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Systems and methods are disclosed for compressing a target
video. A computer-implemented method may use a com-
puter system that include one or more physical computer
processors and non-transient electronic storage. The com-
puter-implemented method may include: obtaining the target
video, extracting one or more frames from the target video,
and generating an estimated optical flow based on a dis-
placement of pixels between the one or more frames. The
one or more frames may include one or more of a key frame
and a target frame.
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MACHINE LEARNING BASED VIDEO
COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S.
Patent Application No. 62/717,470 filed on Aug. 10, 2018,
which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure relates generally to video
compression.

BRIEF SUMMARY OF THE EMBODIMENTS

[0003] Embodiments of the present disclosure include
systems and methods of compressing video using machine
learning. In accordance with the technology described
herein, a computer-implemented method for compressing a
target video is disclosed. The computer-implemented
method may be implemented in a computer system that may
include one or more physical computer processors and
non-transient electronic storage. The computer-implemented
method may include obtaining, from the non-transient elec-
tronic storage, the target video. The computer-implemented
method may include extracting, with the one or more
physical computer processors, one or more frames from the
target video. The one or more frames may include one or
more of a key frame and a target frame. The computer-
implemented method may also include generating, with the
one or more physical computer processors, an estimated
optical flow based on a displacement of pixels between the
one or more frames.

[0004] Inembodiments, the displacement of pixels may be
between a key frame and/or the target frame.

[0005] In embodiments, the computer-implemented
method may further include applying, with the one or more
physical computer processors, the estimated optical flow to
a trained optical flow model to generate a refined optical
flow. The trained optical flow model may have been trained
by using optical flow training data. The optical flow training
data may include (i) optical flow data, (ii) a corresponding
residual, (iil) a corresponding warped frame, and/or (iv) a
corresponding target frame.

[0006] In embodiments, the computer-implemented
method may further include generating, with the one or more
physical computer processors, a warped target frame by
applying the estimated optical flow to the key frame. The
warped target frame may include a missing element not
visible in the key frame. The computer-implemented method
may also include identifying, with the one or more physical
computer processors, the missing element in the warped
target frame using supplemental information. The computer-
implemented method may include synthesizing, with the one
or more physical computer processors, the missing element
from the warped target frame by applying the warped target
frame to a trained interpolation model. The trained interpo-
lation model may have been trained using interpolation
training data. The interpolation training data may include (i)
a user-defined value and/or (ii) multiple sets of frames. A
given set of frames may include a previous training frame,
a target training frame, and/or a subsequent training frame.
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The computer-implemented method may also include gen-
erating, with the one or more physical computer processors,
a synthesized target frame.

[0007] In embodiments, the supplemental information
may include one or more of a mask, the target frame, a given
magnitude of a given estimated optical flow for a given
object in the warped target frame, and/or a depth corre-
sponding to the missing element.

[0008] In embodiments, identifying the missing element
may include, based on the given magnitude of the given
estimated optical flow of the given object, identifying, with
the one or more physical computer processors, the given
object as a foreground object when the magnitude reaches a
threshold value. Identifying the missing element may also
include identifying, with the one or more physical computer
processors, the missing element in a background of the
warped target frame using the displacement of the fore-
ground object between the one or more frames.

[0009] In embodiments, identifying the missing element
may include, based on a change of depth of an object
between the one or more frames, identifying, with the one or
more physical computer processors, the missing element
using the estimated optical flow. Identifying the missing
element may also include generating, with the one or more
physical computer processors, an element to apply to the
missing element. Identifying the missing element may
include generating, with the one or more physical computer
processors, a synthesized target frame.

[0010] In embodiments, the trained optical flow model
and/or the trained interpolation model may include a con-
volutional neural network.

[0011] In embodiments, the computer-implemented
method may further include encoding, with the one or more
physical computer processors, the synthesized target frame.
The computer-implemented method may include encoding,
with the one or more physical computer processors, side
information based on the encoded synthesized target frame.
The side information may include one or more of the optical
flow and/or a mask.

[0012] Inaccordance with additional aspects of the present
disclosure, a system may include non-transient electronic
storage and one or more physical computer processors. The
one or more physical computer processors may be config-
ured by machine-readable instructions to perform a number
of operations. One operation may be to obtain, from the
non-transient electronic storage, the target video. Another
operation may be to extract, with the one or more physical
computer processors, one or more frames from the target
video. The one or more frames may include one or more of
a key frame and/or a target frame. Yet another operation may
be to generate, with the one or more physical computer
processors, an estimated optical flow based on a displace-
ment of pixels between the one or more frames.

[0013] In embodiments, another operation may be to
apply, with the one or more physical computer processors,
the estimated optical flow to a trained optical flow model to
generate a refined optical flow. The trained optical flow
model may have been trained by using optical flow training
data. The optical flow training data may include (i) optical
flow data, (ii) a corresponding residual, (iii) a corresponding
warped frame, and/or (iv) a corresponding target frame.
[0014] In embodiments, another such operation is to gen-
erate, with the one or more physical computer processors, a
warped target frame by applying the estimated optical flow
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to the key frame. The warped target frame may include a
missing element not visible in the key frame. Yet another
such operation is to identify, with the one or more physical
computer processors, the missing element in the warped
target frame using supplemental information. Another
operation is to synthesize, with the one or more physical
computer processors, the missing element from the warped
target frame by applying the warped target frame to a trained
interpolation model. The trained interpolation model may
have been trained using interpolation training data. The
interpolation training data may include (i) a user-defined
value and (ii) multiple sets of frames. A given set of frames
may include a previous training frame, a target training
frame, and/or a subsequent training frame. Another opera-
tion is to generate, with the one or more physical computer
processors, a synthesized target frame.

[0015] In embodiments, the supplemental information
may include one or more of a mask, the target frame, a given
magnitude of a given estimated optical flow for a given
object in the warped target frame, and/or a depth corre-
sponding to the missing element.

[0016] In embodiments, identifying the missing element
may include based on the given magnitude of the given
estimated optical flow of the given object, identifying, with
the one or more physical computer processors, the given
object as a foreground object when the magnitude reaches a
threshold value. Identifying the missing element may also
include identifying, with the one or more physical computer
processors, the missing element in a background of the
warped target frame using the displacement of the fore-
ground object between the one or more frames.

[0017] In embodiments, identifying the missing element
may include based on a change of depth of an object
between the one or more frames, identifying, with the one or
more physical computer processors, the missing element
using the estimated optical flow. Identifying the missing
element may also include generating, with the one or more
physical computer processors, an element to apply to the
missing element. Identifying the missing element may
include generating, with the one or more physical computer
processors, a synthesized target frame.

[0018] In embodiments, the trained optical flow model
and/or the trained interpolation model may include a con-
volutional neural network.

[0019] In embodiments, the operation may include encod-
ing, with the one or more physical computer processors, the
synthesized target frame. In embodiments, the operation
may also include encoding, with the one or more physical
computer processors, side information based on the encoded
synthesized target frame. The side information may include
one or more of the optical flow and/or a mask.

[0020] Inembodiments, the key frame may include one or
more of a previous frame and/or a subsequent frame.
[0021] In embodiments, generating the estimated optical
flow may include using, with the one or more physical
computer processors, the previous frame and the target
frame.

[0022] Inaccordance with additional aspects of the present
disclosure, a non-transitory computer-readable medium may
have executable instructions stored thereon that, when
executed by one or more physical computer processors,
cause the one or more physical computer processors to
perform a number of operations. One operation may be to
obtain, from the non-transient electronic storage, the target
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video. Another operation may be to extract, with the one or
more physical computer processors, one or more frames
from the target video. The one or more frames may include
one or more of a key frame and a target frame. Yet another
operation may be to generate, with the one or more physical
computer processors, an estimated optical flow based on a
displacement of pixels between the one or more frames

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Aspects of the present disclosure will be appreci-
ated upon review of the detailed description of the various
disclosed embodiments, described below, when taken in
conjunction with the accompanying figures.

[0024] FIG. 1A illustrates an example method for encod-
ing and compressing video in accordance with embodiments
disclosed herein.

[0025] FIG. 1B illustrates an example method for encod-
ing and compressing video in accordance with embodiments
disclosed herein.

[0026] FIG. 1C illustrates an example method for encod-
ing and compressing video in accordance with embodiments
disclosed herein.

[0027] FIG. 1D illustrates an example method for encod-
ing and compressing video in accordance with embodiments
disclosed herein.

[0028] FIG. 2 illustrates an example method for flow
prediction in accordance with embodiments disclosed
herein.

[0029] FIG. 3Aillustrates an example method for forward
image warping in accordance with embodiments disclosed
herein.

[0030] FIG. 3B illustrates an example method for handling
occlusions in accordance with embodiments disclosed
herein.

[0031] FIG. 4 illustrates an example method for frame
synthesis for video compression in accordance with embodi-
ments disclosed herein.

[0032] FIG. 5 illustrates an example method for video
compression in accordance with embodiments disclosed
herein.

[0033] FIG. 6 illustrates an example method for encoding
interpolated frames in accordance with embodiments dis-
closed herein.

[0034] FIG. 7 illustrates an example method for guided
compression for side information in accordance with
embodiments disclosed herein.

[0035] FIG. 8 illustrates an example convolutional neural
network architecture in accordance with embodiments dis-
closed herein.

[0036] FIG. 9 illustrates an example method for joint
compression of the optical flow and image compression, in
accordance with embodiments disclosed herein.

[0037] FIG. 10 illustrates an example computing module
that may be used to implement features of various embodi-
ments of the disclosure.

[0038] The figures are described in greater detail in the
description and examples below are provided for purposes
of illustration only, and merely depict typical or example
embodiments of the disclosure. The figures are not intended
to be exhaustive or to limit the disclosure to the precise form
disclosed. It should also be understood that the disclosure
may be practiced with modification or alteration, and that the
disclosure may be limited only by the claims and the
equivalents thereof.
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DETAILED DESCRIPTION

[0039] The present disclosure relates to systems and meth-
ods for machine learning based video compression. For
example, neural autoencoders have been applied to single
image compression applications, but video compression
using machine learning (i.e., deep learning) has only focused
on frame interpolation and its application to video compres-
sion.

[0040] Embodiments disclosed herein are directed
towards frame synthesis methods that include interpolation
and extrapolation with multiple warping approaches, com-
pression schemes that use intermediate frame interpolation
results and/or compression schemes that employ correlation
between images and related information, such as optical
flow.

[0041] Video codecs used for video compression generally
decompose video into a set of key frames encoded as single
images, and a set of frames for which interpolation is used.
In contrast, the present disclosure applies deep learning
(e.g., neural networks) to encode, compress, and decode
video. For example, the disclosed method may include
interpolating frames using deep learning and applying vari-
ous frame warping methods to correct image occlusions
and/or other artifacts from using the optical flow. The
method may use the deep learning algorithm to predict the
interpolation result. Embodiments disclosed here may fur-
ther apply forward warping to the interpolation to correlate
flow maps and images for improved compression. In some
embodiments, a video compression scheme may predict a
current frame by encoding already available video frames,
e.g., the current frame and one or more reference frames.
This is comparable to video frame interpolation and extrapo-
lation, with the difference that the predicted image is avail-
able at encoding time. Example video compression schemes
may include motion estimation, image synthesis, and data
encoding, as will be described herein.

[0042] FIGS. 1A, 1B, 1C, and 1D illustrate an example
method for encoding and compressing video. Assuming
some reference frame r; is available, using motion it is
possible to efficiently encode a frame I (e.g., adjacent, within
five frames, and/or other numbers of frames) by: computing
a 2d displacement map F,; (e.g., FIG. 1A), using motion
field and reference frame, synthesizing an estimate I of the
image to encode (e.g., FIG. 1B), encoding and transmitting
the motion field—depending on the chosen encoding/decod-
ing scheme, the frame r; might be available at decoding time
(e.g., FIG. 1C), and encoding I takes into account the
synthesis result | which is used as supplementary input (e.g.,
FIG. 1D). In some examples, a residual to I is explicitly
encoded. The residual may be the difference between I and
1. For reference frames, image and flow coding/decoding
may be accomplished with a single network as there is
correlation between flow and image content. For example,
the single network may receive one or more inputs (e.g.,
optical flow, images, video, residuals, supplemental infor-
mation, etc.) and outputs information used in a decoder
network to produce playable content.

[0043] In some embodiments, using available reference
frames {r,I1i € 1...n} (usually n=2), a new frame, or target
frame, I, may be encoded. The reference frames may be
selected to have some overlap with the content of I. Motion
vector maps, or optical flow, may be estimated between the

Mar. 16, 2023

reference frames and the target frame. For example, a
motion vector map may correspond to a 2d displacement of
pixels from r; to L.

[0044] Frame synthesis may use the estimated optical flow
to forward warp (e.g., from an earlier frame of the video to
a later frame of the video) the reference frames r, and
compute a prediction of the image to encode. The forward
mapped image may be W, _,; denoted by and the prediction
by 1. Using forward mapping may help identify image
regions of [ that are not present in the reference frame, or are
otherwise occluded, indicating image regions where the
machine learning algorithm may synthesize missing pixels.
In the case of prediction from several reference frames, this
also helps select which reference frame to use. A network,
using machine learning (e.g., a convolutional neural network
(CNN)), may select the reference frame with the smallest
corresponding residual value or may select multiple frames
to improve the predicted image, etc. It should be appreciated
that other heuristics may be used to select the reference
frame. In embodiments, these heuristics may be based on the
residual. In addition to this, working with forward displace-
ment maps allows the usage of the available reference
frames r, for encoding and decoding. In some examples, the
machine learning algorithm is a CNN.

[0045] Two types of frames may be used at encoding time:
(1) the key frames, which rely entirely on single image
compression, and (2) interpolated frames, which are the
result of image synthesis. Encoding interpolated frames is
more efficient because it takes advantage of the intermediate
synthesis result I. Any frame that is used as a reference frame
must also encode the displacement map, fromr, to I, Fi; ;.
Fr1-; may be correlated to r,.

[0046] Optical Flow

[0047] Methods for estimating optical flow are disclosed
herein. In some embodiments, for each reference frame r,,
the 2d displacement for each pixel location may be predicted
to match pixels from I.

[0048] A ground truth displacement map may be used to
estimate optical flow. In this case, optical flow may be
computed at encoding time, between the reference frame r,
and the frame to encode 1. This optical flow estimate may be
encoded and transferred as part of the video data. In this
example, the decoder only decodes the data to obtain the
displacement map.

[0049] FIG. 2 illustrates a predicted displacement map that
may be used to estimate optical flow using several reference
frames. The pixels p,, p,, and p, may correspond to frames
r,, r, and I respectively. The optical flow vector [y, can
be predicted from the available reference frames r, and r,.
Residual motion may be needed to correct the prediction as
illustrated in FIG. 2. In embodiments, /4.y, and
15> can be used to infer Frioups .

[0050] In some embodiments, the reference frames r, and
r, are respectively situated before and after 1. Assuming
linear motion, optical flow can be estimated as:

Fpp 05 Fy bRy o)

=y
[0051] Where term R, _; is the residual to be encoded,
correcting errors in the optical flow or if the linear motion
assumption is not respected. This scheme may increase
decoding time but reduce the amount of data to be trans-
ferred.

[0052] Some example embodiments include predicting
multiple displacement maps. When predicting multiple dis-
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placement maps, the correlation between displacement maps
may be used for better flow prediction and to reduce the size
of the residual information needed. This is illustrated in FIG.
2. It is possible to use the different displacement maps
related to r, for predicting motion in the opposite direction
F,,_,, For example, displacement map may be inverted
F,,_,,, and/or computed using one or more reference frames,
scale the inverted displacement map by a value, such as, for
example, 0.5, and add the residual, R, ,,. It should be
appreciated that other techniques may be used to predict
motion in the opposite direction.

[0053] Frame Synthesis

[0054] Some examples of frame prediction include esti-
mating a prediction from a single image. In the case where
a single reference frame r, is available, the motion field
F,,_,; may be used to forward warp the reference frame and
obtain an initial estimate W,,_,,. The resulting image may
contain holes in regions occluded or not visible in r,. Using
machine learning (e.g., a convolutional neural network), the
missing parts may be synthesized and used to compute an
approximation of I;:

I=F (W, i A) @

[0055] Some example embodiments include a method for
predicting residual motion from multiple images. Video
compression may involve synthesis from a single frame
using larger time intervals. These images may then be used
for predicting in-between short-range frames. The proposed
synthesis algorithm can take an optional supplementary
input when available. Embodiments of the present disclo-
sure include warping one or more reference frames using
optical flow and providing the warping results as input for
synthesis.

I=F (W

ri—p
[0056] Image Warping

[0057] In some embodiments, before using machine learn-
ing (e.g., a convolutional neural network) to synthesize the
frame I, the reference image may be warped using the
estimated optical flow.

[0058] FIGS. 3A and 3B illustrate methods for warping
the reference image. Referring to FIG. 3A, a method for
warping a reference image may include: (a) using the optical
flow to warp pixel p from a reference frame r, to a new
position in I, (pixel, p, may contribute to the color of pixel
g, with weight w, corresponding to bilinear interpolation;
(b) to address artifacts from direct bilinear weighting, a
ground truth displacement, or image-based filtering process,
and/or other process, may be applied, but may require an
additional binary mask applied to occluded regions. In some
embodiments, a flow-based filtering process may be applied
to address occlusions and/or artifacts without the need to
transfer additional data.

[0059] In some embodiments, a forward approach may be
used. For example, a pixel p from the reference frame, r,,
will contribute to 4 pixel locations around its end position in
f. In embodiments, for a pixel location g, the resulting color
is

R 14

P

Ay 3

=3 %rl () with 7, = > w, @

PESy q PESy
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[0060] S, is the set of pixels from r, contributing to
location q with weight ®,,. Bilinear weights may be used as
illustrated in FIG. 3A. Regions corresponding to dis-occlu-
sion in T will not receive any color from the reference image
and they will be identified as regions the synthesis network
has to inpaint.

[0061] If an occlusion occurs between r, and I, using all
pixels as in the contributing sets S, will create ghosting
artifacts (see FIG. 3B). The following methods may be used
to reduce these ghosting artifacts and create the set S,. In the
following, A may represent the set of all pixels from r, with
end destinations near pixel q. Near may include within 10
pixels, 50 pixels, 100 pixels, etc.

[0062] In some examples, filling in occlusions may be
estimated from the image. Contrary to frame interpolation,
during video coding, ground truth colors of destination
pixels are available and can be used to build the S,,. The first
element is the pixel p* defined as:

p" = argmin|l/(g) - 1 ()l ®)
pedyg

[0063] From this, S is defined as the set of pixels p € A,
satisfying:

@) = r1 (2 < L (@)0r (p*)ll + € ©

[0064] In embodiments sets, S, need not be explicitly
built. Instead, pixels p that are not used may be marked and
ignored in the warping. A morphological operation may be
used to smooth the resulting mask around the occlusion by
consecutively applying opening and closing with a kernel
size of about 5 pixels. It should be appreciated that other
processes may be applied to smooth the mask. At decoding
time the, same warping approach may be used, but the mask
may be transmitted with optical flow.

[0065] In some examples, locations and colors of occlu-
sions may be estimated from displacement. The previous
solution requires the use of a supplementary mask which is
also encoded. In the present approach, the magnitude of the
optical flow may be used to resolve occlusions. For example,
a large motion is more likely to correspond to foreground
objects. In this case, the first element is the pixel p* defined
as:

p* = argmin[F,y (g 7
peAq
[0066] S, is defined as the set of pixels p € A_ satisfying:

VF sy )F, A pPl<e ®

[0067] Where € may represent a user-defined threshold
(e.g., based on the statistics of background motion). In
embodiments, additional filtering may be used.

[0068] In some examples, occlusion may be estimated
from depth. Depth ordering may be estimated with a
machine learning process (e.g., a convolutional neural net-
work). For example, a depth map network may estimate
depth maps from an image or one or more monocular image
sequences. Training data for the depth map network may



US 2023/0077379 Al

include image sequences, depth maps, stereo image
sequences, monocular sequences, and/or other content. After
training an initial depth map network using the training data,
a trained depth map network may receive content and
estimate a depth map for the content and estimate occlusions
based on the depth maps. Occluded pixels are identified with
a depth test and simply ignored during warping. With
sufficient computation power, more precise depth informa-
tion can also be obtained using multi-view geometry tech-
niques.

[0069] The warping techniques described herein are
complementary and can be combined in different ways. For
example, displacement and depth may be correlated. Many
of the computations may be shared between the two modali-
ties and obtaining depth represents a relatively minor incre-
ment in computation time. Occlusion may be estimated from
the ground truth image. Deciding if the warping mask should
be used may be based on the encoding cost comparison
between the mask and the image residual after synthesis. In
embodiments, these may be user selected based on the given
application.

[0070] Synthesis Network

[0071] FIG. 4 illustrates an example synthesis network.
Referring to FIG. 4, to synthesize the frame 1, the reference
frame r,; may be warped using the optical flow map 7.y .
The resulting image W,, ., may be processed by the frame
synthesis network to predict the image I. When more than
one reference frame r, is available, a forward mapped image
W,,_,; may be calculated and provided as a supplementary
channel to the synthesis network. The network architecture
may, for example, be a GridNet network, and/or other
network types.

[0072] Still referring to FIG. 4, the network may take as
input the concatenation of the warped reference frames. The
training data may be multiple videos. The warped video
frames may include holes and/or other occlusions. More
inputs may be provided to the network, such as backward
warped reference frames and/or warped feature maps.
[0073] Training depends on the application case. For
example, for interpolation from two reference frames r, and
1,, the network may be trained to minimize the objective
function L over the dataset D consisting of triplets of input
images (r,, I,) and the corresponding ground truth interpo-
lation frame, I:

A5 = argmink, o g p[ L (Wry s, Wipors ), 1)) ©)

[0074] For the loss, C, we use the £ ,-norm of pixel
differences which may lead to sharper results than ¢ ,.

L =y, a0

[0075] Compression

[0076] FIG. 5 illustrates a video compression method. For
example, a set of key frames may be defined. These key
frames may be encoded using single image compression.
For intermediate frames, encoding may take advantage of
the intermediate synthesized result. Any frame used as
reference for interpolation may also encode optical flow.
[0077] In some embodiments, image compression may be
implemented through a compression network. In the follow-
ing, C and D denote compression and decoding functions,
respectively.
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[0078] In some embodiments, key frames, which are not
interpolated, may be compressed using a single image
compression method (see FIG. 5). Key frames may be
selected based on a selected interval spacing or a selection
algorithm based on motion and scene content. Key frame
compression may be implemented using the architecture and
training loss described below:

L 1=ra, =6 an

with §=C(I) and I'=D(¥). The total loss takes into account the
reconstruction loss R(L, I'y and the rate loss entropy £(¥). In
some embodiments, example video compression techniques
may be described in greater detail in U.S. patent application
Ser. No. 16/254,475, which is incorporated by reference in
its entirety herein.

[0079] FIG. 6 illustrates a method for encoding interpo-
lated frames. Encoding predicted frames may take advan-
tage of the prediction I which is available both at encoding
and decoding time. Multiple options are possible to encode
the interpolated frames, e.g., decoding the image I or a
residual to be added to the prediction I.

[0080] In some examples, for predicted frames, the com-
pression process may include multiple steps, e.g., interpo-
lation and image coding, to make the process more efficient.
[0081] In one example, the residual information may be
explicitly encoded to the interpolation result or letting the
network learn a better scheme. Training data for the network
may be multiple videos. Training may include, for example,
using a warped frame and generating multiple predictions of
the warped frame. Residuals may be generated based on
differences between the multiple predictions and the original
frame. The residuals may be used to train the network to
improve itself. In embodiments, the network may include a
variational autoencoder including one or more convolutions,
downscaling operation, upscaling operations, and/or other
processes. It should be appreciated that other components
may be used instead of, or in addition to, the network. In
both cases, the network as illustrated in FIG. 6 may be used.
In addition to encoder/decoder architecture from [reference
to DIS 295], we also extract features from I which may be
added as extra channels for the encoder. Encoder and feature
extraction layers may follow the same architecture, but
different weights can be used for each component.

[0082] FIG. 7 illustrates a method of performing image
compression guided by side information. For example, the
presently disclosed compression may take the advantage of
the correlation between the images and the side information
(e.g., flow and masks). The image (when available) may be
used to guide encoding and decoding. In some examples, a
video compression method may use forward optical flow
and forward warping to take advantage of the correlation
between the side information and image content. For
example, an image may be encoded and decoded separately,
and the encoding and decoding may be guided by optical
flow and binary masks, as illustrated in FIG. 7.

[0083] In some embodiments, the image and the side
information may be encoded at the same time. In this case,
image colors and side information may be concatenated
along channels and the compression network may predict
the same number of channels.

[0084] In one embodiment, optical flow and image com-
pression may be combined in one forward pass, as illustrated
in FIG. 8. In some embodiments, the image residual may be
compressed as well. Combining multiple features in a com-
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pression step may provide a method that can be trained end
to end. As illustrated in FIG. 8, the optical flow may be
estimated between frame I and two reference frames r, and
r,. The resulting flow maps F,_,, and F,_,, may be encoded.
In embodiments, the flow encoder can take as supplemen-
tary input the warped frames W, _,,, W, _, and the image L.
The network may identify regions where optical flow is not
as accurate (e.g., above a certain threshold) and where better
compression can be achieved without loss in quality. In
embodiments, backward warping may be used. Referring
back to FIG. 8, the optical flow may be decoded. The frame
synthesis network may be used to compute I, a prediction for
the image, 1. In embodiments, residual information may be
encoded to the interpolation result. In some embodiments,
the network may be trained to learn a better scheme, as
described herein. In embodiments, synthesis and compres-
sion can be grouped into a single step.

[0085] Some embodiments of the present disclosure may
be implemented using a convolutional neural network as
illustrated in FIG. 9. As illustrated in FIG. 9, the architecture
of an example Progressive Artifact Removal Network is
depicted. DConv 3x3x64 refers to a 2D convolution with
kernel size 3x3 and 64 output channels. The number of input
channels is given from the previous layer. Output Set Index
is the output for different distortion quality levels as
described herein. There are skip connections from the input
to all outputs and simple convolutional layers in between.
Other types of convolutional networks and/or deep learning/
machine learning methodologies may be used.

[0086] As used herein, the term component might describe
a given unit of functionality that can be performed in
accordance with one or more embodiments of the technol-
ogy disclosed herein. As used herein, a component might be
implemented utilizing any form of hardware, software, or a
combination thereof. For example, one or more processors,
controllers, ASICs, PLLAs, PALs, CPLDs, FPGAs, logical
components, software routines or other mechanisms might
be implemented to make up a component. In implementa-
tion, the various components described herein might be
implemented as discrete components or the functions and
features described can be shared in part or in total among
one or more components. In other words, as would be
apparent to one of ordinary skill in the art after reading this
description, the various features and functionality described
herein may be implemented in any given application and can
be implemented in one or more separate or shared compo-
nents in various combinations and permutations. As used
herein, the term engine may describe a collection of com-
ponents configured to perform one or more specific tasks.
Even though various features or elements of functionality
may be individually described or claimed as separate com-
ponents or engines, one of ordinary skill in the art will
understand that these features and functionality can be
shared among one or more common software and hardware
elements, and such description shall not require or imply that
separate hardware or software components are used to
implement such features or functionality.

[0087] Where engines, components, or components of the
technology are implemented in whole or in part using
software, in one embodiment, these software elements can
be implemented to operate with a computing or processing
component capable of carrying out the functionality
described with respect thereto. One such example comput-
ing component is shown in FIG. 10. Various embodiments
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are described in terms of this example-computing compo-
nent 1000. After reading this description, it will become
apparent to a person skilled in the relevant art how to
implement the technology using other computing compo-
nents or architectures.

[0088] Referring now to FIG. 10, computing component
1000 may represent, for example, computing or processing
capabilities found within desktop, laptop and notebook
computers; hand-held computing devices (PDA’s, smart
phones, cell phones, palmtops, etc.); mainframes, supercom-
puters, workstations or servers; or any other type of special-
purpose or general-purpose computing devices as may be
desirable or appropriate for a given application or environ-
ment. Computing component 1000 might also represent
computing capabilities embedded within or otherwise avail-
able to a given device. For example, a computing component
might be found in other electronic devices such as, for
example, digital cameras, navigation systems, cellular tele-
phones, portable computing devices, modems, routers,
WAPs, terminals, and other electronic devices that might
include some form of processing capability.

[0089] Computing component 1000 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices, such as a processor
1004. Processor 1004 might be implemented using a gen-
eral-purpose or special-purpose processing engine such as,
for example, a microprocessor, controller, or other control
logic. In the illustrated example, processor 1004 is con-
nected to a bus 1002, although any communication medium
can be used to facilitate interaction with other components
of computing component 1000 or to communicate exter-
nally.

[0090] Computing component 1000 might also include
one or more memory components, simply referred to herein
as main memory 1008. For example, preferably random
access memory (RAM) or other dynamic memory might be
used for storing information and instructions to be executed
by processor 1004. Main memory 1008 might also be used
for storing temporary variables or other intermediate infor-
mation during execution of instructions to be executed by
processor 1004. Computing component 1000 might likewise
include a read only memory (“ROM?”) or other static storage
device coupled to bus 1002 for storing static information and
instructions for processor 1004.

[0091] The computing component 1000 might also
include one or more various forms of information storage
device 1010, which might include, for example, a media
drive 1012 and a storage unit interface 1020. The media
drive 1012 might include a drive or other mechanism to
support fixed or removable storage media 1014. For
example, a hard disk drive, a floppy disk drive, a magnetic
tape drive, an optical disk drive, a CD or DVD drive (R or
RW), or other removable or fixed media drive might be
provided. Accordingly, storage media 1014 might include,
for example, a hard disk, a floppy disk, magnetic tape,
cartridge, optical disk, a CD or DVD, or other fixed or
removable medium that is read by, written to, or accessed by
media drive 1012. As these examples illustrate, the storage
media 1014 can include a computer usable storage medium
having stored therein computer software or data.

[0092] In alternative embodiments, information storage
mechanism 1010 might include other similar instrumentali-
ties for allowing computer programs or other instructions or
data to be loaded into computing component 1000. Such
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instrumentalities might include, for example, a fixed or
removable storage unit 1022 and an interface 1020.
Examples of such storage units 1022 and interfaces 1020 can
include a program cartridge and cartridge interface, a remov-
able memory (for example, a flash memory or other remov-
able memory component) and memory slot, a PCMCIA slot
and card, and other fixed or removable storage units 1022
and interfaces 1020 that allow software and data to be
transferred from the storage unit 1022 to computing com-
ponent 1000.

[0093] Computing component 1000 might also include a
communications interface 1024. Communications interface
1024 might be used to allow software and data to be
transferred between computing component 1000 and exter-
nal devices. Examples of communications interface 1024
might include a modem or softmodem, a network interface
(such as an Ethernet, network interface card, WiMedia,
IEEE 802.XX, or other interface), a communications port
(such as for example, a USB port, IR port, RS232 port,
Bluetooth® interface, or other port), or other communica-
tions interface. Software and data transferred via commu-
nications interface 1024 might typically be carried on sig-
nals, which can be electronic, electromagnetic (which
includes optical) or other signals capable of being
exchanged by a given communications interface 1024.
These signals might be provided to communications inter-
face 1024 via a channel 1028. This channel 1028 might carry
signals and might be implemented using a wired or wireless
communication medium. Some examples of a channel might
include a phone line, a cellular link, an RF link, an optical
link, a network interface, a local or wide area network, and
other wired or wireless communications channels.

[0094] In this document, the terms “computer program
medium” and “computer usable medium” are used to gen-
erally refer to media such as, for example, memory 1008,
storage unit 1020, media 1014, and channel 1028. These and
other various forms of computer program media or computer
usable media may be involved in carrying one or more
sequences of one or more instructions to a processing device
for execution. Such instructions embodied on the medium,
are generally referred to as “computer program code” or a
“computer program product” (which may be grouped in the
form of computer programs or other groupings). When
executed, such instructions might enable the computing
component 1000 to perform features or functions of the
disclosed technology as discussed herein.

[0095] While various embodiments of the disclosed tech-
nology have been described above, it should be understood
that they have been presented by way of example only, and
not of limitation. Likewise, the various diagrams may depict
an example architectural or other configuration for the
disclosed technology, which is done to aid in understanding
the features and functionality that can be included in the
disclosed technology. The disclosed technology is not
restricted to the illustrated example architectures or configu-
rations, but the desired features can be implemented using a
variety of alternative architectures and configurations.
Indeed, it will be apparent to one of skill in the art how
alternative functional, logical or physical partitioning and
configurations can be implemented to implement the desired
features of the technology disclosed herein. Also, a multi-
tude of different constituent component names other than
those depicted herein can be applied to the various parti-
tions. Additionally, with regard to flow diagrams, opera-
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tional descriptions and method claims, the order in which the
steps are presented herein shall not mandate that various
embodiments be implemented to perform the recited func-
tionality in the same order unless the context dictates
otherwise.

[0096] Although the disclosed technology is described
above in terms of various exemplary embodiments and
implementations, it should be understood that the various
features, aspects and functionality described in one or more
of the individual embodiments are not limited in their
applicability to the particular embodiment with which they
are described, but instead can be applied, alone or in various
combinations, to one or more of the other embodiments of
the disclosed technology, whether or not such embodiments
are described and whether or not such features are presented
as being a part of a described embodiment. Thus, the breadth
and scope of the technology disclosed herein should not be
limited by any of the above-described exemplary embodi-
ments.

[0097] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing: the term “including” should be
read as meaning “including, without limitation” or the like;
the term “example” is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof; the terms “a” or “an” should be read as meaning “at
least one,” “one or more” or the like; and adjectives such as
“conventional,”  “traditional,”  ‘“‘normal,” “standard,”
“known” and terms of similar meaning should not be
construed as limiting the item described to a given time
period or to an item available as of a given time, but instead
should be read to encompass conventional, traditional, nor-
mal, or standard technologies that may be available or
known now or at any time in the future. Likewise, where this
document refers to technologies that would be apparent or
known to one of ordinary skill in the art, such technologies
encompass those apparent or known to the skilled artisan
now or at any time in the future.

[0098] The presence of broadening words and phrases
such as “one or more,” “at least,” “but not limited to” or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent.
The use of the term “component” does not imply that the
components or functionality described or claimed as part of
the component are all configured in a common package.
Indeed, any or all of the various components of a compo-
nent, whether control logic or other components, can be
combined in a single package or separately maintained and
can further be distributed in multiple groupings or packages
or across multiple locations.

[0099] Additionally, the various embodiments set forth
herein are described in terms of exemplary block diagrams,
flow charts, and other illustrations. As will become apparent
to one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.
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What is claimed is:

1. A computer-implemented method for compressing a
target video, the computer-implemented method compris-
ing:

determining a first estimated optical flow based on a

displacement of pixels between a first reference frame
included in the target video and a target frame included
in the target video;

applying the first estimated optical flow to the first refer-
ence frame to produce a first warped target frame;

synthesizing, via a first trained machine learning model,
an estimate of the target frame based on the first warped
target frame; and

encoding the target frame based on the estimate of the
target frame.

2. The computer-implemented method of claim 1, further
comprising synthesizing the estimate of the target frame
based on a second warped target frame, wherein the second
warped target frame is generated based on a second refer-
ence frame included in the target video.

3. The computer-implemented method of claim 2,
wherein the first reference frame precedes the target frame
within the target video and the second reference frame
succeeds the target frame within the target video.

4. The computer-implemented method of claim 1, further
comprising training a first machine learning model based on
interpolation training data and one or more losses to gener-
ate the first trained machine learning model, wherein the
interpolation training data comprises one or more training
reference frames and a training target frame.

5. The computer-implemented method of claim 4,
wherein the one or more losses comprise an [.1 norm
between a first set of pixels generated by the first machine
learning model based on the one or more training reference
frames and a second set of pixels included in the training
target frame.

6. The computer-implemented method of claim 1,
wherein applying the first estimated optical flow to the first
reference frame comprises generating the first warped target
frame based on one or more estimates of occlusion between
the first reference frame and the target frame.

7. The computer-implemented method of claim 6,
wherein the one or more estimates of occlusion are based on
at least one of a difference between a first pixel value from
the first reference frame and a second pixel value from the
target frame, a magnitude of motion between the first pixel
value and the second pixel value, or a depth test associated
with the first reference frame and the target frame.

8. The computer-implemented method of claim 1, further
comprising encoding the first estimated optical flow based
on the target frame.

9. The computer-implemented method of claim 1,
wherein encoding the target frame comprises encoding a
residual associated with the estimate of the target frame.

10. The computer-implemented method of claim 1,
wherein the first trained machine learning model comprises
a convolutional neural network.

11. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more
processors, cause the one or more processors to perform the
steps of:
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determining a first estimated optical flow based on a
displacement of pixels between a first reference frame
included in a target video and a target frame included
in the target video;

applying the first estimated optical flow to the first refer-
ence frame to produce a first warped target frame;

synthesizing, via a first trained machine learning model,
an estimate of the target frame based on the first warped
target frame; and

encoding the target frame based on the estimate of the
target frame.

12. The one or more non-transitory computer-readable
media of claim 11, wherein the instructions further cause the
one or more processors to perform the steps of:

applying a second estimated optical flow to a second
reference frame included in the target video to produce
a second warped target frame; and

synthesizing the estimate of the target frame based on the
second warped target frame.

13. The one or more non-transitory computer-readable
media of claim 11, wherein applying the first estimated
optical flow to the first reference frame comprises generating
the first warped target frame based on one or more estimates
of occlusion between the first reference frame and the target
frame.

14. The one or more non-transitory computer-readable
media of claim 13, wherein the one or more estimates of
occlusion are based on at least one of a difference between
a first pixel value from the first reference frame and a second
pixel value from the target frame, a magnitude of motion
between the first pixel value and the second pixel value, or
a depth test associated with the first reference frame and the
target frame.

15. The one or more non-transitory computer-readable
media of claim 11, wherein the instructions further cause the
one or more processors to perform the steps of:

inputting the target frame and additional information
associated with the target frame into a second trained
machine learning model, wherein the second trained
machine learning model includes one or more encoder
neural networks; and

generating, via the second trained machine learning
model, an encoded representation of the additional
information based on features extracted from the target
frame and the additional information.

16. The one or more non-transitory computer-readable
media of claim 15, wherein the additional information
comprises at least one of the first estimated optical flow or
a mask associated with the first warped target frame.

17. The one or more non-transitory computer-readable
media of claim 11, wherein encoding the target frame based
on the estimate of the target frame comprises:

inputting the target frame and the estimate of the target
frame into a second trained machine learning model,
wherein the second trained machine learning model
includes one or more encoder neural networks; and

generating, via the second trained machine learning
model, an encoded representation of the target frame
based on features extracted from the estimate of the
target frame and the target frame.

18. The one or more non-transitory computer-readable

media of claim 11, wherein the first trained machine learning
model comprises a GridNet neural network.
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19. The one or more non-transitory computer-readable
media of claim 11, wherein the first reference frame com-
prises a key frame.

20. A system, comprising:

one or more memories that store instructions, and

one or more processors that are coupled to the one or more

memories and, when executing the instructions, are

configured to perform the steps of:

determining a first estimated optical flow based on a
displacement of pixels between a first reference
frame included in a target video and a target frame
included in the target video;

applying the first estimated optical flow to the first
reference frame to produce a first warped target
frame;

synthesizing, via a first trained machine learning
model, an estimate of the target frame based on the
first warped target frame; and

encoding, via a second trained machine learning model,
the target frame based on the estimate of the target
frame.
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