or
databases based on the number of request units to be
provided . The instruction may include the number of request
units to be provided and / or a time instance at which the
number of request units is to be provided . The distributed
database service may transmit the instruction to the respec
tive services and / or the databases . In this manner , the server
and the distributed database service may dynamically set
and reserve the number of request units for executing the
operations of the services , thereby reducing costs and
wasted computing resources from maintaining a static
threshold allocation .
[0070] It should be understood that the systems described
above may provide multiple ones of any or each of those
components and these components may be provided on
either a standalone machine or , in some embodiments , on
multiple machines in a distributed system . The systems and
methods described above may be implemented as a method ,
apparatus or article of manufacture using programming
and / or engineering techniques to produce software , firm
ware , hardware , or any combination thereof . In addition , the
systems and methods described above may be provided as
one or more computer - readable programs embodied on or in
one or more articles of manufacture . The term " article of
manufacture ” as used herein is intended to encompass code
or logic accessible from and embedded in one or more
computer - readable devices , firmware , programmable logic ,
memory devices (e.g. , EEPROMs , ROMs , PROMs , RAMs ,
SRAMs , etc.) , hardware (e.g. , integrated circuit chip , Field
Programmable Gate Array (FPGA) , Application Specific
Integrated Circuit (ASIC) , etc.) , electronic devices , a com
puter readable non - volatile storage unit (e.g. , CD - ROM ,
USB Flash memory , hard disk drive , etc.) . The article of
manufacture may be accessible from a file server providing
access to the computer - readable programs via a network
transmission line , wireless transmission media , signals
propagating through space , radio waves , infrared signals ,
etc. The article of manufacture may be a flash memory card
or a magnetic tape . The article of manufacture includes
hardware logic as well as software or programmable code

range ; and
a predictor configured to :

provide a predicted value of request - units according to
the at least three transformed datasets ; and

request the DDS to provide the resources up to a
number of request - units at a given time instance
according to the predicted value .

2. The computing device of claim 1 , wherein the data
processor is configured to store the received usage data into
a queue in memory .

3. The computing device of claim 1 , wherein the data
processor is further configured to perform a map - and - reduce
of at least a portion of the usage data in real time , to provide
a first set of the N sets of data .

4. The computing device of claim 1 , wherein the trans
form agent is configured to transform the at least a subset of
the N sets of data using Wavelet Transform .

5. The computing device of claim 1 , wherein the trans
form agent is configured to process the at least a subset of
the N sets of data as a stationary stochastic process .
6. The computing device of claim 1 , wherein the at least

three transformed datasets correspond to a dataset indicative
of a trend , a dataset indicative of cyclic data , and a dataset
indicative of noise .

7. The computing device of claim 1 , wherein the predictor
is configured to provide the predicted value using at least
one of : autoregressive - moving average model (ARMA)
method , Kalman filtering , or Holt's Linear Trend method .

8. The computing device of claim 1 , wherein the predictor
is configured to perform a prediction on each of the at least
three transformed datasets , and to provide the predicted
value of request - units according to the predictions .

US 2020/0226144 A1 Jul . 16 , 2020
11

9. The computing device of claim 1 , wherein the predictor
is configured to :

determine a standard deviation of the at least a subset of
the N sets of data ; and

request the DDS to provide the resources up to an updated
number of request - units at a given time instance
according to the predicted value bounded by twice the
standard deviation .

10. A method for resource - scaling , the method compris
ing :

receiving , from a distributed database service (DDS) ,
usage data on resource request - units from a plurality of
services that use resources provided by the DDS ;

providing N sets of data corresponding to N time win
dows , using the usage data ;

transforming at least a subset of the N sets of data , into at
least three transformed datasets each corresponding to
a different frequency range ;

providing a predicted value of request - units according to
the at least three transformed datasets ; and

requesting the DDS to provide the resources up to a
number of request - units at a given time instance
according to the predicted value .

11. The method of claim 10 , comprising storing the
received usage data into a queue in memory .

12. The method of claim 10 , further comprising perform
ing a map - and - reduce of at least a portion of the usage data
in real time , to provide a first set of the N sets of data .

13. The method of claim 10 , comprising transforming the
at least the subset of the N sets of data using Wavelet
Transform .

14. The method of claim 10 , comprising processing the at
least the subset of the N sets of data as a stationary stochastic
process .

15. The method of claim 10 , wherein the at least three
transformed datasets correspond to a dataset indicative of a
trend , a dataset indicative of cyclic data , and a dataset
indicative of noise .

16. The method of claim 10 , comprising providing the
predicted value using autoregressive - moving average model
(ARMA) method , Kalman filtering , or Holt's Linear Trend
method .

17. The method of claim 10 , further comprising perform
ing a prediction on each of the at least three transformed
datasets , and providing the predicted value of request - units
according to the predictions .

18. The method of claim 10 , further comprising :
determining a standard deviation of the at least a subset of

the N sets of processed usage data ; and
requesting the DDS to provide the resources up to an

updated number of request - units at a given time
instance according to the predicted value bounded by
twice the standard deviation .

19. A non - transitory computer readable medium storing
program instructions for causing one or more processors to :

receive , from a distributed database service (DDS) , usage
data on resource request - units from a plurality of
services that use resources provided by the DDS ;

provide N sets of data corresponding to N time windows ,
using the usage data ;

transform at least a subset of the N sets of data , into at
least three transformed datasets each corresponding to
a different frequency range ;

provide a predicted value of request - units according to the
at least three transformed datasets ; and

request the DDS to provide the resources up to a number
of request - units at a given time instance according to
the predicted value .

20. The non - transitory computer readable medium of
claim 19 , wherein the program instructions further cause the
one or more processors to :

transform the at least a subset of the N sets of data using
Wavelet Transform , into at least three transformed
datasets each corresponding to a different frequency
range ; and

provide a predicted value of request - units according to the
at least three transformed datasets , using an autoregres
sive - moving average model (ARMA) method .

