
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0282441 A1

Hoban et al.

US 20140282441A1

(43) Pub. Date: Sep. 18, 2014

(54)

(71)

(72)

(73)

(21)

(22)

STATIC TYPE CHECKING ACROSS MODULE
UNIVERSES

Applicant:

Inventors:

Assignee:

Appl. No.:

Filed:

MICROSOFT CORPORATION,
Redmond, WA (US)

Lucas J. Hoban, Seattle, WA (US);
Mads Torgersen, Issaquah, WA (US);
Charles P. Jazdzewski, Redmond, WA
(US); Anders Heilsberg, Seattle, WA
(US); Steven E. Lucco, Bellevue, WA
(US); Joseph J. Pamer, Seattle, WA
(US)

Microsoft Corporation, Redmond, WA
(US)

13/798,088

Mar 13, 2013

COMPUTING DEVICE 102

PROCESSOR142

COMPLER 108

TYPE CHECKER 106

MAPPER110

EDITOR 114

SOURCE CODE 118

MODULE 112

MODULE 2.128

MODULE 3130

MODULE 4132
- - - - - - - - -

DISPLAY134

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl.
CPC .. G06F 8/41 (2013.01)
USPC .. 717/141

(57) ABSTRACT
Static type checking can be performed on types and values
defined in modules in a system that dynamically composes
programs from modules. The types and values do not share a
global namespace. Each module defines its own module uni
verse, disjoint from other modules. A language mechanism
can establish a local name binding to one module within the
content of another module. When type checking at compile
time an environment can be established that corresponds to a
runtime instance of the program. The static type system can
be arranged to align with the runtime values, such that the
names used to refer to objects at runtime are the same as the
names used to refer to the types of those objects in the static
type system. Aliases of a particular type are resolved to a
known compile time description of the type.

MEMORY 144

SHARED NAMESPACE
112

100

Patent Application Publication Sep. 18, 2014 Sheet 1 of 5 US 2014/0282441 A1

COMPUTING DEVICE 102

PROCESSOR 142 MEMORY 144

COMPILER108

TYPE CHECKER 106

MAPPER110
SHARED NAMESPACE

112

EDITOR 114

USER INPUT 126 DISPLAY134

SOURCE CODE 11

MODULE 1 12

MODULE 2128

MODULE 3130

MODULE 4132 nu
- - - - - - - - -

100

Patent Application Publication Sep. 18, 2014 Sheet 2 of 5 US 2014/0282441 A1

module a 150 module b 152

export:class C:0 importamodulea)
154 Warc: a.C. newaC);

15.3a N/ 153b
151

module C 155
moduled 157

importa F moduleca"
export var C = newaC);

import myAt module(a).
var C:myAg= new myAC);

module e 158

import dimodule("d")
varz = dc,

160 y
FIG 1b. 149

class C module a 150 C 151
moduleb 152 a.C 152
module C 155 myA.C. 156
moduled 157 a.C 159
module e 158 Cnot denotable>

FIG. 1C

Patent Application Publication Sep. 18, 2014 Sheet 3 of 5 US 2014/0282441 A1

RECEIVE PROGRAMSOURCE CODE 202

RECEIVE DESCRIPTIONS OF UNIVERSES 204

RECEIVE FUNCTIONALITY AND TYPES 206

IMPORT/EXPORT VALUES AND TYPES 208

CREATE SHARED NAMESPACE ASSOCATING
TYPES VALUES AND MODULE UNIVERSES 210

USE SHARED NAMESPACE TOTYPE CHECK
AT COMPILE TIME 212

DISPLAY INFO 21 4

200

FIG. 2

Patent Application Publication Sep. 18, 2014 Sheet 4 of 5 US 2014/0282441 A1

OPERATING SYSTEM 528

APPLICATIONS530

MODULES532

DATA 534

OUTPUT
ADAPTER(S) 542

OUTPUT
DEVICE(S) 540

INPUT DEVICE(S)
536

!- SYSTEM INTERFACE
MEMORY 516 PORTS).538
VOLATILE 520
NON WOLATILE

522

INTERFACE 526

- SYSTEM BUS 518

COMMUNICATION NETWORK
CONNECTION(S) INTERFACE 548

550

DISK STORAGE
524

MEMORY
STORAGE

COMPUTER 512 546
REMOTE

COMPUTER(S)
544

510

FIG. 3

Patent Application Publication Sep. 18, 2014 Sheet 5 of 5 US 2014/0282441 A1

USER
INTERFACE

640

NATIVE
CODE 611 SOURCE

CODE EDITOR
651

L
COMPLER

660 SOURCE
CODE

COMPONENT
610

INTERMEDIATE
METADATA

LANGUAGE 642 SOURCE
COMPONENT 650 COMPLER

620

COMMON LANGUAGE RUNTIME MODELING
ENVIRONMENT 602 TOOL 652

MODEL
STORE 653

IDE 600

FIG. 4

US 2014/0282441 A1

STATIC TYPE CHECKING ACROSS MODULE
UNIVERSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The application is related in subject matter to co
pending U.S. patent application Ser. No. (Docket No.
337890.01) entitled “STATICALLY EXTENSIBLE
TYPES', filed on . The application is related in sub
ject matter to co-pending U.S. patent application Ser. No.

(Docket No. 337891.01) entitled “CONTEXTUAL
TYPING”, filed on . The application is related in
Subject matter to co-pending U.S. patent application Ser. No.

(Docket No. 338454.01) entitled “GRAPH-BASED
MODEL FORTYPE SYSTEMS, filed on

BACKGROUND

0002 Computer programming languages Support various
data types that can be assigned to variables or expressions.
Data types include strings, floating point numbers, integers
and so on. Assigning the wrong data type to a variable or
expression can cause a program to malfunction or to stop
running. Type checking is one way to ensure that the wrong
data type is not assigned to a variable or expression. Type
checking can be performed at compile time (static type
checking) or at runtime (dynamic type checking). Static type
checking is able to verify that the type checked conditions
hold for all possible executions of the program. Dynamic type
checking is able to verify that a particular execution of a
program is free of type errors. Therefore, dynamic type
checking is typically performed each time the program is run.

SUMMARY

0003 Static type checking can be performed on types and
values defined in modules in a system that dynamically com
poses executable programs from modules. The term 'mod
ule' as used herein refers to a separately loaded body of code
that creates and initializes a singleton module instance. A
module can be referenced using an external module name. As
used herein, modules are part of the statically typed program
ming language, and the statements and declarations express
concepts from the statically typed programming language. In
dynamically composing systems, each module exists in a
separate namespace. Such that variable declarations do not
conflict or interact across modules. However, explicit
declarative imports may be used within a module to give
locally scoped names to entities defined in other modules. A
language mechanism can be used to establish a local name
binding to one module within the content of another module.
A module data type is provided by a language concept in
which a module is a container for other data types. Within a
module, declarations of various variables, classes, othermod
ules, etc. can exist. Data hiding or encapsulation can be
implemented in a language that does not support data encap
sulation by having different visibility constraints placed on
the variables, classes, other modules, etc. declared within
each module.

0004 A“visible' constraint enables the variables, classes,
other modules, etc. to be visible wherever the module is
defined. A second (“not visible') constraint allows the vari
able, class, etc. to be visible only in the module or file in which
the module is declared. The static type system can determine
dependencies of modules at compile time based on declara

Sep. 18, 2014

tive imports. The static type system can map names of types
and values defined in a plurality of modules in a way that is
consistent with dynamic name binding of objects. When type
checking at compile time, an environment can be established
that corresponds to a runtime instance of the program. A
language mechanism can be used to perform mapping
between a static type and a runtime value. Aliases of a par
ticular type are resolved to a known compile time description
of the type.
0005. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. In the drawings:
0007 FIG. 1a illustrates an example of a system 100 that
enables static type checking across module universes in
accordance with aspects of the subject matter described
herein;
0008 FIG. 1b illustrates an example 149 of interdepen
dencies between modules in accordance with aspects of the
subject matter disclosed herein;
0009 FIG. 1c illustrates an example of a table 161 that
represents mapping between various names representing the
same thing in accordance with aspects of the Subject matter
disclosed herein;
(0010 FIG. 2 illustrates an example of a method 200 that
performs static type checking across module universes in
accordance with aspects of the Subject matter disclosed
herein;
0011 FIG. 3 is a block diagram of an example of a com
puting environment in accordance with aspects of the Subject
matter disclosed herein.
0012 FIG. 4 is a block diagram of an example of an
integrated development environment (IDE) in accordance
with aspects of the subject matter disclosed herein.

DETAILED DESCRIPTION

Overview

0013. A static type system typically establishes a global
namespace of values and types, and associates each expres
sion and Statement in the program with data types that can be
validly assigned to the expression based on the global
namespace of values and types. At compile time, the static
type checker checks that the data types associated with the
expressions in the Source code are correct.
0014. A dynamic runtime system that uses modules for
composing programs can segment the runtime view of an
executing program into separate disjoint module universes.
Running programs in disjoint module universes can be useful
for isolation of execution because different modules are com
piled and executed separately. However, static type checking
of the aggregate program is challenging because the full
system of modules which will be loaded dynamically has to
be known inadvance and relationships between modules have
to be established before execution. In dynamic systems,
dependencies are resolved as modules are loaded. It is diffi
cult for a static system to understand interdependencies
between modules statically. (Statically understanding inter

US 2014/0282441 A1

dependencies that exist between module universes at runtime
is challenging for a static type system executing at compile
time.)
00.15 Disjoint module universes can refer to instances of
the same element using different names. It is difficult for a
static system to know how to map elements referred to by
different names to the correct type. Finally, types in a module
universe of a dynamic runtime system can come from other
module universes, which the module universe understands
because of dynamically resolving dependencies. It is difficult
for a static universe to assign locally scoped names to
remotely defined types and instances. For at least these rea
Sons, static type languages typically avoid the use of disjoint
module universes. Similarly, dynamic languages that use a
module system do not try to have a static view of the module
system. Static type checking and therefore tooling based on
static type systems is thus unavailable at development time
for traditional dynamic module-based runtime systems.
0016. In accordance with aspects of the subject matter
described herein, a static type system accommodates the use
of disjoint module universes at runtime by mapping types
defined in disjoint module universes into other module uni
verses in a way that is consistent with the dynamic name
binding of object instances. The type definition associated
with a module can be statically determined based on type
checking. Type definition of the module can be based on the
set of definitions in the module. In accordance with aspects of
the subject matter described herein, the type system's view of
modules can include both values and types. The type systems
view of modules can include elements such as but not limited
to classes that include both values and types. Static type and
the runtime value can be mapped to each other's local name
binding. Aliases of a type can be understood to refer to the
same type.

0017. In accordance with some aspects of the subject mat
ter described herein, an example of a programming language
Supporting static type checking across module universes in a
dynamic runtime is Typescript. Typescript is a Superset of
JavaScript, meaning that any valid JavaScript code is valid
Typescript code. Typescript adds additional features on top
of JavaScript. Typescript can be converted into JavaScript
code by the Typescript compiler. Typescript permits the
annotation of variables, function arguments, and functions
with type information, facilitating the use of static typing to
provide tools such as auto-completion tools and enabling
more comprehensive error checking than that provided by
using traditional JavaScript.
0018. In accordance with some aspects of the subject mat
ter described herein, declarations introduce names in the dec
laration spaces to which they belong. The global module has
a declaration space for global members (variables, functions,
modules, and constructor functions), and a declaration space
for global types (modules, classes, and interfaces). Each mod
ule has a declaration space for local members (variables,
functions, modules, and constructor functions), and a decla
ration space for local types (modules, classes, and interfaces).
Every declaration (whether local or exported) in a module
contributes to one or both of these declaration spaces. Each
module has a declaration space for exported members and a
declaration space for exported types. All export declarations
in the module contribute to these declaration spaces.

Sep. 18, 2014

0019 Top-level declarations in a non-module source file
belong to the global module. Top-level declarations in a mod
ule source file belong to the external module represented by
that source file.

0020. An export declaration can declare an externally
accessible module member including but not limited to mem
bers such as, for example, an export variable statement, func
tion declaration, class declaration, interface declaration or
module declaration. An export declaration can be distin
guished from a regular declaration by, for example, being
prefixed with a keyword such as “export', etc. Exported vari
able, function, class, and module declarations can become
properties on the module instance and together can establish
the modules instance type. The module’s instance type can
have any combination of the following members: a property
for each exported variable declaration, a property of a func
tion type for each exported function declaration, a property of
a constructor type for each exported class declaration and/or
a property of an object type for each exported internal module
declaration.

0021. In accordance with aspects of the subject matter
described herein, module instance types can be referenced by
using module identifiers as type names. An exported member
can depend on a set of named types. The named types upon
which a member depends can be the named types occurring in
the transitive closure of the “directly depends on relationship
defined as follows:
0022. A variable directly depends on its type.
0023. A function directly depends on its function type.
0024. A class directly depends on its constructor function
type and its class instance type.
0025. An interface directly depends on the type it declares.
0026. A module directly depends on its module instance
type.
0027. An object type directly depends on the types of each
of its public properties and the parameter and return types of
each of its call, construct, and index signatures.
0028. The term “module” as used herein refers to a body of
statements and declarations that create and initialize a single
ton module instance. Members exported from a module
become properties on the module instance. The body of a
module corresponds to a function that is executed once,
thereby providing a mechanism for isolating local state. In
accordance with aspects of the subject matter described
herein, Typescript Supports modules. A module can be a
separately loaded body of code referenced using an external
module name. A module can be written as a separate Source
file that includes at least one import or export declaration.
0029. An export declaration can be identified by an
“export' prefix or by any other suitable means. Exported
variable, function, class, and module declarations can
become properties on the module instance and together estab
lish the modules instance type. The exported type can have
the following members:
0.030
0031. A property of a function type for each exported
function declaration.

0032. A property of a constructor type for each exported
class declaration.

0033. An exported member depends on a set of named
types. The set of named types can be the empty set. The
named types upon which a member depends can be the named

A property for each exported variable declaration.

US 2014/0282441 A1

types occurring in the transitive closure of the types of all
members of named types visible from a given location as
follows:
0034. A variable directly depends on its type.
0035 A function directly depends on its function type.
0036. A class directly depends on its constructor function
type and its class instance type.
0037. An interface directly depends on the type it declares.
0038 An object type directly depends on the types of each
of its public properties and the parameter and return types of
each of its call, construct, and index signatures.
0039) Import declarations can be used to import modules
and to create local aliases by which the modules may be
referenced. An import declaration can introduce a local iden
tifier that references a given module. The local identifier can
itself be classified as a module and can behave like a module.
A string literal specified in an module reference can be inter
preted as an module name. Import declarations in modules
can specify either external module references or module
aCS.

0040 Modules can be separately loaded bodies of code
referenced using external module names. Modules can be
written as separate Source files that contain at least one import
declaration or export declaration. Below is an example of two
modules written in separate source files.

File main.ts:
import log = module("log");
log.message(hello);
File log.ts:
export function message(s: string) {

console.log(s):

0041. In this example, two files define the “main” and
“log’ modules. The “main module imports the “log” module
and then uses functionality (“message') exported from the
“log’ module, passing it a value “hello'. The “log” module
exports a function that provides away to log onto the console.
0042. In the file “main.ts', the import declaration refer
ences the “log’ module. Compiling the “main.ts' file causes
the “log.ts' file to also be compiled as part of the program. At
runtime, the import declaration loads the “log” module and
produces a reference to the “log’ module instance through
which it is possible to reference the function exported by the
“log’ module.
0043 Modules can be identified and referenced using
external module names. The set of legal module names is
defined by the runtime module loader system that the com
piler for the statically typed language targets.

Static Type Checking Across Module Universes
0044 FIG.1a illustrates a block diagram of an example of
a system 100 in accordance with aspects of the subject matter
described herein. All orportions of system 100 may reside on
one or more computers or computing devices such as the
computers described below with respect to FIG. 3. System
100 or portions thereof may be provided as a stand-alone
system or as a plug-in or add-in. System 100 or portions
thereof may include information obtained from a service
(e.g., in the cloud) or may operate in a cloud computing
environment. A cloud computing environment can be an envi
ronment in which computing services are not owned but are

Sep. 18, 2014

provided on demand. For example, information may reside on
multiple devices in a networked cloud and/or data can be
stored on multiple devices within the cloud. System 100 may
execute in whole or in part on a software development com
puter such as the software development computer described
with respect to FIG. 4. All or portions of system 100 may be
operated upon by program development tools. For example,
all orportions of system 100 may execute within an integrated
development environment (IDE) such as for example IDE
104. IDE 104 may be an IDE as described more fully with
respect to FIG. 4 or can be another IDE. System 100 can
execute wholly or partially outside an IDE.
0045 System 100 can include one or more computing
devices such as, for example, computing device 102. A com
puting device Such as computing device 102 can include one
or more processors such as processor 142, etc., and a memory
Such as memory 144 connected to the one or more processors.
Computing device 102 can include one or more components
comprising a compiler Such as compiler 108. A compiler Such
as compiler 108 may be a computer program or set of pro
grams that translates text written in a (typically high-level)
programming language into another (typically lower-level)
computer language (the target language). The output of the
compiler may be object code. Typically the output is in a form
Suitable for processing by other programs (e.g., a linker), but
the output may be a human-readable text file. Source code is
typically compiled to create an executable program but may
be processed by program development tools which may
include tools such as editors, beautifiers, static analysis tools,
refactoring tools and others that operate in background or
foreground.
0046. A compiler 108 may comprise a .NET compiler that
compiles source code written in a .NET language to interme
diate byte code. .NET languages include but are not limited to
Ci, C++, Fit, Ji, JScript.NET, Managed Jscript, IronPython,
IronRuby, VBx, VB.NET, Windows PowerShell, Ali, Boo,
Cobra, Chrome (Object Pascal for .NET, not the Google
browser), Component Pascal, IKVM.NET, Iron Lisp, Li,
Lexico, Mondrian, Nemerle, Pi, Phalanger, Phrogram, Pow
erBuilder, HSmalltalk, AVR.NET, Active Oberon, APLNext,
Common Larceny, Delphi.NET, Delta Forth .NET, DotLisp,
Eiffelnvision, Fortran .NET, Gardens Point Modula-2/CLR,
Haskell for .NET, Haskell.net, Hugs for .NET. IronScheme,
LOLCode.NET, Mercury on .NET, Net Express, NetCO
BOL. OxygenScheme, Sii, sml.net, Wildcat Cobol, Xi or any
other .NET language. Compiler 108 may comprise a JAVA
compiler that compiles source code written in JAVA to byte
code. Compiler 108 can be any compiler for any program
ming language including but not limited to Ada, ALGOL,
SMALL Machine Algol Like Language, Atelji PX, BASIC,
BCPL, C, C++, CLIPPER 5.3, C#, CLEO, CLush, COBOL,
Cobra, Common Lisp, Corn, Curl, D, DASL, Delphi, DIBOL,
Dylan, dylan.NET, eC (Ecere C), Eiffel, Sather, Ubercode,
eLisp Emacs Lisp, Erlang, Factor, Fancy, Formula One,
Forth, Fortran, Go, Groovy, Haskell, Harbour, Java, JOVIAL.
LabVIEW, Nemerle, Obix, Objective-C, Pascal, Plus,
ppC++, RPG, Scheme, Smalltalk, ML, Standard ML, Alice,
OCaml, Turing, Urq, Vala, Visual Basic, Visual FoxPro,
Visual Prolog, WinDev, X----, XL, and/or Z++. Compiler 108
can be a compiler for any typed programming language.
0047. A compiler such as compiler 108 and/or program
development tools are likely to perform at least some of the
following operations: preprocessing, lexical analysis, parsing
(syntax analysis), semantic analysis, code generation, and

US 2014/0282441 A1

code optimization. Compiler 108 may include one or more
modules comprising a parser that receives program Source
code and generates a parse tree.
0048 System 100 can include one or more program com
ponents such as type checker 106 that performs static type
checking across module universes as described herein. Type
checker 106 can be a part of a compiler 108 as illustrated in
FIG. 1a, or can be part of another program development tool
(not shown). Type checker 106 can be a separate entity, plug
in, or add-on (not shown). It will be appreciated that program
components such as for example, type checker 106 that per
forms static type checking across module universes can be
loaded into memory 144 to cause one or more processors such
as processor 142, etc. to perform the actions attributed to type
checker 106. System 100 can include any combination of one
or more of the following: an editor such as but not limited to
editor 114, a display device such as display device 134, and so
on. Editor 114 can receive source code such as source code
118 and user input such as user input 126. Results such as the
results of static type checking on dynamically composed
module universes can be displayed on display device 134.
Other components well known in the arts may also be
included but are nothere shown.

0049. A compiler such as compiler 108 can receive source
code in the form of one or more program modules such as, for
example, module 1126, module 2128, module 3130, module
4, 132, etc. The program modules may representa Typescript
program. In accordance with aspects of the Subject matter
disclosed herein, a Typescript program may include one or
more source code files. A source file can be an implementa
tion source file. A source file can be a declaration source file.
In accordance with Some aspects of the Subject matter
described herein, implementation source files and declaration
source files can be distinguished by the file extension used.
For example, source files with extension .ts can be imple
mentation Source files that include statements and declara
tions. Source files with extension '.d.ts can be declaration
source files that include declarations. Source code files can
include export and import statements that are used to imple
ment static type checking across module universes as
described more fully below.
0050 System 100 can include one or more compiler com
ponents such as mapper 110 that can create a shared
namespace 112 used to perform static type checking across
module universes as described herein. Mapper 110 can be a
part of a compiler 108 as illustrated in FIG. 1a, or can be part
of another program development tool (not shown). Mapper
110 can be a separate entity, plug-in, or add-on (not shown).
It will be appreciated that compiler components such as for
example, mapper 110 that performs static type checking
across module universes can be loaded into memory 144 to
cause one or more processors such as processor 142, etc. to
perform the actions attributed to mapper 110.
0051 FIG. 1b illustrates examples of modules and rela
tionships between the modules The modules can be loaded as
independent files. In FIG. 1b, module a 150 exports a class C
151. Module b 152 imports module a 150 and can refer to
class C 151 by any specified name. In this case, the name used
to refer to class C is “a.C. 153, because module a 150 was
imported by moduleb 152 (“import a module(“a”) 154 class
A was given the local name “a” within moduleb 152. When
module b 152 is type checked at compile time, the compiler
will create an environment for type checking in which class C
is referred to by the name “a.C. 153 in module b 152. (See

Sep. 18, 2014

FIG. 1c, table 161). The syntax of the statement “import
a module(“a”)' 154 is understood by the mapper 110 to
indicate that module b 152 has a dependency on module a
150.

0052 Module b 152 arbitrarily refers to elements
imported from module a 150 as “a.something’, in this case,
Class C of module a 150 is referred to by module b 152 as
“a.C. 153. Module b 152 provides an example of arranging
the nomenclature of the static type system to align with the
nomenclature of the runtime system's values. That is, the
name used to refer to the value of varc at runtime, i.e., the
name “a.C. 153b is the same as the name used to refer to the
type of varc in the static type system, “a.C. 153a. Module c
155 also imports module a 150 but refers to elements in
module a 150 as “my A. something, e.g., “my A.C. 156.
Within the context of module c 155 class C 151 in module a
150 is referred to as “my A.C. whereas within the context of
moduleb 152 class C 151 in module a 150 is referred to as a.C
153. Thus the same element (class C) present in two modules
are referred to by different names. Types can be exposed
within a module which do not have a local name provided by
the program text. This is illustrated in modules d 157 and
module e 158. Moduled 157 imports module a 150 and
exports variable c (“a.C. 159) whose type is the type of the
class C151 of module a 150.
0053 Module e 158 imports moduled 157 but does not
import module a 150, so the variable “varz’ 160 has the type
of class C 151 defined in module a 150, but no local name is
available in modulee 158 to refer to class C. The type checker
can allow type checking and type inference to proceed using
a compiler-internal notion of the universe in which the name
was defined. The compiler's internal representation of the
universe in which the name was defined can be presented to
developers by for example, using the file path to the module
definition or other identifying characteristics to uniquely
identify the module.
0054 FIG. 1c illustrates a table representation 161 of the
different names for class C used in different modules (shared
namespace 112 of FIG. 1a). In Table 161 class C is repre
sented in module a 150 as C 151, in moduleb 152 as a.C 152,
in module c 155 as my A.C 156, in moduled 157 as a.C 159
and class C, as described above, is used, but is not denotable.
0055 FIG. 2 illustrates an example of a method 200 for
static type checking across module universes in accordance
with aspects of the subject matter disclosed herein. The
method described in FIG. 2 can be practiced by a system such
as but not limited to the one described with respect to FIG.1a
and for which an example was provided in FIGS. 1b-1c.
While method 200 describes a series of operations that are
performed in a sequence, it is to be understood that method
200 is not limited by the order of the sequence. For instance,
Some operations may occur in a different order than that
described. In addition, one operation may occur concurrently
with another operation. In some instances, not all operations
described are performed.
0056. At operation 202 inputs can be received by a tool or
compiler for a compilation. The inputs can describe a set of
module universes in program source code. At operation 204
the compiler can get a set of files or other type of assets that
describe the module universes. At operation 206 each of the
module universes can provide a set of runtime functionality
and a set of types. At operation 208 the module universes can
import a set of values and types from other module universes
and/or can export a set of values and types to other module

US 2014/0282441 A1

universes. At operation 210 the compiler or tool can establish
a shared space that is not a global namespace for types and
values, where each type and value is associated with the
module universe the type or value came from. At operation
212 static type checking can be performed on each module
universe using the shared space. Data can be type checked
using module universes distinguished by which module uni
verse the type or value comes from. At operation 214 the
results of static type checking on dynamically composed
module universes can be displayed.

Example of a Suitable Computing Environment

0057. In order to provide context for various aspects of the
subject matter disclosed herein, FIG. 3 and the following
discussion are intended to provide a brief general description
of a suitable computing environment 510 in which various
embodiments of the subject matter disclosed herein may be
implemented. While the subject matter disclosed herein is
described in the general context of computer-executable
instructions, such as program modules, executed by one or
more computers or other computing devices, those skilled in
the art will recognize that portions of the subject matter dis
closed herein can also be implemented in combination with
other program modules and/or a combination of hardware
and Software. Generally, program modules include routines,
programs, objects, physical artifacts, data structures, etc. that
perform particular tasks or implement particular data types.
Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments.
The computing environment 510 is only one example of a
Suitable operating environment and is not intended to limit the
scope of use or functionality of the subject matter disclosed
herein.

0058. With reference to FIG.3, a computing device in the
form of a computer 512 is described. Computer 512 may
include at least one processing unit 514, a system memory
516, and a system bus 518. The at least one processing unit
514 can execute instructions that are stored in a memory Such
as but not limited to system memory 516. The processing unit
514 can be any of various available processors. For example,
the processing unit 514 can be a graphics processing unit
(GPU). The instructions can be instructions for implementing
functionality carried out by one or more components or mod
ules discussed above or instructions for implementing one or
more of the methods described above. Dual microprocessors
and other multiprocessor architectures also can be employed
as the processing unit 514. The computer 512 may be used in
a system that Supports rendering graphics on a display screen.
In another example, at least a portion of the computing device
can be used in a system that comprises a graphical processing
unit. The system memory 516 may include volatile memory
520 and nonvolatile memory 522. Nonvolatile memory 522
can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM) or flash
memory. Volatile memory 520 may include random access
memory (RAM) which may act as external cache memory.
The system bus 518 couples system physical artifacts includ
ing the system memory 516 to the processing unit 514. The
system bus 518 can be any of several types including a
memory bus, memory controller, peripheral bus, external bus,
or local bus and may use any variety of available bus archi
tectures. Computer 512 may include a data store accessible by
the processing unit 514 by way of the system bus 518. The

Sep. 18, 2014

data store may include executable instructions, 3D models,
materials, textures and so on for graphics rendering.
0059 Computer 512 typically includes a variety of com
puter readable media Such as Volatile and nonvolatile media,
removable and non-removable media. Computer readable
media may be implemented in any method or technology for
storage of information Such as computer readable instruc
tions, data structures, program modules or other data. Com
puter readable media include computer-readable storage
media (also referred to as computer storage media) and com
munications media. Computer storage media includes physi
cal (tangible) media, such as but not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology,
CDROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices that can store the
desired data and which can be accessed by computer 512.
Communications media include media such as, but not lim
ited to, communications signals, modulated carrier waves or
any other intangible media which can be used to communi
cate the desired information and which can be accessed by
computer 512.
0060. It will be appreciated that FIG.3 describes software
that can act as an intermediary between users and computer
resources. This software may include an operating system
528 which can be stored on disk storage 524, and which can
allocate resources of the computer 512. Disk storage 524 may
be a hard disk drive connected to the system bus 518 through
a non-removable memory interface such as interface 526.
System applications 530 take advantage of the management
of resources by operating system 528 through program mod
ules 532 and program data 534 stored either in system
memory 516 or on disk storage 524. It will be appreciated that
computers can be implemented with various operating sys
tems or combinations of operating systems.
0061. A user can enter commands or information into the
computer 512 through an input device(s) 536. Input devices
536 include but are not limited to a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
Voice recognition and gesture recognition systems and the
like. These and other input devices connect to the processing
unit 514 through the system bus 518 via interfaceport(s) 538.
An interface port(s) 538 may represent a serial port, parallel
port, universal serial bus (USB) and the like. Output devices
(s) 540 may use the same type of ports as do the input devices.
Output adapter 542 is provided to illustrate that there are
some output devices 540 like monitors, speakers and printers
that require particular adapters. Output adapters 542 include
but are not limited to video and sound cards that provide a
connection between the output device 540 and the system bus
518. Other devices and/or systems or devices such as remote
computer(s) 544 may provide both input and output capabili
ties.

0062 Computer 512 can operate in a networked environ
ment using logical connections to one or more remote com
puters, such as a remote computer(s) 544. The remote com
puter 544 can be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 512, although only a memory
storage device 546 has been illustrated in FIG. 3. Remote
computer(s) 544 can be logically connected via communica
tion connection(s) 550. Network interface 548 encompasses
communication networks such as local area networks (LANs)

US 2014/0282441 A1

and wide area networks (WANs) but may also include other
networks. Communication connection(s) 550 refers to the
hardware/software employed to connect the network inter
face 548 to the bus 518. Communication connection(s) 550
may be internal to or external to computer 512 and include
internal and external technologies such as modems (tele
phone, cable, DSL and wireless) and ISDN adapters, Ethernet
cards and so on.

0063. It will be appreciated that the network connections
shown are examples only and other means of establishing a
communications link between the computers may be used.
One of ordinary skill in the art can appreciate that a computer
512 or other client device can be deployed as part of a com
puter network. In this regard, the Subject matter disclosed
herein may pertain to any computer system having any num
ber of memory or storage units, and any number of applica
tions and processes occurring across any number of storage
units or Volumes. Aspects of the Subject matter disclosed
herein may apply to an environment with server computers
and client computers deployed in a network environment,
having remote or local storage. Aspects of the Subject matter
disclosed herein may also apply to a standalone computing
device, having programming language functionality, inter
pretation and execution capabilities.
0064 FIG. 4 illustrates an integrated development envi
ronment (IDE) 600 and Common Language Runtime Envi
ronment 602. An IDE 600 may allow a user (e.g., developer,
programmer, designer, coder, etc.) to design, code, compile,
test, run, edit, debug or build a program, set of programs, web
sites, web applications, and web services in a computer sys
tem. Software programs can include Source code (component
610), created in one or more source code languages (e.g.,
Visual Basic, Visual Ji, C++, C#, Ji, Java Script, APL,
COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Pert, Python,
Scheme, Smalltalk and the like). The IDE 600 may provide a
native code development environment or may provide a man
aged code development that runs on a virtual machine or may
provide a combination thereof. The IDE 600 may provide a
managed code development environment using the Microsoft
.NETTM framework. An intermediate language component
650 may be created from the source code component 610 and
the native code component 611 using a language specific
source compiler 620 using a modeling tool 652 and model
store 653 and the native code component 611 (e.g., machine
executable instructions) is created from the intermediate lan
guage component 650 using the intermediate language com
piler 660 (e.g. just-in-time (JIT) compiler), when the appli
cation is executed. That is, when an intermediate language
(IL) application is executed, it is compiled while being
executed into the appropriate machine language for the plat
form it is being executed on, thereby making code portable
across several platforms. Alternatively, in other embodi
ments, programs may be compiled to native code machine
language (not shown) appropriate for its intended platform.
0065. A user can create and/or edit the source code com
ponent according to known software programming tech
niques and the specific logical and syntactical rules associ
ated with a particular source language via a user interface 640
and a source code editor 651 in the IDE 600. Thereafter, the
Source code component 610 can be compiled via a source
compiler 620, whereby an intermediate language representa
tion of the program may be created, such as assembly 630.
The assembly 630 may comprise the intermediate language

Sep. 18, 2014

component 650 and metadata 642. Application designs may
be able to be validated before deployment.
0066. The various techniques described herein may be
implemented in connection with hardware or Software or,
where appropriate, with a combination of both. Thus, the
methods and apparatus described herein, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, Such as floppy dis
kettes, CD-ROMs, hard drives, or any other machine-read
able storage medium, wherein, when the program code is
loaded into and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing aspects of
the subject matter disclosed herein. As used herein, the term
“machine-readable storage medium’ shall be taken to
exclude any mechanism that provides (i.e., stores and/or
transmits) any form of propagated signals. In the case of
program code execution on programmable computers, the
computing device will generally include a processor, a stor
age medium readable by the processor (including Volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. One or more
programs that may utilize the creation and/or implementation
of domain-specific programming models aspects, e.g.,
through the use of a data processing API or the like, may be
implemented in a high level procedural or object oriented
programming language to communicate with a computer sys
tem. However, the program(s) can be implemented in assem
bly or machine language, if desired. In any case, the language
may be a compiled or interpreted language, and combined
with hardware implementations.
0067. Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe
cific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.
What is claimed:
1. A system comprising:
at least one processor:
a memory connected to the at least one processor: and
a compiler component that when loaded into the at least

one processor causes the at least one processor to:
perform static type checking in a static type system on a

plurality of types and on a plurality of values defined in
a plurality of modules in a runtime system that dynami
cally composes Software programs from at least one
module of the plurality of modules.

2. The system of claim 1, further comprising:
wherein at least one of the plurality of types is not a global

type.
3. The system of claim 1, further comprising:
wherein at least one of the plurality of values is not a global

value.
4. The system of claim 1, further comprising:
a compiler component that when loaded into the at least

one processor causes the at least one processor to:
use a language mechanism to establish a local name bind

ing to a first module of the plurality of modules within
content of a second module of the plurality of modules.

5. The system of claim 1, further comprising:
a compiler component that when loaded into the at least

one processor causes the at least one processor to:

US 2014/0282441 A1

map type nomenclature in the static type system to value
nomenclature in the runtime system.

6. The system of claim 1, further comprising:
a compiler component that when loaded into the at least

one processor causes the at least one processor to:
perform type checking at compile time by establishing an

environment that corresponds to a runtime instance of a
plurality of possible runtimes of the program.

7. The system of claim 1, further comprising:
a compiler component that when loaded into the at least

one processor causes the at least one processor to:
determine runtime dependencies of a first module of the

plurality of modules to at least a second module of the
plurality of modules at compile time.

8. A method comprising:
receiving by a processor of a software development com

puter, program source code representing a plurality of
modules that at runtime comprise a disjoint module uni
Verse;

analyzing content of the program source code representing
the plurality of modules;

creating an environment wherein types and values from
different disjoint universes of a dynamically composing
runtime system are used to check the types of expres
sions described by imports and exports associated with
the different disjoint universes.

9. The method of claim 8, further comprising:
mapping type nomenclature in a static type system to value

nomenclature in the dynamically composing runtime
system.

10. The method of claim 8, further comprising:
using a language mechanism comprising an import state

ment to establish a local name binding to a first module
of the plurality of modules within content of a second
module of the plurality of modules.

11. The method of claim 8, further comprising:
using an explicit declarative import within a first module of

the plurality of modules to give a locally scoped name to
an entity defined in a second module of the plurality of
modules.

12. The method of claim 8, further comprising:
arranging a static type system to align with values of the

dynamically composing runtime system, Such that a
name used to refer to an object at runtime is identical to
a name used to refer to a type of the object in the static
type system.

13. The method of claim 8, further comprising:
performing type checking at compile time by establishing

an environment that corresponds to a runtime instance of
a plurality of runtime instances of a program.

Sep. 18, 2014

14. A computer-readable storage medium comprising
computer-readable instructions which when executed cause
at least one processor of a computing device to:

receive by a processor of a software development com
puter, program source code representing a plurality of
modules that at runtime comprises a disjoint module
universe;

analyze content of the program source code representing
the plurality of modules;

create an environment wherein types and values from dif
ferent disjoint universes are used to check type expres
sions using described imports and exports associated
with the different disjoint module universes.

15. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
when executed cause the at least one processor to:

arrange a static type system to align with runtime values of
the disjoint module universe, such that a name used to
refer to an object at runtime is identical to a name used to
refer to a type of the object in the static type system.

16. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
when executed cause the at least one processor to:

perform type checking at compile time by establishing an
environment that corresponds to a runtime instance of a
plurality of possible runtime instances of a program.

17. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
When executed cause the at least one processor to:

use a language mechanism to establish a local name bind
ing to a first module of the plurality of modules within
content of a second module of the plurality of modules.

18. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
when executed cause the at least one processor to:

redetermine dependencies between modules of the plural
ity of modules at compile time.

19. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
when executed cause the at least one processor to:

use a language mechanism comprising an import statement
to establish a local name binding to a first module of the
plurality of modules within content of a second module
of the plurality of modules.

20. The computer-readable storage medium of claim 14,
comprising further computer-readable instructions which
when executed cause the at least one processor to:

receive program source code written in Typescript.
k k k k k

