
US 20210133916A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0133916 A1

BILLYARD (43) Pub . Date : May 6 , 2021

(54) METHOD AND SYSTEM FOR INTERACTIVE
GRAPHICS STREAMING

(71) Applicant : ELEKTRAGLIDE LTD , Guildford
(GB)

G06T 1/60 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. CI .
CPC G06T 1/20 (2013.01) ; G06F 3/14

(2013.01) ; G06T 1/60 (2013.01) ; G06T
2200/24 (2013.01) ; H04L 67/42 (2013.01) ;

GOOT 2200/16 (2013.01) ; H04L 65/60
(2013.01)

(72) Inventor : Adam BILLYARD , Sussex (GB)
(21) Appl . No .: 17 / 146,828

(22) Filed : Jan. 12 , 2021 (57) ABSTRACT

Related U.S. Application Data
(63) Continuation of application No. 16 / 528,862 , filed on

Aug. 1 , 2019 , now Pat . No. 10,915,984 , which is a
continuation - in - part of application No. 15 / 113,176 ,
filed on Jul . 21 , 2016 , now Pat . No. 10,410,312 , filed
as application No. PCT / GB2015 / 050128 on Jan. 21 ,
2015 .

(60) Provisional application No. 61 / 929,538 , filed on Jan.
21 , 2014 .

The present invention relates to a method of streaming
interactive computer graphics from a server to a client
device . The method includes the steps of : intercepting
graphics instructions transmitted from an application des
tined for a graphical processing unit (GPU) at the server ;
processing the graphics instructions to generate graphics
data at the server , generating index information for , at least ,
some of the graphics data at the server ; transmitting the
index information in place of the graphics data to a client
device ; extracting corresponding graphics data stored at the
client device utilizing the index information ; and rendering
computer graphics at a graphical processing unit (GPU) at
the client device using the corresponding graphics data . A
system for streaming interactive computer graphics is also
disclosed .

Publication Classification
(51) Int . Ci .

G06T 1/20 (2006.01)
G06F 3/14 (2006.01)

106

105 107

108

Network

Patent Application Publication May 6 , 2021 Sheet 1 of 9 US 2021/0133916 A1

201

H (9

601

Network
Figure 1

s 90000000

200

201

202

203

204

Patent Application Publication

Application module

Interceptor module

Processing module
Communications module

Server - side

Good

May 6 , 2021 Sheet 2 of 9

Client - side

Renderer at GPU

Second processing module
206

205

US 2021/0133916 A1

Figure 2

Patent Application Publication May 6 , 2021 Sheet 3 of 9 US 2021/0133916 A1

300

Application at the server generates graphics
instructions for a GPU 301

The instructions are intercepted 302
W

7
The instructions are processed to generate

graphics data 303
posao

Index information is generated for the graphics
data

304

The index information is transmitted in place of
the graphics data to a client device 305

The index information is used to retrieve
corresponding graphics data at the client 306

This graphics data is transmitted to a GPU at
the client for rendering 307

The graphics are displayed to a user

M

Input from the user may be fed back to the
application executing on the server 309

Figure 3

Patent Application Publication May 6 , 2021 Sheet 4 of 9 US 2021/0133916 A1

Credentials
Carousel

Key Collection

Client Player

Launch
Application

Graphics

User Input
poo 0999 00000

Figure 4

Patent Application Publication May 6 , 2021 Sheet 5 of 9 US 2021/0133916 A1

Application

3D Graphics Library
????????

Stream Capture

3
$

8
& Graphics Driver 8

8
**

12

8

8

8

8

**

Figure 5

Patent Application Publication May 6 , 2021 Sheet 6 of 9 US 2021/0133916 A1

Generate hash key
for blob

AN

In hash key
collection ?

Add hash key to
collection

Send blob

Send resource
update using key
WwW2106

Figure 6

Patent Application Publication May 6 , 2021 Sheet 7 of 9 US 2021/0133916 A1

Entropy encoding

De - duplication

T T
Dictionary

compression

Figure 7

Patent Application Publication May 6 , 2021 Sheet 8 of 9 US 2021/0133916 A1

D

NO OVERWRITE
Figure 8

Buffer DISCARD

DISCARD NO OVERWRITE OVE

Actual Hashed As

Patent Application Publication May 6 , 2021 Sheet 9 of 9 US 2021/0133916 A1

Key Collection ?

Add Draw Call and Graphics

Figure 9

US 2021/0133916 A1 May 6 , 2021
1

METHOD AND SYSTEM FOR INTERACTIVE
GRAPHICS STREAMING

REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. applica
tion Ser . No. 16 / 528,862 filed 1 Aug. 2019 , which is a
continuation in part of U.S. application Ser . No. 15 / 113,176
filed 21 Jul . 2016 , which is the U.S. national phase of
International Application No. PCT / GB2015 / 050128 filed 21
Jan. 2015 , which designated the U.S. and claims the benefit
of U.S. Provisional Application No. 61 / 929,538 filed 21 Jan.
2014 , the entire contents of each of which are hereby
incorporated by reference .

FIELD OF INVENTION

[0002] The present invention is in the field of interactive
graphics streaming . More particularly , but not exclusively ,
the present invention relates to interactive graphics stream
ing from an application on a server for display by a GPU on
a remote client .

[0010] Fifthly , display resolutions are increasing rapidly
with many devices now offering 3840x2160 pixels and “ 8 k
smartTV ” (8192 pixel wide displays) arriving soon . A
compression system based around pixels (such as h.264)
means that to get the fidelity needed for these displays means
increasing the bandwidth of the encoded video stream .
[0011] Therefore , it would be desirable if an interactive
graphics streaming system could be developed where the
application is executed on a server and the graphics rendered
by a local GPU at the client device .
[0012] One such system is described in the article “ Low
Delay Streaming of Computer Graphics " , P Eisert and P
Fechteler , 15th IEEE International Conference on Image
Processing , ICIP 2008. However , the method described in
this article includes shadowing the server memory at the
client . This shadowing is bandwidth intensive and shadow
ing of the entirety of the graphics data may not even be
necessary (for example , the resolution limitations of the
particular client device may not support high resolution
textures) .
[0013] The MPEG - 4 standard describes the transmission
of compressed geometry meshes and textures to a remote
device and could be adapted to provide an interactive
graphics streaming system . However , to implement
MPEG - 4 for a standalone interactive application would
require modifications to the application . Furthermore , the
MPEG - 4 standard would result in potential retransmission
of graphics data from the server to the client for each new
stream resulting in inefficient use of bandwidth between
server and client .
[0014] Therefore , an interactive graphics streaming sys
tem is desired which provides improved use of the band
width between the server and client , is adaptable to different
client device capabilities , and requires minimal or no repro
gramming of the interactive graphics application .
[0015] It is an object of the present invention to provide a
method and system for interactive graphics streaming which
meets the above desires while overcomes the disadvantages
of the prior art , or at least provides a useful alternative .

BACKGROUND

SUMMARY OF INVENTION

[0003] In the field of interactive graphics application (such
as computer games) , users typically download , or obtain by
physical media , the applications and execute them locally on
their devices .
[0004] However , some providers of interactive graphics
application desire the flexibility and control of executing the
graphics applications at a server and streaming the rendered
graphics from the applications to users across a network for
display on the user's device .
[0005] The existing state of the art in this form of stream
ing graphics content , execute applications on a specialist
server that provides a CPU , memory , backing store and a
Graphics Processing Unit (GPU) which is used to render the
output of the application into a Framebuffer of pixels . The
resulting pixels are then retrieved and encoded into a tradi
tional video stream (e.g. h.264) and sent to the client .
[0006] There are a number of disadvantages with this
approach . Firstly , the servers have to be extremely powerful
to run compute and graphics intensive applications for many
users simultaneously ; this results in a high power usage (and
thus also cooling costs) which are a significant issue in
determining business viability .
[0007] Second , existing video standards such as h.264 are
inherently ‘ lossy ' meaning that they lose image fidelity
during encoding . Compression artefacts can be reduced by
increasing the bandwidth requirements of the stream , but
there is a hard limit on bandwidth into users ' premises and
a soft limit on the amount of bandwidth out of the datacenter
where the servers are co - located . This means these systems
have to accept introducing compression artefacts into the
content stream to be viable .
[0008] Thirdly , the real - time compression of video is a
hugely compute intensive process in which the bandwidth
requirements of the resultant stream is a function of the
amount of compression processing that has been allocated .
This adds to the server load and latency of the system .
[0009] Fourthly , millions of consumer devices (e.g. tab
lets , mobiles , and smart TVs) increasingly contain powerful
GPUs that are a resource that is largely under utilised when
all the applications graphics processing occurs on the server .

[0016] According to a first aspect of the invention there is
provided a method of streaming interactive computer graph
ics from a server to a client device , including :
[0017] a) intercepting graphics instructions transmitted
from an application destined for a graphical processing unit
(GPU) at the server ;
[0018] b) processing the graphics instructions to generate
graphics data at the server ,
[0019] c) generating index information for , at least , some
of the graphics data at the server ;
[0020] d) transmitting the index information in place of
the graphics data to a client device ;
[0021] e) extracting corresponding graphics data stored at
the client device utilizing the index information ; and
[0022] f) rendering computer graphics at a graphical pro
cessing unit (GPU) at the client device using the correspond
ing graphics data .
[0023] The graphics data may include one or more from
the set of graphics state , static resources , and dynamic
resources .

US 2021/0133916 A1 May 6 , 2021
2

[0038] FIG . 5 : shows a flow diagram illustrating intercep
tion of graphics instructions in accordance with an embodi
ment of the invention ;
[0039] FIG . 6 : shows a flow diagram illustrating creation
of the hash key collection in accordance with an embodi
ment of the invention ;
[0040] FIG . 7 : shows a flow diagram illustrating graphics
command compression in accordance with an embodiment
of the invention ;
[0041] FIG . 8 : shows a block diagram illustrating hashing
of vertex buffer blocks in accordance with an embodiment of
the invention ; and
[0042] FIG . 9 : shows a flow diagram illustrating use of a
draw call key collection in accordance with an embodiment
of the invention .

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0024] Objects within the graphics data may be hashed to
generate the index information .
[0025] The dynamic resources may include a vertex buffer
and index information may be generated for modified por
tions of the vertex buffer . The vertex buffer may be divided
into blocks and index information generated for a run of
modified blocks . The index information may be generated
for a trimmed run of modified blocks such that the run
extends from the first modified bit within the first block in
the run to the last modified bit within the last block in the
run . The vertex buffer may be divided into stripes corre
sponding to vertex fields and index information generated
for modified stripes .
[0026] The method of the first aspect may further include
the step of synchronizing the graphics data between the
server and the client . When the graphics data includes
textures , only data for the textures that is used may be
synchronized . The profile of the client device may determine
the synchronization of graphics data . The profile of the client
device may determine the synchronization of graphics data
by assigning lower resolution graphics for higher resolution
graphics at the client device .
[0027] The rendered graphics may be displayed on a
display at the client device . The client device may receive
user input in response to the displayed graphics , and the user
input may be transmitted back to the executing application
on the server . The user input may be transmitted , at least in
part , using UDP . State Transition Events may be synthesised
on the server .
[0028] The application may be selected for execution at
the server by a user from a plurality of applications
[0029] According to a further aspect of the invention there
is provided a system for streaming interactive computer
graphics , including :
(0030) a server configured for intercepting graphics
instructions transmitted from an application destined for a
graphical processing unit (GPU) at the server , processing the
graphics instructions to generate graphics data , generating
index information for , at least , some of the graphics data ,
transmitting the index information in place of the graphics
data to a client device ; and
[0031] a client device configured for extracting corre
sponding graphics data stored at the client device utilizing
the index information and rendering computer graphics at a
graphical processing unit (GPU) at the client device using
the corresponding graphics data .
[0032] Other aspects of the invention are described within
the claims .

[0043] The present invention provides a method and sys
tem for interactive graphics streaming from a server to a
client device .
[0044] The system captures output of the application
executing on the server and uses semantic - driven compres
sion to enable the output to be rendered locally on the client
using its own graphics processing unit (GPU) in real - time .
User input on the client device is feed back to the server to
enable interaction with the executing application .
[0045] Data driving the application and the processing of
that data is kept secure on the server while the graphics
results are streamed for rendering on the client device .
[0046] This enables the client device to utilise its GPU to
shift processing cost from the server whilst retaining the
security advantages of a client - server architecture .
[0047] In FIG . 1 , an interactive graphics streaming system
100 in accordance with an embodiment of the invention is
shown .
[0048] The system 100 includes a server 101 and at least
one client device 102. The server 101 and client devices 102
may communicate via a communications network 103 .
[0049] The server 101 may include a central processing
unit 104 configured to execute an application module , an
interceptor module , a processing module , and a communi
cations module .
[0050] The client devices 102 may include a central pro
cessing unit 105 configured to execute a second processing
module , a local storage 106 configured to store index
graphics data , and a graphics processing unit (GPU) 107
configured to render graphics . The client devices 102 may
also include a user input 108 and a display device 109. The
display device 109 may be configured to display the ren
dered graphics to a user . The client devices 102 may be
further configured to receive input from a user in response
the displayed graphics and transmit the input to the server
101 .
[0051] In FIG . 2 , a graphics processing pipeline 200 in
accordance with an embodiment of the invention will be
described .
[0052] An application module 201 is shown . The applica
tion module 201 may be a standard software deployment of
an application that generates graphics in response to user
input , such as a computer games application .
[0053] The application module 201 generates graphics
instructions for intended transmission to a local graphics
processing unit (GPU) .

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Embodiments of the invention will now be
described , by way of example only , with reference to the
accompanying drawings in which :
[0034] FIG . 1 : shows a hardware diagram illustrating a
system in accordance with an embodiment of the invention ;
[0035] FIG . 2 : shows a block diagram illustrating a pro
cessing pipeline in accordance with an embodiment of the
invention ;
[0036] FIG . 3 : shows a flow diagram illustrating a method
in accordance with an embodiment of the invention ;
[0037] FIG . 4 : shows a block diagram illustrating inter
action between the client player and server in accordance
with an embodiment of the invention ;

US 2021/0133916 A1 May 6 , 2021
3

[0054] These instructions may be intercepted by an inter
ceptor module 202 , and , therefore , usefully , the application
module 201 does not need to be modified to function within
an embodiment of the graphics processing system of the
present invention .
[0055] The interceptor module 202 may divert all these
instructions to a processing module 203. Therefore , the
apparatus executing the application module 201 does not
require , or is not required to use , a graphic processing unit
(GPU) . Therefore , it will be appreciated , that in some
embodiments , the local graphics processing unit (GPU) does
not need to exist locally but may be merely a virtualised or
spoofed GPU appearing as a local actual GPU to the
application module 201 .
[0056] The processing module 203 may process the graph
ics instructions to generate graphics data , such as graphics
state , static resources , video resources or dynamic resources .
[0057] The processing module 203 may then utilise this
graphics data to generate index information .
[0058] The index information may be transmitted via a
communications module 204 to a remote device .
[0059] A second processing module 205 at the remote
device may receive this index information and retrieve from
local storage at the remote device graphics data correspond
ing to the index information .
[0060] This graphics data may be utilised by a renderer
206 at a graphics processing unit (GPU) at the remote device
to render graphics .
[0061] In FIG . 3 , a method 300 of streaming interactive
graphics from a server to a client device will be described .
[0062] In step 301 , an interactive graphics application
executing on a server generates graphics instructions for a
graphical processor unit (GPU) .
[0063] In step 302 , these instructions are intercepted , for
example , by an interceptor module .
[0064] In step 303 , these intercepted instructions are pro
cessed , for example by a processing module , to generate
graphics data . The graphics data may include graphics state ,
static resources , video resources , and / or dynamic resources .
[0065] In step 304 , index information is generated for the
graphics data . For example , objects within the graphics data
may be hashed to generate a hash code .
[0066] In one embodiment , where the dynamic resource is
a vertex buffer , the vertex buffer may be partitioned and
hashed to reduce unnecessary retransmission of the entire
vertex buffer following a change . For example , the vertex
buffer may be divided into blocks and a hash generated for
each run of modified blocks . The run of blocks may be
trimmed run of blocks such that the hash is generated from
the first change in the first block of the run to the last change
within the last block of the run .
[0067] In step 305 , this index information is transmitted in
place of the graphics data to a client device .
[0068] In step 306 , the index information is used to
retrieve corresponding graphics data at client device .
[0069] In step 307 , this graphics data is transmitted to a
graphical processing unit (GPU) at the client device to
render the graphics .
[0070] In step 308 , the graphics may be displayed to a

[0072] In one embodiment , the method further includes
the step of synchronising graphics data between the server
and the client device . During synchronisation , only a portion
of the graphics data may be transmitted . For example ,
mipmaps may be deleted from the graphics data before
transmission and regenerated at the client , reduced resolu
tion textures may be sent in place of high resolution textures
based on the resolution capabilities of the client device , and
actually utilised texture data may be transmitted to the client
device .
[0073] With reference to FIGS . 4 to 8 , one embodiment of
the present invention will be described .
[0074] This embodiment permits a server to offer a plu
rality of applications that can be invoked remotely from a
client device . The application logic runs on the server and
the graphical output of the application is streamed to the
client device over the internet for local rendering .
[0075] It will be appreciated that the various features
described in relation to this embodiment could be all be
implemented to deliver the system or could be implemented
in part to deliver a potentially less effective system .
[0076] As shown in FIG . 4 , the process starts with a client
Player app being run on the client device (PC , tablet , smart
TV , mobile) . This app connects using an internet protocol
such as TCP / IP or UDP to an agent service running on the
server which allows access to launch a session to a valid
client .
[0077] In normal operation , the side effect of an applica
tion calling a 3D graphics driver would be the calculation of
pixels written into a Framebuffer and displayed . As shown
in FIG . 5 , the process of this embodiment works by inter
posing on an existing application running on a server with a
proxy that directs the graphics command stream and all
associated resources to the system of the present invention .
[0078] The proxy manages transmission of the data to a
remote client device where it is rendered and the current
image created .
[0079] The amount of data flowing from the application to
the 3d graphics system is typically substantial and may be
difficult to deliver to a remote client without resorting to the
semantic - driven compression process described below .
[0080] This embodiment of the present invention works by
leveraging knowledge of what the data flowing from appli
cation to graphics system represents and how it can be
handled in an efficient manner . This data stream can viewed
as for Extending state , Evolving state and Side Effects
(typically GPU commands) on the remote device .
[0081] This embodiment makes the observation that while
frames are being generated at 30 Hz or more , the Working
Set of graphics assets evolves at a more modest speed
because there is typically geometric inter and intra - frame
coherence . It is also observed by the inventor that because
the data stream is generated by an application that has — at
some level of granularity — a fixed dispatch sequence , this
can be used to avoid transmission of data previously sent to
the client device .
[0082] When a Client connects to the service , as part of the
handshaking protocol it gives the server :

[0083] A Client Profile detailing its graphics , audio ,
input and display capabilities and requested resolution .
These graphics capabilities are used to ensure the Proxy
emulates what the client is able to perform .

[0084] A Hash Key Collection where each key uniquely
identifies a blob of data the client has cached locally .

user .

[0071] In step 309 , the user may provide input which is
fed - back to the executing interactive graphics application on
the server .

US 2021/0133916 A1 May 6 , 2021
4

This cache can be populated by previous sessions ,
speculatively from a CDN (Content Delivery Network)
or from removable media such as USB sticks .

[0085] The Hash Key Collection ensures that the server
will always use a hash key (also known as a data digest)
rather than resending data thus reducing the bandwidth
requirements . The general technique is shown in FIG . 6 .
[0086] The hash key is generally much smaller than the
data it represents , being typically a 64 or 128 bit key .
However bandwidth may be further reduced by keeping a
small additional cache (e.g. 256 entries) of indexes to
recently used hash keys to data blobs . This allows the “ Send
Resource Update ” command to be reduced in size .
[0087] Graphics Commands
[0088] Graphics commands are captured as they are issued
by the application and procrastinated until as late as possible
before being de - duplicated with respect to the client histori
cal graphics commands and semantic history , compressed
with semantic driven techniques such as quantization or
variable length coding and entropy coded as shown in FIG .
7 .
[0089] The trigger for emitting the command stream is the
appearance of a Side Effect command such a Draw com
mand or Frame End command at which point the Graphics
State that has been changed by the application is resolved to
ensure it is synchronised on the remote device .
[0090] The amount of data a frame of application graphics
commands requires , while clearly application - dependent , is
typically low because the graphics commands (but not
necessarily the graphics parameters) used in the current
frame are very similar to the graphics commands of the
previous frame .
[0091] Resolving Changed State
[0092] There are a number of types of state used in
real - time graphics and each one may be handled differently :

[0093] Graphics State
[0094] Static Resources
[0095] Video Resources
[0096] Dynamic Resources

[0097] Graphics State
[0098] Graphics state encompasses all state that controls
the operation of the client graphics system . It includes
RenderState and miscellaneous fixed - function controls (for
example Viewport size , Framebuffer clearing color) as well
as Shaders and their Constants . These are handled by
aggressively shadowing server - client state to reduce unnec
essary transmission as well as packing common renderstate
bursts used by graphics applications into custom codes for
example , almost all graphics programs when establishing a
new texture to use , also set the minification and magnifica
tion filtering as well as wrapping modes . All of these can be
compressed into a single low - overhead command .
[0099] Shader Constants (also known as Uniforms) , Con
stant Buffers and Push Constants are the method by which
a graphics application parameterizes its shader code . For
shader model 4 APIs such as Direct3D 9 , shader constants
are presented to the application as a linear register file of N
4 - tuples where N is typically > 128 . For shader model 5 and
above APIs such as Direct3D 11 , constant buffers are
presented as contiguous memory where typically this
memory is less than 64 Kb per buffer . This register file ,
constant buffers and push constants can be used in a variety
of application specific ways , meaning analysis and process
ing is necessary to prevent shipping the entire contents every

time a shader is used . While typically associated with the
graphics state , these constant buffers are treated as dynamic
resources in order to further reduce bandwidth .
[0100] Static Resources
[0101] The lifecycle of static resources is such that once
created , they are simply referenced as part of the graphics
processing until they are no longer needed , at which point
they are disposed .
[0102] For static assets this works in a straightforward
manner because any reading / writing to an asset made by the
application can be interposed and the hashed contents can be
checked against the Hash Key Collection .
[0103] As part of the standard 3d graphics APIs (Appli
cation Programming Interface) , when interacting with
graphics resources , the application must provide flags indi
cating its intention . These flags are used by the regular
graphics drivers to optimize performance on the local
machine .
[0104] In this embodiment , the flags may be repurposed to
help identify resources that are likely to be unchanging . In
the current embodiment , if a resource is flagged “ WRITE_
ONLY ” and has touched all the memory of that resource , it
can be surmised to be a static resource for example a static
geometry mesh . This can be hashed , the Hash Key Collec
tion checked and optionally delivered to the client device .
[0105] Shader code is always static and the Hash Key
Collection probed as described above . Client devices may
use different languages for shaders so automated shader
translation functionality may be used on the server to
convert shaders written in a shading language such as HLSL
into another shading language , that is used by the client
device , such as GLSL before hashing .
[0106] Likewise , Vertex Declarations and Input Layouts
describe the layout of Vertex buffers and are static .
[0107] Textures in the vast majority are also static assets
but pose the problem that they are large resources . The
current embodiment mitigates this by :

[0108] Only transmitting the textures that are actually
used . A further refinement may be to identify the
portion of a texture that is actually used by examining
the geometry texture coordinates which specify the
region of the texture atlas to map .

[0109] Controlling the capabilities of the Proxy graph
ics driver to reduce the apparent maximum texture size
that will be accepted from the application . This lever
ages the fact that graphics applications are designed to
run on a wide range of performance profiles with it
being a general requirement that the application can
vary fidelity based on the features and performance of
the users ' graphics drivers . By varying the proxy driver
capabilities , the application can be indirectly con
trolled .

[0110] Identifying textures where mipmaps can be gen
erated on the client from the top - level texture thus
reducing by 33 % the amount of data being sent . A
further refinement may be to gather data from previous
play sessions that determine which mipmaps of a
texture are actually used . It is not uncommon for 3d
content to have textures that are much higher resolution
than required for the resolution that they are being run
at .

[0111] Gathering textures used by application as an
offline preprocessing step and compressing them fur
ther , creating what is commonly defined as super

US 2021/0133916 A1 May 6 , 2021
5

tionally the Vertex Declaration that is currently in effect to
ensure the data is treated at the correct granularity is
used — that is hashing is not started in the middle of a Vertex
structure because the first few bytes happened not to differ .
By using the Vertex Declaration this embodiment steps back
to the beginning of an integral vertex and finishes at the end
of an integral vertex .
[0123] The next problem is that it is common , indeed
encouraged , for graphics applications to interleave different
vertex data types in a Vertex Buffer . However , it is also
common , not to update all fields of a vertex . For example the
vertex color and vertex texture coordinates may be constant
but the position of the vertex is being changed .
[0124] A (pseudo - code) Vertex Declaration might look
like this :

Offset Usage Type

0
12
16

POSITION
COLOR
TEXCOORD

FLOAT3
UBYTE4
FLOAT2

compressed textures . These smaller textures would
then be cached on the server or a CDN and served to the
client device instead of the original textures .

[0112] Video Resources
[0113] 3d applications may use video in a variety of
containers such as mp4 or avi and codec formats such as
h264 or bink . While video resources may be treated as a
sequence of uncompressed textures to be sent to the client
device , it is far more bandwidth efficient to use the already
encoded video itself .
[0114] In the one embodiment , an offline preprocessing
step may be used to gather the videos used by the application
and convert them from their native format and container to
h264 / mp4 , if they are not already in the desired format . Then
the system may interpose on the APIs that render video
content such as Microsoft Media Foundation and gather
information about what video frame should be displayed and
when , using a library such as FFMPEG . Once that frame as
been identified it can be extracted it from its container in raw
compressed form and sent it to the client device to be
decoded and played back as native video .
[0115] Dynamic Resources
[0116] As well as static resources , 3d applications often
have resources that evolve over time and these pose a
challenge to a bandwidth restricted client device . The most
common dynamic edits to resources is with a special buffer
contain geometric information called a Vertex Buffer . The
format of this Vertex Buffer is flexible and is defined by a
previously declared Vertex Declaration or Input Layout
which describes the different fields and offset of the Vertex
Buffer so that graphics hardware can interpret the data .
[0117] Resources that are dynamically updated by the
application can use a Lock / Unlock paradigm to ensure that
the consumer of the data , the graphics hardware and pro
ducer of the data , the application , do not conflict .
[0118] It is common for 3d applications to Lock a Vertex
Buffer containing geometry , make a change and then use that
data to draw some element of the display . The Lock API
generally provides parameters for indicating which part of
the Vertex Buffer will be edited , however , these are often set
by applications to the entire buffer because the “ contract ” the
application makes with a Lock operation is simply that it
guarantees not to change data that is being used by the
graphics hardware .
[0119] This problem may be solved by introducing a
HashedBlockBuffer process between the application and
VertexBuffer . As with other parts of this invention , infor
mation about how to process the Vertex Buffer from prior
structures that have been declared as well as empirical
knowledge about how Vertex Buffers are used in practice
may be leveraged .
[0120] The HashedBlockBuffer segments the Vertex Buf
fer into fixed length blocks . In the current embodiment , 4096
byte blocks are used , but this can be tuned for performance

[0125] While the trimmed run of dirty blocks could be
hashed and such an embodiment of the system will run ,
bandwidth may be reduced further by using the Vertex
Declaration in an operation to process the trimmed run of
dirty blocks on a per stripe basis .

Vertex Buffer Position hash Color hash Texcoord hash

POSITION
COLOR

TEXCOORD
POSITION

COLOR
TEXCOORD

POSITION

POSITION
COLOR
TEXCOORD
POSITION
COLOR
TEXCOORD
POSITION
COLOR
TEXCOORD
POSITION
COLOR
TEXCOORD
POSITION
COLOR
TEXCOORD

COLOR
TEXCOORD

POSITION
COLOR

TEXCOORD
POSITION

COLOR
TEXCOORD

[0126] That is , the system may stride through the vertex
buffer (optionally compressing) and hashing like - typed data
together so that in this example the system generates 3
hashes for the 3 fields each vertex has . The result is that the
system will get a hit in the Key Collection for the COLOR
stripe and TEXCOORD stripe and not need to send these to
the client device . The changing vertex positions will need to
be sent if , and only if , the system has not seen these vertex
positions before .
[0127] Buffer Re - Use
[0128] In the current embodiment , the system interposes
on the Microsoft DirectX 3d graphics API and leverages the
additional semantic insight obtained from the flag param
eters provided when the application Locks a Vertex Buffer
and the “ best - practice ” calling sequence encouraged by
Microsoft .
[0129] A common use - case for Vertex Buffer Locking is to
incrementally fill a buffer with dynamically generated geom
etry until it is full and then start again at the beginning . In
order to ensure that the graphics hardware can continue to

reasons .

[0121] In order to ensure a match is obtained within the
Hash Key Collection , the same runs of changed data must be
precisely identified . Identifying inclusive runs will yield a
different hash and therefore not allow avoidance of sending
large amounts of data . The current embodiment uses runs of
dirty blocks to identify regions needing updating .
[0122] These regions are further refined by using the start
on the first block and the end for the last block where data
differs to produced a “ trimmed run of dirty blocks ” . Addi

US 2021/0133916 A1 May 6 , 2021
6

operate at full speed , the graphics API introduces 2 addi
tional flags for the application : NO_OVERWRITE and
DISCARD .
[0130] NO_OVERWRITE means the application makes a
promise never to overwrite any data in the buffer it has
previous written . The reason for this promise is that the
graphics hardware can be confident in using memory map
ping , direct memory access (DMA) or any other means to
access this data and guarantee it is not stale .
[0131] DISCARD means the application indicates the
buffer is “ write once ” and will never be subsequently read
from . The reason for this promise is it allows the graphics
hardware to continue operating on the existing buffer while
the application fills a new buffer and when it is Unlocked ,
silently swap the buffers inside the driver and dispose of the
other buffer knowing it will never be needed again .
[0132] Application developers are encouraged to use these
2 flags together by incrementally filling a NO_OVER
WRITE buffer with graphics data , drawing some portion of
it . When they reach the point of not being able to fit any
more data in the buffer , they Lock with a DISCARD flag ,
and start filling from the start of the buffer again . This
system allows the graphics hardware to operate at maximum
efficiency .
[0133] As shown in FIG . 8 , this embodiment of the
invention leverages this knowledge to identify when the
system detects a short dirty run of blocks at the beginning of
a DISCARD buffer following the same buffer being locked
for OVERWRITE is highly likely to be related . This short
dirty run of blocks in the DISCARD buffer will likely not
match the Hash Key Collection and require sending .
[0134] Therefore , the new DISCARD buffer run can be
treated as a continuation of the previous run at the end of the
buffer to ensure a Hash Key Collection match .
[0135] Shader Reflection
[0136] Shaders are small bundles of code and data that
operate on application data to convert application data
(typically but not exclusively , geometry) into shaded pixels .
Shaders specify what the data buffers that are to be pro
cessed contain both structurally and semantically in Vertex
Declarations or Input Layouts . They are used to describe to
the graphics hardware what data to expect . It is not uncom
mon in realtime graphics applications for the data buffers to
contain more information than is required during a specific
rendering Draw Call so this knowledge can be leveraged to
examine the data buffers and only transmit what is required
by the Shader . An example would be a geometry buffer than
may can contain vertices that each contain Position , Normal ,
Texture UV and Color yet the Shader is only using Position
for this rendering . By only transmitting the necessary fields ,
we can reduce the amount of data being sent and reduce
bandwidth usage .
[0137] Constant Buffers contain register data that is used
by the Shader for rendering . The contents of the constant
buffers are updated frequently , typically once or more times
per Draw Call . Information about the structure and seman
tics of the data in the constant buffers in typically provided
by shader reflection . Shader reflection can be gathered in a
number of ways such as using the D3DReflect API for
Direct3D 9 or by parsing shader bytecode directly . By
leveraging shader reflection , the data buffers that otherwise
would have to be treated as opaque bytes , can now be treated
as discrete chunks of data with specific sizes and internal
fields . For example , instead of treating a constant buffer as

a memory buffer of say 20 bytes , using the reflection
information it is possible to know that the buffer contains 12
bytes of normal data divided in 4 bytes each of X , Y , Z
floating point fields , followed by 8 bytes of texture coordi
nate data divided in 4 bytes of U , V floating point fields .
Semantic knowledge of the contents of the data buffers and
constant buffers can also be leveraged by compressing the
data with specific algorithms tailored to those semantics . For
example , once it is known that the buffer contains normal
data , we can compress it using signed octahedron encoding
or spherical coordinate encoding . Regardless of the algo
rithms used or the type of data presented , we can leverage
the knowledge of their structure and semantics to reduce the
amount of data sent .
[0138] Unique Draw Commands
[0139] In realtime graphics the image is rendered many
times per second (typically 30 or 60 Hertz) , yet the rate at
which the data evolves is often much slower with much of
the data remaining constant between rendered frames . This
‘ inter frame coherence can be leveraged because subse
quent frames will often use the same Draw Call parameters
and Graphics State . We make use of a Draw Call Key
Collection where each key uniquely identifies a Draw Call
and its associated Graphics State the client has cached
locally . This Collection behaves similarly to the Hash Key
Collection for blobs of data . Once a key is found matching ,
meaning it is not the first time the Draw Call is encountered ,
then we can use the Graphics State associated with its key
to compress the Draw Call and its Graphics State , thus
reducing the bandwidth requirements . The general technique
is shown in FIG . 9 .
[0140] Draw Calls and Graphics State not found in the
Draw Call Key Collection can still be compressed taking
advantage of ‘ intra frame ' coherence before being sent . If a
Draw Call is found in the Collection then in addition to “ intra
frame ' it can also be compressed leveraging ‘ inter frame '
coherence .
[0141] Potential advantages of some embodiments of the
present invention are that :

[0142] a) Specialist , power - hungry GPUs are not
required on the servers and so generic servers can be
used . This in turns means the number of users per
server can be higher thus reducing running costs .

[0143] b) The invention may be resolution independent
and can be played back at high resolution without
increasing stream bandwidth requirements unlike
pixel - based video compression .

[0144] c) The bandwidth requirement can be extremely
low (< 1 Mbs) for some applications running at high
resolution because compression that leverages knowl
edge about what is being compressed is relied on .

[0145] d) The invention may require no changes to the
existing application executable , and thus requires no
access to source code for modification so can be used
on existing and legacy software .

[0146] e) Arbitrary new Content can be injected into the
stream in real - time to re - purpose it for new devices and
platforms . For example overlays for virtual buttons
when running on tablets can be created , banner adver
tisements around the content can be introduced , and
images to insert advertising inside a video game's
virtual world can be replaced .

[0147] f) Fine - grain resource usage information from
users can be collected to help refine where assets are

US 2021/0133916 A1 May 6 , 2021
7

kept on the CDN (Content Delivery Network) as well
as removing redundant data from the stream for future
users .

[0148] g) Interactive , real - time graphics application (at
least 30 times per second refresh) can be executed on
a server with contemporaneous display on a remote
device .

[0149] While the present invention has been illustrated by
the description of the embodiments thereof , and while the
embodiments have been described in considerable detail , it
is not the intention of the applicant to restrict or in any way
limit the scope of the appended claims to such detail .
Additional advantages and modifications will readily appear
to those skilled in the art . Therefore , the invention in its
broader aspects is not limited to the specific details , repre
sentative apparatus and method , and illustrative examples
shown and described . Accordingly , departures may be made
from such details without departure from the spirit or scope
of applicant's general inventive concept .

1. A method of streaming interactive computer graphics
from a server to a client device , including :

a) intercepting graphics instructions transmitted from an
application destined for a graphical processing unit
(GPU) at the server ;

b) processing the graphics instructions to generate graph
ics data at the server ;

c) generating index information for , at least , some of the
graphics data at the server ;

d) transmitting the index information in place of the
graphics data to a client device ;

e) extracting corresponding graphics data stored at the
client device utilizing the index information ; and

f) rendering computer graphics at a graphical processing
unit (GPU) at the client device using the corresponding
graphics data .

2. A method as claimed in claim 1 , wherein the graphics
data includes one or more from the set of graphics state ,
static resources , and dynamic resources .

3. A method as claimed in claim 1 , wherein objects within
the graphics data are hashed to generate the index informa
tion .

4. A method as claimed in claim 1 , wherein the dynamic
resources include a vertex buffer .

5. A method as claimed in claim 4 , wherein index infor
mation is generated for modified portions of the vertex
buffer .

6. A method as claimed in claim 5 , wherein the vertex
buffer is divided into blocks and index information is
generated for a run of modified blocks .

7. A method as claimed in claim 6 , wherein index infor
mation is generated for a trimmed run of modified blocks

such that the run extends from the first modified bit within
the first block in the run to the last modified bit within the
last block in the run .

8. A method as claimed in claim 4 , wherein the vertex
buffer is divided into stripes corresponding to vertex fields
and index information is generated for modified stripes .

9. A method as claimed in claim 1 , further including the
step of synchronizing the graphics data between the server
and the client .

10. A method as claimed in claim 9 , wherein , when the
graphics data includes textures , only data for the textures
that are used are synchronized .

11. A method as claimed in claim 9 , wherein the profile of
the client device determines the synchronization of graphics
data .

12. A method as claimed in claim 11 , wherein the profile
of the client device determines the synchronization of graph
ics data by assigning lower resolution graphics for higher
resolution graphics at the client device .

13. A method as claimed in claim 1 , wherein the rendered
graphics are displayed on a display at the client device .

14. A method as claimed in claim 13 , wherein the client
device receives user input in response to the displayed
graphics , and the user input is transmitted back to the
executing application on the server .

15. A method as claimed in claim 14 , wherein the user
input may be transmitted , at least in part , using UDP .

16. A method as claimed in claim 15 , wherein State
Transition Events are synthesised on the server .

17. A method as claimed in claim 1 , wherein the appli
cation is selected for execution at the server by a user from
a plurality of applications

18. A system for streaming interactive computer graphics ,
including :

a server configured for intercepting graphics instructions
transmitted from an application destined for a graphical
processing unit (GPU) at the server , processing the
graphics instructions to generate graphics data , gener
ating index information for , at least , some of the
graphics data , transmitting the index information in
place of the graphics data to a client device ; and

a client device configured for extracting corresponding
graphics data stored at the client device utilizing the
index information and rendering computer graphics at
a graphical processing unit (GPU) at the client device
using the corresponding graphics data .

19. A server configured for use with the system of claim
18 .

20. A client device configured for use with the system of
claim 1 .

