US 20200183906A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0183906 A1

Spillane et al.

43) Pub. Date: Jun. 11, 2020

(54)

(71)
(72)

@
(22)

(1)

USING AN LSM TREE FILE STRUCTURE
FOR THE ON-DISK FORMAT OF AN
OBJECT STORAGE PLATFORM

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Richard P. Spillane, Palo Alto, CA
(US); Wenguang Wang, Santa Clara,
CA (US); Junlong Gao, Mountain
View, CA (US); Robert T. Johnson,
Palo Alto, CA (US); Christos
Karamanolis, Los Gatos, CA (US);
Maxime Austruy, Lausanne (CH)

Appl. No.: 16/213,714

GOGF 16/2455 (2006.01)
GOGF 16/84 (2006.01)
(52) US.CL

CPC ... GOGF 16/2246 (2019.01); GOGF 16/2272
(2019.01); GOGF 16/86 (2019.01); GO6F

16713 (2019.01); GOGF 16/24552 (2019.01);

GOGF 16/2219 (2019.01)

(57) ABSTRACT

The disclosure herein describes providing and accessing
data on an object storage platform using a log-structured
merge (LSM) tree file system. The LSM tree file system on
the object storage platform includes sorted data tables, each
sorted data table including a payload portion and an index
portion. Data is written to the LSM tree file system in at least
one new sorted data table. Data is ready by identifying a data

Filed: Dec. 7, 2018 location of the data based on index portions of the sorted
Publication Classification data tables and reading the data from a sorted data table
associated with the identified data location. The use of the
Int. CL LSM tree file system on the object storage platform provides
GO6F 16/22 (2006.01) an efficient means for interacting with the data stored
GO6F 16/13 (2006.01) thereon.
100
SERVER 102 J
OBJECT STORAGE PLATFORM 108
LSM TREE FILE SYSTEM 110
CATALOG FILE 112
SORTED DATA TABLE 114
SORTED DATA
Il\l1|:1)I§X PAYLOAD 120 e TABLE 116

NETWORK 106

CLIENT 104

WRITE DATA CACHE 122

CATALOG FILE COPY 124

INDEX
COPY 126

INDEX
COPY 128

Patent Application Publication Jun. 11, 2020 Sheet 1 of 6 US 2020/0183906 A1

100

SERVER 102 J

OBJECT STORAGE PLATFORM 10

LSM TREE FILE SYSTEM 11

CATALOG FILE 112

SORTED DATA TABLE 11

SORTED DATA
INDEX PAYLOAD 12 et TABLE 116

m Ay

NETWORK 106

CLIENT 104
WRITE DATA CACHE 122

CATALOG FILE COPY 124

INDEX INDEX
COPY 126] » « « |COPY 128

FIG. 1

Patent Application Publication Jun. 11, 2020 Sheet 2 of 6 US 2020/0183906 A1

200

LSM TREE FILE SYSTEM 210
CATALOG FILE 212
SORTED DATA TABLE METADATA 238 SORTED DATA
TABLE ID 242 || TREE LEVEL 244 || KEY RANGE 246 || ==+ | TABLE '\é'g ADATA
LSM TREE LEVEL 230
SORTED DATA TABLE 214
INDEX 218 PAYLOAD 220
KEYS 248 DATABLOCK | DATABLOCK | | |++s] SORTED
25 254 DATA TABLE
~ 25 25 1o
OFFSETS 250 4 DATA BLOCK
\ w o
\
N yd
N _
\——'/

LSM TREE LEVEL
232

LSM TREE LEVEL 234

LSM TREE LEVEL 236

FIG. 2

Patent Application Publication Jun. 11, 2020 Sheet 3 of 6 US 2020/0183906 A1

300

J

302

k ACCESS AN LSM TREE FILE SYSTEM ON AN
OBJECT STORAGE PLATFORM

WRITE DATA
INSTRUCTION RECEIVED?

A YES
N v
WRITE A DATA SET TO THE LSM TREE FILE

SYSTEM IN AT LEAST ONE NEW SORTED DATA
TABLE

READ DATA
INSTRUCTION RECEIVED?

YES
A 4

310 IDENTIFY A DATA LOCATION BASED ON INDEX
k PORTIONS OF THE SORTED DATA TABLES OF
THE LSM TREE FILE SYSTEM

l

312 READ DATA FROM THE SORTED DATA TABLE
k ASSOCIATED WITH THE IDENTIFIED DATA —
LOCATION

FIG. 3

Patent Application Publication Jun. 11, 2020 Sheet 4 of 6 US 2020/0183906 A1

400

CLIENT 104 SERVER 102
402
RECEIVE A READ DATA
INSTRUCTION
T
404
IDENTIFY DATA LOCATION USING
LOCAL CATALOG FILE AND INDEXES
SEND DATA REQUEST INCLUDING
IDENTIFIED DATA LOCATION
406 7 " 408
RETRIEVE DATA FROM DATA
LOCATION IN LSM TREE FILE SYSTEM
SEND RETRIEVED
DATA
412 RECEIVE THE DATA AND \ 410
PROVIDE THE DATAIN
RESPONSE TO THE READ

DATA INSTRUCTION

FIG. 4

Patent Application Publication Jun. 11, 2020 Sheet 5 of 6 US 2020/0183906 A1

500

J

CLIENT 104 SERVER 102

- 2

2
X RECEIVE A WRITE DATA

INSTRUCTION

4
X BUFFER DATATO BE WRITTENIN A

WRITE DATA CACHE

I

SEND DATA OF WRITE DATA CACHE

506 7 7 508

APPEND RECEIVED DATATO TOP
LEVEL OF THE LSM TREE FILE
SYSTEM

PERFORM COMPACTION ON
LSM TREE FILE SYSTEM IF
NEEDED

SEND UPDATED INDEXES
AND CATALOG FILE

514 \s12
RECORD UPDATED INDEXES
AND CATALOG FILE

FIG. 5

Patent Application Publication

Jun. 11, 2020 Sheet 6 of 6 US 2020/0183906 A1

600

625
“~ ouTPUT INPUT KL~
626
619 623 \/
| ~
COMMUNICATION INPUT/OUTPUT
L PROCESSOR INTERFACE CONTROLLER
624
MEMORY
620 621 618
20 | OPERATING APPLICATION | & N
SYSTEM SOFTWARE -
l~~/

FIG. 6

US 2020/0183906 Al

USING AN LSM TREE FILE STRUCTURE
FOR THE ON-DISK FORMAT OF AN
OBJECT STORAGE PLATFORM

BACKGROUND

[0001] Using the services of data storage platform provid-
ers has become essential for many companies, organizations,
and other types of enterprise customers to obtain a cost-
effective storage solution for their data. This requires a
relatively inexpensive, scalable storage backend with a large
capacity for the archival data while still allowing retrieval of
historical data within a reasonable amount of time and
overwriting of existing data. Object storage platforms (e.g.,
Amazon S3, etc.) are a low-cost storage solution, but current
object storage platforms have several drawbacks. For
example, overwriting on an object storage platform may
cause huge write amplification if the platform does not
support overwrite. As such, changes in one byte of a file
results in re-writing the entire file. As another example, if
there are many relatively small files, each of the files ends
up with a small object on the platform, resulting in many
requests to transfer objects on the platform, which is expen-
sive. It is inefficient to directly use the object storage
platform for data operations that may change small portions
of large files.

SUMMARY

[0002] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
[0003] A computerized method and system for accessing
data on an object storage platform is described. A log-
structured merge (LSM) tree file system on the object
storage platform is accessed, the LSM tree file system
including a plurality of sorted data tables, each sorted data
table including a payload portion configured for storing
sorted key-value data tuples and an index portion for storing
keys of the key-value data tuples mapped to locations of
associated key-value data tuples in the payload portion.
Based on receiving a write data instruction associated with
a first data set, the first data set is written to the LSM tree file
system in at least one new sorted data table. Based on
receiving a read data instruction associated with a second
data set, a data location associated with the second data set
is identified based on index portions of the plurality of sorted
data tables and reading the second data set from a sorted data
table associated with the identified data location.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein:

[0005] FIG. 1 is an exemplary block diagram illustrating
a system configured for storing a providing access to data
stored on an object storage platform according to an embodi-
ment;

[0006] FIG. 2 is an exemplary block diagram illustrating
a configuration of an LSM tree file system for use on an
object storage platform according to an embodiment;

Jun. 11, 2020

[0007] FIG. 3 is an exemplary flow chart illustrating a
method of providing access to data on an object storage
platform according to an embodiment;

[0008] FIG. 4 is an exemplary sequence diagram illustrat-
ing a method of reading data from an LSM tree file system
on an object storage platform according to an embodiment;

[0009] FIG. 5 is an exemplary sequence diagram illustrat-
ing a method of writing data to an LSM tree file system on
an object storage platform according to an embodiment; and

[0010] FIG. 6 illustrates a computing apparatus according
to an embodiment as a functional block diagram.

[0011] Corresponding reference characters indicate corre-
sponding parts throughout the drawings. In FIGS. 1 to 6, the
systems are illustrated as schematic drawings. The drawings
may not be to scale.

DETAILED DESCRIPTION

[0012] Aspects of the disclosure provide a computerized
method and system for providing access to data on an object
storage platform. The object storage platform has an LSM
tree file system installed as an intermediate data layer to
provide access to the data stored in the object storage
platform. An exemplary LSM tree file system includes
sorted data tables, and each sorted data table includes a
payload portion configured for storing sorted key-value data
tuples and an index portion for storing keys of the key-value
data tuples mapped to locations of associated key-value data
tuples in the payload portion. When a write data instruction
is received, the data is written to the LSM tree file system in
at least one new sorted data table. When a read data
instruction is received, a data location associated with the
data to be read is identified based on index portions of the
sorted data tables and the data is read from a sorted data table
associated with the identified data location.

[0013] The disclosure operates in an unconventional way
at least by implementing the LSM tree file system on top of
the object storage platform (e.g., Amazon S3, etc.) to take
advantage of the inexpensive storage of the platform and
reduce costs for data transfers and overwrites. The LSM tree
file system provides features that synergize with the func-
tionality of the object storage platform, such as immutable
data writing, low write amplification, sequential scanning,
and others. Additionally, the LSM tree file system layer
enables rich features for data, such as compression, encryp-
tion, and checksum verification.

[0014] Insome examples, the described system makes use
of'locally cached data table indexes as well as a catalog file
that includes metadata for the data tables throughout the file
system. The use of these locally cached metadata files
enables much of the processing for data seeking in the file
system to be done efficiently on the client side, rather than
requiring additional (and potentially expensive) processing
on the object storage platform server side. Clients are
enabled to make data requests and provide precise location
data (e.g., data table identifiers, offsets or addresses within
the data tables, etc.), which is used on the server side to
efficiently retrieve the requested data.

[0015] Clients are also configured to buffer or cache write
data locally such that large sets of data are written to the
LSM tree file system in batches, rather than many smaller
data writes. Batching data writes in this way substantially
reduces the potential write cost per data unit and, because

US 2020/0183906 Al

data is only appended to the LSM tree file system (not
over-written) writing large batches of data at once is done
efficiently.

[0016] FIG. 1 is an exemplary block diagram illustrating
a system 100 configured for storing and providing access to
data (e.g., payload 120 data, etc.) on an object storage
platform 108 according to an embodiment. The system 100
includes a server 102 and a client 104 that are in commu-
nication via a network 106. The server includes an object
storage platform 108 upon which an LSM tree file system
110 is implemented. In some examples, the server 102 and
client 104 are computing devices that include hardware,
firmware, and/or software configured to perform the opera-
tions described herein as well as other general computing
operations. Alternatively, or additionally, the system 100
may include multiple server devices configured as the server
102 and including the object storage platform 108, such that
the described data storage is distributed across the multiple
server devices. Further, the system 100 may include multiple
client devices configured to access the object storage plat-
form 108 as described herein without departing from the
description.

[0017] The network 106 includes one or more computer
networks that are configured to enable network communi-
cations between the server 102 and the client 104. It should
be understood that communications between components of
the system 100 may be performed using network connec-
tions on the network 106 as would be understood by a person
of ordinary skill in the art of computer networks and
communications. The network 106 may include a plurality
of networks (e.g., private intranets, public networks such as
the Internet, etc.) and/or network types (e.g., wired net-
works, wireless networks such as Wi-Fi networks or cellular
networks, etc.). The network 106 may include any hardware,
firmware, and/or software arranged in hierarchies or struc-
tures that enable the components of the system 100 to
communicate as described without departing from the
description herein.

[0018] The object storage platform 108 is configured to
operate according to object storage principles as would be
understood by a person of ordinary skill in the art. The object
storage platform 108 may be configured to abstract the
storage of the associated data to be exposed and/or managed
as objects, which may include the data itself, associated
metadata, and/or a unique identifier of the particular object.
In some examples, the object storage platform 108 is con-
figured such that overwriting existing data and/or perform-
ing many small data writes is relatively expensive (e.g., the
platform 108 may not support overwriting, such that
changes to one byte of a file may result in the rewriting of
the entire file, many small files may be stored as individual
objects, resulting in many separate requests for object trans-
fers and other operations, etc.).

[0019] The LSM tree file system 110 is implemented on
the object storage platform 108, effectively transforming the
object storage interface of the platform 108 into a block
device interface where block offset values are used as keys
of key-value tuples and block content is used as the values
of the tuples. The LSM tree file system 110 includes a
catalog file 112 and a plurality of sorted data tables 114-116.
It should be understood that, while only two sorted data
tables are illustrated, the file system 110 may include more,
fewer, or different sorted data tables without departing from
the description herein. Each sorted data table 114-116

Jun. 11, 2020

includes an index 118 and a payload 120. It should be
understood that the LSM tree file system 110 is configured
to adhere to known LSM tree principles unless otherwise
specified herein (e.g., the LSM tree file system 110 is
optimized for “immutable write”, such that edited data is not
overwritten, but rather, replacement data is appended to
unused space in the file system, etc.). In some examples, the
catalog file 112 includes up-to-date metadata associated with
all sorted data tables 114-116 of the file system 110, such that
the catalog file 112 serves as a superblock for the entire file
system 110. Such metadata may include unique identifiers of
the tables 114-116 and other metadata used to identify
locations of data (e.g., identify the sorted data table within
which a particular set of data is stored, etc.) within the file
system 110 as described herein. The configuration of the
catalog file 112 is described in greater detail below with
respect to FIG. 2.

[0020] In some examples, the LSM tree file system 110
exposes application program interfaces (APIs) for use by
other entities, such as the client 104. For instance, the file
system 110 may expose a “lookup” API that enables the
client 104 to request data based on a provided key value or
other location data (e.g., table identifier, offset values,
address values, etc.) and an “update” API that enables the
client 104 to write or otherwise record data to the file system
110. Such APIs may be configured to perform a portion of
or all of the operations as described herein with respect to
interacting with the data stored in the file system 110.
[0021] It should be understood that, while use of an LSM
tree file system is primarily described, in other examples,
other types of write optimized tree structures and/or tech-
niques may be used (e.g., cache oblivious look-ahead arrays
(COLA), BE-trees, fractal cascade trees, copy on write,
etc.).

[0022] Further, in some examples, the object storage plat-
form 108 and associated LSM tree file system 110 are
configured to be used as a virtual disk by virtual machines
or other software entities on the client 104 or other software
entities associated with other devices.

[0023] Each of the sorted data tables 114-116 (e.g., Sorted
String Tables, etc.) store data in the payload 120 and index
118 is configured to provide information about the specific
locations of data in the payload 120. In some examples, the
LSM tree file system 110 provides access to data in the form
of data blocks of uniform size that are indexed by an offset
location or address of each data block in the file system (e.g.,
each data block may be 4 KB in size and indexed by a
numeric value that indicates a number of blocks that the data
block is offset from the beginning of the file system, etc.). In
such a configuration, the index 118 may contain keys that
indicate an offset location of the associated data block within
the file system and values mapped to the keys that indicate
an offset location of the data block within the specific
payload 120. Further, in some examples, catalog file 112 and
the index 118 and payload 120 of each sorted data table
114-116 may be stored as separate objects with respect to the
object storage platform 108. The structure of the sorted data
tables 114-116 are described in greater detail below with
respect to FIG. 2.

[0024] It should be understood that, in some examples, the
file system 110 may be configured to include bloom filters
that enable the efficient determination of whether a particu-
lar data tuple is present in a given sorted data table.
However, because the file system 110 includes a catalog file

US 2020/0183906 Al

112 and an index 118 for each sorted data table 114-116, the
metadata contained therein may be used to identify the
location of a particular data tuple as described herein with-
out using a bloom filter in other examples.

[0025] The client 104 includes a write data cache 122, a
catalog file copy 124, and a plurality of index copies
126-128. The write data cache 122 may be installed or
otherwise stored on the client 104. The client 104 is con-
figured to use the write data cache 122 when writing data to
the file system 110 and the catalog file copy 124 and index
copies 126-128 when reading data from the file system 110.
In some examples, the client 104 is configured to write data
to the write data cache 122 that is intended to be written to
the LSM tree file system 110. The client 104 may be
configured to only write data values that are new or are being
changed to the write data cache 122 rather than, for instance,
entire files that are largely the same but include some data
values being changed. The write data cache 122 may have an
associated capacity threshold and/or an expiration time
interval. The client 104 may be configured to send the data
in the write data cache 122 when the quantity of data in the
cache 122 meets or exceeds the capacity threshold. Addi-
tionally, or alternatively, the client 104 may be configured to
send the data in the write data cache 122 when the time
passed since the last write to the server 102 meets or exceeds
the expiration time interval of the cache 122. The capacity
threshold and/or expiration time interval may be defined as
default values or otherwise set by users of the system 100.

[0026] In some examples, the client 104 is configured to
use the locally cached catalog file copy 124 and index copies
126-128 to identity locations of data to be read from the file
system 110 prior to accessing the server 102. For instance,
to read a set of data from a particular location address in the
file system 110, the client 104 may search the catalog file
copy 124 to identify the sorted data table or tables on which
the desired set of data is stored and then search the index
copies 126-128 associated with the identified sorted data
table or tables for offset locations of the set of data within the
identified tables. The client 104 may then use the identified
tables and associated offset locations to request the desired
set of data from the file system 110 on the server 102. Such
use of the catalog file copy 124 and/or index copies 126-128
may reduce the relative resource costs associated with
performing the search operations and read operations in the
file system 110 on the server 102.

[0027] Further, the client 104 may be configured to main-
tain up-to-date versions of the catalog file copy 124 and
index copies 126-128 by retrieving or otherwise receiving
catalog file data and index data from the server 102 on a
periodic basis and/or when triggered by occurrence of
defined events. In some examples, the client 104 may
retrieve or otherwise receive updated versions of the catalog
file 112 from the server 102 and, based on the metadata
structure defined by the most recently received catalog file
version, generate up-to-date index copies 126-128. How-
ever, other methods for maintaining up-to-date versions of
the catalog file 112 are operable with the present disclosure.

[0028] Insome examples, the system may be configured to
provide additional features, such as compression, checksum
verification, encryption, or the like. For instance, the client
104 may be configured to compress data in a manner
understood by a person of ordinary skill in the art prior to
sending it to be written in the LSM tree file system 110. Such

Jun. 11, 2020

compression may require that the associated indexes (e.g.,
index 118, etc.) be configured to account for the compressed
size.

[0029] Alternatively, or additionally, the LSM tree file
system 110 may be configured to include checksums for the
data being stored in the sorted data tables 114-116. Such
checksums may be generated per block or based on another
data unit size and the checksums may be stored in the index
118 of the associated sorted data table 114. Later, when data
is ready by the client 104, the checksum in the index 118
may be verified according to methods understood by a
person of ordinary skill in the art.

[0030] In further examples, the system 100 may be con-
figured to provide encryption of data being stored on the
LSM tree file system 110. For instance, the client 104 may
be configured to encrypt data according to any known
technique prior to writing the data to the LSM tree file
system 110 and to decrypt the data according to the asso-
ciated decryption technique after it is retrieved from the
LSM tree file system 110. Because the file system 110 and
object storage platform 108 are largely agnostic regarding
the arrangement of the data therein, so long as the client 104
is configured to perform the encryption and decryption
operations, the server-side operations may be performed in
the same manner as described herein.

[0031] Further details regarding operations for reading
data from and writing data to the file system 110 from the
client 104 are provided below with respect to FIGS. 3, 4, and
5.

[0032] FIG. 2 is an exemplary block diagram illustrating
a configuration of an LSM tree file system 210 for use on an
object storage platform (e.g., object storage platform 108,
etc.) according to an embodiment. The LSM tree file system
210 includes a catalog file 212 and a plurality of sorted data
tables 214-216 as described herein. The plurality of sorted
data tables 214-216 are organized in a plurality of LSM tree
levels 230-236 according to known LLSM tree characteris-
tics.

[0033] The catalog file 212 includes sorted data table
metadata 238-240 associated with each of the sorted data
tables 214-216. Each sorted data table metadata 238-240
includes at least a table ID 242, a tree level 244, and a key
range 246. The table ID 242 is a unique identifier within file
system 210 for the associated sorted data table 214. It may
be in the form of a code, a name, or any other practical form
of identifier without departing from the description. The tree
level 244 is a value that indicates the level (e.g., LSM tree
levels 230, 232, 234, or 236, etc.) on which the associated
sorted data table is currently located. The LSM tree levels
230-236 are described in greater detail below, but it should
be understood that the tree levels 230-236 are generally
configured as levels or rows of data according known LSM
tree principles as would be understood by a person of
ordinary skill in the art. The key range 246 of a sorted data
table indicates a range of keys (e.g., offsets or addresses of
the file system, etc.) for which data is stored in the associated
sorted data table. For instance, if a sorted data table includes
data with keys from offset 100 to offset 150 in the file
system, the key range 246 of the sorted data table may be
configured to indicate the range from 100-150. Key ranges
246 may include a first key and a total number of keys or an
endpoint key to express a continuous key range. Alterna-
tively, or additionally, if a sorted data table includes multiple
ranges of contiguous keys, the key range 246 may be

US 2020/0183906 Al

configured to include each range (e.g., 100-150; 225-260;
300-380, etc.). In some examples, the catalog file 212 may
be in the form of, for instance, a JavaScript Object Notation
(JSON) file including the described metadata values.
[0034] The LSM tree file system 210 is configured to
arrange sorted data tables 214-216 in one or more L.SM tree
levels 230-236. It should be understood that, while sorted
data tables 214-216 are illustrated as part of the LSM tree
level 230, all the tree levels 230-236 may include one or
more sorted data tables 214-216 without departing from the
description herein. Further, it should be understood that the
file system 210 may include more, fewer, or different tree
levels than those illustrated without departing from the
description herein.

[0035] The LSM tree levels 230-236 are interrelated
according to a hierarchy according to LSM tree principles.
In some examples, the tree level 230 is the “top” level. All
data written to the file system 210 is initially written to one
or more sorted data tables 214 in the top level 230. The
lower levels 232-236 are created and/or populated with
sorted data tables 214-216 when data from the top level and
other relatively “higher” levels undergo a “compaction”
process, which is known in the art with respect to LSM trees.
Compaction may be performed when a tree level reaches a
defined capacity threshold of sorted data tables and/or based
on a defined time interval expiring. In some examples,
compaction results in one or more sorted data tables 214-216
on the top level 230 being combined or merged into a single
sorted data table and appended to the next level (e.g., LSM
tree level 232, etc.) of the LSM tree file system 210.
[0036] Further, while the top level 230 may include sorted
data tables with overlapping key ranges, the compaction
process results in such overlapping sorted data tables being
merged, such that none of the other levels of the LSM tree
file system 210 includes sorted data tables with overlapping
key ranges. Further, the sorted data tables 214-216 in levels
of'the file system below the top level may be arranged in key
order.

[0037] Additionally, each tree level of the LSM tree file
system 210 may be configured to be exponentially or
otherwise substantially larger than the tree level immedi-
ately above it (e.g., as illustrated by the variable width of
LSM tree levels 232, 234, and 236, etc.). Due to this
substantial increase in capacity from higher level to lower
level, large quantities of data may be stored and managed in
the LSM tree file system 210 using relatively few total tree
levels. It should be understood that this aspect of the LSM
tree file system 210 is generally based on known LLSM tree
principles and the capacity sizes of the various tree levels
230-236 may be set to any values in accordance with known
LSM tree principles without departing from the description.
[0038] Each sorted data table 214-216 includes an index
218 and a payload 220 as described herein. Each index 218
includes keys 248 mapped to offsets 250 of data blocks
252-256 in the associated payload. Thus, there is a key 248
in the index 218 associated with each data block 252-256 in
the payload 220 of a sorted data table 214. In some
examples, the data blocks 252-256 are sorted in key order
(e.g., lowest associated key 248 to highest associated key
248, etc.). The offset 250 for each key 248 indicates the
offset location of the associated data block 252-256 within
the payload 220. For instance, in a system where keys 248
are block offsets or addresses within the greater file system
210, a data block 252 associated with a key 248 of 2000

Jun. 11, 2020

(e.g., the 2000 data block of the greater file system 210,
etc.) may have an offset 250 of zero if it is the first data block
in the payload 220 of the associated sorted data table 214.
Thus, to access the data at offset 2000 of the file system 210,
the key 248 that includes the value “2000” is found in the
index 218, the mapped offset 250 of “0” is then identified,
and that offset 250 is used to find the location of the data
block 252 in the payload 220.

[0039] In some examples, data blocks 252-256 may be
configured to include associated keys 248 as well as payload
data. For instance, a data block’s key 248 may be located in
the first data location of the data block based on the
associated offset 250.

[0040] FIG. 3 is an exemplary flow chart 300 illustrating
a method of providing access to data on an object storage
platform (e.g., object storage platform 108, etc.) according
to an embodiment. In some examples, the method described
in FIG. 3 may be implemented by a component or compo-
nents of a system, such as system 100 of FIG. 1. At 302, an
LSM tree file system is accessed on an object storage
platform. The LSM tree file system may be installed on or
otherwise stored on the object storage platform as described
above with respect to FIGS. 1 and 2. In some examples,
accessing the LSM tree file system may be performed by a
component or components of the device upon which the
object storage platform is installed (e.g., the server 102,
etc.). Alternatively, or additionally, accessing the LSM tree
file system may be performed by a separate device and/or
components thereof (e.g., the client 104, etc.) as described
herein. It should be understood that accessing the LSM tree
file system may further include accessing a plurality of
sorted data tables and each sorted data table may include a
payload portion configured for storing sorted key-value data
tuples and an index portion for storing keys of the key-value
data tuples mapped to locations of associated key-value data
tuples in the payload portion, as described herein.

[0041] At 304, if a write data instruction is received, the
method proceeds to 306. Alternatively, if no write data
instruction is received, the method proceeds to 308. The
write instruction received at 304 may be from an application
of an associated device and/or based on user input received
by the associated device. For instance, use of the client 104
in system 100 results in write instructions associated with
writing data to the LSM tree file system 110 on the server
102 being received.

[0042] Based on receiving a write instruction at 304, a data
set associated with the received write instruction is written
to the LSM tree file system in at least one new sorted data
table at 306. In some examples, the data set being written is
written to a plurality of new sorted data tables according to
the processes described herein and/or according to known
LSM tree principles. Further, the data set being written may
be written from a write data cache (e.g., write data cache 122
of client 104, etc.), in which the data set had previously been
stored for a period of time. It should be understood that
writing data to the LSM tree file system includes writing
data to the associated object storage platform, and writing
the data to new sorted data tables or the like may result in
the creation of new objects within the object storage plat-
form (e.g., each index portion and payload portion of a
sorted data table may be written to separate objects, etc.)
and/or otherwise interacting with objects of the object
storage platform.

US 2020/0183906 Al

[0043] Additionally, in some examples, writing the data
set to the LSM tree file system may include execution of a
staging process to avoid interrupting current I/O operations
when a data set is written to the LSM tree file system. The
staging process may include cloning a second instance of the
current write data cache or other similar data cache, such
that one instance is used as the live data cache for receiving
new /O instructions and/or messages and the second
instance is used as a stable cache to be written to the LSM
tree file system. However, other staging methods are oper-
able with the present disclosure.

[0044] At 308, if a read data instruction is received, the
process proceeds to 310. Alternatively, if no read data
instruction is received, the process returns to 304. As with
the write instruction, the read instruction received at 308
may be from an application of an associated device and/or
based on user input received by the associated device.
Further, it should be understood that, while the flow chart
300 illustrates operations associated with a received write
instruction before steps associated with a received read
instruction, the receiving of write instructions and/or read
instructions may be independent processes, such that they
may occur in any order or sequence, based on the operations
of associated devices and/or components thereof.

[0045] At 310, based on receiving a read data instruction,
a data location or locations of data associated with the read
data instruction are identified based on index portions of the
sorted data tables of the LSM tree file system. As described
herein, in some examples, the index portions include map-
pings from keys, of key-value data tuples stored in the sorted
data tables, to locations (e.g., offset values, size of data
(useful since data may be compressed), addresses, etc.) of
the associated key-value data tuples within the sorted data
tables. Identifying a data location based on a read data
instruction may include using a key provided in the read data
instruction, identifying a sorted data table that includes data
associated with the key, and searching for the key in the
index portion of the sorted data table. Then, the data location
is identified based on the location to which the key is
mapped in the index portion.

[0046] In some examples, identifying the data location of
the data associated with the read data instruction includes
accessing a catalog file (e.g., catalog file 112, 212, etc.) that
includes metadata of the sorted data tables of the LSM tree
file system. The catalog file may be used to determine the
sorted data table that includes the key or keys provided in the
read data instruction based on key range metadata associated
with identifiers of the sorted data tables in the catalog file.
[0047] Further, identifying the data location may be based
on searching local copies of index portions of the sorted data
tables and/or associated catalog files as described herein
with respect to, for instance, client 104 and the associated
catalog file copy 124 and index copies 126-128.

[0048] At 312, the data associated with the read data
instruction is read from the sorted data table associated with
the identified data location of the LSM tree file system. It
should be understood that, in some examples, the read data
instruction may be associated with data in multiple sorted
data tables and the described method may include identify-
ing data locations in each sorted data table and then reading
the data from each sorted data table as described herein.
Reading the data may include requesting the data from the
LSM tree file system via a network connection (e.g., client
104 requesting data from server 102 via network 106, etc.).

Jun. 11, 2020

[0049] FIG. 4 is an exemplary sequence diagram 400
illustrating a method of reading data from an L.SM tree file
system (e.g. LSM tree file system 110, etc.) on an object
storage platform (e.g., object storage platform 108, etc.)
according to an embodiment. At 402, the client 104 receives
a read data instruction. As described above, the client 104
may receive read data instructions based on operations of
software or other components therein, based on provided
user input, and/or based on communication over network
connections with other entities.

[0050] At 404, the client 104 identifies a data location
using a local catalog file and indexes (e.g., catalog file copy
124 and index copies 126-128, etc.). As described above,
identifying the data location may include identifying a
sorted data table based on key range metadata in the local
catalog file and identifying the data location in the identified
sorted data table based on the local index of that sorted data
table.

[0051] At 406, the client 104 sends a data request to the
server 102 including the identified data location. The data
request may further include, for instance, identifiers of one
or more sorted data tables associated with the data location
of the data being requested. Additionally, the data request
may include an LSM tree level of the file system associated
with the data location. The data request may be sent over a
network connection (e.g., via network 106, etc.). In some
examples, the data request may include multiple data loca-
tions associated with multiple data requests being requested.
[0052] At 408, the server 102 receives the data request and
retrieves the requested data from the data location in the
LSM tree file system. The data retrieval may include seeking
in the LSM tree file system to the included data location.
Seeking to the data location may include identifying an LSM
tree level, a sorted data table, and/or an offset or address
within the sorted data table at which the data to be retrieved
is located.

[0053] At 410, the server 102 sends the retrieved data back
to the client 104. As described above, sending the retrieved
data may include sending the data over a network connec-
tion (e.g., via network 106, etc.). At 412, the client 104
receives the data from the server 102 and provides the data
in response to the read data instruction.

[0054] FIG. 5 is an exemplary sequence diagram 500
illustrating a method of writing data to an LSM tree file
system (e.g. LSM tree file system 110, etc.) on an object
storage platform (e.g., object storage platform 108, etc.)
according to an embodiment. At 502, the client 104 receives
a write data instruction. As described above, the client 104
may receive read data instructions based on operations of
software or other components therein, based on provided
user input, and/or based on communication over network
connections with other entities.

[0055] At 504, the data to be written is buffered in a write
data cache (e.g., write data cache 122, etc.). Data writes may
be stored or cached locally in this way to avoid performing
many relatively small write operations in the LSM tree file
structure and, instead, perform fewer and/or larger write
operations as data to be written builds up in the write data
cache. The data may remain in the write data cache until the
amount of data in the write data cache meets or exceeds a
capacity threshold and/or until a cache time interval expires.
For instance, if the capacity threshold of the write data cache
is 10 MB and the cache time interval is 10 minutes, a 3 MB
file written to the write data cache may remain in the cache

US 2020/0183906 Al

until more files or data are added to the cache to meet or
exceed 10 MB or until 10 minutes after the 3 MB file (or
other data written to the cache earlier) was written to the
write data cache. It should be understood that, in other
examples, more, fewer, or different thresholds or conditions
may be applied to the write data cache to determine when the
data in the cache is written to the LSM tree file structure.

[0056] At 506, the client 104 sends the data in the write
data cache to the server 102 to be written to the LSM tree file
structure and the associated object storage platform. In some
examples, the data of the write data cache may be converted
or otherwise transformed into one or more sorted data tables
for inclusion in the LSM tree file structure. As described
herein, sending the data in the write data cache may include
sending the data over a network connection (e.g., via net-
work 106, etc.).

[0057] At 508, the server 102 receives the data to be
written from the client 104 and appends the data to the top
level (e.g., tree level 230, etc.) of the LSM tree file system.
Based on known LSM tree principles, data written to the
LSM tree file system is written as new data in one or more
sorted data tables in the top row of the file system. The
written data may remain on the top level for a period of time
that depends on the total capacity of the top level and/or how
much other data is being written to the LSM tree file system.

[0058] At 510, the server 102 may perform a compaction
of the LSM tree file system if needed (e.g., when indicated
based on the “shape” of the LSM tree). It should be
understood that the compaction may be performed according
to known L.SM tree principles as would be understood by a
person of ordinary skill in the art. The compaction process
may result in some or all sorted data tables of a particular
tree level being combined into one or more sorted data tables
on a tree level immediately below the particular tree level.
Compaction may occur when the amount or data in the
particular row meets or exceeds a capacity threshold of that
level (e.g., the LSM tree is “out of shape”, etc.). In some
examples, the top level to which the received data is
appended has the smallest capacity threshold, such that
compaction from the top level to the second highest level
may happen relatively frequently. Compaction may further
enable improved ordering of the data that is moved down a
row and provides the ability to combine sorted data tables
with overlapping key ranges, eliminating some redundant
data storage.

[0059] After compaction is performed, the index portions
of the sorted data tables and the associated catalog file may
need to be updated to new versions that reflect the changes
to the structure of the LSM tree file system. At 512, the
server 102 sends such updated indexes and an updated
catalog file to the client 104, enabling the client 104 to
perform read data operations as described above with
respect to FIG. 4 using up-to-date local copies of the
metadata of the LSM tree file system. The sending of these
updated indexes and catalog file may be based on the
compaction occurring, based on the client 104 requesting
them, or based on another trigger event.

[0060] At 514, the client 104 records the updated index
copies and catalog file copy received from the server 102.
The client 104 is enabled to use the up-to-date metadata to
perform data read operations.

Jun. 11, 2020

Additional Example Scenarios

[0061] Aspects of the disclosure enable various additional
scenarios, such as next described.

[0062] In an example, an LSM tree file system is installed
on an object storage platform as described herein. The object
storage platform is installed on a server which is connected
via a network to multiple clients. One of the clients receives
instructions to write a new file to the LSM tree file system
on the server. The client places the new file in a write data
cache local to the client. Later, the client receives several
more instructions to write new files to the file system on the
server. All of the new files are added to the write data cache
on the client. The combination of all the new files to be
written exceeds a capacity threshold of the write data cache,
triggering the client to send the contents of the write data
cache to the server to be written to the LSM tree file system.
[0063] The server receives the new files from the client
and proceeds to write them to the LSM tree file system. The
new files are appended to the top level of the file system as
a plurality of new sorted data tables. In addition to writing
the new files, an index portion of each new sorted data table
is also written to the file system.

[0064] With the addition of the new files to the top level
of the LSM tree file system, a capacity threshold of the top
level is exceeded and a compaction is triggered. The server
combines the data of the plurality of sorted data tables in the
top level with the sorted data tables in the level immediately
below the top level (e.g., the second level, etc.) to form a
new second level that includes sorted data tables ordered by
key ranges. The compaction ensures that none of the sorted
data tables have overlapping key ranges. Once the data of
the top level of the LSM tree file system is compacted with
the second level, the top level may be considered clear to
receive more data.

[0065] In a further example, a client receives an instruc-
tion to read the data of a file that is stored in the LSM tree
file system of the server. The client has copies of the indexes
of the sorted data tables of the LSM tree file system stored,
as well as a copy of a catalog file that includes metadata
associated with the sorted data tables. The read instruction
includes block identifiers associated with the file to be read.
The client compares the block identifiers to the key ranges
of the sorted data tables that are stored in the catalog file
copy. Upon identifying a set of sorted data tables that
include the block identifiers of the file to be read, the client
accesses the index copies of those sorted data tables to
determine offset addresses of the data of the files. The client
then sends a data request to the server that includes the
identifiers of the identified sorted data tables and the offset
addresses of the requested data within those sorted data
tables. The server retrieves the data based on the provided
location data values and returns it to the client as requested.

Exemplary Operating Environment

[0066] The present disclosure is operable with a comput-
ing apparatus according to an embodiment as a functional
block diagram 600 in FIG. 6. In an embodiment, compo-
nents of a computing apparatus 618 may be implemented as
a part of an electronic device according to one or more
embodiments described in this specification. The computing
apparatus 618 comprises one or more processors 619 which
may be microprocessors, controllers or any other suitable
type of processors for processing computer executable

US 2020/0183906 Al

instructions to control the operation of the electronic device.
Alternatively, or in addition, the processor 619 is any
technology capable of executing logic or instructions, such
as a hardcoded machine. Platform software comprising an
operating system 620 or any other suitable platform software
may be provided on the apparatus 618 to enable application
software 621 to be executed on the device. According to an
embodiment, installing or otherwise integrating an LSM tree
file system on an object storage platform as described herein
may be accomplished by software, hardware, or both.

[0067] Computer executable instructions may be provided
using any computer-readable media that are accessible by
the computing apparatus 618. Computer-readable media
may include, for example, computer storage media such as
a memory 622 and communications media. Computer stor-
age media, such as a memory 622, include volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or the like. Computer storage media
include, but are not limited to, RAM, ROM, EPROM,
EEPROM, persistent memory, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other non-transmission medium that can be
used to store information for access by a computing appa-
ratus. In contrast, communication media may embody com-
puter readable instructions, data structures, program mod-
ules, or the like in a modulated data signal, such as a carrier
wave, or other transport mechanism. As defined herein,
computer storage media do not include communication
media. Therefore, a computer storage medium should not be
interpreted to be a propagating signal per se. Propagated
signals per se are not examples of computer storage media.
Although the computer storage medium (the memory 622) is
shown within the computing apparatus 618, it will be
appreciated by a person skilled in the art, that the storage
may be distributed or located remotely and accessed via a
network or other communication link (e.g. using a commu-
nication interface 623).

[0068] The computing apparatus 618 may comprise an
input/output controller 624 configured to output information
to one or more output devices 625, for example a display or
a speaker, which may be separate from or integral to the
electronic device. The input/output controller 624 may also
be configured to receive and process an input from one or
more input devices 626, for example, a keyboard, a micro-
phone or a touchpad. In one embodiment, the output device
625 may also act as the input device. An example of such a
device may be a touch sensitive display. The input/output
controller 624 may also output data to devices other than the
output device, e.g. a locally connected printing device. In
some embodiments, a user may provide input to the input
device(s) 626 and/or receive output from the output device
(s) 625.

[0069] The functionality described herein can be per-
formed, at least in part, by one or more hardware logic
components. According to an embodiment, the computing
apparatus 618 is configured by the program code when
executed by the processor 619 to execute the embodiments
of the operations and functionality described. Alternatively,
or in addition, the functionality described herein can be
performed, at least in part, by one or more hardware logic

Jun. 11, 2020

components. For example, and without limitation, illustra-
tive types of hardware logic components that can be used
include Field-programmable Gate Arrays (FPGAs), Appli-
cation-specific Integrated Circuits (ASICs), Program-spe-
cific Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs),
Graphics Processing Units (GPUs).

[0070] At least a portion of the functionality of the various
elements in the figures may be performed by other elements
in the figures, or an entity (e.g., processor, web service,
server, application program, computing device, etc.) not
shown in the figures.

[0071] Although described in connection with an exem-
plary computing system environment, examples of the dis-
closure are capable of implementation with numerous other
general purpose or special purpose computing system envi-
ronments, configurations, or devices.

[0072] Examples of well-known computing systems, envi-
ronments, and/or configurations that may be suitable for use
with aspects of the disclosure include, but are not limited to,
mobile or portable computing devices (e.g., smartphones),
personal computers, server computers, hand-held (e.g., tab-
let) or laptop devices, multiprocessor systems, gaming con-
soles or controllers, microprocessor-based systems, set top
boxes, programmable consumer electronics, mobile tele-
phones, mobile computing and/or communication devices in
wearable or accessory form factors (e.g., watches, glasses,
headsets, or earphones), network PCs, minicomputers,
mainframe computers, distributed computing environments
that include any of the above systems or devices, and the
like. In general, the disclosure is operable with any device
with processing capability such that it can execute instruc-
tions such as those described herein. Such systems or
devices may accept input from the user in any way, includ-
ing from input devices such as a keyboard or pointing
device, via gesture input, proximity input (such as by
hovering), and/or via voice input.

[0073] Examples of the disclosure may be described in the
general context of computer-executable instructions, such as
program modules, executed by one or more computers or
other devices in software, firmware, hardware, or a combi-
nation thereof. The computer-executable instructions may
be organized into one or more computer-executable com-
ponents or modules. Generally, program modules include,
but are not limited to, routines, programs, objects, compo-
nents, and data structures that perform particular tasks or
implement particular abstract data types. Aspects of the
disclosure may be implemented with any number and orga-
nization of such components or modules. For example,
aspects of the disclosure are not limited to the specific
computer-executable instructions or the specific components
or modules illustrated in the figures and described herein.
Other examples of the disclosure may include different
computer-executable instructions or components having
more or less functionality than illustrated and described
herein.

[0074] Inexamples involving a general-purpose computer,
aspects of the disclosure transform the general-purpose
computer into a special-purpose computing device when
configured to execute the instructions described herein.
[0075] An example system for storing data on an object
storage platform comprises: the object storage platform; a
file system installed on the object storage platform, the file
system configured as a LSM tree data structure; wherein the

US 2020/0183906 Al

LSM tree data structure includes a plurality of sorted data
tables, each sorted data table including a payload portion
configured for storing sorted key-value data tuples and an
index portion for storing keys of the key-value data tuples
mapped to offset locations of associated key-value data
tuples in the payload portion.

[0076] An example method for accessing data on an object
storage platform comprises: accessing, by a processor, a
LSM tree file system on the object storage platform, the
LSM tree file system including a plurality of sorted data
tables, each sorted data table including a payload portion
configured for storing sorted key-value data tuples and an
index portion for storing keys of the key-value data tuples
mapped to locations of associated key-value data tuples in
the payload portion; based on receiving a write data instruc-
tion associated with a first data set, writing, by the processor,
the first data set to the LSM tree file system in at least one
new sorted data table; and based on receiving a read data
instruction associated with a second data set, identifying, by
the processor, a data location associated with the second data
set based on index portions of the plurality of sorted data
tables and reading the second data set from a sorted data
table associated with the identified data location.

[0077] A non-transitory computer readable storage
medium having stored thereon program code executable by
a first computer system at a first site, the program code
embodying a method for accessing data on an object storage
platform, the method comprising: accessing a LSM tree file
system on the object storage platform, the LSM tree file
system including a plurality of sorted data tables, each sorted
data table including a payload portion configured for storing
sorted key-value data tuples and an index portion for storing
keys of the key-value data tuples mapped to locations of
associated key-value data tuples in the payload portion;
based on receiving a write data instruction associated with a
first data set, writing the first data set to the LSM tree file
system in at least one new sorted data table; and based on
receiving a read data instruction associated with a second
data set, identifying a data location associated with the
second data set based on index portions of the plurality of
sorted data tables and reading the second data set from a
sorted data table associated with the identified data location.
[0078] Alternatively, or in addition to the other examples
described herein, examples include any combination of the
following:

[0079] wherein, for each sorted data table, the index
portion is stored as a first object of the object storage
platform and the payload portion is stored as a second
object of the object storage platform.

[0080] wherein the LSM tree data structure further
includes a catalog file configured for storing table
identifiers mapped to key ranges of the plurality of
sorted data tables.

[0081] wherein the object storage platform is installed
on at least one server device connected to a network;

[0082] at least one client device is connected to the
network; wherein the client device is configured to at
least one of read data from and write data to the object
storage platform using the file system via the network.

[0083] wherein at least one client device is configured
to locally store index portion copies of the index
portions of the plurality of sorted data tables and a
catalog file copy of the catalog file.

Jun. 11, 2020

[0084] wherein reading data, by at least one client
device, from the object storage platform using the file
system includes: identifying a data location associated
with the data to be read in the file system based on the
locally stored index portion copies and catalog file
copy; and requesting the data to be read from the server
device via the network based on the identified data
location.

[0085] wherein writing data, by at least one client
device, to the object storage platform using the file
system includes: buffering data to be written in a write
data cache; and based on at least one of a cache
capacity threshold being exceeded and a cache time
interval expiring, sending the data in the write data
cache to the server device via the network.

[0086] wherein the server device is configured to: based
on receiving data to be written to the object storage
platform, appending the received data as at least one
sorted data table to a top row of the LSM tree structure
of the file system.

[0087] Any range or device value given herein may be
extended or altered without losing the effect sought, as will
be apparent to the skilled person.

[0088] While no personally identifiable information is
tracked by aspects of the disclosure, examples have been
described with reference to data monitored and/or collected
from the users. In some examples, notice may be provided
to the users of the collection of the data (e.g., via a dialog
box or preference setting) and users are given the opportu-
nity to give or deny consent for the monitoring and/or
collection. The consent may take the form of opt-in consent
or opt-out consent.

[0089] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

[0090] It will be understood that the benefits and advan-
tages described above may relate to one embodiment or may
relate to several embodiments. The embodiments are not
limited to those that solve any or all of the stated problems
or those that have any or all of the stated benefits and
advantages. It will further be understood that reference to
‘an’ item refers to one or more of those items.

[0091] The embodiments illustrated and described herein
as well as embodiments not specifically described herein but
within the scope of aspects of the claims constitute exem-
plary means for accessing an L.SM tree file system on the
object storage platform, the LSM tree file system including
a plurality of sorted data tables, each sorted data table
including a payload portion configured for storing sorted
key-value data tuples and an index portion for storing keys
of the key-value data tuples mapped to locations of associ-
ated key-value data tuples in the payload portion; based on
receiving a write data instruction associated with a first data
set, exemplary means for writing the first data set to the LSM
tree file system in at least one new sorted data table; and
based on receiving a read data instruction associated with a
second data set, exemplary means for identifying a data
location associated with the second data set based on index
portions of the plurality of sorted data tables and reading the
second data set from a sorted data table associated with the

US 2020/0183906 Al

identified data location. The illustrated one or more proces-
sors 619 together with the computer program code stored in
memory 622 constitute exemplary processing means for
accessing the LSM tree file system on an object storage
platform, maintaining the LSM tree file system, and per-
forming data operations thereon as described herein.
[0092] The term “comprising” is used in this specification
to mean including the feature(s) or act(s) followed thereaf-
ter, without excluding the presence of one or more additional
features or acts.
[0093] In some examples, the operations illustrated in the
figures may be implemented as software instructions
encoded on a computer readable medium, in hardware
programmed or designed to perform the operations, or both.
For example, aspects of the disclosure may be implemented
as a system on a chip or other circuitry including a plurality
of interconnected, electrically conductive elements.
[0094] The order of execution or performance of the
operations in examples of the disclosure illustrated and
described herein is not essential, unless otherwise specified.
That is, the operations may be performed in any order, unless
otherwise specified, and examples of the disclosure may
include additional or fewer operations than those disclosed
herein. For example, it is contemplated that executing or
performing a particular operation before, contemporane-
ously with, or after another operation is within the scope of
aspects of the disclosure.
[0095] When introducing elements of aspects of the dis-
closure or the examples thereof, the articles “a,” “an,” “the,”
and “said” are intended to mean that there are one or more
of the elements. The terms “comprising,” “including,” and
“having” are intended to be inclusive and mean that there
may be additional elements other than the listed elements.
The term “exemplary” is intended to mean “an example of
” The phrase “one or more of the following: A, B, and C”
means “at least one of A and/or at least one of B and/or at
least one of C.”
[0096] Having described aspects of the disclosure in
detail, it will be apparent that modifications and variations
are possible without departing from the scope of aspects of
the disclosure as defined in the appended claims. As various
changes could be made in the above constructions, products,
and methods without departing from the scope of aspects of
the disclosure, it is intended that all matter contained in the
above description and shown in the accompanying drawings
shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. A computerized method for accessing data on an object
storage platform, the method comprising:
accessing, by a processor, a log-structured merge (LSM)
tree file system on the object storage platform, the LSM
tree file system including a plurality of sorted data
tables, each sorted data table including a payload
portion configured for storing sorted key-value data
tuples and an index portion for storing keys of the
key-value data tuples mapped to locations of associated
key-value data tuples in the payload portion;
based on receiving a write data instruction associated with
a first data set, writing, by the processor, the first data
set to the LSM tree file system in at least one new sorted
data table; and
based on receiving a read data instruction associated with
a second data set, identifying, by the processor, a data
location associated with the second data set based on

Jun. 11, 2020

index portions of the plurality of sorted data tables and
reading the second data set from a sorted data table
associated with the identified data location.

2. The computerized method of claim 1, wherein, for each
sorted data table, the index portion is stored on a first object
of the object storage platform and the payload portion is
stored as a second object of the object storage platform.

3. The computerized method of claim 1, wherein the LSM
tree file system further includes a catalog file configured for
storing table identifiers mapped to key ranges of the plurality
of sorted data tables.

4. The computerized method of claim 3, wherein the
object storage platform is installed on at least one server
device connected to a network;

the processor is installed on a client device connected to
the network; and

wherein the client device is configured to at least one of
read data from and write data to the object storage
platform using the LSM tree file system via the net-
work.

5. The computerized method of claim 4, further compris-

ing:

storing, by the processor, index portion copies of the
index portions of the plurality of sorted data tables and
a catalog file copy of the catalog file on the client
device.

6. The computerized method of claim 5, wherein identi-
fying the data location includes identifying the data location
associated with the second data set based on the locally
stored index portion copies and the catalog file copy; and

wherein reading the second data set includes requesting
the second data set from the server device via the
network based on the identified data location.

7. The computerized method of claim 4, wherein writing
the first data set to the LSM tree file system includes:

buffering the first data set in a write data cache on the
client device; and

based on at least one of a cache capacity threshold being
exceeded and a cache time interval expiring, sending
the data in the write data cache to the server device via
the network.

8. A system for storing data on an object storage platform,

the system comprising:

the object storage platform;

a file system installed on the object storage platform, the
file system configured as a log-structured merge (LSM)
tree data structure;

a processor;

a non-transitory computer readable medium having stored
thereon program code for accessing data on the object
storage platform, the program code causing the proces-
sor to:

access the LSM tree file system on the object storage
platform, the LSM tree file system including a plurality
of sorted data tables, each sorted data table including a
payload portion configured for storing sorted key-value
data tuples and an index portion for storing keys of the
key-value data tuples mapped to locations of associated
key-value data tuples in the payload portion;

based on receiving a write data instruction associated with
a first data set, write the first data set to the LSM tree
file system in at least one new sorted data table; and

based on receiving a read data instruction associated with
a second data set, identify a data location associated

US 2020/0183906 Al

with the second data set based on index portions of the
plurality of sorted data tables and read the second data
set from a sorted data table associated with the identi-
fied data location.

9. The system of claim 8, wherein, for each sorted data
table, the index portion is stored as a first object of the object
storage platform and the payload portion is stored as a
second object of the object storage platform.

10. The system of claim 8, wherein the LSM tree data
structure further includes a catalog file configured for storing
table identifiers mapped to key ranges of the plurality of
sorted data tables.

11. The system of claim 10, wherein the object storage
platform is installed on at least one server device connected
to a network;

the system further comprises at least one client device

connected to the network; and

wherein the client device is configured to at least one of

read data from and write data to the object storage
platform using the file system via the network.

12. The system of claim 11, wherein the at least one client
device is configured to store index portion copies of the
index portions of the plurality of sorted data tables and a
catalog file copy of the catalog file.

13. The system of claim 12, wherein reading data, by the
at least one client device, from the object storage platform
using the file system includes:

identifying a data location associated with the data to be

read in the file system based on the locally stored index
portion copies and catalog file copy; and

requesting the data to be read from the server device via

the network based on the identified data location.

14. The system of claim 10, wherein writing data, by the
at least one client device, to the object storage platform
using the file system includes:

buffering data to be written in a write data cache on the

client device; and

based on at least one of a cache capacity threshold being

exceeded and a cache time interval expiring, sending
the data in the write data cache to the server device via
the network.

15. A non-transitory computer readable storage medium
having stored thereon program code executable by a first
computer system at a first site, the program code embodying
a method for accessing data on an object storage platform,
the method comprising:

accessing a log-structured merge (LSM) tree file system

on the object storage platform, the LSM tree file system

Jun. 11, 2020

including a plurality of sorted data tables, each sorted
data table including a payload portion configured for
storing sorted key-value data tuples and an index
portion for storing keys of the key-value data tuples
mapped to locations of associated key-value data tuples
in the payload portion;
based on receiving a write data instruction associated with
a first data set, writing the first data set to the LSM tree
file system in at least one new sorted data table; and

based on receiving a read data instruction associated with
a second data set, identifying a data location associated
with the second data set based on index portions of the
plurality of sorted data tables and reading the second
data set from a sorted data table associated with the
identified data location.

16. The non-transitory computer readable storage medium
of claim 15, wherein, for each sorted data table, the index
portion is stored on a first object of the object storage
platform and the payload portion is stored as a second object
of the object storage platform.

17. The non-transitory computer readable storage medium
of claim 15, wherein the LSM tree file system further
includes a catalog file configured for storing table identifiers
mapped to key ranges of the plurality of sorted data tables.

18. The non-transitory computer readable storage medium
of claim 17, wherein the object storage platform is installed
on at least one server device connected to a network; the
processor is installed on a client device connected to the
network; and wherein the client device is configured to at
least one of read data from and write data to the object
storage platform using the LSM tree file system via the
network.

19. The non-transitory computer readable storage medium
of claim 18, wherein the computer-executable instructions,
upon execution by a processor, further cause the processor
to at least:

locally store index portion copies of the index portions of

the plurality of sorted data tables and a catalog file copy
of the catalog file.

20. The non-transitory computer readable storage medium
of claim 19, wherein identifying the data location includes
identifying the data location associated with the second data
set based on the locally stored index portion copies and the
catalog file copy; and

wherein reading the second data set includes requesting

the second data set from the server device via the
network based on the identified data location.

#* #* #* #* #*

