US 20160345008A1

a2y Patent Application Publication o) Pub. No.: US 2016/0345008 A1

a9y United States

NAKAISHI 43) Pub. Date: Nov. 24, 2016
(54) IMAGE PROCESSING APPARATUS AND HO4N 19/139 (2006.01)
IMAGE PROCESSING METHOD HO04N 19/13 (2006.01)
]] (52) US. CL
(71) Applicant: SOCIONEXT INC., Yokohama-shi CPC ... HO4N 19/124 (2014.11); HO4N 19/13
(P (2014.11); HO4N 19/159 (2014.11); HO4N
. 197139 (2014.11)
(72) Inventor: Hidenori NAKAISHI, Kashiba (JP)
57 ABSTRACT
(21) Appl. No.: 15/081,554))))
An image processing apparatus includes a plurality of cores
(22) Filed: Mar. 25, 2016 and an arithmetic processing device. The plurality of cores
are configured to be allocated to a plurality of tiles obtained
(30) Foreign Application Priority Data by dividing a single image data; a configured to control
allocation of the plurality of cores based on the divided tiles.
May 20, 2015 (JP) oo 2015-102785 The arithmetic processing device is configured to control
allocation of the plurality of cores based on the divided tiles.
Publication Classification The arithmetic processing device allocates all of the plural-
ity of cores to a single line of the plurality of'tiles in a second
(51) Int. CL direction, when the single image data is divided into the
HO4N 19/124 (2006.01) plurality of tiles in a first direction and the second direction
HO4N 19/159 (2006.01) different from the first direction.
1 3
] [ENCODING DEVICE] 13 | | 30w | [DECODING DEVIGE] |
: — ORTHOGONAL | o 1 1 © o :
TN L] TRANSFORM AND| | ENTROPY |igem; | ENTROPY !
[MAGE! | DIVISION A1) QUANTIZATION 77| ENGODING ™1 ENCODING |
| UNIT UNIT UNIT [+ @ L _ UNIT /31 !
"o 11 < [TNVERSE-QUANTIZATION | [1 INVERSE-QUANT [ZAT ION |
i 12 |AND INVERSE—ORTHOGONAL | | 1 : AND INVERSE-ORTHOGONAL |
: 15 TRANSFORM UNIT o TRANSFORM UNIT 33 !
i 14 Lo i
! N+ b 32 S 36!
:‘< [PREDICTION MODE SELECTION UNIT| | '® [i i ||5, T [PREDICTION MODE SELECTION 1‘{NIT| !
l T b MV |
["MOTION |,[INTER-FRAME],[INTRA-FRAME], [PRESENT| | PRESENT |, INTER-FRANE | [INTRA-FRAME |
| VECTOR ["PREDICTIONP|PREDICTION | FRAME | | ! FRAME [PREDICTION | | PREDICTION |!
/[DETECTION UNIT UNIT BUFFER] | 1 BUFFER UNIT UNIT !
(LN S B T Mool b1 | [mvp 35 :
1 18 1 1 o lout
i b DEBLOCKING |—{FRAME BUFFER{—»PREVIOU ;
: PREVIOUS[[¥| (RAME ~ ¢|DEBLOCKING| FILTE MANAGEMENT | | FRAM :
! BUFFER A T oe—— |
i ya UNIT Lo %7 |
L2 N 23 oo 38 9 !
1 1 v ____ |~)W _
5~ DEBLOCKING |[EXTERNAL MEMORY1[[NTER-FRAME i
o |FILTER_TEMPORARY PREDIGTION UNIT | 1
: MEMORY TEMPORARY MEMORY| !

US 2016/0345008 A1

Nov. 24,2016 Sheet 1 of 31

Patent Application Publication

| [AYONIW AMVHOAWAL AMON3W !
' |'LINA NOIL91a3¥4d AUVHOdWIL ¥3LT14|
| JAVHA-YAINT [[avoWaW TyNy3Lx3]| ONIMO0193d 1 ~G
IIIIIIIIIIIIIIIIIIIIIIIIIII -—=F-—-—-—-—-—-&—" _1
e ge T
“) ¢
_ mmmuzm LINN L
! B[R] INTWIOVNVA REIRIE !
——{SA0TATHd | ¥T43NE JWVYL [ININO0TE3d L
oy ! ! !
! Ge ann|| | |
| yl o
_ LINN LTNN EEE o
' NOI1D1Q3Md | | NO11D1QTMd || TFNVYA !
| JWVYA-VALNT | [WVYNTINT [Y] LNISTNd !
! 1L 1 L
) |[LIND NOILD313S 300M NO1LD1Q3dd] ve i
! 9¢€ f I ¥ YA | “
| ¢ TTNN WH04SNVYL L
! TYNODOHLYO—3SUIANT aNV .
“ Va NOI 1VZ T INVNO-3SYIANI Lo
| § [P
m AO¥INT mcsw:
o _________ [30IAda 5NIgGoOAd mMMMmm-_ w
-
|

gg ¢ 1z
™~ N aina
TR A
DNIYOOTEIAP Fwvad x| SNOIAd
y N
81
aAn
¥344ng LINN LIND__ | [NoI103L13a
WV || NOTIOTQ3Nd || NOTIOTARMd | | HOLOAR
INISTUd[[FNVIS-VALNINVEI¥IINIE| NOTLOW
1 1
o1~ | [LIND NOILOT13S 300N NOTLOIGRMd]| /|
+ //
¥l
ST
YNODOHLH0-ISHIANT ONY
NOILVZIINVDO-ISYIANI |
TINN LINN
ONTGOONT k| NOTLVZIINYND
LHONINT | |ONV WHOASNVAL
“VNODGHIHO ol

£l

_m_o 1A30 HNIAOINT]

ul]

JOVNI

1NdNI

US 2016/0345008 A1

Nov. 24,2016 Sheet 2 of 31

Patent Application Publication

-

A

24n1914
JONIYA43Y @ISSIV0Ud FONFII4Fd
QUYMMOVE ATTINFYYND QYvMYO0d

(34n3014)
JOVN]
4 ENEREN

>

1NINOdW0D

4<hzom_mo=

-

+
INANOJNOD
TYOI143A

(40103A NOTLOW) AW (40LO3A NOILOW) AW

(84n1a1d)
JOVNI FONFYIAY

(40193A NOILOW)
AN 40 INJNOJWOO

\\\\\MWMMWo_mvmw<z_ EH|ENEEEY

L d] La] [8] [d

| 1 | [3dAl RNIOId |

¢ 914

Patent Application Publication Nov. 24,2016 Sheet 3 of 31 US 2016/0345008 A1

FIG. 3
SRl Ik it el e s o
W St N :.:::::_::::: >
CTB LINE afem I :""""_'_'_'_'_'.::::_---P
\ I B S > | ~CTB
O P e e -_._____________________._,
N B S aa ___________ >

Patent Application Publication Nov. 24,2016 Sheet 4 of 31 US 2016/0345008 A1

FIG. 4
CTB
(a) ,/_/
2)
1)
(3)
®)
(8)
@ | & K2
9) |aojan

(b)
1
cTB ----p-p N
I 1 ¥
K .y
x v
/ Y S
» 12
-9

Patent Application Publication Nov. 24,2016 Sheet S of 31 US 2016/0345008 A1

FIG. 5

CTB (64x64)
(a) e

CU (64x64, 32x32, 16x16, 8x8)
(b) e
—////—PartO
(c) —’///—Part1
///~——-~__/Part0
) -’//,—Part1

Part0

\\ Part1
(e) :::::Part3

Part2

US 2016/0345008 A1

Nov. 24,2016 Sheet 6 of 31

Patent Application Publication

171
Y
(1¥ed)l=nd
l
(1ved) (0Med) (1Med)1=nd
I=Nd (oved)o=nd (1ved)l=nd o=Nd 1
I 0 l 0 (oved)o=nd
0
(oved)o=nd
0
8 dSVo oLl L L ASYD e 9 JSVY0 ool L G ISY0 soel |
Nnd Nd Nd d
] e E]
1f
(1Hed)1=Nd (eHed)e=Nd |(¢-ed)z=nd
' £ A
(1¥ed)l=nd | (0O¥ed)0=Nd (oved)o=nd
1 0 0
(oxed)o=nd (1ved)1=nd | (0Med)0=Nd
0 L 0
¥ 35V0 £ 35YD AN I MEN A
YoeE] | e%8] 1 7eXee
yoxee] 0 zexy8] © zexze]l 0O [vopo] 0 |
Nd Nd nd [nd |
%dbﬂ/._|_ ¢¢=N
e] [Nz]] NoNZ | |49Xp9=ND

9 914

US 2016/0345008 A1

Nov. 24,2016 Sheet 7 of 31

Patent Application Publication

F
2)

| =]

L¢ 3ASYD 9¢ IS0 2l G¢ ISV0
8 | 0 | 8x8 | =N
:n_zuxz :n_zleN Imm_m 8%8=N0
1 Lo H_V _
[¢]
pzasvo I | ez asvo pEE | asvo EEE Vicasw
nd nd nd nd
Nexu Ngxu auxNg NUWNZ
IE ; T ;
0¢ 3ISY9 61 JSVD 8l 3SVD = L1 3ASVD
EIECI T o)
m_xﬂ _n_ 0 cé_:_n_ 0 8%g i 0 ETESTI I 8=N
NZXN N<NT NXN NexNg | 91X91=ND
I
l
0 l 0 0
0
0l 3V ————= |51 3V == |1 3V == o1 IV “—=
72574 D) zex8 | 0 vexge] o gZE| 0
nd nd nd nd
I € [4
l 0 0
0 I 0
¢l 3ASV0 Il 3SY0 01 3SVY0 EIL I 6 3SVD
LTI ETETI) e o
nd nd [nd | 91=N
NgXN [N [NexNe] | ¢€X¢E€=ND

Patent Application Publication

Nov. 24,2016 Sheet 8 of 31

US 2016/0345008 A1

FIG. 8
(a)
(v)€ y)
MV _MB_D)|(MV MB_B
P /%
v |(MV.MB.C)
A \/\)%\g _
(MV_MB_A) o MVP=Median (MV_MB_A, MV_MB_B, MV_MB_C)
' u INTERMEDIATE VALUE OF A B,C
MV_MB D IS USED, IF MV_MB_G IS INVALID
MV=MVD+MVP
(b) (c)
°H/1 [c | T°B[¢
IL Cu ¥ — |— A [DCux
h'd
(d)
Dl IX)
Lxciu

US 2016/0345008 A1

Nov. 24,2016 Sheet 9 of 31

Patent Application Publication

n)

o<

ny

o<

no

O (<C

ny

0| <<

(0)
G1:NOIL1S0d

()
€1:NOILISOd

®
£:NO1L11S0d

(3)

G:NO1LISOd

no

0| <C

no

0| <<

ng

O <

no

0| <<

(d)
p1:NO1LISOd

(W)
Z1:NoILISOd

)
9:NOI11S0d

€)

¥-NOILISOd

o<

o<

o {3
0|

o {3
O|<C

(w)
LL:NOILISOd

&)
6:N0I111S0d

®
£:N011150d

(©)

I :NO111S0d

Q)
01:NOILISOd

€))

8-NOILISOd

(P)
¢-NOILISOd

C)
0:NOILISOd

ol v
BIEIE
nol v
lofala
ol v
lofala
o v
ola]a
SHsifo
S8 81T
G(v| 1|0

(®)
51 0L 0

JONIND3S 6 DI

Patent Application Publication Nov. 24,2016 Sheet 10 of 31 US 2016/0345008 A1

FIG. 10

AM

CTB

leNE

CTB
)
E'5////2B <

LINE\
L (2)
AM (

\CTB

/] —

A

FIG. 11

IIIIIIIIIIIIIIIII—//’AM

CTB

x>
=

US 2016/0345008 A1

D iy Ed RS Wl it o o N R Ry Mt St Iy I D Il s e S 1 | e p e
e e 12 N s e B U IO Y Y oy <« L ... e
<« o i e o R e T L | <] . e
PPN IR Seivil SN M g e e R PR e 55 St Y O I O D N PP iy e ... e
i g 3L BT T B T T ™ | *T] 9 311 fr
S 3 REEEE EEEEE CErr corer oreht EEREE e T T T e o [Heieied SETEE ELEEE LIRS EEEEE
L % RE SCEEL ...Y T <1 R s el R et It EECS Et S LS
D s o N O O W O N o= e O Y O I N s e O O
N = s gy W e s Y OO Y O O N 99 B .

Nov. 24,2016 Sheet 11 of 31

e B e e et K IR e e e B Aot Ao e SOt ECE S (IR LR RS PR SO s St
] I S g o e o N RS S S S O N O U Ao | @bt L - S
BT ottt D N g e St D e S A Y Y IOV O D L | <] T ... e

PN L Sleivil S M g o RO v 5 i R YO O DY Ly | €t L. S S

WSS N I N N B R B
b i e | B et b | <70 3L 1
BIRTTE] irbvtt DR ISR N A P SRR T I vl IR o # _ i e«

Patent Application Publication

Patent Application Publication Nov. 24,2016 Sheet 12 of 31 US 2016/0345008 A1

(@) CRQ—+2
OR3——
CRA——1t

“~— L4

(b)

Rt T T 2
CR3—— A 0% ~—\3
ore— | e T |~ 1«
CRT — IR Lo
CR3—% ~_ L7
CR4 —H m/ Lo~ |8

ADJACENT MEMORY AM
(C) Dm::::mm::m::mré;:;::

CR1—
d) CRZ—F ===
CR3—
CRA—

Patent Application Publication Nov. 24,2016 Sheet 13 of 31 US 2016/0345008 A1

FIG. 14

CR1
-~ L1
—~—12
i~ 1.3
a~—L4

CR2

CR4

Patent Application Publication

(a)

(b)

(c)

(d)

Nov. 24,2016 Sheet 14 of 31 US 2016/0345008 A1

FIG. 15

L1T—

L12—~

L13—

L14—~

L31T—

L32—

L33 —™

L34 —

13—~~~

L11T—

L12
L13—
L14—

L31T—™

L32—
L33 —
L34 —

T3~

ADJACENT MEMORY

L14—

L15—

L31T—

L32—

L33 —

A ER

Patent Application Publication Nov. 24,2016 Sheet 15 of 31 US 2016/0345008 A1

FIG. 16
3

300 5

_________ (DECODING DEVICE] % oo JLL,
| | TEXTERNAL MEMORY] | 5A
. [_ADJACENT (AM)

- P | MEMORY AREA
.

CR2 ! ‘ Vo
\/\ l, \“ :

4—P{SECOND CORE j{—}

i —PFIRST CORE [

DECODED IMAGE
STORAGE AREA

US 2016/0345008 A1

Nov. 24,2016 Sheet 16 of 31

Patent Application Publication

98¢l ogzl ©171 PECLPZEL PIEL 9221 ©°lzl 9221 491l egel elZl ozl oL N3
M AN N W W WA T N N N N N D A
@mNm
Wlm LS SIS 45 4=5 [} oo0e) eooz | |5 J- aw00g [| es00e | § s1001 2100
oG 1 El
r~ ~ ~ ~ ~ ~ ~
m_‘ﬁom;\awﬁﬁﬂvmm vwﬁ ED\ 21 ol @l aul ezl enl. O~
3) x) x
JH0D 1| (340D | :¥3HI0| [SFHO0D ¢ FIL| |S3™0H | 0L 3JaIS LHoIy| [SFH0I € F1IL J400 | 400 |
J1L HWENOY| | sqm09 2 3111 3AIS LHOWY| | €3y09 € 3711 3qIS L4 3QIS 1HOIY| |3NIT HLYNO4{ [ANIT H1¥nod
00 1| |"G3aiAI0 ISON| [ER0Y ¢ UL o715~ & grus—] 0 | TIL 3909 | 3409 |
J111 QIHL mem 1437 301S 1437 | INrT ayiHL| | INIT QYIHL
3400 1| | 315N +|?A 3400 | 3400 |
1L NOD3S C 1 121s 91LS INIT ONODIS| [INIT ONCO3S
J400 | ON 400 | 0J |
TULISHE| glg GL1S e | anrd 1surd| | 3w s
5 . S3A (SNd 40 Y3GWNN 3HL)
f ONOILOAMIA TVINOZIMOH SNOISTAIO 40 Y3ISWNN / /
£21S FHL NI STTIL 334HL ,,,EA N JHL VN0 811S [11S
_ L pLLS - Z11s | 63QVN 39
¢STU09 43S 40 ¥IFWNN / N
Z IHL ST HIAIM IS €L1S NOISIAIC
YINOZIMOH 40 ¥39WNN JHL J111 NI SNOISIAIQ ON ON

40 Y49NNN 3H1 LINNOD

¢NOISIAIQ HIM0T/¥3ddn

SdA

wis Cawvis) L1 "DIA

0l SI
3111

Patent Application Publication Nov. 24,2016 Sheet 17 of 31 US 2016/0345008 A1

FIG. 18
CR1 CR]aCRza (hsa
\ \ CR4a cR1c
[—

7 (1T \ X \/~ Bp1
NN
\

R
|

R1b “~—L3

(=)

CR2 Bp2

CR4

US 2016/0345008 A1

Nov. 24,2016 Sheet 18 of 31

Patent Application Publication

C w3)

%

%

%

%

ss31 50| | X 30IS WIMOT| [x:34IS W0 [x:3IS 4301| [ZEXp9:30IS UM [X :3IS M0
Zexze yod| (@19 ININOISEANS) | |10 ININOISEANS) | ((8LD LNANDASENS) | | (410 ININOASANS) | (41O ININOISANS)
oSS0 SS31 40 SS31 40 SSI1 ¥ SS31 ¥0 SERR
y9Xy9: 1HD 1Y P9Xz€ : 1HO1Y 79Xy9: 1HD 1 79Xy9: 1HOIY §9Xy9: 1HO I
S el D \ S \ s
1348 03484 13484 034ed 0348d
6€1S 8€1S LE1S 9€1S ge1s VELS
N
$$37 40
CEXZE

ss31 40 voxv9 (
61 914

3ZIS 419

s)

Patent Application Publication Nov. 24,2016 Sheet 19 of 31 US 2016/0345008 A1

FIG. 20
(a)
Bpl1 Bpi12
Part0 P P
64x64
(b) (c)
Bp23 Bp25
Part0 Part1
64x32
Bp21 /] e
Bp22 | X
(d)
Part0 Part1
32x64 Bp32
Bp31 /

Patent Application Publication Nov. 24,2016 Sheet 20 of 31 US 2016/0345008 A1

FIG. 21A
32x32 OR LESS

CTB SIZE

ST44

ST41
& N
ax32 \32x32 OR 32x16 OR 16x32,/

Part0

ST47

Y

RIGHT:
32x32 OR LESS
LOWER SIDE:

32x16 OR LESS

RIGHT:
64x64 OR LESS
LOWER SIDE:

32x32 OR LESS

32x16

ST50

RIGHT:
32x32 OR LESS

RIGHT:

64x64 OR LESS

v

LOWER EIDE: X

LOWER ISIDE: X

ST42

A

Part1

RIRIGHT:
32x32 OR LESS
LOWER SIDE:

32x16 OR LESS

RIGHT: RIGHT- RIGHT:
64x64 OR LESS||32x32 OR LESS|[64x64 OR LESS
LOWER SIDE ||LOWER SIDE: [|LOWER SIDE:
39x16 OR LESS||32x16 OR LESS[|32x16 OR LESS
L 2
RIGHT: RIGHT. . :
RIGHT: RIGHT:
5 s s U
16x32 OR LESS|[32x32 OR LEss||-OWER SIDEx fLONER SIDE:x
v v]

CANDD

Patent Application Publication

Nov. 24,2016 Sheet 21 of 31

FIG. 21B

US 2016/0345008 A1

RIGHT:

Parti

16x32 OR LESS

RIGHT: |
16x32 OR LESS

LOWER SIDE:
8x16 OR LESS

LOWER SIDE:

RIGHT:
16x32 OR LESS
LOWER SIDE: x

RIGHT:
16x32 OR LESS
LOWER SIDE: x

32x32 OR LESS
v

v

A
RIGHT:
32x32 OR LESS
LOWER SIDE:
16x32 OR LESS

RIGHT:
64x64 OR LESS
LOWER SIDE:

16x16

RIGHT:
32x32 OR LESS
LOWER SIDE: x

RIGHT:
64x64 OR LESS
LOWER SIDE:x

ST51

)

PROCESS

ING FOR

16x16 OR LESS

16x32 OR LESS
L2

Y

-

Patent Application Publication Nov. 24,2016 Sheet 22 of 31 US 2016/0345008 A1

FIG. 22
(a)

Part0

32x32

(b) (c)

Part1

32x16

Part1 Part3 Part1 Part3

(d) (e)

Patent Application Publication Nov. 24,2016 Sheet 23 of 31 US 2016/0345008 A1

FIG. 23A

16x16
Part3

LOWER SIDE: LOWER SIDE:||LOWER SIDE:|LOWER SIDE:|{LOWER SIDE:
(1 32x32 8x16 16x16 16x32
X OR LESS OR LESS OR LESS OR LESS

A

RIGHT: RIGHT: RIGHT
64x64 16x16 32x32
OR LESS | | OR LESS | | OR LESS

(END) *L.3

Patent Application Publication Nov. 24,2016 Sheet 24 of 31 US 2016/0345008 A1
FIG. 23B
16x16 OR LESS
ST61 *L 4

*5_3

CTB SIZE

16x16 Part?2, &
2%3

% Part
| N
! ST65 |
! 16x16 |
| PartS!
H A 4 |
[COWER SIDE;|[LOWER SIDE:|[LOWER SIDE.|[LOWER SIDE]
! tEVFV'ER &OWER SIDE’| 32x32 8x16 16x16 16x32 |
| LT OR LESS [JOR LESS [/OR LESS [OR LESS
i PR S SN SR
| |
| |
| |
| |
| |
| |
| |
| |
! :
! OR LESS | | OR LESS | | OR LESS |
| ! |
| M |
i |
*.3 x4

Patent Application Publication Nov. 24,2016 Sheet 25 of 31 US 2016/0345008 A1

FIG. 23C

8x8

PROCESSING
FOR 8x8
OR LESS

y
.| [LOWER SIDE

LOWER SIDE’||g.15

OR LESS

16x16 f¢—]
Part3

A

TCOWER SIDE|[LOWER SIDE.|LOWER SIDE.|LOWER SIDE:
kOWER SIDE:[39¢32 8xd 16x16 16x32

X X
OR LESS OR LESS OR LESS OR LESS

) v v v |

RIGHT: RIGHT: RIGHT: RIGHT:
8x16 64x64 16x16 32x32
OR LESS OR LESS OR LESS OR LESS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
i
L

*L4

Patent Application Publication Nov. 24,2016 Sheet 26 of 31 US 2016/0345008 A1

FIG. 24

Part0

16x16 F%

Part1

Fe

XPL
XEF

|
XEET P

Patent Application Publication Nov. 24,2016 Sheet 27 of 31 US 2016/0345008 A1

FIG. 25A

[1] oY 1|4]|5]|16]17]20]21 [6]014516172021
,

81 9]12]13]|24|25]|28]29

24 (25| 28] 29

““ 10f11]14]15] 26| 27{ 30| 31 26| 27| 30| 31
32| 33] 36| 37 48] 49] 52| 53 32| 33| 36| 37| 48 49] 52| 53
34| 35(38| 39| 50(51]54|55 34| 35]38] 39 50 51| 54| 55
40[41] 44| 45(56]57] 60|61 40[41| 44| 45(56| 57|60 61
42| 43] 46| 47 58] 59| 62| 63 42| 43| 46| 47| 58 59| 62| 63

19]22] 23
25| 28] 29

[2] @W4516172021 [7]014516172021

““ gl|oli2]1a]24]25]28]20

10{11|14]15126]27|30](31 271 30] 31
32133]36|37]|48|49|52]|53 491 52| 53
34135138|39|50|51|54]55 34| 35|38]|39|50| 51| 54| 55
40(41]|44)|45]56 (57| 60|61 40| 41] 44145 56| 57| 60| 61
42(43]|46)|47]58|59|62|63 42| 43| 46| 47| 58| 59| 62| 63

[3] ONR T4 5 |16|17]20] 21 [8]014516172021

il P23 |6 7[18]19]22]2a 23
““ 8|9 [12]13]24[25]28]29 29
10[11]14[15] 26{ 27] 30] 31 31
32(33] 36| 37| 48] 49| 52|53 53
34(35(38]|39|50|51]54|55 34]|35]38| 39|50 |51|54]55
40[41] 44| 45]56] 57| 60] 61 40|41 44[45]56]57[60]61
42(43| 46| 47]58]59] 62|63 42(43|46[47]58]59[62]63

[4] ONR TRN4NR5Y 16] 17] 20] 21 [9]014516172021
1]

23

8| 9|12)13]24|25(28]|29 29
10| 11| 14]15])26(27| 30| 31 31
32)133|36(37|48]49]|52]53 53
34)135|38(39|50]|51]|54]|55 34)135]138|39|50|51|54]55
40| 41]144|45]|56(57]|60]61 40| 41|44]145]|56 (57 |60]61
42143]146|47|58|59]|62]|63 42143]|46)147|58(59|62]63

[5] ONRN TN 4R5Y 163 17] 20] 21 [10]014516172021

64 7 |18]19]22]|23
12(13]24]25] 28] 29
14(15]26]27] 30| 31

32)133|36(37|48]49]52]53 32333y36|37|48|49]52] 53
34)135|38(39|50]|51]|54]55 34(35]38|39|50|51]|54|55
401 41]144| 45|56 57]|60] 61 40)141]144(45|56|57]|60| 61
42)143|46(47|58]59]|62] 63 42143]146|47|58|59]62]63

Patent Application Publication Nov. 24,2016 Sheet 28 of 31 US 2016/0345008 A1

FIG. 25B

*%5 *%6
i [11] 0N TR A5 16317820721 [16] O TR 23R 53 163 173 203 21 |
i IENEE NN NN EE AN NE NN I ENENE NN RN NN RN R AN AN N i
; 32333836 37 | 48 [49 [52 [53 323 337 363 379 483 499 527 531
! 341 35|38 30|50 |51 [5455 54| 55 |
| 40|41 44|45 |56]57]60]61 60| 61 |
i 42| 434647585962 63 62| 63 |
i [1 2] N T RANE T 163173203 21 [1 7] R TR AN ST 163 1 7Y 203 21 |
| LLL LLL L1 LLL Ll LI L1l LLL L1l 1LLL L1l L1l LL1L LLL |
i 32033336337 48 [49 [52 [53 329 333 363 373 463 493 523 53 |
. 344351 38| 30| 50 [51 [54 55 .
| 40| 41 [44]45]56]57[60|61 |
i 42| 43|46 4758596263 |
| [13] N NI 16317320321 [18] |
! 10['11 [14|15 | 26| 27] 50 10[11|74 [15] 26|27 30[51 |
| 320338360 37%48 49 | 52 [53 Y sa¥asteriastaotsoyedy |
' 384387 39| 50| 51| 5455 !
! 4144 45]56]57] 6061 |
| 43| 46| 4758596263 |
! [14] R T RAN5Y 16317320321 [19] |
I s |
H LLL LLL L1l 1Ll L1l LLL LLL L1l L1l LLL L1l 1Ll L1l LLL LLL Lol '
| 320331363 373 483 49) 52 | 53 320008 3607 4ot 403 5o0sy |
! [1 5] [20] . O TR AR 5Y 163 173 20 21 |
! % XN N TH 18410422 |
i ol pretinr bttt I ENENENE NN NN NN RN NN R AN AN i
, 320333 363 373 483 498 52 53 323 333 363 373 483 493 528 53y |
| 501 51| 54 55 |
i 56(57(60] 61 |
i 58 59| 62] 63 I

*L5 *L6

US 2016/0345008 A1

Nov. 24,2016 Sheet 29 of 31
FIG. 25C

Patent Application Publication

CR4

CR1

SRS BB o] 8
1N M AN M
NN S EN AN EIAN
SR /2) 1o 1o o ||w
N N N N
~ |o® n_.n/_U ™~ » | R7u 0/
— = o~ < e re)
A, N A N
© oZ < 6/»_ o 0/»_ © oy»
- l|= R 1Y) o Y[
—AoNo—F RN = o — RN Ao 'F oo]
NANNNF OFOAWN ©f © ~NARN 1> Ao T] M~
et — e — — ™ | o o | b | ~
IR EERE RSN IRET aEAN L G /3, &S| <+
~AoNwLT~t oA —N ~F o ~A® o A— o N ﬁ/ N\ ﬁ/
—A=YNFENT A0 w0 n] — N— < A 0]
SRR EIRE ETE IR < (|© /w_ N[&) (8 /M <
”. T~ o 5 ~] ~A® ~7] 4/ N, lf N,
WA i Al CNIE R O AN 2L Y] <] —
IAN~FrderaNsie] [Ahe Y EREE T — | %uﬂ/%/%//.{%/
IRNEEREERAN NS S s i i
ERNE SR EREY SYRAEEEE S Zs/_W/M‘M m/_ﬂ
e
o
O

-

-

8

> 9] 81 Ll

Z O ~ 2SN PO

3 / AY AY

S

o

-

m

72} V11— 02) ®1) 81) (L) 1) N

- ~\
Hyo

1steuo

Nov. 24,2016 Sheet 30 of 31

A @ @ o) i ®
Slz40 | A \ \ —~
] %

€240

@n (g on

L7~ wn €n © 0,
®) 8w N
9)

~* Ty 9z 914

Patent Application Publication

{

"Hyo 4r4%Te) / xdg

US 2016/0345008 A1

Nov. 24,2016 Sheet 31 of 31

Patent Application Publication

¥~
¢leyD —
g1~ @ () on ® © A
%edD
Hedo 1T]
o_.NN_O \/K mNN_O
A o ®) ©) © ©
;. N\\7 7 €240
O N W Ox @)) W 240
.I M AD va T ¥\ ANV AC
@) [0S /
HOR @% / €140
/> NOP 2 NN
—~

L1y

0

RS lo)

~, S
€40 9% yn

)

AR
14D YYD “eHD

~

xdg

US 2016/0345008 Al

IMAGE PROCESSING APPARATUS AND
IMAGE PROCESSING METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No. 2015-102785, filed on May 20, 2015, the entire contents
of which are incorporated herein by reference.

FIELD

[0002] The embodiments described herein are related to an
image processing apparatus and an image processing
method.

BACKGROUND

[0003] In recent years, various video compression tech-
niques have been developed and put into practice. In many
video compression techniques (for example, MPEG (Mov-
ing Picture Experts Group)-2, H.264, H.265 (HEVC: High
Efficiency Video Coding), and the like), techniques of in-
screen prediction (intra-prediction) and inter-screen predic-
tion (inter-prediction) are used when encoding/decoding
processing is performed.

[0004] Incidentally, with the inter-prediction, images in
multiple frames (screens) are processed, which increases the
processing time. Furthermore, the screen size tends to
increase from full high vision (Full HD (1920x1080) to 4K
(e.g., 3840x2160) and 8K (e.g., 7680x4320), and accord-
ingly, the processing time also increases to four times (4K)
and 16 times (8K).

[0005] Therefore, in recent years, it has been common to
encode and decode videos by using multiple processor cores
(cores). However, when multiple cores are used, waiting
times of cores may occur, for example, in the processing
order of decoding.

[0006] As described above, various suggestions have been
made as image processing techniques efficiently performing
image processing by using multiple cores, but in accordance
with the increase in the screen size, waiting times of cores
may occur, for example, in the processing order of decoding.
[0007] Such waiting times of cores may bring about a
delay in overall image processing. Therefore, it is preferable
to reduce the waiting times of cores. However, in image
processing apparatuses having multiple cores, the reduction
of the waiting times of cores is not sufficient under the
current circumstances.

[0008] Incidentally, in the past, various kinds of image
processing apparatuses and image processing methods effi-
ciently performing image processing by using multiple cores
have been suggested.

[0009] Patent Document 1: Japanese Laid-open Patent
Publication No. H02(1980)-242485

[0010] Patent Document 2: Japanese Laid-open Patent
Publication No. H08(1996)-044678

[0011] Patent Document 3: Japanese Laid-open Patent
Publication No. 2003-051019

[0012] Patent Document 4: Japanese Laid-open Patent
Publication No. 2011-167857

SUMMARY

[0013] According to an aspect of the embodiments, there
is provided an image processing apparatus includes a plu-

Nov. 24, 2016

rality of cores and an arithmetic processing device. The
plurality of cores are configured to be allocated to a plurality
of tiles obtained by dividing a single image data; a config-
ured to control allocation of the plurality of cores based on
the divided tiles.

[0014] The arithmetic processing device is configured to
control allocation of the plurality of cores based on the
divided tiles. The arithmetic processing device allocates all
of the plurality of cores to a single line of the plurality of
tiles in a second direction, when the single image data is
divided into the plurality of tiles in a first direction and the
second direction different from the first direction.

[0015] The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

[0016] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are not restrictive of the
invention.

BRIEF DESCRIPTION OF DRAWINGS

[0017] FIG. 1 is a drawing for explaining encoding pro-
cessing and decoding processing of videos;

[0018] FIG. 2 is a drawing for explaining a unit of
encoding processing and decoding processing (part 1);
[0019] FIG. 3 is a drawing for explaining a unit of
encoding processing and decoding processing (part 2);
[0020] FIG. 4 is a drawing for explaining a unit of
encoding processing and decoding processing (part 3);
[0021] FIG. 5 is a drawing for explaining a unit of
encoding processing and decoding processing (part 4);
[0022] FIG. 6 is a drawing for explaining of a division size
according to an example of video compression standard
(part 1);

[0023] FIG. 7 is a drawing for explaining of a division size
according to an example of video compression standard
(part 2);

[0024] FIG. 8 is a drawing for explaining an example of
motion vector decoding processing (part 1);

[0025] FIG. 9 is a drawing for explaining an example of
motion vector decoding processing (part 2);

[0026] FIG. 10 is a drawing for explaining an example of
an adjacent memory (part 1);

[0027] FIG. 11 is a drawing for explaining an example of
an adjacent memory (part 2);

[0028] FIG. 12 is a drawing for explaining an example of
tile division within a picture;

[0029] FIG. 13 is a drawing for explaining allocation of
the cores for each CTB line;

[0030] FIG. 14 is a drawing for explaining a problem
associated with allocation of the cores for each CTB line as
illustrated in FIG. 13;

[0031] FIG. 15 is a drawing for explaining allocation of
the cores for each tile;

[0032] FIG. 16 is a block diagram illustrating an example
of an image processing apparatus according to the present
embodiment;

[0033] FIG. 17 is a flowchart for explaining an example of
allocation processing of the cores according to the first
embodiment that is applied to the image processing appa-
ratus as illustrated in FIG. 16;

US 2016/0345008 Al

[0034] FIG. 18 is a drawing for explaining allocation
processing of the cores according to the second embodiment
that is applied to the image processing apparatus as illus-
trated in FIG. 16;

[0035] FIG. 19 is a flowchart for explaining an example of
allocation processing of the cores according to the second
embodiment (part 1);

[0036] FIG. 20 is a drawing for explaining processing
according to the flowchart illustrated in FIG. 19;

[0037] FIG. 21A and FIG. 21B are a flowchart for explain-
ing an example of allocation processing of the cores accord-
ing to the second embodiment (part 2);

[0038] FIG. 22 is a drawing for explaining processing
according to the flowchart illustrated in FIG. 21A and FIG.
21B;

[0039] FIG. 23A, FIG. 23B and FIG. 23C are a flowchart
for explaining an example of allocation processing of the
cores according to the second embodiment (part 3);

[0040] FIG. 24 is a drawing for explaining processing
according to a flowchart illustrated in FIG. 23A, FIG. 23B
and FIG. 23C;

[0041] FIG.25A, FIG. 25B and FIG. 25C are drawings for
explaining parallel processing with four cores;

[0042] FIG. 26 is a drawing for explaining effects of
allocation processing of cores according to the second
embodiment (part 1); and

[0043] FIG. 27 is a drawing for explaining effects of
allocation processing of cores according to the second
embodiment (part 2).

DESCRIPTION OF EMBODIMENTS

[0044] First, before explaining an image processing appa-
ratus and an image processing method of the present
embodiment in details, an example of an image processing
technique, an image processing technique as a related tech-
nique, and problems associated therewith will be explained
with reference to FIG. 1 to FIG. 15.

[0045] FIG. 1 is a drawing for explaining encoding pro-
cessing and decoding processing of video s, and illustrates
an encoding device 1, a decoding device 3, and an external
memory 5. As illustrated in FIG. 1, the encoding device 1
receives and encodes an input image lin which is to be
encoded, such as, e.g., a 4K image, and generates an image
stream Istm such as, e.g., an HEVC (High Efficiency Video
Coding) stream.

[0046] The encoding device 1 includes a CTB (Coding
Tree Block) division unit 10, a subtracter 11, an orthogonal
transform and quantization unit 12, an entropy encoding unit
13, an inverse-quantization and inverse-orthogonal trans-
form unit 14, a prediction mode selection unit 15, an adder
16, and a motion vector detection unit 17.

[0047] Further, the encoding device 1 includes an inter-
frame prediction unit 18, an intra-frame prediction unit 19,
a present frame buffer 20, a previous frame buffer 21, a
frame buffer management unit 22, and a deblocking filter 23.
[0048] The CTB division unit 10 receives the input image
Iin, and performs the CTB division processing thereon, and
the subtracter 11 calculates a differential value between an
image obtained from the CTB division processing per-
formed with the CTB division unit 10 and the prediction
image which has been output from the prediction mode
selection unit 15, and outputs the differential value to the
orthogonal transform and quantization unit 12.

Nov. 24, 2016

[0049] The orthogonal transform and quantization unit 12
performs orthogonal transformation of the pixel differential
value given by the subtracter 11, and thereafter performs
quantization. The orthogonal transform and quantization
unit 12 outputs the quantized data to the entropy encoding
unit 13 and the inverse-quantization and inverse-orthogonal
transform unit 14.

[0050] The entropy encoding unit 13 transforms the data,
which are quantized by the orthogonal transform and quan-
tization unit 12, through variable length coding, and outputs
an encoded signal (image stream Istm). The entropy encod-
ing unit 13 outputs the encoded signal (Istm) including the
prediction differential value (MVD: Motion Vector Differ-
ence) given by the inter-frame prediction unit 18.

[0051] Further, the entropy encoding unit 13 calculates a
motion vector (MV: Motion Vector) from the prediction
differential value (MVD), for example, with a decoding
apparatus (not illustrated), and generates a decoded output
image.

[0052] The inverse-quantization and inverse-orthogonal
transform unit 14 inversely quantizes the data quantized by
the orthogonal transform and quantization unit 12, and
thereafter, performs inverse-orthogonal transform and out-
puts the processed data to the adder 16. The prediction mode
selection unit 15 selects one of prediction images generated
by the inter-frame prediction unit 18 and the intra-frame
prediction unit 19, whichever the prediction precision is
higher, and outputs the prediction image to the subtracter 11
and the adder 16 explained above.

[0053] The adder 16 adds an inversely-quantized and
inversely-orthogonally transformed pixel that is output from
the inverse-quantization and inverse-orthogonal transform
unit 14 and a pixel that is output from the prediction mode
selection unit 15. The motion vector detection unit 17 uses
a CTB received from the CTB division unit 10 and a
reference image stored in the previous frame buffer 21 to
detect the motion vector (MV) of the target CTB.

[0054] The inter-frame prediction unit 18 calculates a
motion vector prediction value (MVP: Motion Vector Pre-
dictor) based on motion vectors (MVs) in the surrounding
area. Further, the inter-frame prediction unit 18 calculates a
prediction differential value (MVD) between the motion
vector (MV) of the target macro block and the motion vector
prediction value (MVP).

[0055] The intra-frame prediction unit 19 receives the
reference image held in the present frame buffer 20, and
performs intra-frame prediction of the reference image
based on the pixel levels given from the adjacent blocks. The
present frame buffer 20 stores the value given by the adder
16, and the previous frame buffer 21 stores the value given
by the frame buffer management unit 22.

[0056] The frame buffer management unit 22 receives the
output data of the deblocking filter 23, and outputs the
output data to the previous frame buffer 21, and the previous
frame buffer 21 stores the output data.

[0057] The deblocking filter 23 receives the reference
image held in the present frame buffer 20, and smoothes and
outputs the border between two adjacent macro blocks. For
example, an HEVC stream (image stream Istm: encoded
signal) which is the output of the encoding device 1 is sent
to the decoding device 3 via, for example, a communication
circuit such as the Internet, satellite circuit, and the like.
[0058] As illustrated in FIG. 1, the decoding device 3
receives and decodes the image stream Istm such as, e.g., an

US 2016/0345008 Al

HEVC stream, and generates and outputs a decoded output
image lout such as a 4K image and the like.

[0059] The decoding device 3 includes an entropy decod-
ing unit 30, an inverse-quantization and inverse-orthogonal
transform unit 31, an adder 32, a prediction mode selection
unit 33, a present frame buffer 34, an intra-frame prediction
unit 35, and an inter-frame prediction unit 36. Further, the
decoding device 3 includes a deblocking filter 37, a frame
buffer management unit 38, and a previous frame buffer 39.

[0060] As illustrated in FIG. 1, the external memory 5 is
an external memory used by the decoding device 3. The
external memory 5 includes a deblocking filter temporary
memory (Temporary Memory) 50 and an inter-frame pre-
diction unit temporary memory 51.

[0061] The CTB division unit 10 receives the input image
Iin, and performs the CTB division processing thereon, and
the subtracter 11 calculates a differential value between an
image obtained from the CTB division processing per-
formed with the CTB division unit 10 and the prediction
image which has been output from the prediction mode
selection unit 15, and outputs the differential value to the
orthogonal transform and quantization unit 12.

[0062] The entropy decoding unit 30 receives the image
stream Istm (encoded signal), and performs entropy decod-
ing processing thereon, and the inverse-quantization and
inverse-orthogonal transform unit 31 performs inverse-
quantization and inverse-orthogonal transform on the input
information given by the entropy decoding unit 30.

[0063] The adder 32 adds an inversely quantized and
inversely orthogonally transformed pixel that is output from
the inverse-quantization and inverse-orthogonal transform
unit 31 and a pixel that is output from the prediction mode
selection unit 33. The prediction mode selection unit 33
selects one of pixels decoded by the inter-frame prediction
unit 36 and the intra-frame prediction unit 35, and outputs
the pixel to the adder 32 explained above.

[0064] The present frame buffer 34 stores the pixel of the
output result given by the adder 32. The intra-frame predic-
tion unit 35 receives the reference image held in the present
frame buffer 34, and performs intra-frame prediction of the
reference image based on the pixel levels given from the
adjacent blocks.

[0065] The inter-frame prediction unit 36 calculates a
motion vector prediction value (MVP) based on motion
vectors (MVs) in the surrounding area. Further, the inter-
frame prediction unit 36 calculates a motion vector (MV)
from the addition result of the prediction differential value
(MVD) of the target block and the motion vector prediction
value (MVP).

[0066] The deblocking filter 37 receives the reference
image held in the present frame buffer 34, and smoothes and
outputs the border between two adjacent blocks. The frame
buffer management unit 38 receives the output data of the
deblocking filter 37, and outputs the output data of the
deblocking filter 37 to the previous frame buffer 39. The
previous frame buffer 39 stores the output data. The previous
frame buffer 39 stores the value given from the frame buffer
management unit 38.

[0067] The deblocking filter temporary memory 50 indi-
cates the adjacent memory of the deblocking filter 37, and
stores the content processed by the present CTB, and when
the present CTB changes to processing for one CTB line

Nov. 24, 2016

below, the stored content is read out. It will be noted that the
content processed by the present CTB may be stored to the
external memory 5.

[0068] The inter-frame prediction unit temporary memory
51 indicates the adjacent memory of the inter-frame predic-
tion unit 36, and stores the content processed by the present
CTB, and when the present CTB changes to processing for
one CTB line below, the stored content is read out. It will be
noted that the content processed by the present CTB may be
stored to the external memory 5.

[0069] The output image Iout decoded by the decoding
device 3 may be output as it is. Alternatively, the output
image lout may be stored to the external memory 5.
[0070] FIG. 2 to FIG. 5 are drawings for explaining a unit
of encoding processing and decoding processing. In the
picture types of FIG. 2, reference symbol I represents I
picture (Intra-coded Picture), P represents P picture (Pre-
dicted Picture), and B represents B picture (Bi-directional
Predicted Picture). In FIG. 2, reference symbol Cu repre-
sents the present processing block.

[0071] The intra-prediction uses I picture that does not
need motion vector search processing, and the inter-predic-
tion uses P picture (forward reference) with which motion
vector search processing is performed and B picture (for-
ward, backward reference, bidirectional reference) with
which motion vector search processing is performed.

[0072] More specifically, as illustrated in FIG. 2, when the
currently processed image (the present processing picture
(Picture)) is B picture, the reference images (Pictures) are
used as follows: for example, 1, P pictures are used as the
forward reference, and the P, P pictures are used as the
backward reference. As the components of a MV (motion
vector), the MV is derived from the vertical component and
the horizontal component.

[0073] FIG. 3 illustrates processing of the present process-
ing picture in FIG. 2. In FIG. 3, processing is performed, for
example, in the direction of the arrow in units of CTBs
(64x64 pixels), and more specifically, processing is per-
formed in order from the upper left corner to the lower right
corner for each line in units of CTBs.

[0074] FIG. 4 illustrates a CTB, and when a division is
made within a CTB, FIGS. 4(a) and 4(b) illustrate a case
where, for example, a shaped field division (quadtree divi-
sion) is made, and further, a division is made within the
inside thereof. Numerals in parentheses (1), (2), 3), . . .,
(11) in the CTB as illustrated in FIG. 4(a) are provided to
illustrate an example of sequence of processing in a case
where such division is made.

[0075] FIG. 4(b) illustrates the sequence of processing in
each block. In FIG. 4(b), for example, when the shaped field
division is made, the processing is performed in the order of
stroke of a letter “Z”, and when the division is made into the
upper and lower sides, the processing is performed in order
from the upper side to the lower side, and when the division
is made into the right and left sides, the processing is
performed in order from the left to the right sides. More
specifically, the processing is performed in order from (1) to
2),(3),...,and (11) in FIG. 4(a).

[0076] FIG. 5 illustrates each block unit, and for example,
FIG. 5(a) illustrates a CTB (Coding Tree Block) of the
largest external frame (64x64 (pixels)), and FIG. 5(5) illus-
trates CUs (Coding Units) of square units (64x64, 32x32,
16x16, 8x8) divided into a shaped field (quadtree).

US 2016/0345008 Al

[0077] Further, FIG. 5(¢) to FIG. 5(e) illustrate PUs (Pre-
diction Units) which are parts (Parts: Part 0, Part 1, Part 0 to
Part 3) obtained by further dividing the smallest CU, for
example.

[0078] FIG. 6 and FIG. 7 are drawings for explaining
division sizes according to an example of video compression
standard. As illustrated in FIG. 6 and FIG. 7, various
division sizes (block units: cases 1 to 27) exist in the video
compression standard (HEVC (H.265)).

[0079] Inthe cases 1 to 8, N is assumed to be 32. The case
1 is a case where a CU=64x64 is a PU (a case where no
division is made), i.e., a case of 2Nx2N, and the case 1 is
represented by only PU=0 (Part 0). The case 2 is a case
where shaped field division is made, i.e., a case of NxN
(32%32), and the case 2 is represented by PU=0 (Part 0) to
PU=3 (Part 3).

[0080] Further, the case 3 is a case where division is made
into two upper and lower equal parts, i.e., a case of 2NxN,
and the case 3 is represented by PU=0 (Part 0) and PU=1
(Part 1). The case 4 is a case where division is made into two
right and left equal parts, i.e., a case of Nx2N;, and the case
4 is represented by PU=0 (Part 0) and PU=1 (Part 1).
[0081] The case 5 is a case where division is made with a
ratio of 16:48 in the vertical direction, i.e., a case of 2NxnU,
and the case 5 is represented by 64x16 PU=0 (Part 0) and
64x48 PU=1 (Part 1). The divisions in the cases 6 to 8 may
also be considered in the same manner.

[0082] In the cases 9 to 16, N is assumed to be 16. In the
cases 17 to 24, N is assumed to be 8, and the other cases are
the same as the case of N=32. For example, PU=0 (Part 0)
to PU=3 (Part 3) divided in the case 2, i.e., each of 32x32
(pixels) blocks, correspond to the case 9 as it is, and each of
16x16 blocks divided in the case 10 corresponds to the case
17 as it is. As described above, for example, the division
sizes of the cases 1 to 27 exist in the HEVC.

[0083] FIG. 8 and FIG. 9 are drawings for explaining
examples of motion vector decoding processing, and are
provided to explain restoration (decoding) processing of
motion vector (MV). For example, FIG. 8(a) illustrates a
case where no division is made in the CTB, and FIG. 8(4)
to FIG. 8(d) illustrate a case where divisions are made in
adjacent CTBs and the present CTB.

[0084] Reference symbol Cu denotes the present process-
ing block. Reference symbols A to D denote adjacent blocks.
Reference symbol MV denotes a motion vector. Reference
symbol MVD denotes a prediction differential value (dif-
ferential vector). Reference symbol MVP denotes an inter-
mediate value. More specifically, reference symbol A
denotes a left adjacent block with respect to the present
processing block Cu. Reference symbol B denotes an imme-
diately-above adjacent block. Reference symbol C denotes
an upper right adjacent block. Reference symbol D denotes
an upper left adjacent block.

[0085] It will be noted that intermediate values MVPs of
A, B, C are derived as MVP=Median (MV_MB_A,
MV_MB_B, MV_MB_C). But, for example, when the pro-
cessing of the upper right adjacent block C is not completed,
and MV_MB_C is invalid, MV_MB_D of the upper left
adjacent block D is used. MV of Cu can be derived as
MV=MVD+MVP.

[0086] As illustrated in FIG. 8(a), the decoding (restora-
tion) of the motion vector MV of the present processing
block Cu is performed by using, for example, the differential
vector MVD existing in each block of the CTB and the

Nov. 24, 2016

surrounding blocks with respect to Cu (the left adjacent
block A, the immediately-above adjacent block B, and the
upper right adjacent block C).

[0087] When the adjacent CTBs and the present CTB are
divided, for example, as illustrated in FIG. 8(b) to FIG. 8(c),
the adjacent blocks A to D also change when the Cu to be
processed moves to a subsequent block (a block adjacent to
the right).

[0088] Forexample, as illustrated in FIG. 8(d), depending
on the location of Cu, the processing of the adjacent block
C is not started. Therefore, C is invalid, and D is used instead
of C.

[0089] FIG. 9(a) illustrates a case where the inside of the
CTB (64x64 (pixels)) is divided into a quadtree (shaped
field) and made into 32x32 blocks, and further, four 32x32
blocks are all divided into a quadtree, and all the PUs are
made into 16x16.

[0090] It will be noted that FIG. 9(b) to FIG. 9(g) corre-
spond to the sequence of processing (0 to 15) in FIG. 9(a),
and illustrate the position of the present processing block
Cu, the positions of the adjacent blocks A to D, and whether
C is valid or invalid in each of them.

[0091] Asillustrated in FIG. 9(a), when the 16x16 PUs are
processed in order from zero to fifteen, for example, in a
case of FIG. 9(e), FIG. 9(i), FIG. 9(m), FIG. 9(0), and FIG.
9(g), the upper right adjacent block C with respect to the
present processing block Cu is not decoded (has not yet been
decoded). Therefore, the upper right adjacent block C is
invalid “X”. More specifically, the upper right adjacent
block C is not used. Instead, the upper left adjacent block D
is used.

[0092] In the case of FIG. 9(k), the upper right adjacent
block C with respect to the present processing block Cu has
already been decoded (the MV has already been generated).
Therefore, the upper right adjacent block C ca be used as it
is. In the case of the other diagrams, the MV of the upper
right adjacent block C has already been generated, and the
upper right adjacent block C can be used as it is. As
described above, it is understood that, depending on the
position of the present processing block Cu, there may be a
case where the upper right adjacent block C can be used, and
a case where the upper right adjacent block C is not used.

[0093] FIG. 10 and FIG. 11 are drawings for explaining an
example of the adjacent memory. In FIG. 10 and FIG. 11,
reference symbol AM denotes the adjacent memory. As
illustrated in FIG. 10, for example, when the CTB at the
position (1) is processed, the data of the motion vector MV
at the end of the screen are held in the adjacent memory AM.
For example, when the CTB at the position (2) is processed,
the CTB at the position (1) is used as the immediately-above
adjacent block (B).

[0094] The adjacent memory AM is considered to have the
maximum memory capacity for dividing, for example, all of
the 64x64 CTB into 4x8 blocks. More specifically, since
various cases may be considered as the block division of the
CTB, the capacity of the adjacent memory AM is preferably
determined while considering the case where the largest
capacity is used.

[0095] FIG. 12 is a drawing for explaining an example of
tile division in the picture, and illustrates how a single
picture is divided into nine tiles (Tiles) 0 to 8. As illustrated
in FIG. 12, for example, in the HEVC, tile division may be
done within a single picture.

US 2016/0345008 Al

[0096] In the example as illustrated in FIG. 12, the tiles 0,
2, 6, and 8 are assumed to have the same size, the tiles 1 and
7 are assumed to have the same size, and the tiles 3 and 5
are assumed to have the same size.

[0097] As described above, when a single picture is
divided into nine tiles 0 to 8, the tiles do not have any
dependency of A, B, C (D) with regard to Cu explained
above. Therefore, independent processing can be performed
in each of the tiles.

[0098] More specifically, for example, multiple arithmetic
processing units (cores: Cores) can be used, and the cores
can operate in parallel to perform processing of tiles corre-
sponding to the cores.

[0099] FIG. 13 is a drawing for explaining allocation of
cores for each CTB line (image block line). In the following
explanation, the number of cores is four, but it is to be
understood that the number of cores is not limited to four.
FIG. 13(a) and FIG. 13(4) illustrate decoding processing
with four cores. FIG. 13(c) illustrates the adjacent memory
AM, and FIG. 13(d) illustrates a late-operating core is at a
stop until an adjacent condition is satisfied.

[0100] As illustrated in FIG. 13(a) and FIG. 13(b), four
cores CR1 to CR4 are allocated to CTB lines L1 to L4, L5,
to L8 respectively corresponding thereto, and perform the
decoding processing of each block.

[0101] For example, the CR1 performs processing of L5
when the processing of L1 is completed (finished), the CR2
performs processing of L6 when the processing of L2 is
finished, the CR3 performs processing of 1.7 when the
processing of L3 is finished, and then, the CR4 performs
processing of L8 when the processing of 1.4 is finished. As
illustrated in FIG. 13(¢), the adjacent memory AM processes
only one block at a time. Therefore, the adjacent memory
AM has a memory capacity for a single CTB line.

[0102] As illustrated in FIG. 13(d), when the cores CR1 to
CR4 are allocated for each CTB line, for example, the
late-operating core is at a stop until the adjacent condition is
satisfied. More specifically, when the motion vector MV of
the present processing block Cu is restored, for example, the
core CR2 is at a stop until the processing of the core CR1 is
completed when the core CR1 is not finished the processing
of the upper right adjacent block C of Cu. This also occurs
with the CR3 and CR4, and results in a delay in the
processing.

[0103] FIG. 14 is a drawing for explaining a problem in
allocation of cores for CTB lines as illustrated in FIG. 13. As
illustrated in FIG. 14, when tile division is not made, the
cores CR1 to CR4 are allocated to the CTB lines L1 to L4
respectively corresponding thereto in normal operation.
[0104] Therefore, as explained with reference to FIG.
13(d), the core of the lower side CTB is at a stop until the
adjacent condition of the upper side CTB is satisfied. For
example, when the core CR1 is not generated data (MV) of
the adjacent block (upper right adjacent block C) used for
the present processing block Cu processed by the core CR2,
the core CR2 stops processing until the core CR1 finishes the
generation.

[0105] When there are many blocks of which the division
size is small, e.g., the right end block in the CTB line 1 in
FIG. 14, the processing time with the CR1 increases, and as
a result, the waiting time of the CR2 also increases. More
specifically, when the number of division size of the blocks
to be processed is high, this results in a greater effect of the
delay due to the stop of the processing.

Nov. 24, 2016

[0106] FIG. 15 is a drawing for explaining allocation of
cores to tiles. FIG. 15(a) and FIG. 15(b) illustrate decoding
processing in which four tiles of the same size are decoded
with four cores. FIG. 15(c) illustrates the adjacent memories
AM. FIG. 15(d) illustrates a case where the sizes of the tiles
are different.

[0107] Asillustrated in FIG. 15(a) and FIG. 15(b), the four
cores CR1 to CR4 are allocated to the CTB lines of the tiles
T1 to T4 respectively corresponding thereto, and performs
the decoding processing of the blocks. In the four tiles T1 to
T4, the processing is performed in parallel with the cores
CR1 to CR4.

[0108] More specifically, in the tile T1, the core CR1
processes the CTB lines 111 to 1.14 in order, and in the tile
T2, the core CR2 processes the CTB lines [.21 to [.24 in
order. In the tile T3, the core CR3 processes the CTB lines
L31 to L34 in order, and in the tile T4, the core CR4
processes the CTB lines .41 to 144 in order.

[0109] As described above, when the cores are allocated to
the tiles, the processing of the tiles can be performed in
parallel, so that the processing can be performed at a higher
speed. However, for example, when the four tiles T1 to T4
are processed with the four cores CR1 to CR4, two adjacent
memories AM may be used at a time. Therefore, a capacity
twice as large as FIG. 13(c) is prepared for the adjacent
memory AM. More specifically, for example, a capacity as
large as the number of lines in the vertical direction of the
tiles may be prepared for the capacity of the adjacent
memory.

[0110] Further, as illustrated in FIG. 15(d), the size of each
of the tiles T1 to T4 obtained by dividing the CTB is not
necessarily the same. For example, the size of the tile (T4)
is small, and the core CR4 having finished the processing in
a short time stops without any further processing.

[0111] More specifically, various image processing tech-
niques may be considered to efficiently perform image
processing by using multiple cores, but with the recent
increase in the screen size and the higher resolution, waiting
times of cores occur, for example, in the sequence of
processing of decoding. Such waiting times of the cores
result in delay in the overall image processing.

[0112] Hereinafter, embodiments of an image processing
apparatus and an image processing method will be described
in details with reference to appended drawings. FIG. 16 is a
block diagram illustrating an example of an image process-
ing apparatus according to the present embodiment. The
image processing apparatus as illustrated in FIG. 16 corre-
sponds to the decoding device 3 explained with reference to
FIG. 1, but FIG. 16 is drawn with an attention given to the
four cores CR1 to CR4.

[0113] As illustrated in FIG. 16, the image processing
apparatus (decoding device) 3 according to the present
embodiment receives and decodes an image stream Istm
such as, e.g., an HEVC stream, generates a decoded output
image lout such as a 4K image and the like, and outputs the
output image Iout to the external memory 5 (decoding image
storage area 5B).

[0114] The decoding device 3 includes an arithmetic pro-
cessing device (CPU: Central Processing Unit) 300 for
performing overall control in the decoding device 3 and four
cores (the first to the fourth core) CR1 to CR4. The CPU 300
receives the image stream Istm, and analyzes tile and
division situations and the like, and the CPU 300 distributes

US 2016/0345008 Al

the processing to the first to the fourth the cores CR1 to CR4
for each tile, each CTB line (image block line), and the like.

[0115] The first core CR1 performs the decoding process-
ing of the tile or the CTB line distributed by the CPU 300
that performs the overall control. The first core CR1 moni-
tors the processing state the other cores, i.e., the second, the
third, and the fourth cores CR2, CR3, and CR4. Further,
when the first core CR1 detects waiting of the upper end
CTB line processing, which will be explained later, the first
core CR1 performs support processing of the upper end line.

[0116] The second core CR2 performs the decoding pro-
cessing of the tile or the CTB line distributed by the CPU
300, and monitors the processing state the other cores, i.e.,
the first, the third and the fourth cores CR1, CR3, and CR4.
When the second core CR2 detects waiting of the upper end
CTB line processing, the second core CR2 performs support
processing of the upper end line.

[0117] The third core CR3 performs the decoding process-
ing of the tile or the CTB line distributed by the CPU 300,
and monitors the processing state the other cores, i.e., the
first, the second and the fourth cores CR1, CR2, and CR4.
When the third core CR3 detects waiting of the upper end
CTB line processing, the third core CR3 performs support
processing of the upper end line.

[0118] The fourth core CR4 performs the decoding pro-
cessing of the tile or the CTB line distributed by the CPU
300, and monitors the processing state the other cores, i.e.,
the first, the second and the third cores CR1, CR2, and CR3.
When the fourth core CR4 detects waiting of the upper end
CTB line processing, the fourth core CR4 performs support
processing of the upper end line.

[0119] The external memory 5 includes an adjacent
memory area SA used as an adjacent memory AM and a
decoding image storage area 5B storing an output image lout
such as a 4K image and the like decoded by the decoding
device 3.

[0120] The first to the fourth the cores CR1 to CR4 reads
and writes data to and from the adjacent memory area 5A,
and the decoding image storage area 5B writes images
decoded by the first to the fourth the cores CR1 to CR4.

[0121] FIG. 17 is a flowchart for explaining an example of
allocation processing of the cores according to the first
embodiment that is applied to the image processing appa-
ratus as illustrated in FIG. 16, and illustrates an example of
processing in a case where the number of used cores
(COREs) is four.

[0122] As illustrated in FIG. 17, when the allocation
processing of the cores is started (START), first, in step
ST11, a determination is made as to whether tile (Tile)
division is made in image data to be processed. In FIG. 17,
1 CORE, which is to be allocated, corresponds to each core
of the first core CR1, the second core CR2, the third core
CR3, and the fourth core CR4.

[0123] 2 COREs, which are to be allocated, correspond to,
for example, two cores of CR1 and CR2, and CR3 and CR4,
and 3 COREs correspond to, for example, three cores of
CR1 to CR3 or CR2 to CR4.

[0124] When tile division is determined not to be made
(NO) in step ST11, step ST17 is subsequently executed, and
in the same manner as what has been explained with
reference to FIG. 13, four cores are allocated to a single tile
T0. More specifically, in image data (tile T0), four cores are

Nov. 24, 2016

allocated to corresponding lines as the first line 1 CORE
(core), the second line 1 CORE, the third line 1 CORE, and
the fourth line 1 CORE.

[0125] For example, the core having finished the process-
ing of the first line is subsequently allocated to the fifth line.
The core having finished the processing of the second line is
subsequently allocated to the sixth line. The core having
finished the processing of the third line is subsequently
allocated to the seventh line. More specifically, when tile
division is not made, all of the four cores are used for a
single tile T0, and the four cores perform the parallel
processing of the CTB.

[0126] On the other hand, when tile division is determined
to be made (YES) in step ST11, step ST12 is subsequently
executed, and a determination is made as to whether tile
division is made only in the upper/lower division. When tile
division is determined to be made only in the upper/lower
division (YES) in step ST12, step ST18 is subsequently
executed, and, for example, four cores are allocated as the
first line 1 CORE, the second line 1 CORE, the third line 1
CORE, and the fourth line 1 CORE of the upper side tile
T10.

[0127] For example, the core having finished the process-
ing of the first line of the upper side tile T10 is subsequently
allocated to the fifth line of the upper side tile T10, and
performs the processing of the upper side tile T10. Then,
when the processing of the upper side tile T10 is finished, for
example, four cores are allocated as the first line 1 CORE,
the second line 1 CORE, the third line 1 CORE, and the
fourth line 1 CORE of the lower side tile T20.

[0128] More specifically, when tile division is made only
in the upper/lower division, for example, all of the four cores
are used for the upper side tile T10, and the four cores
perform the parallel operation of the CTB. Then, when the
processing of the upper side tile T10 is finished, all of the
four cores are used for the lower side tile (subsequent tile)
T20, and the four cores perform the parallel operation of the
CTB.

[0129] As described above, in a case of the upper/lower
division, the cores are not allocated to the upper and lower
tiles T10, T20 in a divided manner, so that this does not
increase (double) the capacity of the adjacent memory,
which is needed when the parallel processing is performed
with multiple tiles in the vertical direction. In other words,
the processing is performed while the capacity of the adja-
cent memory stays one line, so that the scale of the circuit
does not increase.

[0130] Subsequently, when tile division is determined not
to be made only in the upper/lower division (NO) in step
ST12, step ST13 is subsequently executed, and the number
of divisions in the tile is counted, and further, step ST14 is
subsequently executed.

[0131] Instep ST14, a determination is made as to whether
the number of tiles in the horizontal direction is equal to or
more than the number of used cores (the number of hori-
zontal width Tiles=the number of used CORFEs?), and when
the number of tiles in the horizontal direction is determined
be equal to or more than the number of used cores (four)
(YES), step ST23 is subsequently executed.

[0132] For example, when the number of tiles in the
horizontal direction is five, this is more than the number of
cores, i.e., four. Therefore, a single core is allocated to each
of the tiles in the horizontal direction (tiles in the horizontal
direction at the upper side) T1le to T14e.

US 2016/0345008 Al

[0133] More specifically, four cores are allocated, from the
left at the upper side, as the first tile (the first Tile: T1le) 1
CORE, the second Tile (T12¢) 1 CORE, the third Tile (T13e)
1 CORE, the fourth Tile (T14¢) 1 CORE. For example, the
core that has finished processing of the first Tile (T11e) at the
upper side is subsequently allocated to the fifth Tile (T15¢)
at the upper side.

[0134] When the number of tiles in the horizontal direc-
tion is determined not to be equal to or more than the number
of'used cores (NO) in step ST14, step ST15 is subsequently
executed, and a determination is made as to whether the
number of tiles in the horizontal direction is three (3
horizontal width Tiles?).

[0135] When the number of tiles in the horizontal direc-
tion is determined to be three (YES) in step ST15, step ST22
is subsequently executed, and two cores are allocated to the
tiles of which the number of division size is the largest, and
one core is allocated to the remaining tiles (two tiles). More
specifically, all the four cores are allocated to three tiles in
the horizontal direction for a single line at the upper side,
and no core is allocated to three tiles at the lower side.
[0136] Inthe drawing of step 22 in FIG. 17, the sizes of the
three tiles T11d, T12d, T13d are all the same. Therefore, for
the sake of convenience, 2 COREs are allocated to the left
end (upper left end) tile T11d.

[0137] When the number of tiles in the horizontal direc-
tion is determined not to be three (NO: the number of tiles
in the horizontal direction is two) in step ST15, step ST16
is subsequently executed, and the number of divisions (the
number of PUs (Prediction Units)) included in each tile are
compared.

[0138] When the PUs in the right side tile is more than the
PUs in the left side tile in step ST16, step ST19 is subse-
quently executed, and, for example, three cores (right side
Tile 3 COREs) are allocated to the right side tile T124a, and
one core (left side Tile 1 CORE) is allocated to the left side
tile T11a. More specifically, all of the four cores are allo-
cated to the two tiles in the horizontal direction for one line
at the upper side, and no core is allocated to two tiles at the
lower side.

[0139] When the PUs in the right side tile are less than the
PUs in the left side tile in step ST16, step ST20 is subse-
quently executed, and, for example, one core (right side
Tilel CORE) is allocated to the right side tile T125, and
three cores (left side Tile3 COREs) are allocated to the left
side tile T114. More specifically, all of the four cores are
allocated to two tiles in the horizontal direction for one line
at the upper side, and no core is allocated to two tiles at the
lower side.

[0140] Further, when the PUs in the right side tile and the
PUs in the left side tile are determined to be equivalent in
step ST16, step ST21 is subsequently executed, for example,
two cores (right side Tile 2 COREs) are allocated to the right
side tile T12¢, and two cores (left side Tile 2 COREs) are
allocated to the left side tile T11lc. More specifically, all of
the four cores are allocated to two tiles in the horizontal
direction for one line at the upper side, and no core is
allocated to two tiles at the lower side.

[0141] Ineach of steps ST18 to ST23, after the processing
of the tiles at the upper side (T10, T11a to T15e) is finished,
the core is allocated to the tiles at the lower side (120, T21aq,
to T25¢), and the tiles at the lower side are processed.
[0142] As described above, according to the first embodi-
ment, when the division of the tile is made in the upper/

Nov. 24, 2016

lower division, the cores are not allocated to the upper and
lower tiles in a divided manner, so that processing can be
performed while the capacity of the adjacent memory stays
one line, without performing parallel processing with mul-
tiple tiles in the vertical direction.

[0143] FIG. 18 is a drawing for explaining allocation
processing of cores according to the second embodiment
that is applied to the image processing apparatus as illus-
trated in FIG. 16, and FIG. 18 explains processing for
avoiding (alleviating) waiting processing. For example, FIG.
18 shows an example of a case where four cores are used for
processing a single tile in step ST17 (ST18) in FIG. 17
explained above.

[0144] As explained with reference to FIG. 17, when cores
corresponding to tiles are allocated (distributed) and there-
after, for example, two or more cores are used for a single
tile, the parallel processing of the CTB line is performed. For
example, when the number of divisions of the CTB line at
the upper side is high, and waiting processing occurs in the
CTB line at the lower side, division situation at the upper
end CTB line side is determined, and processing of the upper
end CTB line side is performed.

[0145] As illustrated in FIG. 18, four cores CR1 to CR4
are allocated to corresponding CTB lines .1 to L3. FIG. 18
shows, in the CTB line L1 at the uppermost end, for
example, the division size increases remarkably during the
processing, and since the core CR1 is not finished generation
of the block Bp0, the core CR2 processing the second CTB
line [.2 from the top is kept waiting.

[0146] More specifically, when the core CR2 processing
the second CTB line L2 is kept waiting, the core CR3
processing the third CTB line L3 and the core CR4 pro-
cessing the fourth CTB line L4 after that are also kept
waiting.

[0147] Therefore, in the allocation processing of the cores
according to this second embodiment, not only the core CR1
processing the original CTB line L1 but also the cores CR2
to CR4 kept waiting unless the processing of the block Bp0
is finished are allocated to the block Bp0 for which the
processing is not finished.

[0148] More specifically, it is difficult to start the process-
ing of the lower side CTB until the processing of the upper
side CTB is finished. Therefore, when there is a core at stop
due to waiting, the core is configured to help the processing
of the upper side CTB at the time in which the core is
stopped.

[0149] In other words, the state in which the lower side
cores CR2 to CR4 processing the second and subsequent
CTB lines L2 to [.4 are kept waiting and the state in which
parallel processing operation can be performed for the
uppermost end CTB line L1 are determined, and, for
example, the processing of the CTB in which there are many
divisions in the uppermost end CTB line L1 is processed
with the highest level of preference.

[0150] For example, in the block Bp0, the core CR1 is
caused to perform processing in the same manner as CR1aq,
CR15, the core CR2 is caused to perform processing in the
same manner as CR2a, CR2b, the core CR3 is caused to
perform processing in the same manner as CR3a, CR35, and
the core CR4 is caused to perform processing in the same
manner as CR4a and CR4b.

[0151] After the processing of the block Bp0 with the four
cores CR1 to CR4 is finished, for example, the core CR1
processes a block Bp1 subsequent to Bp0 in the CTB line L1

US 2016/0345008 Al

at the uppermost end. After the processing of Bp0 is finished,
for example, the core CR2 returns back to the original
processing to process the block Bp2 in the second CTB line
L2.

[0152] As described above, according to the second
embodiment, the core which is kept waiting in the process-
ing is allocated to a preferentially processed block which is
the cause of making the core in the waiting state. Therefore,
the overall processing time can be reduced.

[0153] FIG.19,FIG. 21A, FI1G. 21B, FIG. 23A, FIG. 23B,
and FIG. 23C are flowcharts for explaining an example of
allocation processing of the cores according to the second
embodiment. FIG. 20, FIG. 22 and FIG. 24 are drawings for
explaining processing according to flowcharts illustrated in
FIG. 19, FIG. 21A, FIG. 21B, FIG. 23A, FIG. 23B, and FIG.
23C, respectively.

[0154] More specifically, FIG. 19 illustrates processing for
64x64 (pixels: CTB) or less. FIG. 21A and FIG. 21B
illustrate processing for 32x32 or less in step ST39 in FIG.
19. FIG. 23A, FIG. 23B and FIG. 23C illustrate processing
for 16x16 or less in step ST51 in FIG. 21B.

[0155] As illustrated in FIG. 19, when allocation process-
ing (64x64 or less) of the cores according to the second
embodiment is started, the size of the CTB (Coding Tree
Block: the present block) is determined in step ST31.

[0156] When the size of the present block is determined to
be 64x64 in step ST31, step ST34 is subsequently executed,
and when the size of the present block is determined to be
64x32, step ST32 is subsequently executed, and when the
size of the present block is determined to be 32x64, step
ST33 is subsequently executed. When the size of the present
block is determined to be 32x32 or less in step ST31, step
ST39 is subsequently executed.

[0157] Instep ST34, as illustrated in FIG. 20(a), the block
to be processed subsequently to the currently processed
block (the present CTB) Bpl1 is only the right side block
(subsequent CTB) Bp12, and the lower block is not pro-
cessed at a time (X).

[0158] Instep ST32, a determination is made as to whether
the size of the present block is Part 0 (PU=0) or not. When
the size of the present block (64x32) is determined to be Part
0 (YES), step ST35 is subsequently executed. When the size
of'the present block is determined not to be Part 0 (NO), step
ST36 is subsequently executed.

[0159] In step ST33, a determination is also made as to
whether the size of the present block is Part 0 or not. When
the size of the present block (32x64) is determined to be Part
0 (YES), step ST37 is subsequently executed. When the size
of'the present block is determined not to be Part 0 (NO), step
ST38 is subsequently executed.

[0160] Instep ST35, as illustrated in FIG. 20(b), the block
which is to be processed subsequently to Bp21 (the present
CTB) may be not only the right side block (subsequent CTB)
Bp23 but also the lower lock Bp22, so that both of Bp22 and
Bp23 can be processed at a time. More specifically, for
example, while the first core CR1 processes the block Bp23,
the second core CR2 can process the block Bp22 in parallel.

[0161] In step ST36 to ST38, as illustrated in FIG. 20(c)
to FIG. 20(e), like step ST34, the blocks Bp25, Bp32, Bp34
at the right side of the currently processed blocks Bp24,
Bp31, Bp33 are processed, and the lower block is not
processed at a time (X).

Nov. 24, 2016

[0162] As illustrated in FIG. 21A and FIG. 21B, when the
processing of the processing (32x32 or less) in step ST39 in
FIG. 19 is started, the size of the present block (CTB) is
determined in step ST41.

[0163] When the size of the present block is determined to
be 32x32 in step ST41, step ST44 is subsequently executed.
When the size of the present block is determined to be
32x16, step ST42 is subsequently executed. When the size
of the present block is determined to be 16x32, step ST43 is
subsequently executed. When the size of the present block is
determined to be 16x16 or less in step ST41, step ST51 is
subsequently executed.

[0164] Instep ST44, a determination is made as to whether
the size of the present block is Part 0 (PU=0) or not. In step
ST45, a determination is made as to whether the size of the
present block is Part 1 (PU=1) or not. In step ST46, a
determination is made as to whether the size of the present
block is Part 2 (PU=2) or not.

[0165] Then, when the size of the present block is deter-
mined to be Part 0, step ST47 is subsequently executed.
When the size of the present block is determined to be Part
1, step ST48 is subsequently executed. When the size of the
present block is determined to be Part 2, step ST49 is
subsequently executed. When the size of the present block is
determined not to be Part 0 to Part 2, step ST50 is subse-
quently executed.

[0166] As illustrated in FIG. 22(a), when the size of the
present block is other than Part 2 and Part 0 to Part 2, only
the right side block can be processed, and the lower block is
not processed in parallel (X). However, it is understood that,
when the size of the present block is Part 0 and Part 1, not
only the right side block but also the lower side block can be
processed in parallel.

[0167] FIG. 22(b) corresponds to each processing in a case
where the size of the present block is determined to be Part
0 in step ST42 (YES). FIG. 22(c) corresponds to each
processing in a case where the size of the present block is
determined not to be Part 0 in step ST42 (NO).

[0168] Further, FIG. 22(d) corresponds to each processing
in a case where the size of the present block is determined
to be Part 0 in step ST43 (YES). FIG. 22(e) corresponds to
each processing in a case where the size of the present block
is determined not to be Part 0 in step ST43 (NO).

[0169] More specifically, it is understood that, in FIG.
22(b), parallel processing can be performed in all of the
cases, and in FIG. 22(c) to FIG. 22(e), parallel processing is
impossible (X) in two cases, and parallel processing is
possible in two cases.

[0170] Asillustrated in FIG. 23 A, FIG. 23B and F1G. 23C,
when the processing of the processing (16x16 or less) in step
ST51 in FIG. 21B is started, the size of the present block
(CTB) is determined in step ST61.

[0171] When the size of the present block is determined to
be 16x16 in step ST61, step ST64 is subsequently executed.
When the size of the present block is determined to be 16x8,
step ST62 is subsequently executed. When the size of the
present block is determined to be 8x16, step ST63 is
subsequently executed. When the size of the present block is
determined to be 8x8 or less in step ST61, step ST69 is
subsequently executed.

[0172] When the size of the present block is determined to
be Part 0 (YES) in step ST62, step ST65 is subsequently
executed. When the size of the present block is determined
not to be Part 0 (NO), step ST66 is subsequently executed.

US 2016/0345008 Al

When the size of the present block is determined to be Part
0 (YES) in step ST63, step ST67 is subsequently executed.
When the size of the present block is determined not to be
Part 0 (NO), step ST68 is subsequently executed.

[0173] FIG. 24(a) corresponds to the processing of step
ST64 and later. FIG. 24(b) corresponds to the processing of
step ST65 and later. FIG. 24(c) corresponds to the process-
ing of step ST66 and later. FIG. 24(d) corresponds to the
processing of step ST67 and later. F1G. 24(e) corresponds to
the processing of step ST68 and later.

[0174] As illustrated in FIG. 24(a) and FIG. 24(c) to FIG.
24(e), it is understood that the processing in step ST64 and
ST66 to ST68, the parallel processing of the right side block
and the lower block can be performed except four cases at
the bottom of each drawing.

[0175] Further, as illustrated in FIG. 24(b), it is understood
that, in the processing of step ST65 and later, the parallel
processing of the right side block and the lower block can be
performed in all of the cases. The processing in which the
size of the present block is 8x8 or less in step ST69 is, for
example, 4x8 and 8x4 in HEVC, but the explanation there-
about is omitted.

[0176] As described above, according to this second
embodiment, for example, when there exists a core stopped
and kept waiting in the processing, the processing time can
be reduced by performing parallel processing with multiple
cores by using the stopped core. It will be noted that the
number of cores used for the parallel processing is not
limited to one. When there are multiple stopped cores, it is
to be understood that multiple cores can be used.

[0177] FIG.25A, FIG. 25B and FIG. 25C are drawings for
explaining parallel processing with four cores. In FIG. 25A,
FIG. 25B and FIG. 25C, for example, performing parallel
processing by using a core stopped and kept waiting in the
processing like the second embodiment explained above is
not taken into consideration.

[0178] FIG. 25A, FIG. 25B and FIG. 25C illustrate an
example in which the size of the CTB is 64x64, and the sizes
of all the blocks are 8x8. In the first order of the processing,
the processing is started with only a single core, i.e., the first
core CR1. Thereafter, the second order of the processing for
a subsequent cycle is performed.

[0179] In the state of the processing position “17, the
parallel operation can be performed, and the first core CR1
performs processing from the processing positions “1” to
“4” and in the second order of the processing, the second
core CR2 performs the processing of the processing position
“2”. Such processing is repeatedly performed from the
processing positions “0” to “63”.

[0180] Asillustrated in FIG. 25A, FIG. 25B and F1G. 25C,
it is understood that, by performing such processing, for
example, the processing of 64 cycles from “0” to “63” is
finished in 22 cycles by using the four cores CR1 to CR4.
[0181] In the cycles [6] to [16], all of the four cores CR1
to CR4 perform the parallel operation, and in the cycles [5],
[17], and [18], three cores (CR1 to CR3 or CR2 to CR4)
perform the parallel operation. In the cycles [3], [4], [19],
and [20], two cores (CR1, CR2 or CR3, CR4) perform the
parallel operation. In the cycles [1], [2], [21], and [22], one
core (CR1 or CR4) performs the parallel operation.

[0182] FIG. 26 and FIG. 27 are drawings for explaining
the effect of allocation processing of the cores according to
the second embodiment. FIG. 26 illustrates an example of
operation in a case where the second embodiment is not

Nov. 24, 2016

applied. FIG. 27 illustrates an example of operation in a case
where the second embodiment is applied.

[0183] In FIG. 26 and FIG. 27, the first core CR1 to the
fourth core CR4 are basically allocated to the CTB lines [.1
to L4, respectively. Further in FIG. 27, the parallel process-
ing using the stopped core according to the second embodi-
ment explained above is performed.

[0184] As is evident from the comparison between FIG.
26 and FIG. 27, the processing, which needed 20 cycles
when the second embodiment is not applied, can be reduced
to 14 cycles by applying the second embodiment.

[0185] More specifically, as illustrated in FIG. 26, when
the second embodiment is not applied, multiple cores
capable of operating at a time (in parallel) are, for example,
only the following cores, CR1;, CR2,, CR1,,, CR2,,,
CR2,,, CR3,,, CR2,,, CR3 ., CR4,,, and the like.

[0186] For example, reference symbol CR2, . denotes
block processing that is performed by the second core CR2
in the 16-th cycle. Reference symbol CR3, ; illustrates block
processing that is performed by the third core CR3 in the
16-th cycle. Reference symbol CR4, illustrates block pro-
cessing that is performed by the fourth core CR4 in the 16-th
cycle.

[0187] Forexample, when, in the CTB line .1, the divided
CTB block Bpx is processed, and the second embodiment is
not applied, the processing is performed with only the first
core CR1. Therefore, the cores CR2 to CR4 processing [.2
to L4 include the cycles stopped and kept waiting. As a
result, it takes 20 cycles to finish all the processing.
[0188] In contrast, as illustrated in FIG. 27, when the
second embodiment is applied, multiple cores capable of
performing the parallel operation are not only, for example,
CR1,, CR2;, and CR2,,, CR3,,, CR4,,, and the like, and
further, still more parallel processing can be performed.
[0189] More specifically, when the second embodiment is
applied, for example, the processing of the CTB block Bpx
can be performed with multiple cores such as CR1,, CR3,
CR2, CR3,, and further, the processing of another CTB line
(CTB) can also be performed with CR25, CR1, in parallel.
[0190] As a result, the processing time to finish all of the
processing can be reduced from 20 cycles to 14 cycles. This
is expected to be able to further reduce the processing time
in accordance with used cores and the size into which the
CTB block is divided.

[0191] The first embodiment and the second embodiment
explained above is not limited to be applied to HEVC
(H.265), and can be applied to various image processing
techniques for processing images by using multiple cores
(processor cores).

[0192] The present embodiment can be applied to the
decoding device 3 explained with reference to FIG. 1 or FIG.
16, but can also be embodied as, for example, a program that
is executed by the arithmetic processing device (CPU) 300
of the decoding device 3 as illustrated in FIG. 16.

[0193] All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding
the reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that various

US 2016/0345008 Al

changes, substitutions, and alterations can be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:

1. An image processing apparatus comprising:

a plurality of cores configured to be allocated to a plurality
of tiles obtained by dividing a single image data; and

an arithmetic processing device configured to control
allocation of the plurality of cores based on the divided
tiles, wherein

the arithmetic processing device allocates all of the plu-
rality of cores to a single line of the plurality of tiles in
a second direction, when the single image data is
divided into the plurality of tiles in a first direction and
the second direction different from the first direction.

2. The image processing apparatus according to claim 1,

wherein

the arithmetic processing device is configured not to
allocate the cores to a tile adjacent in the first direction
to the single line of the plurality of tiles to which the
plurality of cores are allocated.

3. The image processing apparatus according to claim 2,

wherein

when the number of tiles in the second direction is less
than the number of cores, the arithmetic processing
device, in the second direction, allocates a first number
of cores to a tile having a first size, and allocates a
second number of cores to a tile having a second size,
the second number being more than the first number,
and the second size being larger than the first size.

4. The image processing apparatus according to claim 2,

wherein

when the number of tiles in the second direction is less
than the number of cores, the arithmetic processing
device, in the second direction, allocates a third number
of cores to a tile in which the number of divisions
included is a first number, and allocates a fourth num-
ber of cores to a tile in which the number of divisions
included is a second number, the fourth number being
more than the third number, and the second number
being more than the first number.

5. The image processing apparatus according to claim 2,

wherein

the first direction is a direction in which a memory
capacity used as an adjacent memory increases when at
least two tiles in the first direction are processed at a
time.

6. The image processing apparatus according to claim 2,

wherein

the first direction is a vertical direction of the single image
data.

7. The image processing apparatus according to claim 2,

wherein

the second direction is a direction perpendicular to the
first direction.

8. The image processing apparatus according to claim 2,

wherein

the second direction is a horizontal direction of the single
image data.

9. An image processing apparatus comprising:

a plurality of cores configured to be allocated to a plurality
of image block lines obtained by dividing a single
image data; and

an arithmetic processing device configured to control
allocation of the plurality of cores, wherein

Nov. 24, 2016

when an operation of a second core which processes a
second image block line subsequent to a first image
block line stops because processing of the first image
block line performed earlier by a first core is not
finished, the arithmetic processing device allocates not
only the first core but also the second core to processing
of the first image block line.

10. The image processing apparatus according to claim 9,

wherein

when an operation of a third core which processes a third
image block line subsequent to the second image block
line stops because processing of the first image block
line performed earlier by the first core is not finished,
the arithmetic processing device allocates not only the
first core and the second core but also the third core to
processing of the first image block line.

11. The image processing apparatus according to claim 1,
wherein the image processing apparatus is a decoding device
configured to decode an image by performing inter-predic-
tion based on the single image data.

12. An image processing apparatus comprising:

aplurality of cores configured to be allocated to a plurality
of tiles obtained by dividing a single image data; and

an arithmetic processing device configured to control
allocation of the plurality of cores based on the plural-
ity of tiles, wherein

the arithmetic processing device allocates all of the plu-
rality of cores to a single line of the plurality of tiles in
a second direction, when the single image data is
divided into the plurality of tiles in the first direction
and the second direction different from the first direc-
tion,

when at least two of the plurality of cores are allocated to
a single tile in the single line of the plurality of tiles, the
arithmetic processing device controls allocation of the
at least two of the plurality of cores to a plurality of
image block lines obtained by dividing the single tile to
which the at least two of the plurality of cores are
allocated, and

when an operation of a second core which processes a
second image block line subsequent to a first image
block line stops because processing of the first image
block line performed earlier by a first core is not
finished, the arithmetic processing device allocates not
only the first core but also the second core to processing
of the first image block line.

13. The image processing apparatus according to claim
12, wherein the image processing apparatus is a decoding
device configured to decode an image by performing inter-
prediction based on the single image data.

14. An image processing method that performs image
processing by dividing a single image data into a plurality of
tiles, and allocating a plurality of cores to the divided tiles,
wherein

all of the plurality of cores are allocated to a single line of
the plurality of tiles in a second direction, when the
single image data is divided into the plurality of tiles in
the first direction and the second direction different
from the first direction.

15. The image processing method according to claim 14,

wherein

the core is not allocated to a tile in the first direction
adjacent to the single line of the plurality of tiles to
which the plurality of cores are allocated.

US 2016/0345008 Al

16. The image processing method according to claim 15,
wherein

when the number of tiles in the second direction is less

than the number of cores, the arithmetic processing
device, in the second direction, allocates a first number
of cores to a tile having a first size, and allocates a
second number of cores to a tile having a second size,
the second number being more than the first number,
and the second size being larger than the first size.

17. The image processing method according to claim 15,
wherein

when the number of tiles in the second direction is less

than the number of cores, the arithmetic processing
device, in the second direction, allocates a third number
of cores to a tile in which the number of divisions
included is a first number, and allocates a fourth num-
ber of cores to a tile in which the number of divisions
included is a second number, the fourth number being
more than the third number, and the second number
being more than the first number.

18. The image processing method according to claim 15,
wherein

the first direction is a direction in which a memory

capacity used as an adjacent memory increases when at
least two tiles in the first direction are processed at a
time.

19. An image processing method that performs image
processing by dividing a single image data into a plurality of
image block lines, and allocating a plurality of cores to the
divided image block lines, wherein

11

Nov. 24, 2016

when an operation of a second core processing a second
image block line subsequent to a first image block line
stops because processing of the first image block line
performed earlier by a first core is not finished, not only
the first core but also the second core are allocated to
processing of the first image block line.

20. An image processing method that performs image
processing by dividing a single image data into a plurality of
tiles, and allocating a plurality of cores to the divided tiles,
wherein

all of the plurality of cores are allocated to a single line of
the plurality of tiles in a second direction, when the
single image data is divided into the plurality of tiles in
the first direction and the second direction different
from the first direction,

when at least two of the plurality of cores are allocated to
a single tile in the single line of the plurality of tiles,
allocation of the at least two of the plurality of cores to
a plurality of image block lines obtained by dividing
the single tile to which the at least two of the plurality
of cores are allocated is controlled, and

when an operation of a second core which processes a
second image block line subsequent to a first image
block line stops because processing of the first image
block line performed earlier by a first core is not
finished, not only the first core but also the second core
are allocated to processing in the first image block line.

#* #* #* #* #*

