a2 United States Patent

Nahvi

US011809354B2

US 11,809,354 B2
Nov. 7, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

BUFFER MANAGEMENT FOR ISO IN
ENDPOINTS IN USB EXTENSION SYSTEMS

Applicant: Icron Technologies Corporation,
Burnaby (CA)

Inventor: Mohsen Nahvi, North Vancouver (CA)

Assignee: Ieron Technologies Corporation,
Burnaby (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/704,560

Filed: Mar. 25, 2022

Prior Publication Data

US 2022/0309016 Al Sep. 29, 2022

Related U.S. Application Data

Provisional application No. 63/167,532, filed on Mar.
29, 2021.

Int. CL.

GO6F 13/38 (2006.01)

GO6F 13/40 (2006.01)

GO6F 13/42 (2006.01)

U.S. CL

CPC ... GO6F 13/382 (2013.01); GOGF 13/4059

(2013.01); GOGF 13/4282 (2013.01)
Field of Classification Search
CPC . GOG6F 13/382; GO6F 13/4059; GOGF 13/4282
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0123129 Al* 6/2006 Toebes HO4L 67/56

709/230

2014/0013013 Al* 12014 Herrity GO6F 11/3051

710/18

2015/0254193 Al* 9/2015 Priestccocovevn. GOG6F 13/385

710/5

2016/0320823 Al* 11/2016 Gerber GOG6F 13/385

2017/0192922 Al1* 7/2017 Li ... GOG6F 13/385

2019/0102333 Al* 4/2019 Hundal GO6F 13/1673
2021/0234946 Al 7/2021 Das Sharma

* cited by examiner

Primary Examiner — Phong H Dang
(74) Attorney, Agent, or Firm — CHRISTENSEN
O’CONNOR JOHNSON KINDNESS PLLC

(57) ABSTRACT

A port device for use in a USB extension environment that
couples a host device to one or more USB devices is
provided. The port device includes a USB physical layer
interface configured to be coupled to a USB device, a host
device, or a USB hub device; a remote interface configured
to be coupled to an extension medium; and an endpoint
table. The port device includes logic that, in response to
execution by the port device, causes the port device to
perform actions comprising: receiving a first USB message
addressed to a first endpoint; in response to determining that
the endpoint table indicates that the first endpoint is active,
providing the first USB message for transmission to the first
endpoint; and in response to determining that the endpoint
table indicates that the first endpoint is inactive, providing a
synthetic USB message for transmission to the host device.

20 Claims, 5 Drawing Sheets

300
/

REMOTE
INTERFACE

PROTOCOL
ENGINE

USB PHYSICAL
LAYER
INTERFACE

i

304

SHARED
BUFFER
1SO BUFFER

150 BUFFER
WO

302

312
.

3083
4

o
=
"

308

308

150 BUFFER
N

BUFFERS

=

®

306

ENDPQINT
TABLE

U.S. Patent Nov. 7, 2023 Sheet 1 of 5 US 11,809,354 B2

106

> s

USB
EXTENSION
DEVICE

FIG. 1

104

USB

BXTENSION fe™——

DEVICE

US 11,809,354 B2

Sheet 2 of 5

Nov. 7, 2023

U.S. Patent

801

n

1IN0 85N

A

90!

¢ 9ld

70l

70¢

§

(d40)

» 140d DNIDV4
NVIILISNAMOA

1JIA30 NOISNLXT 85N

0¢

§

(d4n)

AHV 140d ONIDVS
AYFHLSdN

A

0l

N

PIAI0 NOISNALX 85N

» 1IN0 LSOH

U.S. Patent

Nov. 7, 2023

Sheet 3 of 5

US 11,809,354 B2

300
/

REMOTE
INTERFACE

PROTOCOL
ENGINE

302

304

312

SHARED
BUFFER

3084

SO BUFFER
ONE

308D

SO BUFFER
TWO

308(

SO BUFFER
N

BUFFERS

/

310

i

LAYER

USB PHYSICAL

INTERFACE

306

ENDPOINT
TABLE

FIG. 3

U.S. Patent

START A METHOD OF MANAGING USB
ENDPOINTS IN AN EXTENSION ENVIRONMENT

Nov. 7, 2023 Sheet 4 of 5 US 11,809,354 B2

/ 400
402

e

A PORT DEVICE RECEIVES ONE OR MORE USB MESSAGES ASSOCIATED WITH
CONFIGURATION OF A FIRST USB ENDPOINT

v

4

A PROTOCOL ENGINE OF THE PORT DEVICE CREATES OR UPDATES AN ENTRY
ASSOCIATED WITH THE FIRST USB ENDPOINT IN AN ENDPOINT TABLE OF THE
PORT DEVICE

v

THE PROTOCOL ENGINE DETERMINES WHETHER THE FIRST USB ENDPOINT 1S
AN 1SO IN ENDPOINT

0

/-
406

/)

408

SO IN?
YES

NO

410

THE PROTOCOL ENGINE DETERMINES WHETHER AN (SO BUFFER IS AVAILABLE

H

412
AVAILABLE?

NO
YES

THE PROTOCOL ENGINE UPDATES THE ENTRY ASSOCIATED WITH THE FIRST
USB ENDPOINT IN THE ENDPOINT TABLE TO REFERENCE THE FREE ISO BUFFER
T0 BE USED BY THE FIRST USB ENDPOINT

v

THE PROTOCOL ENGINE UPDATES THE ENTRY ASSOCIATED WITH THE FIRST
USB ENDPOINT IN THE ENDPOINT TABLE TO BE ACTIVE

THE PROTOCOL ENGINE UPDATES THE ENTRY ASSOCIATED WITH THE FIRST
USB ENDPOINT IN THE ENDPOINT TABLE TO BE INACTIVE

T T

THE PROTOCOL ENGINE UPDATES THE ENTRY ASSOCIATED WITH THE FIRST
USB ENDPOINT IN THE ENDPOINT TABLE OF THE PORT DEVICE TO BE
ASSOCIATED WITH A SHARED BUFFER AND TO BE ACTIVE

FIG. 4A

U.S. Patent Nov. 7, 2023 Sheet 5 of 5 US 11,809,354 B2

/ 400
f 422

THE PORT DEVICE PROVIDES THE ONE OR MORE USB MESSAGES FOR
FURTHER PROCESSING

424

THE PORT DEVICE RECEIVES A SUBSEQUENT USB MESSAGE ADDRESSED TO A

GIVEN ENDPOINT
¢ 426

N

THE PROTOCOL ENGINE DETERMINES WHETHER THE SUBSEQUENT USB
MESSAGE IS ASSOCIATED WITH CONFIGURATION OF THE GIVEN ENDPOINT

428

“ YES @

NO 430

THE PROTOCOL ENGINE DETERMINES WHETHER THE GIVEN ENDPOINT IS
ACTIVE BASED ON [TS ASSOCIATED ENTRY IN THE ENDPOINT TABLE

432

ACTIVE?
NO 434

VES ¢

THE PROTOCOL ENGINE PROVIDES THE SUBSEQUENT USB MESSAGE FOR
PROCESSING USING THE BUFFER REFERENCED IN THE ASSOCIATED ENTRY IN
THE ENDPOINT TABLE

436

THE PROTOCOL ENGINE CAUSES A SYNTHETIC USB MESSAGE TO BE
GENERATED AND PROVIDED TO THE HOST DEVICE IN RESPONSETO THE ~ [&——
SUBSEQUENT USB MESSAGE

T T

FIG. 4B

US 11,809,354 B2

1
BUFFER MANAGEMENT FOR ISO IN
ENDPOINTS IN USB EXTENSION SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Provisional Appli-
cation No. 63/167,532, filed Mar. 29, 2021, the entire
disclosure of which is hereby incorporated by reference
herein for all purposes.

BACKGROUND

USB is a peripheral interface for attaching a wide variety
of computing devices, such as personal computers, digital
telephone lines, monitors, modems, mice, printers, scanners,
game controllers, keyboards, storage devices, and/or the
like. The specifications defining USB (e.g., Intel et al.,
Universal Serial Bus Specification, Revision 2.0, April
2000; updated as Revision 3.0 in November 2008; released
as Universal Serial Bus 3.1 Specification Revision 1.0 in
July 2013; released as Universal Serial Bus 3.2 Specification
Revision 1.0 on Sep. 22, 2017, and subsequent updates and
modifications that are backward compatible therewith,
including but not limited to the Universal Serial Bus 4.0
Specification—hereinafter collectively referred to as the
“USB Specifications”, which term can include future modi-
fications and revisions) are non-proprietary and are managed
by an open industry organization known as the USB Forum.
The USB Specifications establish basic criteria that must be
met in order to comply with USB standards. One of ordinary
skill in the art will recognize many terms herein from the
USB Specifications. Those terms are used herein in a similar
manner to their use in the USB Specifications, unless
otherwise stated.

Under Revision 3.2 of the USB Specifications, Super-
Speed connections are provided that use a 5 Gbps (Gen 1)
or 10 Gbps (Gen 2) signaling rate. Though the specification
does not mandate any particular maximum cable length, in
practical terms the timing mandates and signaling tech-
niques require a regular copper cable used for a SuperSpeed
connection between a host and a device to be at most 3
meters long to properly support the SuperSpeed connection.
Therefore, new techniques are needed to optionally allow for
extension of a SuperSpeed USB device to a greater distance
from the host to which it is coupled, such that SuperSpeed
USB packets may be propagated between the host and the
USB device.

SUMMARY

This summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This summary is not
intended to identify key features of the claimed subject
matter, nor is it intended to be used as an aid in determining
the scope of the claimed subject matter.

In some embodiments, a port device for use in a USB
extension environment that couples a host device to one or
more USB devices is provided. The port device includes a
USB physical layer interface, a remote interface, and an
endpoint table. The USB physical layer interface is config-
ured to be coupled to a USB device, a host device, or a USB
hub device. The remote interface is configured to be coupled
to an extension medium. The port device also includes logic
that, in response to execution by the port device, causes the
port device to perform actions including receiving a first

10

15

20

25

30

35

40

45

50

55

60

65

2

USB message addressed to a first endpoint; in response to
determining that the endpoint table indicates that the first
endpoint is active, providing the first USB message for
transmission to the first endpoint; and in response to deter-
mining that the endpoint table indicates that the first end-
point is inactive, providing a synthetic USB message for
transmission to the host device.

In some embodiments, a method executed in a USB
extension environment is provided. A port device receives a
first USB message generated by a host device and addressed
to a first endpoint. In response to determining that an
endpoint table maintained by the port device indicates that
the first endpoint is active, the port device provides the first
USB message for transmission to the first endpoint. In
response to determining that the endpoint table indicates that
the first endpoint is inactive, the port device provides a
synthetic USB message for transmission to the host device.

In some embodiments, a non-transitory computer-read-
able medium having computer-executable instructions
stored thereon is provided. The instructions, in response to
execution by one or more processors of a port device, cause
the port device to perform actions including receiving, by
the port device, a first USB message generated by a host
device and addressed to a first endpoint; in response to
determining that an endpoint table maintained by the port
device indicates that the first endpoint is active, providing,
by the port device, the first USB message for transmission
to the first endpoint; and in response to determining that the
endpoint table indicates that the first endpoint is inactive,
providing, by the port device, a synthetic USB message for
transmission to the host device.

DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same become better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a block diagram that illustrates a non-limiting
example embodiment of a system for extending USB com-
munication according to various embodiments of the present
disclosure.

FIG. 2 is a block diagram that illustrates further details of
the upstream USB extension device and downstream USB
extension device illustrated in FIG. 1.

FIG. 3 is a block diagram that illustrates an exemplary
embodiment of a port device according to various aspects of
the present disclosure.

FIG. 4A-FIG. 4B are a flowchart that illustrates a non-
limiting example embodiment of a method of managing
USB endpoints in an extension environment according to
various aspects of the present disclosure.

DETAILED DESCRIPTION

FIG. 1 is a block diagram that illustrates a non-limiting
example embodiment of a system 100 for extending USB
communication according to various aspects of the present
disclosure. The system 100 includes a host device 102 and
a USB device 108. Traditionally, the host device 102 and the
USB device 108 would be directly connected via a USB
cable, and would communicate directly with one another via
a protocol that conforms to a USB specification, such as
USB. 1.0, USB. 1.1, USB. 2.0, USB. 3.0, or USB. 3.1. As
discussed above, such a connection would be limited to a

US 11,809,354 B2

3

short distance between the host device 102 and the USB
device 108 due to the timing requirements of the USB
specification.

The host device 102 may be any type of computing device
containing a USB host controller. Some examples of suitable
host devices 102 may include, but are not limited to, a
desktop computer, a laptop computer, a tablet computing
device, a server computer, a set-top box, an audio head unit
for an automobile, an embedded host, and/or the like.
Likewise, the USB device 108 may be any type of device
capable of communicating via a USB protocol with a USB
host controller. The example illustrated in FIG. 1 is a
webcam, but some other examples of suitable USB devices
108 may include, but are not limited to, a human interface
device such as a keyboard or mouse, a mass storage device
such as a flash drive or external hard drive, a USB-capable
medical device, a printer, a USB hub, a wireless controller,
and/or the like.

In the present system 100, the host device 102 is con-
nected via a USB protocol to an upstream USB extension
device 104 (also known as an upstream facing port device or
UFP device) and the USB device 108 is connected via a USB
protocol to a downstream USB extension device 106 (also
known as a downstream facing port device or DFP device).
The UFP device 104 and the DFP device 106 are commu-
nicatively coupled via an extension medium 110 such as a
network that may increase the distance between the host
device 102 and the USB device 108 beyond that supported
by the USB specification. The extension medium 110 and
communication thereon may include any suitable network-
ing technology, such as Ethernet, Bluetooth, WiFi, WiMax,
the Internet, fiber optic point-to-point transmission, and/or
the like, and any suitable communication medium, such as
via physical cables, via fiber optic cable, via wireless
spectrum, and/or the like.

In some embodiments, the UFP device 104 and the DFP
device 106 may happen to be closer to each other than the
short USB requirement distance, and/or may be directly
connected by a cable instead of via a network, but retain the
capability of overcoming increased latency between the host
device 102 and the USB device 108 that is introduced by the
use of an extension medium 110 that does not comply with
the USB specifications.

One feature provided by the UFP device 104 and DFP
device 106 is that they hide the presence of the extension
medium 110 from the host device 102 and the USB device
108. In other words, UFP device 104 and DFP device 106
handle communication over the extension medium 110 and
compensate for any additional latency introduced thereby,
but the host device 102 and the USB device 108 behave as
if they were connected directly via a USB specification-
compliant connection. Accordingly, the host device 102 and
the USB device 108 can communicate via the UFP device
104 and DFP device 106 without any non-standard software
or hardware re-configuration on the host device 102 or USB
device 108.

FIG. 2 is a block diagram that illustrates further details of
the UFP device 104 and DFP device 106 illustrated in FIG.
1. The UFP device 104 includes an upstream facing port 202,
and the DFP device 106 includes a downstream facing port
204. As used herein, the terms “upstream facing port” and
the corresponding acronym “UFP” may be used inter-
changeably, as may the terms “downstream facing port” and
the corresponding acronym “DFP.” Likewise, because the
upstream USB extension device 104 includes an upstream
facing port 202, the upstream USB extension device 104
may also be called a “UFP device,” and because the down-

25

35

40

45

4

stream USB extension device 106 includes a downstream
facing port 204, the downstream USB extension device 106
may also be called a “DFP device.”

The UFP device 104 is configured at least to communicate
with the host device 102 via a USB-standard-compliant
protocol using the upstream facing port 202, and to
exchange messages and USB bus traffic with the DFP device
106 via the extension medium 110. The DFP device 106 is
configured at least to communicate with the USB device 108
via a USB-standard-compliant protocol using the down-
stream facing port 204, and to exchange messages and USB
bus traffic with the UFP device 104 via the extension
medium 110. The UFP device 104 and the DFP device 106
may contain further components such as a power supply, a
status LED, a loudspeaker, an input device for switching
between UFP functionality and DFP functionality, and/or the
like. Since such components and their functions are familiar
to those of ordinary skill in the art, they have not been
discussed further herein.

As illustrated in FIG. 2, the upstream facing port 202 of
the UFP device 104 is connected to a downstream facing
port of the host device 102, and the downstream facing port
204 of the DFP device 106 is connected to an upstream
facing port of a USB device 108. In other embodiments, the
upstream facing port 202 of the UFP device 104 may be
connected to a downstream facing port other than one
provided by a host device 102, such as a downstream facing
port of a hub, and/or the like. Likewise, in other embodi-
ments, the downstream facing port 204 of the DFP device
106 may be connected to an upstream facing port other than
one provided by a USB device 108, such as an upstream
facing port of a hub, and/or the like. The discussion below
is primarily in terms of the simple topology illustrated in
FIG. 2, but one of ordinary skill in the art will recognize that
in some embodiments similar techniques may be used in
other topologies without departing from the scope of the
present disclosure.

FIG. 3 is a block diagram that illustrates an exemplary
embodiment of a port device 300 according to various
aspects of the present disclosure. In some embodiments, the
port device 300 may be constructed to provide services of an
upstream facing port 202, and in some embodiments the port
device 300 may be constructed to provide services of a
downstream facing port 204. In some embodiments, the port
device 300 may include instructions to provide services of
both an upstream facing port 202 and a downstream facing
port 204, wherein the particular port services that are pro-
vided are determined by a user configuration such as a
jumper switch, a firmware setting, and/or the like.

As illustrated, the port device 300 includes a protocol
engine 304, a USB physical layer interface 306, a remote
interface 302, a set of buffers 310, and an endpoint table 314.
In some embodiments, the protocol engine 304 may be
configured to provide and/or execute the logic discussed
below, along with additional logic for providing extension of
USB communication over the extension medium 110. The
protocol engine 304 may instruct the USB physical layer
interface 306 to apply the appropriate electrical signals to
the USB physical layer in order to communicate with the
USB device 108 or the host device 102. Likewise, the
protocol engine 304 may instruct the remote interface 302 to
exchange information with the remote USB extension
device.

In some embodiments, the set of buffers 310 is used to
support communication with the endpoints provided by one
or more USB devices 108. Typically, communication
between the UFP device 104 and the DFP device 106 via the

US 11,809,354 B2

5

extension medium 110 experiences greater than an amount
of latency permitted by the USB Specifications. In order to
support seamless USB communication between the host
device 102 and the USB devices 108, the port device 300
uses the set of buffers 310 in various ways to cache data, and
thereby overcome complications introduced by the
increased latency over the extension medium 110. Some
non-limiting examples of how buffers can be used by a port
device 300 to overcome complications introduced by latency
over an extension medium are described in U.S. Pat. No.
10,552,355, the entire disclosure of which is hereby incor-
porated by reference herein for all purposes.

It has been found that, to best support isochronous end-
points, each isochronous endpoint should be assigned to its
own buffer, while other types of endpoints can share a
common buffer. Accordingly, the set of buffers 310 includes
a shared buffer 312 and a set of isochronous communication
buffers (ISO buffers), including ISO buffer one 308q, ISO
buffer two 3085, and ISO buffer N 308c¢. The illustrated set
of three isochronous communication buffers is an example
only and should not be seen as limiting. In other embodi-
ments, the set of isochronous communication buffers may
include more or fewer than three isochronous communica-
tion buffers.

In some embodiments, the endpoint table 314 is used by
the protocol engine 304 to track the configuration of end-
points provided by one or more USB devices 108 and
managed by the host device 102. In some embodiments, the
endpoint table 314 includes entries for each endpoint con-
figured by the host device 102. Each entry in the endpoint
table 314 includes USB-standard information, including but
not limited to a type of transfers supported by the endpoint
(e.g., control, interrupt, bulk, or isochronous), a direction of
transfers supported by the endpoint (e.g., in or out), and an
address of the endpoint. By tracking the configuration of
endpoints in the endpoint table 314, the protocol engine 304
can efficiently provide different types of processing for
different types of messages generated by the host device
102.

Each entry in the endpoint table 314 also includes an
indication of a buffer of the set of buffers 310, if any, to be
used for communication with the endpoint, and an indication
of whether the endpoint is active or inactive within the
extension environment. This indication is separate from
whether the endpoint is active or inactive on the USB device
108, and instead indicates how the port device 300 will
handle attempts to communicate with the endpoint as
described further below.

In some embodiments, the protocol engine 304 and/or the
buffers 310 and/or the endpoint table 314 may be imple-
mented within a logic device such as a PLD, an ASIC, a
FPGA, and/or the like. In other embodiments, the protocol
engine 304 may be implemented within a computing device
having at least one processor and a memory containing
computer-executable instructions that, if executed by the at
least one processor, cause the protocol engine 304 to per-
form the actions discussed below; a dedicated digital hard-
ware device implemented, for example, as a state machine
configured to perform the actions described; within an
application specific processor; and/or within any other suit-
able computing device. In some embodiments, the protocol
engine 304 (or other component of the port device 300) may
include a computer-readable memory usable to cache data
packets, as discussed further below.

In some embodiments, logic of actions attributed to a
USB extension device is executed by a protocol engine 304,
which then instructs a USB physical layer interface 306

10

15

20

25

30

35

40

45

50

55

60

65

6

and/or a remote interface 302 to perform the appropriate
communication steps associated with the logic. Throughout
the discussion below, such actions may simply be described
as being performed by the UFP device 104 or the DFP device
106 as if it was a single device for ease of discussion. One
of ordinary skill in the art will recognize that actions
attributed directly to the UFP device 104 or the DFP device
106 may actually be performed by a protocol engine 304, a
USB physical layer interface 306, a remote interface 302,
and/or some other component of the USB extension device.

Upon connection of a given USB device 108, the host
device 102 enumerates all of the endpoints provided by the
given USB device 108, including any isochronous commu-
nication endpoints, in order to populate an endpoint table
maintained by the host device 102. The UFP device 104 and
the DFP device 106 monitor CONTROL messages between
the host device 102 and the USB devices 108 that are used
during this endpoint enumeration so that the endpoint table
314 can be kept in sync with the endpoint table maintained
by the host device 102.

Because a limited number of ISO buffers are provided by
the port device 300, the UFP device 104 and DFP device 106
may support a smaller number of concurrent isochronous
communication endpoints (one isochronous communication
endpoint supported for each isochronous communication
buffer) compared to the number supported by the host device
102 outside of the extension environment. Accordingly, in
some deployments, a user may connect USB devices 108
that provide more isochronous communication endpoints
than can be supported by the number of isochronous com-
munication buffers in the set of buffers 310. This creates a
technical problem in that the UFP device 104 and DFP
device 106 allow the host device 102 to enumerate and add
more isochronous communication endpoints to the endpoint
table of the host device 102 than are supported by the UFP
device 104 and DFP device 106.

While some trivial solutions are possible to avoid this
problem, such as blocking the host device 102 from enu-
merating an unsupported number of isochronous communi-
cation endpoints, these trivial solutions are suboptimal for
multiple reasons. For instance, the host device 102 only
enumerates endpoints on a given USB device 108 when the
given USB device 108 is first connected. Accordingly, if an
isochronous communication buffer is not available when the
given USB device 108 is first connected but becomes
available later, the host device 102 will not be notified that
it should re-enumerate the endpoints of the given USB
device 108, and the given USB device 108 will not be
functional. Likewise, users of the host device 102 may be
confused if only non-isochronous endpoints on the given
USB device 108 are enumerated. What is desired are tech-
niques that allow all isochronous communication endpoints
to be enumerated, even if isochronous communication buf-
fers are not available for servicing all of the isochronous
communication endpoints.

FIG. 4A-FIG. 4B are a flowchart that illustrates a non-
limiting example embodiment of a method of managing
USB endpoints in an extension environment according to
various aspects of the present disclosure. In the method 400,
the UFP device 104 and the DFP device 106 allow the host
device 102 to enumerate all of the endpoints provided by the
USB devices 108, but for isochronous communication end-
points that are not assigned to an isochronous communica-
tion buffer, the UFP device 104 and the DFP device 106
provide synthetic USB messages to the host device 102 in
response to requests for data. This causes those endpoints to
appear to the host device 102 to be inactive or otherwise not

US 11,809,354 B2

7

have any data to transmit. This is preferable to merely hiding
the endpoints because they will be visible to the host device
102, and because in some embodiments these endpoints may
be later assigned to an isochronous communication buffer
that becomes available in the future, thus allowing the host
device 102 to communicate normally with the endpoints.

In FIG. 4A and FIG. 4B, the actions are primarily
described as being performed by a port device 300. Typi-
cally, the port device 300 will be the port device 300 of a
UFP device 104, since the UFP device 104 is coupled via a
connection compliant with the USB Specifications to the
host device 102, and is the first device in the extension
environment to receive the endpoint enumeration messages
from the host device 102. In such embodiments, USB
messages will be received by the port device 300 from the
USB physical layer interface 306. However, in some
embodiments, the port device 300 may be the port device
300 of a DFP device 106. In those embodiments, USB
messages will be received by the port device 300 from the
remote interface 302. In some embodiments, the method 400
(or portions thereof) may be performed by both the port
device 300 of the UFP device 104 and by the port device 300
of the DFP device 106.

From a start block, the method 400 proceeds to block 402,
where a port device 300 receives one or more USB messages
associated with configuration of a first USB endpoint. To
configure the first USB endpoint, the host device 102
transmits one or more CONTROL messages addressed to the
first USB endpoint. Accordingly, the port device 300 may
detect the CONTROL messages associated with configuring
the first USB endpoint. In embodiments wherein the port
device 300 is part of the UFP device 104, the port device 300
receives the USB message via the USB physical layer
interface 306. In embodiments wherein the port device 300
is part of the DFP device 106, the port device 300 receives
the USB message via the remote interface 302.

In block 404, a protocol engine 304 of the port device 300
creates or updates an entry associated with the first USB
endpoint in an endpoint table 314 of the port device 300. The
protocol engine 304 creates or updates the entry based on
information extracted from the one or more CONTROL
messages addressed to the first USB endpoint. As described
above, the extracted information that is used to create or
update the entry may include USB-standard information,
including but not limited to a type of transfers supported by
the endpoint, a direction of transfers supported by the
endpoint, and an address of the endpoint. If an entry is not
yet associated with the first USB endpoint, then the protocol
engine 304 creates the entry to hold the extracted informa-
tion. If an entry is associated with the first USB endpoint,
then the protocol engine 304 updates the existing entry with
the extracted information.

In block 406, the protocol engine 304 determines whether
the first USB endpoint is an ISO IN endpoint, an isochro-
nous communication endpoint intended to transfer informa-
tion from the first USB endpoint to the host device 102. This
determination may be based on whether the extracted infor-
mation from the USB messages indicate that the first USB
endpoint is an ISO IN endpoint.

If the determination is that the first USB endpoint is an
ISO IN endpoint, then the result of decision block 408 is
YES, and the method 400 proceeds to block 410. At block
410, the protocol engine 304 determines whether an ISO
buffer 308a-308c¢ is available. The protocol engine 304 may
use any suitable technique for determining whether an ISO
buffer 308a-308¢ is available. For example, the protocol
engine 304 may count a number of entries in the endpoint

10

15

20

25

30

35

40

45

50

55

60

65

8

table 314 for ISO IN endpoints, and may compare that
number of entries to the number of ISO buffers 308a-308¢,
and may determine that an ISO buffer 308a-308c¢ is available
if there are fewer entries than there are ISO buffers 308a-
308c. As another example, the protocol engine 304 may
maintain a separate counter of used ISO bufters 308a-308c¢,
and may determine that an ISO buffer 308a-308c¢ is available
if the counter of used ISO buffers 308a-308¢ is smaller than
the number of ISO buffers 308a-308c. As yet another
example, a bit vector of a length that matches the number of
ISO buffers 308a-308¢ may be maintained, and each posi-
tion in the bit vector may serve as a one-hot flag to indicate
whether the corresponding ISO buffer is in use using mini-
mal logic.

If it is determined that an ISO buffer 3084-308¢ is
available, then the result of decision block 412 is YES, and
the method 400 proceeds to block 414. At block 414, the
protocol engine 304 updates the entry associated with the
first USB endpoint in the endpoint table 314 to reference the
free ISO buffer to be used by the first USB endpoint. For
example, if the free ISO buffer is ISO buffer one 3084, the
protocol engine 304 updates the entry associated with the
first USB endpoint to reference ISO buffer one 308a. At
block 416, the protocol engine 304 updates the entry asso-
ciated with the first USB endpoint in the endpoint table 314
to be active. This “active” status is internal to the extension
environment, and is separate from whether the first USB
endpoint is active according to the USB Specifications. The
extension environment “active” status will be used later in
method 400 as illustrated in FIG. 4B. After block 416, the
method 400 advances to a continuation terminal (“terminal
B”).

Returning to decision block 412, if it is determined that an
ISO buffer 3084a-308¢ is not available, then the result of
decision block 412 is NO, and the method 400 proceeds to
block 418. At block 418, the protocol engine 304 updates the
entry associated with the first USB endpoint in the endpoint
table 314 to be inactive. Again, the “inactive” status is
internal to the extension environment, and is separate from
whether the first USB endpoint is active according to the
USB Specifications. As with the “active” status, the “inac-
tive” status within the extension environment will be used
later in method 400 as illustrated in FIG. 4B. After block
418, the method 400 advances to a continuation terminal
(“terminal B”).

Returning to decision block 408, if it is determined that
the first USB endpoint is not an ISO IN endpoint, then the
result of decision block 408 is NO, and the method 400
proceeds to block 420. At block 420, the protocol engine 304
updates the entry associated with the first USB endpoint in
the endpoint table 314 of the port device 300 to be associated
with a shared buffer 312 and to be active. As with the actions
in block 416 and block 418, the “active” status established
in block 420 is internal to the extension environment, and is
separate from whether the first USB endpoint is active
according to the USB Specifications. In some embodiments,
the protocol engine 304 does not update the entry associated
with the first endpoint to be associated with the shared buffer
312, but instead the protocol engine 304 assumes that any
endpoint in the endpoint table 314 that is not an ISO IN
endpoint uses the shared buffer 312. After block 420, the
method 400 advances to a continuation terminal (“terminal
B”).

From terminal B (FIG. 4B), the method 400 proceeds to
block 422. At block 422, the port device 300 provides the
one or more USB messages for further processing. In
embodiments wherein the port device 300 is part of the UFP

US 11,809,354 B2

9

device 104, the further processing may include preparing
and transmitting the one or more USB messages for trans-
mission to the DFP device 106 by the remote interface 302
via the extension medium 110. In embodiments wherein the
port device 300 is part of the DFP device 106, the further
processing may include preparing and transmitting the one
or more USB messages for transmission to the first USB
endpoint by the USB physical layer interface 306 using
techniques that comply with the USB Specifications.

From block 422, the method 400 proceeds through a
continuation terminal (“terminal C”), and then to block 424.
At block 424, the port device 300 receives a subsequent
USB message addressed to a given endpoint. The given
endpoint may be the same endpoint as the first USB end-
point, or may be a different USB endpoint for which an entry
is established in the endpoint table 314. The terms “first,”
“subsequent,” and “given” are used for purposes of disam-
biguation within the flowchart and the description thereof,
and should not be seen as limiting to any particular type of
USB message or USB endpoint.

In block 426, the protocol engine 304 determines whether
the subsequent USB message is associated with configura-
tion of the given endpoint, as was the first USB message, as
opposed to being related to a data transfer. If the subsequent
USB message is associated with configuration of the given
endpoint, then the result of decision block 428 is YES, and
the method 400 returns to terminal A and block 404, where
the subsequent USB message will be treated as described for
the one or more USB messages of block 402.

Otherwise, if it is determined that the subsequent USB
message is not associated with configuration of the given
endpoint, then the result of decision block 428 is NO, and
the method 400 proceeds to block 430. At block 430, the
protocol engine 304 determines whether the given endpoint
is active based on its associated entry in the endpoint table
314. That is, the protocol engine 304 checks the entry in the
endpoint table 314 for the given endpoint to determined if
the status internal to the extension environment is recorded
as “active” (the endpoint has been assigned to a buffer of the
set of buffers 310) or the status internal to the extension
environment is recorded as “inactive” (the endpoint has not
been assigned to a buffer of the set of buffers 310).

If it is determined that the given endpoint is active within
the extension environment, then the result of decision block
432 is YES, and the method 400 advances to block 434. At
block 434, the protocol engine 304 provides the subsequent
USB message for processing using the buffer referenced in
the associated entry in the endpoint table 314. For example,
if the port device 300 is part of a UFP device 104, the
protocol engine 304 may provide the subsequent USB
message for processing that will prepare and transmit the
subsequent USB message to the DFP device 106 via the
remote interface 302 and the extension medium 110. As
another example, if the port device 300 is part of a DFP
device 106, the protocol engine 304 may provide the sub-
sequent USB message for processing that will prepare and
transmit the subsequent USB message to the given endpoint
via the USB physical layer interface 306. The method 400
then proceeds to terminal C to process the next USB
message.

Returning to decision block 432, if it was determined that
the given endpoint is inactive within the extension environ-
ment, then the result of decision block 432 is NO, and the
method 400 advances to block 436. At block 436, the
protocol engine 304 causes a synthetic USB message to be
generated and provided to the host device in response to the
subsequent USB message. The term “synthetic” refers to the

10

15

20

25

30

35

40

45

50

55

60

65

10

fact that the synthetic USB message is generated entirely by
the protocol engine 304, as opposed to representing a USB
message that was generated by the given endpoint. In some
embodiments, the synthetic USB message is a packet having
zero-length data, or a null packet. The protocol engine 304
transmits the synthetic USB message in response to the
subsequent USB message, either via the USB physical layer
interface 306 (in embodiments wherein the port device 300
is in the UFP device 104) or via the remote interface 302 (in
embodiments wherein the port device 300 is in the DFP
device 106).

Upon receiving the synthetic USB message, the host
device 102 will process the synthetic USB message as a
legitimate response to the subsequent USB message, and
will treat it as if the given endpoint did not transmit any data.
While the given endpoint will not be functional, the endpoint
table on the host device 102 and the endpoint tables 314 on
the UFP device 104 and DFP device 106 will remain in sync,
and other active endpoints on the USB device 108 that hosts
the given endpoint will operate as expected. Accordingly,
the entire system 100 will remain more stable than if
enumeration of the inactive endpoint was blocked alto-
gether, and an improved experience will be obtained.

After block 436, the method 400 proceeds to terminal C
to process the next USB message. The method 400 operates
indefinitely while the system 100 remains active, and may
stop when one or more of the components of the system 100
are powered down, deactivated, or communicatively
decoupled from the system 100.

While illustrative embodiments have been illustrated and
described, it will be appreciated that various changes can be
made therein without departing from the spirit and scope of
the invention. For example, though not illustrated or
described above, in some embodiments the protocol engine
304 may continue to monitor configuration of the endpoints
and detect when an isochronous communication endpoint
that had previously been assigned to an ISO buffer 308a-
308c¢ is deactivated, either from a disconnection of the
hosting USB device 108, or from a configuration applied by
the host device 102. Upon detecting this deactivation, the
protocol engine 304 may re-assign an isochronous commu-
nication endpoint that was previously recorded in the end-
point table 314 as inactive to the newly freed ISO buffer
308a-308¢, and may change the status of the isochronous
communication endpoint in the endpoint table 314 from
inactive to active.

As another example, the description above states that the
protocol engine 304 explicitly records an active or inactive
status of each endpoint in the endpoint table 314. In some
embodiments, the protocol engine 304 does not record a
separate piece of data to indicate the active or inactive status.
Instead, the protocol engine 304 may record a buffer of the
set of buffers 310 to which each endpoint is assigned, and if
no ISO buffer 308a-308¢ is available, the protocol engine
304 may leave a null value in the record for the assigned
buffer. In this way, the active or inactive status may be
implicitly determined based on whether a buffer has been
assigned to the endpoint, and a small amount of storage
space may be saved.

The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:

1. A port device for use in a USB extension environment
that couples a host device to one or more USB devices, the
port device comprising:

a USB physical layer interface configured to be coupled

to a USB device, a host device, or a USB hub device;

US 11,809,354 B2

11

a remote interface configured to be coupled to an exten-

sion medium;

an endpoint table; and

logic that, in response to execution by the port device,

causes the port device to perform actions comprising:

receiving a configuration USB message associated with
configuration of a communication endpoint;

creating an entry associated with the communication
endpoint in the endpoint table;

receiving a first USB message addressed to a first
endpoint;

in response to determining that the endpoint table
indicates that the first endpoint is active, providing
the first USB message for transmission to the first
endpoint; and

in response to determining that the endpoint table
indicates that the first endpoint is inactive, providing
a synthetic USB message for transmission to the host
device.

2. The port device of claim 1, wherein the communication
endpoint is an isochronous communication endpoint; and

wherein the configuration USB message is a second USB

message associated with configuration of the isochro-
nous communication endpoint.

3. The port device of claim 2, further comprising one or
more isochronous communication buffers.

4. The port device of claim 3, wherein the actions further
comprise:

determining whether an isochronous communication buf-

fer is available to be assigned to the isochronous
communication endpoint;
in response to determining that an isochronous commu-
nication buffer is available, updating the entry in the
endpoint table associated with the isochronous com-
munication endpoint to reference the isochronous com-
munication buffer and to indicate that the isochronous
communication endpoint is active; and
in response to determining that an isochronous commu-
nication buffer is not available, updating the entry in the
endpoint table associated with the isochronous com-
munication endpoint to indicate that the isochronous
communication endpoint is inactive.
5. The port device of claim 1, further comprising a shared
buffer;
wherein the configuration USB message associated with
configuration of the communication endpoint is a third
USB message associated with configuration of a second
endpoint, wherein the second endpoint is of a type other
than an isochronous communication endpoint; and

wherein the actions further comprise creating an entry
associated with the second endpoint that references the
shared buffer and indicates that the second endpoint is
active in the endpoint table.

6. The port device of claim 1, wherein providing the
synthetic USB message for transmission to the host device
includes providing a packet having zero-length data for
transmission to the host device.

7. The port device of claim 1, wherein the remote inter-
face includes one or more of a fiber optic interface, an
Ethernet interface, and a wireless interface.

8. The port device of claim 1, wherein the port device is
part of an upstream USB extension device or a downstream
USB extension device.

9. A method executed in a USB extension environment,
the method comprising:

10

15

25

30

35

40

45

50

55

60

65

12

receiving, by a port device, a configuration USB message
associated with configuration of a communication end-
point;

creating an entry associated with the communication

endpoint in an endpoint table maintained by the port
device;

receiving, by the port device, a first USB message gen-

erated by a host device and addressed to a first end-
point;

in response to determining that the endpoint table indi-

cates that the first endpoint is active, providing, by the
port device, the first USB message for transmission to
the first endpoint; and

in response to determining that the endpoint table indi-

cates that the first endpoint is inactive, providing, by
the port device, a synthetic USB message for transmis-
sion to the host device.

10. The method of claim 9, wherein the communication
endpoint is an isochronous communication endpoint; and

wherein the configuration USB message is a second USB

message associated with configuration of the isochro-
nous communication endpoint.

11. The method of claim 10, further comprising:

determining, by the port device, whether an isochronous

communication buffer of the port device is available to
be assigned to the isochronous communication end-
point;
in response to determining that an isochronous commu-
nication buffer is available, updating, by the port
device, the entry in the endpoint table associated with
the isochronous communication endpoint to reference
the isochronous communication buffer and to indicate
that the isochronous communication endpoint is active;
and
in response to determining that an isochronous commu-
nication buffer is not available, updating, by the port
device, the entry in the endpoint table associated with
the isochronous communication endpoint to indicate
that the isochronous communication endpoint is inac-
tive.
12. The method of claim 9,
wherein the configuration USB message associated with
configuration of the communication endpoint is a third
USB message associated with configuration of a second
endpoint, wherein the second endpoint is of a type other
than an isochronous communication endpoint; and

wherein the method further comprises creating, by the
port device, an entry associated with the second end-
point that references a shared buffer of the port device
and indicates that the second endpoint is active in the
endpoint table.

13. The method of claim 9, wherein providing the syn-
thetic USB message for transmission to the host device
includes providing a packet having zero-length data for
transmission to the host device.

14. The method of claim 9, wherein receiving the first
USB message includes receiving, by the port device, the first
USB message via a remote interface; and

wherein providing, by the port device, the synthetic USB

message for transmission to the host device includes
providing, by the port device, the synthetic USB mes-
sage to the remote interface.

15. The method of claim 9, wherein receiving the first
USB message includes receiving, by the port device, the first
USB message via a USB physical layer interface; and

wherein providing, by the port device, the synthetic USB

message for transmission to the host device includes

US 11,809,354 B2

13

providing, by the port device, the synthetic USB mes-
sage to the USB physical layer interface.

16. A non-transitory computer-readable medium having
computer-executable instructions stored thereon that, in
response to execution by one or more processors of a port
device, cause the port device to perform actions comprising:

receiving, by the port device, a configuration USB mes-

sage associated with configuration of a communication
endpoint;
creating, by the port device, an entry associated with the
communication endpoint in the endpoint table;

receiving, by the port device, a first USB message gen-
erated by a host device and addressed to a first end-
point;
in response to determining that an endpoint table main-
tained by the port device indicates that the first end-
point is active, providing, by the port device, the first
USB message for transmission to the first endpoint; and

in response to determining that the endpoint table indi-
cates that the first endpoint is inactive, providing, by
the port device, a synthetic USB message for transmis-
sion to the host device.

17. The computer-readable medium of claim 16, wherein
the communication endpoint is an isochronous communica-
tion endpoint; and

wherein the configuration USB message is a second USB

message associated with configuration of the isochro-
nous communication endpoint.

18. The computer-readable medium of claim 17, wherein
the actions further comprise:

10

15

20

14

determining, by the port device, whether an isochronous
communication buffer of the port device is available to
be assigned to the isochronous communication end-
point;
in response to determining that an isochronous commu-
nication buffer is available, updating, by the port
device, the entry in the endpoint table associated with
the isochronous communication endpoint to reference
the isochronous communication buffer and to indicate
that the isochronous communication endpoint is active;
and
in response to determining that an isochronous commu-
nication buffer is not available, updating, by the port
device, the entry in the endpoint table associated with
the isochronous communication endpoint to indicate
that the isochronous communication endpoint is inac-
tive.
19. The computer-readable medium of claim 16, wherein
the configuration USB message associated with configu-
ration of the communication endpoint is a third USB
message associated with configuration of a second
endpoint, wherein the second endpoint is of a type other
than an isochronous communication endpoint; and

wherein the actions further comprise creating, by the port
device, an entry associated with the second endpoint
that references a shared buffer of the port device and
indicates that the second endpoint is active in the
endpoint table.

20. The computer-readable medium of claim 16, wherein
providing the synthetic USB message for transmission to the
host device includes providing a packet having zero-length
data for transmission to the host device.

#* #* #* #* #*

