US 20190188315A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0188315 A1

HSIEH et al.

43) Pub. Date: Jun. 20, 2019

(54)

(71)

(72)

(73)

@

(22)

(60)

SYSTEMS AND METHODS FOR FAST AND
EFFECTIVE GROUPING OF STREAM OF
INFORMATION INTO CLOUD STORAGE
FILES

Applicant: ACER CLOUD TECHNOLOGY
(US), INC., Sunnyvale, CA (US)

Meng-Fu HSIEH, New Taipei City
(TW); Jung-Hsuan FAN, Keelung City
(TW); Jim CHANG, Saratoga, CA
(US)

Inventors:

ACER CLOUD TECHNOLOGY
(US), INC., Sunnyvale, CA (US)

Assignee:

Appl. No.: 16/006,796

Filed: Jun. 12, 2018

Related U.S. Application Data

Provisional application No. 62/608,471, filed on Dec.
20, 2017.

100

AN
N\

N

Publication Classification

(51) Int. CL
GOGF 17/30 (2006.01)
(52) US.CL
CPC .. GOGF 17/30598 (2013.01); GOGF 17/30091
(2013.01)
(57) ABSTRACT

A new approach is proposed to support grouping and storing
a data stream based on the types of data items in the stream
for efficient data batch processing and analysis. First, the
data stream is uploaded to a cloud storage, wherein the
stream of data includes a plurality of data items of different
types generated by and collected from different users and/or
devices. The data items are then retrieved, grouped and
saved by a preprocessing unit into a plurality of batch data
queues, wherein data items in each batch data queue are of
the same type. One or more batch processing units are then
configured to fetch and batch process data items from the
batch data queues and store these data items of the same data
type to one or more cloud storage files for further processing
and analysis on the cloud storage one batch data queue at a
time.

112

110 ific storage fite
Eistch data queus 1 HHC 5107506 e
108 3 P Al
. | ——\\\ A O T e e \b/ /«\\ OO0
Data qusue -. > KF'reprocsss ABatch pmcsss/i amnnnnl : .
H e |
— \ ~ TN) U e——
S o an Ry Spe_c.f.‘, §rorage fils
Baich data qusue 2
102 104 106

User data

Davice data

US 2019/0188315 Al

Jun. 20, 2019 Sheet 1 of 5

Patent Application Publication

Q01 yolL

S O

i obeioys syoedg] T

000

sy abigtos opsadg

Zii

Vol

giep 950 vIep aniAeq]

201

7 enanb v1Bp UdEY

snonb gjeg

{ snanh gep yoeyg 801

oL

|

CH
L.
-

Patent Application Publication Jun. 20, 2019 Sheet 2 of 5 US 2019/0188315 A1

Z;Q;QW

Receive the data stream uploaded to a data queoe at a cloud storage,

wherein the data stream includes a plurality of data items of different

types generated by and collected from different users and/or devices
202

'

Retrieve, group, and place the data items in the data queye into a
plurality of batch data queuves based on data types of the data items,
wherein the data items placed in each batch data queue are of the same
data type
204

i

Fetch, batch process, and store data items from one of the batch data
queues into one or more cloud storage files cach maintaining a same
type of the data items on the cloud storage during each round of
Processing

208

4

Continnously fetch and batch process data items from the baich data
queues ong batch data queue at a time until all of the batch data queues
have been processed and the data items in the batch data queues saved

into their respective cloud storage files for further processing and
analysis

208

FIG. 2

US 2019/0188315 Al

Jun. 20, 2019 Sheet 3 of 5

Patent Application Publication

€ "Oid

21en 1850 BB 92880

}

K N 1) | Tee——— g
oL

Z7vov
L Q0] &

; | 801
goge
< ssezeud LOLE M,C d
. - yoreg &
off] BPeIsIE omadg

Zil L y0L

US 2019/0188315 Al

Jun. 20, 2019 Sheet 4 of 5

Patent Application Publication

FIG. 4

Patent Application Publication Jun. 20, 2019 Sheet 5 of 5 US 2019/0188315 A1

i
{ue]

W“"‘“‘"--&

Receive a data stream uploaded to a data queue at a cloud storage,
wherein the data stream includes a plurality of data items of different
types generated by and collected from different users and/or devices

202

i

Retrieve, group, and place the data items in the data queue into &
plurality of batch data queues based on data types of the data items,
wherein the data items placed in each batch data queue are of the same
data type
504

'

Divide data items within each batch data queue into a plurality of
partitions, wherein different partitions are assigned to and processed by
a plorality of data batch processing units
506

i

Fetch, batch process, and store data items from one of the partitions of
gach of the batch data gqueues into a cloud storage file maintaining a
same type of the data items on the cloud storage for further processing
and analysis, wherein the plurality of data bateh processing units are
configured to operate on the partitions of the batch data queues in
parallel
S08

FIG. 5

US 2019/0188315 Al

SYSTEMS AND METHODS FOR FAST AND
EFFECTIVE GROUPING OF STREAM OF
INFORMATION INTO CLOUD STORAGE

FILES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 62/608,471, filed Dec. 20,
2017, and entitled “SYSTEMS AND METHODS FOR
FAST AND EFFECTIVE METHOD OF GROUPING
STREAMING INFORMATION INTO CLOUD STORAGE
FILES,” which is incorporated herein in its entirety by
reference.

BACKGROUND

[0002] As data/information are increasingly being stored,
managed, and accessed in cloud storage, e.g., on various
storages and servers in the cloud, it is becoming more and
more important to be able to process and stream/upload
enormous amount of data onto the cloud storage, which can
be but is not limited to an AWS S3 storage, and to be able
to update and/or modify the uploaded data effectively and
economically. Here, the data can either be user-generated,
e.g., documents and electronic messages, or device-gener-
ated, e.g., data generated by mobile devices or sensor data
generated or collected by various Internet of Things (IoT)
sensors/devices. For data analysis purposes, it is often
critical to organize the streams of data into various groups by
their sources or types in order for a data analyzer to analyze
the differently-grouped data accordingly.

[0003] Currently, in order to update/modify a file in the
cloud storage, it is often required to download the file from
a cloud storage server, and then upload it back to the cloud
storage server to replace the existing file after the changes to
the file have been made. If the size of the file in the cloud
storage is huge and only a few changes are made to this file,
a lot of network bandwidth is wasted uploading and down-
loading the huge file from and to the cloud storage. In some
embodiments, a memory buffer is used to implement a batch
process unit to avoid this problem, wherein a batch process
unit can fetch data from a data queue in the memory buffer
and split fetched data by different data types into their own
specific storage files. As the volume of data in the data queue
increases over time, the data volume and generating time
may both become unpredictable. To avoid the possible
system out-of-memory issue, it is often necessary to limit the
size of the memory buffer and/or fix the process time of the
buffer, resulting in the data being split across too many cloud
storage files not limited to one data type per file. In addition,
system such as AWS lambda processes stream data via
events wherein each event only can fetch one data from the
data queue, resulting in each event having its own cloud
storage file. If all the data files are stored in the cloud
storages without compacting or grouping, the data analysis
tool needs to waste a lot of I/O and network resources to load
data from each of the cloud storage files before conducting
the data analysis, which can be very time and resource
consuming. It is thus desirable to be able to group same
types of data intensively to reduce the burden to the data
analysis tools.

[0004] The foregoing examples of the related art and
limitations related therewith are intended to be illustrative

Jun. 20, 2019

and not exclusive. Other limitations of the related art will
become apparent upon a reading of the specification and a
study of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Aspects of the present disclosure are best under-
stood from the following detailed description when read
with the accompanying figures. It is noted that, in accor-
dance with the standard practice in the industry, various
features are not drawn to scale. In fact, the dimensions of the
various features may be arbitrarily increased or reduced for
clarity of discussion.

[0006] FIG. 1 depicts an example of a system diagram to
support grouping and storing a data stream into cloud
storage files based on data types in accordance with some
embodiments.

[0007] FIG. 2 depicts a flowchart of an example of a
process to support grouping and storing a data stream into
cloud storage files based on data types in accordance with
some embodiments.

[0008] FIG. 3 depicts an example of a system diagram to
support scalable grouping and storing a data stream into
cloud storage files based on data types where multiple data
batch processing units are deployed and utilized in accor-
dance with some embodiments.

[0009] FIG. 4 depicts an example of a code snippet
implementing a formula for even assignment of data items
in each batch data queue in accordance with some embodi-
ments.

[0010] FIG. 5 depicts a flowchart of an example of a
process to support scalable grouping and storing a data
stream into cloud storage files based on data types in
accordance with some embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

[0011] The following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the subject matter. Specific examples of components
and arrangements are described below to simplify the pres-
ent disclosure. These are, of course, merely examples and
are not intended to be limiting. In addition, the present
disclosure may repeat reference numerals and/or letters in
the various examples. This repetition is for the purpose of
simplicity and clarity and does not in itself dictate a rela-
tionship between the various embodiments and/or configu-
rations discussed.

[0012] A new approach is proposed that contemplates
systems and methods to support grouping and storing a
stream of data based on the types of data items in the stream
for efficient data batch processing and analysis. First, the
stream of data is uploaded/streamed to a cloud storage,
wherein the stream of data can include a plurality of data
items of different types generated by and collected from
different users and/or devices. Once the data items are
received in a data queue at the cloud storage, they are
retrieved, grouped, and saved by a preprocessing unit into a
plurality of batch data queues, wherein data items in each
batch data queue are of the same data type. One or more
batch processing units are then configured to fetch and batch
process data items from one of the batch data queues and
store these data items of the same data type to one or more
cloud storage files for further processing and analysis on the
cloud storage following each round of processing. The batch

US 2019/0188315 Al

processing units continue to fetch and process data items
from the batch data queues one batch data queue at a time
until data items in all of the batch data queues have been
saved into their respective cloud storage files.

[0013] Under the proposed approach, the stream of data
collected in real time from, for example, Internet of Things
(IoT) devices can be batch grouped and processed more
efficiently in a timely manner. As the grouped data items are
stored in cloud data files according to their data types, it
makes it easier for data analysis tools to perform subsequent
analysis on the collected data items. Since the collected data
can be processed and analyzed in the cloud storage, the
proposed approach avoids using unnecessary 1/O resources,
memories, system burdens, and the bandwidths.

[0014] FIG. 1 depicts an example of a system diagram 100
to support grouping and storing a data stream into cloud
storage files based on data types. Although the diagrams
depict components as functionally separate, such depiction
is merely for illustrative purposes. It will be apparent that the
components portrayed in this figure can be arbitrarily com-
bined or divided into separate software, firmware and/or
hardware components. Furthermore, it will also be apparent
that such components, regardless of how they are combined
or divided, can execute on the same host or multiple hosts,
and wherein the multiple hosts can be connected by one or
more networks.

[0015] In the example of FIG. 1, the system 100 includes
at least a data preprocessing engine/unit 102, a data batch
processing engine/unit 104, and a data cloud storage unit
106 at a cloud storage or data center. These engines and units
run on one or more computing units/appliances/hosts (not
shown) each with software instructions stored in a storage
unit such as a non-volatile memory (also referred to as
secondary memory) of the computing unit for practicing one
or more processes. When the software instructions are
executed, at least a subset of the software instructions is
loaded into memory (also referred to as primary memory) by
one of the computing units of the host, which becomes a
special purposed one for practicing the processes. The
processes may also be at least partially embodied in the host
into which computer program code is loaded and/or
executed, such that, the host becomes a special purpose
computing unit for practicing the processes. When imple-
mented on a general-purpose computing unit, the computer
program code segments configure the computing unit to
create specific logic circuits.

[0016] In the example of FIG. 1, each host can be a
computing device, a communication device, a storage
device, or any computing device capable of running a
software component. For non-limiting examples, a comput-
ing device can be but is not limited to a server machine, a
laptop PC, a desktop PC, a tablet, a Google’s Android
device, an iPhone, an iPad, and a voice-controlled speaker or
controller. Each host has a communication interface (not
shown), which enables the engines and the units to commu-
nicate with each other, the user, and other devices over one
or more communication networks following certain com-
munication protocols, such as TCP/IP, http, https, fip, and
sftp protocols. Here, the communication networks can be but
are not limited to, internet, intranet, wide area network
(WAN), local area network (LAN), wireless network, Blu-
etooth, WiFi, and mobile communication network. The
physical connections of the network and the communication
protocols are well known to those of skill in the art.

Jun. 20, 2019

[0017] In the example of FIG. 1, a stream of data items is
uploaded to a data queue 108 of a cloud-based storage over
a network, wherein the data items can be of different types
reflecting their sources, e.g., how and from where they are
generated and collected. For non-limiting examples, the data
items can either be user-generated, e.g., user-drafted docu-
ments and electronic messages, or device-generated, e.g.,
data items generated by mobile devices or sensor data
generated or collected by various IoT devices. As shown by
the example of FIG. 1, the stream of data items in data queue
108 are depicted as circles with different shades representing
different data types.

[0018] As the number of data items in the data queue 108
increases over time, the data queue 108, which is first-in
first-out (FIFO), may run out of pre-allocated buffer size
over time especially when the data items may be collected
and received at the data queue 108 at a faster pace than being
retrieved from the data queue 108. To avoid such out-of-
memory issue, the data preprocessing unit 102 is configured
to retrieve a data item from the data queue 108 whenever a
new data item is added to the data queue 108, so that the data
queue 108 does not run out of allocated memory/buffer. The
data preprocessing unit 102 is then configured to place the
retrieved data item into one of a plurality of batch data
queues 110 that match the data type of data item. As shown
by the example of FIG. 1, each batch data queues 110
contains a specific type of data items and the different types
of data items in the data queue 108 are split into batch data
queues 110 of different types.

[0019] In the example of FIG. 1, the data batch processing
unit 104 is configured to retrieve/fetch a set of data items
from one of the batch data queues 110 for batch processing
during each round of processing and store the retrieved set
of data items to its own specific cloud data storage file 112
on the data cloud storage unit 106, wherein each cloud data
storage file 112 only includes data items of the same type as
the retrieved set of data items. In some embodiments, the
data batch processing unit 104 is configured to batch process
the data items one batch data queue at a time until all of the
batch data queues 110 have been processed. As shown by the
example of FIG. 1, when the data batch processing unit 104
finishes the first round of batch processing, it fetches and
batch processes three data items depicted as circles from
batch data queue 1 and stores them into a cloud storage file
112. The data batch processing unit 104 then retrieves two
data items from batch data queue 2 of a different data type
and saves them to a separate cloud storage file on the cloud
storage unit 106. Following two rounds of batch processing,
the data batch processing unit 104 batch processes and stores
five data items of different types into two cloud storage files.
[0020] FIG. 2 depicts a flowchart 200 of an example of a
process to support grouping and storing a data stream into
cloud storage files based on data types. Although the figure
depicts functional steps in a particular order for purposes of
illustration, the processes are not limited to any particular
order or arrangement of steps. One skilled in the relevant art
will appreciate that the various steps portrayed in this figure
could be omitted, rearranged, combined and/or adapted in
various ways.

[0021] In the example of FIG. 2, the flowchart 200 starts
at block 202, where a stream of data is uploaded to a data
queue at a cloud storage, wherein the stream of data includes
a plurality of data items of different types generated by and
collected from different users and/or devices. The flowchart

US 2019/0188315 Al

200 continues to block 204, where the data items in the data
queue are retrieved, grouped and placed into a plurality of
batch data queues, wherein the data items in each batch data
queue are of the same data type. The flowchart 200 continues
to block 206, where data items from one of the batch data
queues are fetched, batch processed, and stored into one or
more cloud storage files each maintaining a same type of the
data items on the cloud storage for further processing and
analysis. The flowchart 200 ends at block 208, where the
data items are continuously being fetched and batch pro-
cessed from the batch data queues one batch data queue at
a time until data items in all of the batch data queues have
been saved into their respective cloud storage files for
further processing and analysis.

[0022] In some circumstances, scalability for grouping
and storing of data items is important especially when a
large number of data items are generated and uploaded to the
data stream during a short period of time. FIG. 3 depicts an
example of a system diagram 200 to support scalable
grouping and storing a data stream into cloud storage files
based on data types where multiple data batch processing
units 104 are deployed and utilized. In some embodiments,
after the data stream is split into multiple batch data queues
110 by the data preprocessing unit 102 based on the types of
the data items, each batch data queue 110 may be further
divided by the data preprocessing unit 102 into multiple
partitions, e.g., partition 0 and partition 1 as shown by the
example of FIG. 3, and multiple data batch processing units,
e.g., 104_1 and 104_2, are configured to fetch and process
data items from different partitions of the same batch data
queue 110 in parallel and/or at the same time in order to
speed up batch processing of the data items of the same type.
In some embodiments, the data items in each partition can
only be processed by a single data batch processing unit 104
to make sure that each data item in the batch data queue 110
is processed exactly once. Each data batch processing unit
104 is then configured to store the data items it processes to
a specific cloud storage file 112 on the cloud storage unit
106. In the example of FIG. 3, four data batch processing
units 104_1 to 104_4 are configured to multi-process data
items in two batch data queues 110 in parallel and to store
data items they process to four separate cloud storage files
112 wherein some of the cloud storage files 112 may include
data items of the same type coming from different partitions
of the same batch data queue 110.

[0023] In some embodiments, the data preprocessing unit
102 is configured to partition each batch data queue 110 by
assigning data items in the batch data queue 110 to different
partitions based on hash value of a partition key and the
number of partitions to be created for the batch data queue
110. For a non-limiting example, the following formula may
be adopted by the data preprocessing unit 102 to assign each
data item in a batch data queue 110 to one of the partitions:

math.abs(partitionKey.hashCode() % numberOfPar-
titions)

In some embodiments, when the type of the data items is
used as the partition key, the data preprocessing unit 102
may assign all data items of the same type in a batch data
queue 110 into the same partition, resulting in uneven loads
among the data batch processing units 104 allocated to the
partitions of the batch data queue 110, e.g., one data batch
processing unit 104 can be overloaded while the other one
may be idle.

Jun. 20, 2019

[0024] In some embodiments, the data preprocessing unit
102 is configured to evenly assign data items in each batch
data queue 110 into a set of partitions by including a unique
serial number, which can be but is not limited to a timestamp
of the data item, with the type (represented by color) of the
data item to form a new partition key using an example of
the following formula:

math.abs((color+timestamp).hashCode % numberOf-
Partitions)

FIG. 4 depicts an example of a code snippet implementing
the formula above for even assignment of data items in each
batch data queue 110. As shown by the example of FIG. 4,
a new partition key is formulated to include a unique serial
number. As a result, data items of the same type or color are
evenly assigned to different partitions, Partition 0 or Parti-
tion 1 as shown in FIG. 3.

[0025] Insome embodiments, the system 100 for grouping
and storing a stream of data items can be implemented via
Kafka, which is a real time stream-processing software
platform for real-time data pipelining and streaming. Spe-
cifically, the data queue 108 can be implemented as a
streaming queue that continuously accepts and outputs data
items from different sources in the data stream in real time.
When an event report with one topic generated by a Kafka
producer about data items collected from the IoT devices is
published and received at the data queue 108, the data
preprocessing unit 102 subscribes to the topic so that the it
can use eventReportData.event Type+timestamp as a Kafka
partition key and use batchTopic as Kafka topic to assign
each eventReportData to the batch data queues 110 and their
respective partitions. When multiple data batch processing
units 104 process the data items in the batch data queues 110
and their respective partitions simultaneously, each data
batch processing unit 104 uses Kafka consumer based on
batchTopic to fetch data items from the batch data queues
and their partitions. Fetched data items are then grouped by
their eventType and stored in corresponding cloud storage
files 112.

[0026] FIG. 5 depicts a flowchart 500 of an example of a
process to support scalable grouping and storing a data
stream into cloud storage files based on data types. Although
the figure depicts functional steps in a particular order for
purposes of illustration, the processes are not limited to any
particular order or arrangement of steps. One skilled in the
relevant art will appreciate that the various steps portrayed
in this figure could be omitted, rearranged, combined and/or
adapted in various ways.

[0027] In the example of FIG. 5, the flowchart 500 starts
at block 502, where a stream of data is uploaded to a data
queue at a cloud storage, wherein the stream of data includes
a plurality of data items of different types generated by and
collected from different users and/or devices. The flowchart
500 continues to block 504, where the data items in the data
queue are retrieved, grouped and placed into a plurality of
batch data queues, wherein the data items in each batch data
queue are of the same data type. The flowchart 500 continues
to block 506, where data items within each batch data queue
are divided into a plurality of partitions, wherein different
partitions are assigned to and processed by a plurality of data
batch processing units. The flowchart 500 ends at block 508,
where data items from each of the partitions of each of the
batch data queues are fetched, batch processed, and stored
by each of the plurality of data batch processing units into
a cloud storage file maintaining a same type of the data items

US 2019/0188315 Al

on the cloud storage for further processing and analysis,
wherein the plurality of data batch processing units are
configured to operate on the partitions of the batch data
queues in parallel.

[0028] One embodiment may be implemented using a
conventional general purpose or a specialized digital com-
puter or microprocessor(s) programmed according to the
teachings of the present disclosure, as will be apparent to
those skilled in the computer art. Appropriate software
coding can readily be prepared by skilled programmers
based on the teachings of the present disclosure, as will be
apparent to those skilled in the software art. The invention
may also be implemented by the preparation of integrated
circuits or by interconnecting an appropriate network of
conventional component circuits, as will be readily apparent
to those skilled in the art.

[0029] The methods and system described herein may be
at least partially embodied in the form of computer-imple-
mented processes and apparatus for practicing those pro-
cesses. The disclosed methods may also be at least partially
embodied in the form of tangible, non-transitory machine
readable storage media encoded with computer program
code. The media may include, for example, RAMs, ROMs,
CD-ROMs, DVD-ROMs, BD-ROMs, hard disk drives, flash
memories, or any other non-transitory machine-readable
storage medium, wherein, when the computer program code
is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the method. The meth-
ods may also be at least partially embodied in the form of a
computer into which computer program code is loaded
and/or executed, such that, the computer becomes a special
purpose computer for practicing the methods. When imple-
mented on a general-purpose processor, the computer pro-
gram code segments configure the processor to create spe-
cific logic circuits. The methods may alternatively be at least
partially embodied in a digital signal processor formed of
application specific integrated circuits for performing the
methods.

what is claimed is:
1. A system to support grouping and storing a data stream
into cloud storage files based on data types, comprising:
a data preprocessing unit running on a host and configured
to
receive the data stream uploaded to a data queue at a
cloud storage, wherein the data stream includes a
plurality of data items of different types generated by
and collected from different users and/or devices;
retrieve, group, and place the data items in the data
queue into a plurality of batch data queues based on
data types of the data items, wherein the data items
placed in each batch data queue are of the same data
type;
a data batch processing unit running on a host and
configured to
fetch, batch process, and store data items from one of
the batch data queues into one or more cloud storage
files each maintaining a same type of the data items
on the cloud storage during each round of process-
ing;
continuously fetch and batch process data items from
the batch data queues one batch data queue at a time
until all of the batch data queues have been pro-
cessed and the data items in the batch data queues

Jun. 20, 2019

saved into their respective cloud storage files for
further processing and analysis.

2. The system of claim 1, wherein:

the data items in the data stream are generated or collected

by mobile devices and/or Internet of Things (IoT)
devices.

3. The system of claim 1, wherein:

each cloud data storage file only includes data items of the

same type.

4. A system to support scalable grouping and storing a
data stream into cloud storage files based on data types,
comprising:

a data preprocessing unit running on a host and configured

to

receive the data stream uploaded to a data queue at a
cloud storage, wherein the data stream includes a
plurality of data items of different types generated by
and collected from different users and/or devices;

retrieve, group, and place the data items in the data
queue into a plurality of batch data queues based on
data types of the data items, wherein the data items
placed in each batch data queue are of the same data
type;

divide data items within each batch data queue into a
plurality of partitions, wherein different partitions
are assigned to and processed by a plurality of data
batch processing units;

said plurality of data batch processing units each running

on a host and configured to

fetch, batch process, and store data items from one of
the partitions of each of the batch data queues into a
cloud storage file maintaining a same type of the data
items on the cloud storage for further processing and
analysis, wherein the plurality of data batch process-
ing units are configured to operate on the partitions
of the batch data queues in parallel.

5. The system of claim 4, wherein:

the data items in each partition is only processed by one

data batch processing unit so that each data item in the
batch data queue is processed exactly once.

6. The system of claim 4, wherein:

the data preprocessing unit is configured to partition each

batch data queue by assigning data items in the batch
data queue to different partitions based on hash value of
a partition key and the number of partitions to be
created for the batch data queue.

7. The system of claim 6, wherein:

the type of each data item is used as the partition key.

8. The system of claim 7, wherein:

the data preprocessing unit is configured to evenly assign

data items in each batch data queue into the set of
partitions by including a unique serial number, with the
type of the data item to form a new partition key.

9. The system of claim 4, wherein:

the system is implemented via a software platform for

real-time data pipelining and streaming, wherein the
data queue is a streaming queue that continuously
accepts and outputs data items from different sources in
the data stream in real time.

10. The system of claim 9, wherein:

the data preprocessing unit is configured to subscribe to a

topic when an event report with the topic is generated
and published for data items collected from an Internet
of Things (IoT) device so that the data preprocessing

US 2019/0188315 Al

unit can assign the data items to the batch data queues
and their respective partitions.
11. The system of claim 10, wherein:
the data batch processing units are configured to process
the data items in the batch data queues and their
respective partitions by fetching the data items from the
batch data queues and their partitions based on the
topic.
12. A computer-implemented method to support grouping
and storing a data stream into cloud storage files based on
data types, comprising:
receiving the data stream uploaded to a data queue at a
cloud storage, wherein the data stream includes a
plurality of data items of different types generated by
and collected from different users and/or devices;

retrieving, grouping, and placing the data items in the data
queue into a plurality of batch data queues based on
data types of the data items, wherein the data items
placed in each batch data queue are of the same data
type;

fetching, batch processing, and storing data items from

one of the batch data queues into one or more cloud
storage files each maintaining a same type of the data
items on the cloud storage during each round of pro-
cessing;

continuously fetching and batching process data items

from the batch data queues one batch data queue at a
time until all of the batch data queues have been
processed and the data items in the batch data queues
saved into their respective cloud storage files for further
processing and analysis.

13. The computer-implemented method of claim 12, fur-
ther comprising:

generating or collecting the data items in the data stream

are by mobile devices and/or Internet of Things (IoT)
devices.

14. A computer-implemented method to support scalable
grouping and storing a data stream into cloud storage files
based on data types, comprising:

receiving the data stream uploaded to a data queue at a

cloud storage, wherein the data stream includes a
plurality of data items of different types generated by
and collected from different users and/or devices;
retrieving, grouping, and placing the data items in the data
queue into a plurality of batch data queues based on
data types of the data items, wherein the data items
placed in each batch data queue are of the same data

type;

Jun. 20, 2019

dividing data items within each batch data queue into a
plurality of partitions, wherein different partitions are
assigned to and processed by a plurality of data batch
processing units;

fetching, batch processing, and storing data items by each
of the plurality of data batch processing units from one
of the partitions of each of the batch data queues into
a cloud storage file maintaining a same type of the data
items on the cloud storage for further processing and
analysis, wherein the plurality of data batch processing
units are configured to operate on the partitions of the
batch data queues in parallel.

15. The computer-implemented method of claim 14, fur-

ther comprising:

processing the data items in each partition only by one
data batch processing unit so that each data item in the
batch data queue is processed exactly once.

16. The computer-implemented method of claim 14, fur-

ther comprising:

partitioning each batch data queue by assigning data items
in the batch data queue to different partitions based on
hash value of a partition key and the number of
partitions to be created for the batch data queue,
wherein the type of each data item is used as the
partition key.

17. The computer-implemented method of claim 16, fur-

ther comprising:

evenly assigning data items in each batch data queue into
the set of partitions by including a unique serial num-
ber, with the type of the data item to form a new
partition key.

18. The computer-implemented method of claim 14, fur-

ther comprising:

utilizing a software platform for real-time data pipelining
and streaming, wherein the data queue is a streaming
queue that continuously accepts and outputs data items
from different sources in the data stream in real time.

19. The computer-implemented method of claim 18, fur-

ther comprising:

subscribing to a topic when an event report with the topic
is generated and published for data items collected
from an Internet of Things (IoT) device so that the data
preprocessing unit can assign the data items to the
batch data queues and their respective partitions.

20. The computer-implemented method of claim 19, fur-

ther comprising:

processing the data items in the batch data queues and
their respective partitions by fetching the data items
from the batch data queues and their partitions based on
the topic.

