
US 20200412569A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0412569 A1

Chen et al . (43) Pub . Date : Dec. 31 , 2020

(54) VIRTUAL NETWORK ENDPOINTS FOR
INTERNET OF THINIGS (IOT) DEVICES

(52) U.S. CI .
CPC H04L 12/2814 (2013.01) ; H04L 12/281

(2013.01) ; H04L 12/283 (2013.01) ; H04L
63/20 (2013.01) (71) Applicant : Verizon Patent and Licensing Inc. ,

Basking Ridge , NJ (US)
(57) ABSTRACT (72) Inventors : Ming Chen , Bedford , MA (US) ; Dahai

Ren , Lexington , MA (US) ; Lei Zhang ,
Frisco , TX (US) ; Matthew J.
Threefoot , Columbia , MD (US)

(21) Appl . No .: 17 / 021,593
(22) Filed : Sep. 15 , 2020

Related U.S. Application Data
(63) Continuation of application No. 16 / 018,298 , filed on

Jun . 26 , 2018 , now Pat . No. 10,805,104 .

Systems and methods herein represent an IoT device as an
endpoint of private cloud . A virtualization service receives
an IoT identifier for an IoT device and a network address for
a virtual endpoint for the IoT device . The virtual endpoint
for the IoT device is included in a host cloud platform . The
virtualization service maps the IoT identifier to the network
address in a distributed data structure for the service pro
vider network and provides instructions , for an edge node
for the service provider network , to provide network - layer
access controls based on the mapping . The edge node for the
service provider network receives an access request from the
IoT device , applies a network - layer access control for the
IoT device based on the instructions , receive IoT data from
the IoT device when the edge node permits access by the IoT
device , and forwards the IoT data to the virtual endpoint .

Publication Classification
(51) Int . Ci .

H04L 12/28 (2006.01)
H04L 29/06 (2006.01)

800

805
IDENTIFY TERMINATION OF VLAN CONNECTION
BETWEEN IOT DEVICE AND VIRTUAL NETWORK

ENDPOINT

810 LOG CONNECTION CHECKPOINT CORRESPONDING TO
TERMINATION

815 STORE CONTINUOUS HISTORIC EVENT STREAM OF
COMMUNICATIONS TO / FROM IOT DEVICE

820 IDENTIFY ANOTHER VLAN CONNECTION BETWEEN IOT
DEVICE AND VIRTUAL NETWORK ENDPOINT

825 FORWARD CONTINUOUS HISTORIC EVEN STREAM FROM
THE CHECKPOINT ONWARD

100
MWO

Patent Application Publication

150

IOT CLOUD
PLATFORM (S)

160

170-2

IOT DEVICE

170-1

NETWORK DEVICE (S)

USER DEVICE 120-1

Dec. 31 , 2020 Sheet 1 of 8

:

:

SERVICE PROVIDER NETWORK 130

.

ma
DEVICE 110 - N

USER DEVICE 120 - M

US 2020/0412569 A1

FIG . 1

200

Patent Application Publication

Virtual IoT Endpoint 222-1

VLAN 231

NAT 224.1

220-1

PON 150

Interoperability
DNS SERVER 210

Carnar :

Dec. 31 , 2020 Sheet 2 of 8

VPC 220-2

110-2

NAT 224-2

8

VLAN 232

Virtual lot Endpoint 222-2

US 2020/0412569 A1

FIG . 2

300

130 CONTEXT

Region # 1 305-1

Region # 2 305-2

VIRTUALIZATION SERVICE NODE

VIRTUALIZATION SERVICE NODE

Patent Application Publication

Distributed
LISP

Map

LISP

(340)

SDN CONTROLLER 310-1

SDN CONTROLLER 310-2

Openflow

Openflow

SGW / PGW 320-1

SGWIPGW 320-2

Dec. 31 , 2020 Sheet 3 of 8

GO

Data Flow Path (351)

150

220

Virtual IoT Endpoint 222

Data Flow Path (352)

US 2020/0412569 A1

FIG . 3

310

MAPPING MODULE 410

SYNCHRONIZATION MODULE 430

Patent Application Publication

MAPPING DATA 420

LOCAL PLAYBACK DATA

Dec. 31 , 2020 Sheet 4 of 8 US 2020/0412569 A1

FIG . 4

110-1

305-1

222-1

Exchange Data over VLAN (505)

Disconnect (510)

Patent Application Publication

Send instructions (515)

RORA

Store event stream (520)

Reconnect (525)
Forward event stream (530)

Exchange Data over VLAN (535)

Disconnect (540)

Dec. 31 , 2020 Sheet 5 of 8

Send instructions (545)

Store event stream (550)

305-2

Reconnect (555)

Retrieve event stream (560)

Forward event stream (565)

FIG . 5

US 2020/0412569 A1

Exchange Data over VLAN (570)

009

Patent Application Publication

INPUT COMPONENT 630

OUTPUT COMPONENT 635
COMMUNICATION INTERFACE 625

BUS 605

Dec. 31 , 2020 Sheet 6 of 8

MEMORY / STORAGE 615

PROCESSOR

SOFTWARE 620

US 2020/0412569 A1

FIG . 6

700

RECEVE IOT IDENTIFIER AND NETWORK ADDRESS OF VIRTUAL ENDPOINT FOR IOT DEVICE MAPIOT IDENTIFIER TO NETWORK ADDRESS IN A DISTRIBUTED DATA STRUCTURE OF SERVICE PROVIDER NETWORK

Patent Application Publication

GENERATE INSTRUCTIONS FOR NETWORK - LAYER ACCESS CONTROLS BASED ON MAP

720

?

RECEVE ACCESS REQUEST FROM IOT DEVICE

0944
APPLY NETWORK - LAYER ACCESS CONTROL FOR THE IOT DEVICE BASED ON THE INSTRUCTIONS

Dec. 31 , 2020 Sheet 7 of 8

725 730

RECEIVE IOT DATA FROM IOT DEVICE

34 f 735

FORWARD IOT DATA TO THE VIRTUAL ENDPOINT

]

US 2020/0412569 A1

FIG . 7

800

805

IDENTIFY TERMINATION OF VLAN CONNECTION BETWEEN IOT DEVICE AND VIRTUAL NETWORK ENDPOINT

Patent Application Publication

810

LOG CONNECTION CHECKPOINT CORRESPONDING TO TERMINATION

0]

815

STORE CONTINUOUS HISTORIC EVENT STREAM OF COMMUNICATIONS TO / FROM IOT DEVICE

820

f

IDENTIFY ANOTHER VLAN CONNECTION BETWEEN IOT DEVICE AND VIRTUAL NETWORK ENDPOINT FORWARD CONTINUOUS HISTORIC EVEN STREAM FROM THE CHECKPOINT ONWARD

Dec. 31 , 2020 Sheet 8 of 8

825

US 2020/0412569 A1

FIG . 8

US 2020/0412569 Al Dec. 31 , 2020
1

VIRTUAL NETWORK ENDPOINTS FOR
INTERNET OF THINIGS (IOT) DEVICES

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser . No. 16 / 018,298 , entitled “ Virtual Network
Endpoints for Internet of Things (IoT) Devices , ” filed on
Jun . 26 , 2018 , the contents of which are hereby incorporated
by reference .

BACKGROUND

[0002] The Internet of Things (IoT) connects many types
of devices over a network . The devices (or “ things ”) in the
IoT can be a location tag , a connected thermostat , a moni
toring camera , a sensor device , or anything that communi
cates data over an Internet connection . Devices in the IoT
usually have a way to connect to the Internet to report data
to other devices and request / receive information from other
devices . IoT devices may connect to the Internet in a variety
of ways . However , IoT devices may not be continually
connected or accessible due to power constraints , network
resource conservation , among other factors .

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG . 1 is a diagram illustrating an exemplary
network environment in which systems and / or methods
described herein may be implemented ;
[0004] FIG . 2 is a iagram showing IoT devices repre
sented as virtual network endpoints in a portion of the
network environment of FIG . 1 , according to an implemen
tation described herein ;
[0005] FIG . 3 is a diagram showing components in the
service provider network of FIG . 1 supporting virtual net
work endpoints , according to an implementation described
herein ;
[0006] FIG . 4 is a block diagram of exemplary logical
components of a virtualization service node of FIG . 3
according to an implementation described herein ;
[0007] FIG . 5 is a diagram illustrating exemplary commu
nications for using a virtual network endpoint in a portion of
the network environment of FIG . 1 ;
[0008] FIG . 6 is a block diagram illustrating exemplary
components of a device that may correspond to one or more
of the devices of FIG . 1 ;
[0009] FIG . 7 is a flow diagram of an exemplary process
for providing network access controls using a virtual net
work endpoint in an IoT environment , according to an
implementation described herein ; and
[0010] FIG . 8 is a flow diagram of an exemplary process
for synchronizing an IoT device and a virtual network
endpoint , according to an implementation described herein .

systems or services in the private cloud can interact with the
IoT device just like any other enterprise resource .
[0013] Currently , a " device shadow " approach is widely
used in IoT platforms to expose IoT devices for customers
to access and operate . Implementations described herein
provide a new approach to serve IoT devices as private
network endpoints . In contrast with the “ device shadow ”
approach , systems and methods described herein represent
IoT devices as virtual network endpoints . Therefore , enter
prise applications can interact remotely with IoT devices in
a similar way to interacting with a local network peer .
Systems and methods described herein simplify customers '
access to IoT devices as local network connection , del
egate IoT device access control as a network operation ,
improve horizontally scalability , and ensure high availability
using network tools and protocols .
[0014] According to an implementation described herein ,
a service provider network includes multiple regional clus
ters that each includes a virtualization service , which may be
executed on one or more devices , and an edge node . The
virtualization service receives an IoT identifier for an IoT
device and a network address for a virtual endpoint for the
IoT device . The virtual endpoint for the IoT device is
included in a host cloud platform . The virtualization service
maps the IoT identifier to the network address in a distrib
uted data structure for the service provider network and
provides instructions , for an edge node for the service
provider network , to provide network - layer access controls
based on the mapping . The edge node for the service
provider network receives an access request from the IoT
device , applies a network - layer access control for the IoT
device based on the instructions , receive IoT data from the
IoT device when the edge node permits access by the IoT
device , and forwards the IoT data to the virtual endpoint .
[0015] According to another implementation , the edge
node receives a group instruction for the IoT device and
multiple other IoT devices . Each of the multiple other IoT
devices has a different corresponding virtual endpoint with
a different network address . The edge node delivers , via
multicast , the group instruction to each of the IoT device and
multiple other IoT devices .
[0016] According to another implementation , the edge
node logs a connection checkpoint corresponding to a dis
connection time of a VLAN connection between the IoT
device and the virtual endpoint ; stores a continuous historic
event stream of communications to and from the IoT device ;
identifies , another VLAN connection between the IoT
device and the virtual endpoint ; and forwards the continuous
historic event stream from the checkpoint onward .
[0017] FIG . 1 is a diagram illustrating an exemplary
network environment 100 in which systems and / or methods
described herein may be implemented . As illustrated , net
work environment 100 may include IoT devices 110-1
through 110 - N (collectively “ IoT devices 110 ” and singu
larly “ IoT device 110 ”) , user devices 120-1 through 120 - M
(collectively " user devices 120 ” and singularly “ user device
120 ”) , an access network 130 , a core network 140 that
includes network devices 145 , a packet data network (PDN)
150 , and multiple IoT cloud platforms 160 .
[0018] As further illustrated , network environment 100
includes communicative links 170 between the network
elements and networks (although only two are referenced in
FIG . 1 as links 170-1 and 170-2) . A network element may
transmit and receive data via link 170. Environment 100

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0011] The following detailed description refers to the
accompanying drawings . The same reference numbers in
different drawings may identify the same or similar ele
ments . Also , the following detailed description does not
limit the invention .
[0012] Systems and methods herein represent an IoT
device as an endpoint of private cloud so that the enterprise

US 2020/0412569 Al Dec. 31 , 2020
2

may be implemented to include wireless and / or wired (e.g. ,
electrical , optical , etc.) links 170. A communication connec
tion between network elements may be direct or indirect . For
example , an indirect communication connection may
involve an intermediary device or network element , and / or
an intermediary network not illustrated in FIG . 1. Addition
ally , the number , the type (e.g. , wired , wireless , etc.) , and the
arrangement of links 170 illustrated in environment 100 are
exemplary .
[0019] A network element may be implemented according
to a centralized computing architecture , a distributed com
puting architecture , or a cloud computing architecture (e.g. ,
an elastic cloud , a private cloud , a public cloud , etc.) .
Additionally , a network element may be implemented
according to one or multiple network architectures (e.g. , a
client device , a server device , a peer device , a proxy device ,
and / or a cloud device) .
[0020] IoT device 110 may include a variety of devices
that can communicate with other devices in network envi
ronment 100. Examples of IoT device 110 include a location
tag , an activity monitor , a connected thermostat , a monitor
ing camera , a sensor device , a metering device , or anything
that has an Internet connection . In one implementation , IoT
device 110 may connect to the Internet to report data or
request information from IoT cloud platform 160. IoT
device 110 may also listen to and / or be paged from devices
via access network 130. IoT device 110 typically has one or
more specific functions to perform , such as measuring ,
monitoring , and / or reporting data . IoT device 110 may
connect to access network 130 in different ways , such as via
a fixed Wi - Fi connection , a Bluetooth connection , a direct
wireless network connection (e.g. , a cellular connection
using 3G , 4G or 5G standards) , or a proprietary connection
to a wireless network . While a few IoT devices 110 are
shown in FIG . 1 , in practice there may be hundreds of
thousands or millions of IoT devices 110. IoT devices may
also be referred to as machine - type communication (MTC)
devices .
[0021] User device 120 may include a computational or
communication device . User device 120 may enable a use
to control or otherwise communicate with IoT devices 110 .
For example , user device 120 may include a personal
computer (e.g. , a laptop or desktop PC) , a tablet computer ,
a smart phone , an Internet - enable television (e.g. , a smart
TV) , a set - top box (STB) , a gaming system , or another type
of computational or communication device that can com
municate with devices in network environment 100. In one
implementation , user device 120 may include one or more
applications to access data from and manage IoT devices 110
via vice provider network 130 and / or IoT cloud platforms
160 .
[0022] Service provider network 130 may generally
include one or more wired , wireless and / or optical networks
that are capable of receiving and transmitting data , voice
and / or video signals , including multi - media signals that may
include voice , data and video information . For example ,
service provider network 130 may include one or more
access networks , IP multimedia subsystem (IMS) networks ,
evolved packet core (EPC) networks , or other networks . The
access network may include one or more wireless networks
and may include a number of transmission towers for
receiving wireless signals and forwarding the wireless sig
nals toward the intended destinations . The access network
may include a wireless communications network that con

nects subscribers (e.g. , user device 180) to other portions of
Service provider network 130 (e.g. , the EPC network) . In
one example , the access network may include a long - term
evolution (LTE) network . In other implementations , the
access network may employ other cellular broadband net
work standards such as 3rd Generation Partnership Project
(3GPP) 5G and future standards . Service provider network
130 may further include one or more satellite networks , one
or more packet switched networks , such as an IP - based
network , a local area network (LAN) , a wide area network
(WAN) , a personal area network (PAN) (e.g. , a wireless
PAN) , a wireless local area network (WLAN) , an intranet ,
the Internet , or another type of network that is capable of
transmitting data .
[0023] In an exemplary implementation , service provider
network 130 may represent a network associated with a
service provider that provides various services , such as
Internet - protocol (IP) related services , value added services ,
etc. Service provider network 140 may include an IP net
work or a multiprotocol label switching (MPLS) network
implementing an Interior Gateway Protocol (IGP) or another
protocol that implements a minimum cost end - to - end path
for routing between nodes . According to implementations
described herein , service provider network 140 may employ
Software Defined Networking (SDN) tools and conventions ,
including a separate service orchestration layer , control
layer , and resources (or forwarding) layer . As described
further herein , service provider network 130 may include
regional clusters of network devices 140 and / or virtual
nodes to enable use of virtual network endpoints for IoT
devices .
[0024] Network device 140 may include a device config
ured to perform network functions in service provider net
work 130. For example , network device 140 may include a
switch , a router , a firewall , a gateway , a NAT device , a
Reconfigurable Optical Add - Drop Multiplexer (ROADM) ,
and / or another type of network device . Some or all of the
functionality of network device 140 may be virtualized as a
virtual network function (VNF) in service provider network
130. Depending on the implementation of network 130 ,
network 130 may include various types of network devices
120 , such as , for example , a wireless station (e.g. , a base
station , an evolved NodeB , a next - generation NodeB , etc.) ,
a gateway device (e.g. , a serving gateway (SGW) or a PDN
gateway (PGW)) , a support node , a serving node , a mobility
management entity (MME) , a core access and mobility
management function (AMF) , a session management func
tion (SMF) , a policy control function (PCF) , a policy
charging rules function (PCRF) , as well other network
devices that provide various network - related functions and /
or services , such as charging and billing , security , authen
tication and authorization , network policy enforcement ,
management of subscriber profiles , and / or other functions
and / or services that facilitate the operation of a core net
work . Network devices 140 may receive , store , and enforce
policies for end devices (e.g. , IoT devices 110 and user
devices 120) and virtual network endpoints in IoT cloud
platforms 160 .
[0025] PDN 150 may include one or more networks , such
as the Internet , a local area network (LAN) , etc. , capable of
communicating with IoT devices 110. In one implementa
tion , PDN 150 includes a network that provides data services
(e.g. , via packets or any other Internet protocol (IP) data
grams) .

US 2020/0412569 A1 Dec. 31 , 2020
3

[0026] Cloud platform 160 may include network devices ,
computing devices , and other equipment to provide services ,
including services for customers with IoT devices 110. In
one implementation , cloud platform 150 may include com
ponents for authentication and provisioning , device profiles ,
a rules engine , and virtual network endpoints . The authen
tication and provisioning component may perform a provi
sioning process for an IoT device 110 including authentica
tion , registration , and activation in service provider network
130. The device profiles component may store device pro
files and related information for each IoT device 110 or
groups of IoT devices 110. The rules engine component may
allow users (e.g. , of user devices 120) to define the rules for
each IoT device 110 or a group of IoT devices 110. These
rules can be used for backend services or for IoT device 110
configurations . For the latter , rules can be pushed to the
corresponding IoT device 110 for configuration . According
to an implementation , cloud platforms 160 may use vendor
specific protocols to support IoT management . Examples of
hosting platforms that may use different protocols and
commands include Amazon Web Services (AWS) ,
Microsoft Azure® , IBM IOT Bluemix® , etc. According to
implementations described herein , IoT devices are repre
sented as virtual network points accessible in a local private
network (e.g. , within one of cloud platforms 160) , allowing
a customer (e.g. , using user device 120) to interact with IoT
device 110 as a virtual network endpoint , regardless of
whether or not the physical IoT device 110 is currently
connected to service provider network 130 .
[0027] In FIG . 1 , the particular arrangement and number
of components of network environment 100 are illustrated
for simplicity . In practice , there may be more IoT devices
110 , user devices 120 , service provider networks 130 , net
work devices 140 , PDNs 150 , and cloud platforms 160. For
example , there may be hundreds of thousands or millions of
IoT devices 110 .
[0028] FIG . 2 is a diagram showing IoT devices repre
sented as virtual network endpoints , according to an imple
mentation . As shown in FIG . 2 , a portion 200 of network
environment 100 may include IoT devices 110-1 and 110-2 ,
PDN 150 , cloud platforms 160-1 and 160-2 , and a domain
name system (DNS) server 210. IoT devices 110 , PDN 150 ,
and cloud platforms 160 may include functionality described
above in connection with , for example , FIG . 1 .
[0029] DNS server 210 includes one or more network
devices that receive domain names in DNS queries , and
resolves (i.e. , translates) those domain names into corre
sponding IP addresses . DNS server 210 may return the
resolved IP address to the network device that originated the
DNS query . According to implementations described herein ,
customers with IoT devices 110 may voluntarily register
virtual IoT endpoints 222 with DNS server 210 .
[0030] As further shown in FIG . 2 , each of cloud plat
forms 160-1 and 160-2 may include a virtual private cloud
(VPC) 220 with a virtual IoT endpoint 222 and a network
address translator (NAT) 224. Each of cloud platforms 160-1
and 160-2 may be operated , for example , by different
vendors . Each of VPC 220-1 and VPC 220-2 may include a
logically isolated section within respective cloud platforms
160-1 and 160-2 , such that IoT devices may establish virtual
LAN (VLAN) connections with Virtual IoT endpoints 222 .
[0031] FIG . 2 demonstrates a common IoT use case ,
where IoT devices 110-1 and 110-2 need to operate together ,
but are hosted in different clouds (e.g. , cloud platform 160-1

and cloud platform 160-2) . For example , assume in FIG . 2
that IoT device 110-1 is a home thermostat hosted by a one
vendor in cloud platform 160-1 , while IoT device 110-2 is a
smart energy meter hosted by a different vendor in cloud
platform 160-2 . To save energy while preserving comfort in
the home , IoT device 110-1 needs to communicate with IoT
device 110-2 . However , there are no universally accepted
standards or protocols among IoT cloud providers to connect
IoT devices 110-1 and 110-2 .
[0032] In conventional device shadow arrangements , IoT
interoperability can be only implemented on a case - by - case
basis , through separate negotiation and integration at the
application level . Often this application level implementa
tion is proprietary and is hard to reuse . In contrast , according
to implementations described herein , the interoperability of
IoT devices 110-1 and 110-2 can be achieved at the network
layer , where universal protocols and tools are established to
connect devices in different network segments , without peer
to peer negotiation and integration .
[0033] As shown in FIG . 2 , IoT devices 110-1 and 110-2
are represented as two different endpoints , virtual IoT end
points 222-1 and 222-2 , respectively , in VPCs 220-1 and
220-2 . IoT device 110-1 may connect to virtual IoT endpoint
222-1 through a VLAN connection 231. IoT device 110-2
may connect to virtual IoT endpoint 222-2 through a VLAN
connection 232. The state of the physical devices (e.g. , IoT
devices 110-1 and 110-2) and virtual endpoints (e.g. , virtual
IoT endpoints 222-1 and 222-2) can be synchronized as long
as the respective VLAN connectivity remains . Interoperabil
ity of IoT devices 110-1 and 110-2 is achieved through (1)
voluntarily registering each of virtual IoT endpoints 222-1
and 222-2 to a public domain service device (e.g. , DNS
server 210) and (2) discovering the IoT virtualization service
via a DNS lookup (e.g. , using a Network Address Transla
tion (NAT) service 224) .
[0034] FIG . 3 is a diagram showing components in service
provider network 130 supporting virtual network endpoints ,
according to an implementation . FIG . 3 illustrates a refer
ence architecture to implement IoT virtual network mapping
using software - defined networking (SDN) with OpenFlow
communication protocols . In other embodiments , similar
concepts can be implemented in a non - SDN network . As
shown in FIG . 3 , a portion 300 of network environment 100
may include IoT device 110 , service provider network 130 ,
PDN 150 , and VPC 220 with virtual IoT endpoint 222. IoT
device 110 , PDN 150 , VPC 220 , and virtual IoT endpoint
222 may include functionality described above in connec
tion with , for example , FIGS . 1 and 2 .
[0035] According to an implementation , service provider
network 130 may be divided into multiple regional clusters ,
including a first regional cluster 305-1 and a second regional
cluster 305-2 . Each regional cluster 305 may include an
SDN controller 310 , a serving gateway (SGW) , and PDN
gateway (PGW) 320. According to implementations
described herein , regional clusters 305 of service provider
network 130 also include a virtualization service node 330
located at the edge of service provider network 130 , running
on top of SDN controller 310 .
[0036] SDN controller 310 may include computing
devices or network devices that provide control plane func
tionality to direct data flows between IoT device 110 and
virtual IoT endpoint 222. Each SDN controller 310 may be
included within a control layer of service provider network
130. SDN controller 310 may include an application that

US 2020/0412569 A1 Dec. 31 , 2020
4

manages flow control to enable intelligent networking . In
one implementation , controller 120 may translate commands
from an orchestration layer (e.g. , orchestration system 125)
into a format that can be used with forwarding boxes 110 .
For example , SDN controller 310 may communicate with
SGW / PGW 320 and other elements of service provider
network 130 to manage data flows from one endpoint to
another . In one implementation , SDN controller 310 may
use existing protocols , such as OpenFlow .
[0037] SGW / PGW 320 may include network devices
(e.g. , network devices 140) to forward data to / from IoT
device 110. The SGW may provide an access point to and
from IoT device 110 , may handle forwarding of data packets
for IoT device 110 , and may act as a local anchor point
during handover procedures between wireless stations (such
as an eNodeB or a next generation NodeB) . The PGW may
function as a gateway to PDN 150. In one exemplary
implementation , the PGW may be a traffic exit / entry point
for a core network . The PGW may perform policy enforce
ment , packet filtering for each user , charging support , lawful
intercept , and packet screening . The PGW may also act as an
anchor for mobility between 3GPP and non - 3GPP technolo
gies .
[0038] Virtualization service node 330 is responsible for
managing the interaction between IoT device 110 and its
corresponding virtual IoT endpoint 222. Virtualization ser
vice node 330 may be implemented , for example , as a virtual
node (e.g. , a VNF) or a physical device . Virtualization
service node 330 may control the data flow of all IoT device
110 located in a respective regional cluster 305. According
to one implementation , a region service by a regional cluster
may be an area serviced by a SGW or another edge node .
Virtualization service node 330 may perform functions to
maintain status synchronization between IoT device 110 and
virtual IoT endpoint 222 , as well as routing to the correct
regional cluster 305. According to one implementation ,
virtualization service node 330 may communicate with SDN
controller 310 using Locator / ID Separation Protocol (LISP) .
[0039] Still referring to FIG . 3 , IoT network traffic patterns
are asymmetric in many cases , and therefore asymmetric
routing is sometimes used in conventional implementations .
In asymmetric routing , a data packet traverses from a source
to a destination via one path (region) and takes a different
path (region) when it returns to the source . In contrast with
asymmetric routing , implementations described herein may
use a cluster approach to better support security and man
agement , inherent in the distributed nature of a networking
service proxy . Distributed nodes (e.g. , SDN controller 310 ,
SGW / PGW - U 320 , and virtualization service node 330) in
different regions 305 participate in a cluster to exchange
information regarding a network status of IoT device 110 .
Network status may include , for example , joining and leav
ing a region . The regional clusters 305 provide a consistent
framework to route traffic , manage address mapping (e.g. ,
IoT device ID - to - virtual address mapping) and manage
security
[0040] With IoT devices ' computation / network constraint ,
it is a challenge to keep consistent status synchronization
between IoT devices 110 and their corresponding virtual IoT
endpoints 222. Many IoT devices 110 are not capable of
supporting a full status poll (e.g. , storing a full history and
status log) . Also , due to limited device battery life and
potentially inconsistent network connectivity , IoT devices
110 may only be synchronized when IoT device 110 wakes

up (e.g. , when using features such as Power Saving Mode
(PSM) and extended Discontinuous Reception (eDRX)) and
has a network connection at that time . According to embodi
ments described herein , virtualization service node 330 may
include a playback mechanism with checkpoints to synchro
nize IoT device 110 status with its corresponding virtual IoT
endpoints 222. With the continuous historic event stream ,
virtualization service nodes 330 can construct the current
IoT device status and assign its value to virtual IoT endpoint
222 by playing back the event streams received from IoT
device 110. When network connectivity is re - established and
proxy status confirmed with device , virtualization service
node 330 records the checkpoint . Every stream playback can
occur starting from the latest checkpoint and onwards .
[0041] FIG . 4 is a block diagram of exemplary logical
components of virtualization service node 330 , according to
an implementation . As shown in FIG . 4 , virtualization
service node 330 may include a mapping module 410 ,
mapping data 420 , a synchronization module 430 , and local
playback data 440 .
[0042] Mapping module 410 may be used to implement a
distributed mapping of IoT devices 110 and corresponding
virtual IoT endpoints 222. For example , a customer (e.g. , an
enterprise customer with numerous IoT devices 110) may
register for an IoT virtualization service offered through
service provider network 130. Virtual endpoints 222 for each
IoT device 110 may be registered with a DNS (e.g. , DNS
server 210) to permit discovery . After registering with the
DNS , the customer may provide a listing of IoT devices 110
matched to IPv6 addresses for their corresponding virtual
IoT endpoints 222. Mapping module 410 may generate an
access control list (ACL) or firewall settings based on the
customer IoT device ID / network address associations . In
one implementation , after an initial connection by an IoT
device 110 , mapping module 410 may associate the IoT
device with a particular region (e.g. , SGW / PGW 320) .
[0043] Mapping data 420 may include a database , a flat
file , or another data structure to associate an IoT device
identifier (ID) with a network address (e.g. , an IPv6 address
for virtual IoT endpoint 222) . pping data 420 may
additionally include regions (e.g. , identifiers for a regional
cluster 305 and / or SGW) associated with IoT devices 110 .
Mapping module 410 may replicate all or part of mapping
data 420 with mapping modules in other regions 305 in
service provider network 130 .
[0044] Synchronization module 430 may monitor state
information for IoT devices 110. Because some IoT devices
110 typically disconnect from a network to conserve battery
power and network resources , synchronization module 430
assist to enable interaction with IoT devices 110 without
continuous device connectivity . According to one imple
mentation , synchronization module 430 may implement
checkpoints with stored event playback data to provide for
synchronization between virtual IoT endpoint 222 and IoT
device 110. For example , synchronization module 430 may
log a connection checkpoint corresponding to a disconnec
tion time of a VLAN connection between IoT device 110
and virtual endpoint 222. Synchronization module 430 may
store (or cause another network device , such as edge node
320 to store) a continuous historic event stream of commu
nications to and / or from IoT device 110. Synchronization
module 430 may identify when IoT device 110 establishes
another VLAN connection with virtual endpoint 222 and
forward (or cause another network device , such as edge node

US 2020/0412569 A1 Dec. 31 , 2020
5

320 to forward) the continuous historic event stream from
the checkpoint onward to synchronize states for virtual IoT
endpoint 222 and IoT device 110 .
[0045] Local playback data 440 may include a database or
another type of data structure to locally store historic event
streams for IoT devices 110 associated with a particular
region . Synchronization module 430 may retrieve local
playback data 440 when needed for synchronization of an
IoT device 110 with its virtual IoT endpoint 222. Thus ,
according to implementations described herein , historic IoT
data (e.g. , to be used for synchronization) may be main
tained geographically near the relevant IoT devices 110 and
provide more efficient use of network resources (as com
pared to being passed through the entire network to be stored
in and retrieved from a host's IoT cloud platform) .
[0046] Although FIG . 4 shows exemplary logical compo
nents of virtualization service node 330 , in other implemen
tations , virtualization service node 330 may include fewer
logical components , different logical components , or addi
tional logical components than depicted in FIG . 4. Addi
tionally or alternatively , functions of one or more logical
components of virtualization service node 330 may be
performed by one or more devices in regional cluster 305 .
For example , SDN controller 310 or SGW / PGW - U 320 may
perform some or all of one of the logical functions described
in connection with FIG . 4 .
[0047] FIG . 5 is a diagram illustrating exemplary commu
nications for using a virtual network endpoint in a portion
500 of network environment 100. As shown in FIG . 5 ,
network portion 500 may include IoT device 110-1 , virtual
IoT endpoint 222-1 , regional cluster 305-1 and regional
cluster 305-2 . IoT device 110-1 , virtual IoT endpoint 222-1 ,
and regional clusters 305 may include features described
above in connection with FIGS . 1-4 .
[0048] Referring to FIG . 5 , IoT device 110-1 may
exchange data with virtual IoT endpoint 222-1 over an
established VLAN connection serviced by regional cluster
305-1 , as shown at reference 505. IoT device 110-1 may then
disconnect 510 from the network (e.g. , due to a power
saving features) . While IoT device 110-1 is disconnected ,
virtual IoT endpoint 222-1 may receive and forward instruc
tions 515 or other data toward IoT device 110-1 . While IoT
device 110-1 is disconnected , devices in regional cluster
305-1 may locally store an event stream 520 (e.g. , in local
playback data 440) , which may include instructions 515 and
any other communications to / from IoT device 110-1 before
a VLAN connection is resumed .
[0049] Still referring to FIG . 5 , IoT device 110-1 may
eventually wake - up and attempt to reconnect 525 to virtual
IoT endpoint 222-1 . Assuming IoT device 110-1 is accepted
through network access controls (e.g. , enforced at the
SGW) , devices in regional cluster 305-1 may forward the
historic event stream 530 to IoT device 110-1 . IoT device
110-1 may receive event stream 530 to synchronize state
with virtual IoT endpoint 222-1 and may then exchange data
with virtual IoT endpoint 222-1 over the established VLAN
connection serviced by regional cluster 305-1 , as shown at
reference 535 .
[0050] IoT device 110-1 may eventually again disconnect
540 from the network . While IoT device 110-1 is discon
nected , virtual IoT endpoint 222-1 may receive and forward
additional instructions 545 or other data toward IoT device
110-1 . While IoT device 110-1 is disconnected , devices in
regional cluster 305-1 may locally store an event stream 550 ,

which may include instructions 545 and any other commu
nications to / from IoT device 110-1 before a VLAN connec
tion is resumed .
[0051] IoT device 110-1 eventually may attempt to recon
nect 555 to virtual IoT endpoint 222-1 from a different
location that is associated with regional cluster 305-2 .
Assuming IoT device 110-1 is accepted through network
access controls (e.g. , enforced at the SGW) , devices in
regional cluster 305-2 (e.g. , using mapping data 420) may
retrieve 560 the historic event stream 550. Devices in
regional cluster 305-2 may then forward the historic event
stream 565 to IoT device 110-1 . IoT device 110-1 may
receive event stream 565 to again synchronize state with
virtual IoT endpoint 222-1 and may then exchange data with
virtual IoT endpoint 222-1 over the established VLAN
connection serviced by regional cluster 305-2 , as shown at
reference 570 .
[0052] Although FIG . 5 shows exemplary communica
tions for implementing using a virtual network endpoint , in
other implementations more , fewer or different communi
cations may be used .
[0053] FIG . 6 is a diagram illustrating exemplary compo
nents of a device 600 that may correspond to one or more of
the devices described herein . For example , device 600 may
correspond to components included in IoT device 110 , user
device 120 , virtual endpoint 222 , NAT 224 , SDN controller
310 , SGW / PGW - U 320 , and virtualization service node 330 .
As illustrated in FIG . 6 , according to an exemplary embodi
ment , device 600 includes a bus 605 , a processor 610 , a
memory / storage 615 that stores software 620 , a communi
cation interface 625 , an input 630 , and an output 635 .
According to other embodiments , device 600 may include
fewer components , additional components , different com
ponents , and / or a different arrangement of components than
those illustrated in FIG . 6 and described herein .
[0054] Bus 605 includes a path that permits communica
tion among the components of device 600. For example , bus
605 may include a system bus , an address bus , a data bus ,
and / or a control bus . Bus 605 may also include bus drivers ,
bus arbiters , bus interfaces , and / or clocks .
[0055] Processor 610 includes one or multiple processors ,
microprocessors , data processors , co - processors , application
specific integrated circuits (ASICs) , controllers , program
mable logic devices , chipsets , field - programmable gate
arrays (FPGAs) , application specific instruction - set proces
sors (ASIPs) , system - on - chips (SoCs) , central processing
units (CPUs) (e.g. , one or multiple cores) , microcontrollers ,
and / or some other type of component that interprets and / or
executes instructions and / or data . Processor 610 may be
implemented as hardware (e.g. , a microprocessor , etc.) , a
combination of hardware and software (e.g. , a SoC , an
ASIC , etc.) , may include one or multiple memories (e.g. ,
cache , etc.) , etc. Processor 610 may be a dedicated compo
nent or a non - dedicated component (e.g. , a shared resource) .
[0056] Processor 610 may control the overall operation , or
a portion of operation (s) performed by device 600. Proces
sor 610 may perform one or multiple operations based on an
operating system and / or various applications or computer
programs (e.g. , software 620) . Processor 610 may access
instructions from memory / storage 615 , from other compo
nents of device 600 , and / or from a source external to device
600 (e.g. , a network , another device , etc.) . Processor 610
may perform an operation , and / or a process based on various

US 2020/0412569 Al Dec. 31 , 2020
6

access

techniques including , for example , multithreading , parallel
processing , pipelining , interleaving , etc.
[0057] Memory / storage 615 includes one or multiple
memories and / or one or multiple other types of storage
mediums . For example , memory / storage 615 may include
one or multiple types of memories , such as , random access
memory (RAM) , dynamic random memory
(DRAM) , cache , read only memory (ROM) , a program
mable read only memory (PROM) , a static random access
memory (SRAM) , a single in - line memory module (SIMM) ,
a dual in - line memory module (DIMM) , a flash memory
(e.g. , a NAND flash , a NOR flash , etc.) , and / or some other
type of memory . Memory / storage 615 may include a hard
disk (e.g. , a magnetic disk , an optical disk , a magneto - optic
disk , a solid state disk , etc.) , a Micro - Electromechanical
System (MEMS) -based storage medium , and / or a nanotech
nology - based storage medium .
[0058] Memory / storage 615 may include a drive for read
ing from and writing to the storage medium .
[0059] Memory / storage 615 may be external to and / or
removable from device 600 , such as , for example , a Uni
versal Serial Bus (USB) memory stick , a dongle , a hard disk ,
mass storage , off - line storage , network attached storage
(NAS) , or some other type of storing medium (e.g. , a
compact disk (CD) , a digital versatile disk (DVD) , a Blu
Ray disk (BD) , etc.) . Memory / storage 615 may store data ,
software , and / or instructions related to the operation of
device 600 .
[0060] Software 620 includes an application or a program
that provides a function and / or a process . Software 620 may
include an operating system . Software 620 is also intended
to include firmware , middleware , microcode , hardware
description language (HDL) , and / or other forms of instruc
tion . Additionally , for example , end device 110 may include
logic to perform tasks , as described herein , based on soft
ware 620 .
[0061] Communication interface 625 permits device 600
to communicate with other devices , networks , systems ,
devices , and / or the like . Communication interface 625
includes one or multiple wireless interfaces and / or wired
interfaces . For example , communication interface 625 may
include one or multiple transmitters and receivers , or trans
ceivers . Communication interface 625 may include one or
more antennas . For example , communication interface 625
may include an array of antennas . Communication interface
625 may operate according to a protocol stack and a com
munication standard . Communication interface 625 may
include various processing logic or circuitry (e.g. , multi
plexing / de - multiplexing , filtering , amplifying , converting ,
error correction , etc.) .
[0062] Input 630 permits an input into device 600. For
example , input 630 may include a keyboard , a mouse , a
display , a button , a switch , an input port , speech recognition
logic , a biometric mechanism , a microphone , a visual and / or
audio capturing device (e.g. , a camera , etc.) , and / or some
other type of visual , auditory , tactile , etc. , input component .
Output 635 permits an output from device 600. For example ,
output 635 may include a speaker , a display , a light , an
output port , and / or some other type of visual , auditory ,
tactile , etc. , output component . According to some embodi
ments , input 630 and / or output 635 may be a device that is
attachable to and removable from device 600 .
[0063] Device 600 may perform a process and / or a func
tion , as described herein , in response to processor 610

executing instructions contained in a computer - readable
medium , such as software 620 stored by memory / storage
615. A computer - readable medium may be defined as a
non - transitory memory device . A memory device may
include space within a single physical memory device or
spread across multiple physical memory devices . By way of
example , instructions may be read into memory / storage 615
from another memory / storage 615 (not shown) or read from
another device (not shown) via communication interface
625. The instructions stored by memory / storage 615 cause
processor 610 to perform a process described herein . Alter
natively , for example , according to other implementations ,
device 600 performs a process described herein based on the
execution of hardware (processor 610 , etc.) .
[0064] FIG . 7 provides a flow diagram of an exemplary
process 700 for providing network access controls using a
virtual network endpoint in an IoT environment . In one
implementation , process 700 may be performed by a
regional cluster 305. In another implementation , some or all
of process 700 may be performed by another device or group
of devices , including or excluding devices regional cluster
305 .
[0065] As shown in FIG . 7 , process 700 may include
receiving an IoT identifier and a network address of virtual
endpoint for an IoT device (block 705) and mapping the IoT
identifier to the network address in a distributed data struc
ture of a service provider network (block 710) . For example ,
virtual endpoints 222 corresponding to each IoT device 110
may be registered with a DNS (e.g. , DNS server 210) to
permit discovery . After registering with DNS , the customer
may provide a listing of IoT devices 110 matched to network
addresses for their corresponding virtual IoT endpoints 222 .
In one implementation , after an initial connection by an IoT
device 110 , mapping module 410 may associate the IoT
device within a particular region (e.g. , SGW / PGW 320) .
[0066] Process 700 may also include generating instruc
tions for network - layer access controls based on the map
ping (block 715) . For example , virtualization service node
330 (e.g. , mapping module 410) may generate an ACL or
firewall settings based on the customer IoT device ID / net
work address associations .
[0067] Process 700 may further include receiving a net
work access request from the IoT device (block 720) , and
applying network - layer access controls for the IoT device
based on the instructions (block 725) . For example , IoT
device 110 may request network access to virtual IoT
endpoints 222 (e.g. , upon waking up from an extended sleep
mode , etc.) . Regional cluster 305 (e.g. , PGW of SGW / PGW
320) may apply the ACL or firewall settings to restrict
network access to authorized devices .
[0068] Process 700 may additionally include receiving
IoT data from the IoT device (block 730) and forwarding
IoT data to the virtual endpoint (block 735) . For example ,
assuming IoT device 110 is given network access , IoT
device 110 and virtual IoT endpoint 222 may establish a
VLAN connection with flow governed by regional cluster
305. IoT device 110 may send data (e.g. , sensor data , etc.)
toward virtual IoT endpoint 222 and receive data / instruc
tions from virtual IoT endpoint 222 .
[0069] FIG . 8 provides a flow diagram of an exemplary
process 800 for synchronizing an IoT device and a virtual
network endpoint , according to an implementation described
herein . In one implementation , process 800 may be per
formed by a regional cluster 305. In another implementation ,

US 2020/0412569 Al Dec. 31 , 2020
7

some or all of process 800 may be performed by another
device or group of devices , including or excluding devices
regional cluster 305 .
[0070] As shown in FIG . 8 , process 800 may include
identifying termination of a VLAN connection between an
IoT device and a virtual network endpoint (block 805) , and
logging a connection checkpoint corresponding to the ter
mination (block 810) . For example , regional cluster 305 may
detect termination of a VLAN connection between IoT
device 110 and virtual IoT endpoint 222. Regional cluster
305 (e.g. , synchronization module 430) may log a connec
tion checkpoint corresponding to a disconnection time of the
VLAN connection .
[0071] Process 800 may also include storing a continuous
historic event stream of communications to and / or from the
IoT device (block 815) , identifying another VLAN connec
tion between the IoT device and the virtual network endpoint
(block 820) , and forwarding the continuous historic event
stream from the time of the checkpoint onward (block 825) .
For example , Regional cluster 305 (e.g. , synchronization
module 430) may store a continuous historic event stream of
communications to and / or from IoT device 110. Regional
cluster 305 may identify when IoT device 110 establishes
another VLAN connection with virtual endpoint 222 and
forward the continuous historic event stream from the
checkpoint onward to synchronize states for virtual IoT
endpoint 222 and IoT device 110 .
[0072] As set forth in this description and illustrated by the
drawings , reference is made to “ an exemplary embodiment , "
“ an embodiment , ” “ embodiments , ” etc. , which may include
a particular feature , structure or characteristic in connection
with an embodiment (s) . However , the use of the phrase or
term " an embodiment , " " embodiments , ” etc. , in various
places in the specification does not necessarily refer to all
embodiments described , nor does it necessarily refer to the
same embodiment , nor are separate or alternative embodi
ments necessarily mutually exclusive of other embodiment
(s) . The same applies to the term “ implementation , ” “ imple
mentations , ” etc.
[0073] The foregoing description of embodiments pro
vides illustration , but is not intended to be exhaustive or to
limit the embodiments to the precise form disclosed .
Accordingly , modifications to the embodiments described
herein may be possible . For example , various modifications
and changes may be made thereto , and additional embodi
ments may be implemented , without departing from the
broader scope of the invention as set forth in the claims that
follow . The description and drawings are accordingly to be
regarded as illustrative rather than restrictive .
[0074] The terms “ a , " " an , ” and “ the ” are intended to be
interpreted to include one or more items . Further , the phrase
“ based on ” is intended to be interpreted as “ based , at least
in part , on , " unless explicitly stated otherwise . The term
“ and / or ” is intended to be interpreted to include any and all
combinations of one or more of the associated items . The
word “ exemplary ” is used herein to mean “ serving as an
example . ” Any embodiment or implementation described as
“ exemplary ” is not necessarily to be construed as preferred
or advantageous over other embodiments or implementa
tions .
[0075] In addition , while series of blocks have been
described with regard to the processes illustrated in FIGS . 7
and 8 , the order of the blocks may be modified according to
other embodiments . Further , non - dependent blocks may be

performed in parallel . Additionally , other processes
described in this description may be modified and / or non
dependent operations may be performed in parallel .
[0076] Embodiments described herein may be imple
mented in many different forms of software executed by
hardware . For example , a process or a function may be
implemented as “ logic , ” a “ component , ” or an “ element . ”
The logic , the component , or the element , may include , for
example , hardware (e.g. , processor 610 , etc.) , or a combi
nation of hardware and software (e.g. , software 620) .
[0077] Embodiments have been described without refer
ence to the specific software code because the software code
can be designed to implement the embodiments based on the
description herein and commercially available software
design environments and / or languages . For example , vari
ous types of programming languages including , for example ,
a compiled language , an interpreted language , a declarative
language , or a procedural language may be implemented .
[0078] Use of ordinal terms such as “ first , ” “ second , "
“ third , ” etc. , in the claims to modify a claim element does
not by itself connote any priority , precedence , or order of
one claim element over another , the temporal order in which
acts of a method are performed , the temporal order in which
instructions executed by a device are performed , etc. , but are
used merely as labels to distinguish one claim element
having a certain name from another element having a same
name (but for use of the ordinal term) to distinguish the
claim elements .
[0079] Additionally , embodiments described herein may
be implemented as a non - transitory computer - readable stor
age medium that stores data and / or information , such as
instructions , program code , a data structure , a program
module , an application , a script , or other known or conven
tional form suitable for use in a computing environment . The
program code , instructions , application , etc. , is readable and
executable by a processor (e.g. , processor 310) of a device .
A non - transitory storage medium includes one or more of
the storage mediums described in relation to memory
storage 315 .
[0080] To the extent the aforementioned embodiments
collect , store or employ personal information provided by
individuals , it should be understood that such information
shall be used in accordance with all applicable laws con
cerning protection of personal information . Additionally , the
collection , storage and use of such information may be
subject to consent of the individual to such activity , for
example , through well known " opt - in " or " opt - out ” pro
cesses as may be appropriate for the situation and type of
information . Storage and use of personal information may
be in an appropriately secure manner reflective of the type
of information , for example , through various encryption and
anonymization techniques for particularly sensitive infor
mation .

[0081] No element , act , or instruction set forth in this
description should be construed as critical or essential to the
embodiments described herein unless explicitly indicated as
such .

[0082] All structural and functional equivalents to the
elements of the various aspects set forth in this disclosure
that are known or later come to be known to those of
ordinary skill in the art are expressly incorporated herein by
reference and are intended to be encompassed by the claims .
No claim element of a claim is to be interpreted under 35

US 2020/0412569 Al Dec. 31 , 2020
8

U.S.C. § 112 (f) unless the claim element expressly includes
the phrase " means for ” or “ step for . ”
What is claimed is :
1. A method performed by one or more nodes in a service

provider network , the method comprising :
receiving Internet - of - Things (IoT) identifiers for IoT

devices and network addresses for corresponding vir
tual endpoints for the IoT devices , wherein the virtual
endpoints for the IoT devices are included in a host
cloud platform ;

mapping the IoT identifiers to the network addresses for
the service provider network ;

receiving control plane instructions for the IoT devices ;
and

distributing the control plane instructions to the IoT
devices via multicast .

2. The method of claim 1 , further comprising :
receiving an access request from one of the IoT devices ;

and
applying a network - layer access control for the one of the

IoT devices based on the mapping .
3. The method of claim 2 , further comprising :
receiving , from the one of the IoT devices , IoT data ; and
forwarding the IoT data to one of the corresponding

virtual endpoints .
4. The method of claim 2 , wherein the network - layer

access control includes an access control list (ACL) or a
firewall .

5. The method of claim 1 , wherein a data structure stores
the IoT identifiers mapped to the network addresses , and the
data structure is shared between multiple nodes in the
service provider network .

6. The method of claim 1 , wherein the network addresses
include Internet Protocol version 6 (IPv6) addresses .

7. The method of claim 1 , further comprising :
synchronizing a status of one of the IoT devices with one

of the corresponding virtual endpoints .
8. The method of claim 7 , wherein the synchronizing

further comprises :
logging a connection checkpoint corresponding to a dis

connection of a virtual local area network (VLAN)
connection between the one of the IoT devices and the
one of the corresponding virtual endpoints ;

storing , after the logging , a continuous historic event
stream of communications to the one of the IoT
devices ;

identifying another VLAN connection between the one of
the IoT devices and the one of the corresponding virtual
endpoints ; and

forwarding , after the identifying , the continuous historic
event stream from the checkpoint .

9. The method of claim 1 , wherein the one or more node
are included within one of multiple regional clusters of the
service provider network , each of the regional clusters
comprising a serving gateway (SGW) , a software - defined
networking (SDN) controller , and a virtualization service
function running on top of the SDN controller .

10. A system , comprising :
a virtualization service device , the virtualization service

device comprising :
a first network interface to communicate with one or
more remote systems ,

one or more first memories to store instructions , and

one or more first processors configured to execute
instructions in the one or more first memories to :
receive Internet - of - Things (IoT) identifiers for IoT

devices and network addresses for corresponding
virtual endpoints for the IoT devices , wherein the
virtual endpoints for the IoT devices are included
in a host cloud platform , and

map the IoT identifiers to the network addresses for
a service provider network ; and

a first edge node for the service provider network com
prising :
a second network interface to communicate with the

one or more remote systems ,
one or more second memories to store instructions , and
one or more second processors configured to execute

instructions in the one or more second memories to :
receive control plane instructions for the IoT

devices ; and
deliver , via multicast , the control plane instruction to

each of the IoT devices .
11. The system of claim 10 , wherein the one or more

second processors are further configured to execute instruc
tions in the one or more second memories to :

receive an access request from one of the IoT devices ,
apply a network - layer access control for the one of the IoT

devices based on the instructions ,
receive from the one of the IoT devices , IoT data , and
forward the IoT data to one of the corresponding virtual

endpoints .
12. The system of claim 11 , further comprising :
a second edge node for the service provider network , the

second edge node comprising :
a third network interface to communicate with the one

or more remote systems ,
one or more third memories to store instructions , and
one or more third processors configured to execute

instructions in the one or more third memories to :
receive another access request from the one of the

IoT devices ;
apply the network - layer access control for the one of

the IoT devices based on a data structure , wherein
the data structure stores the IoT identifiers mapped
to the network addresses ;

receive , from the one of the IoT devices , IoT data ,
when the second edge node permits access to the
one of the IoT devices ; and

forward the IoT data to the one of the corresponding
virtual endpoints .

13. The system of claim 12 , wherein the data structure is
shared between the first edge node and the second edge node
in the service provider network .

14. The system of claim 10 , wherein each of the IoT
devices has a different corresponding virtual endpoint with
a different network address .

15. The system of claim 10 , wherein the network
addresses include Internet Protocol version 6 (IPv6)
addresses .

16. The system of claim 10 , wherein the one or more
second processors are further configured to execute instruc
tions in the one or more second memories to :

log a connection checkpoint corresponding to a discon
nection time of a virtual local area network (VLAN)
connection between one of the IoT devices and one of
the corresponding virtual endpoints ;

US 2020/0412569 A1 Dec. 31 , 2020
9

store , after the logging , a continuous historic event stream
of communications to and from the IoT device ;

identify another VLAN connection between the one of the
IoT devices and the one of the corresponding virtual
endpoints ; and

forward , after the identifying , the continuous historic
event stream from the checkpoint onward .

17. A non - transitory computer - readable medium includ
ing instructions , executed by one or more processors , for
causing the one or more processors to :

receive Internet - of - Things (IoT) identifiers for IoT
devices and network addresses for corresponding vir
tual endpoints for the IoT devices , wherein the virtual
endpoints for the IoT devices are included in a host
cloud platform ;

map the IoT identifiers to the network addresses for a
service provider network ;

receive control plane instructions for the IoT devices ; and
multicast the control plane instructions to the IoT devices .
18. The non - transitory computer - readable medium of

claim 17 , further comprising instructions for causing the one
or more processors to :

receive an access request from one of the IoT devices ; and
apply a layer access control for the one of the IoT devices

based on the mapping .

19. The non - transitory computer - readable medium of
claim 17 , further comprising instructions for causing the one
or more processors to :

receive an access request from one of the IoT devices ;
apply a network - layer access control for the one of the IoT

devices based on a data structure , wherein the data
structure stores the IoT identifiers mapped to the net
work addresses ;

receive , from the one of the IoT devices , IoT data ; and
forward the IoT data to one of the corresponding virtual

endpoints .
20. The non - transitory computer - readable medium of

claim 19 , further comprising instructions for causing the one
or more processors to :

log a connection checkpoint corresponding to a discon
nection of a VLAN connection between the one of the
IoT devices and the one of the corresponding virtual
endpoints ;

store , after the logging , a continuous historic event stream
of communications to and from the IoT device ;

identify another VLAN connection between the one of the
IoT devices and the one of the corresponding virtual
endpoints ; and

forward , after the identifying , the continuous historic
event stream from the checkpoint .

