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(57) ABSTRACT

Systems and methods are provided for target tracking using
a quality indicator during radiation therapy treatment. An
exemplary method may include determining a localization
result indicating a location of a target in a plurality of images
representative of images acquired in a radiation therapy
treatment session. The method may also include determining
a quality indicator for each localization result. The method
may further include extracting one or more features from
each localization result. In addition, the method may include
training the classifier using the localization result and one or
more of the extracted features.
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SYSTEM AND METHOD FOR TARGET
TRACKING USING A QUALITY INDICATOR
DURING RADIATION THERAPY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application claims the benefit of pri-
ority to U.S. Provisional Application No. 62/186,743, filed
Jun. 30, 2015, the entire contents of which are incorporated
herein by reference.

TECHNICAL FIELD

[0002] The disclosure generally relates to radiation
therapy or radiotherapy. More specifically, this disclosure
relates to systems and methods for determining tracking of
a target organ during radiation therapy.

BACKGROUND

[0003] Radiotherapy is used to treat cancers and other
ailments in mammalian (e.g., human and animal) tissue. One
such radiotherapy technique is a Gamma Knife, by which a
patient is irradiated by a large number of low-intensity
gamma rays that converge with high intensity and high
precision at a target (e.g., a tumor). In another embodiment,
radiotherapy is provided using a linear accelerator, whereby
a tumor is irradiated by high-energy particles (e.g., elec-
trons, protons, photons, ions, and the like). The placement
and dose of the radiation beam must be accurately controlled
to ensure the tumor receives the prescribed radiation, and the
placement of the beam should be such as to minimize
damage to the surrounding healthy tissue, often called the
organ(s) at risk (OARS). Furthermore, in yet another
embodiment, radiotherapy can be provided by brachy-
therapy, which allows high doses of radiation to be placed
internally at specific areas of the body.

[0004] When using an external radiation therapy, the
radiation beam may be shaped to match a shape of the tumor,
such as by using a multileaf collimator (e.g., multileaf
collimator includes multiple tungsten leaves that may move
independently of one another to create customized radiation
beam shapes). (Radiation is termed “prescribed” because a
physician orders a predefined amount of radiation to the
tumor and surrounding organs similar to a prescription for
medicine).

[0005] Traditionally, for each patient, a radiation therapy
treatment plan (“treatment plan”) may be created using an
optimization technique based on clinical and dosimetric
objectives and constraints (e.g., the maximum, minimum,
and mean doses of radiation to the tumor and critical
organs). The treatment planning procedure may include
using a three-dimensional image of the patient to identify a
target region (e.g., the tumor) and to identify critical organs
near the tumor. Each structure (e.g., a target, a tumor, an
OAR, etc.) can be discretized into a finite number of volume
cubes, known as voxels. Creation of a treatment plan can be
a time consuming process where a planner tries to comply
with various treatment objectives or constraints (e.g., dose
volume histogram (DVH) objectives), taking into account
their individual importance (e.g., weighting) in order to
produce a treatment plan which is clinically acceptable. This
task can be a time-consuming trial-and-error process that is
complicated by the various organs at risk (OARs), because
as the number of OARs increases (e.g., up to thirteen or
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more for a head-and-neck treatment), so does the complexity
of the process. OARs distant from a tumor may be easily
spared from radiation, while OARs close to or overlapping
a target tumor may be difficult to spare.

[0006] Computed Tomography (CT) imaging traditionally
serves as the primary source of image data for treatment
planning for radiation therapy. CT images offer accurate
representation of patient geometry, and CT values can be
directly converted to electron densities (e.g., Hounsfield
units) for radiation dose calculation. However, using CT
causes the patient to be exposed to additional radiation
dosage. In addition to CT images, magnetic resonance
imaging (MRI) scans can be used in radiation therapy due to
their superior soft-tissue contrast, as compared to CT
images. MRI is free of ionizing radiation and can be used to
capture functional information of the human body, such as
tissue metabolism and functionality.

[0007] Imaging systems such as computed tomography
(CT), ultrasound, fluoroscopy, and magnetic resonance
imaging (MRI) may be used to determine the location of a
target and to track the target (e.g., an organ, a tumor, and the
like). MRI can be used because it provides excellent soft
tissue contrast without using ionizing radiation as used by
CT. An example of a radiotherapy treatment system inte-
grated with an imaging system may include an MRI-Linac,
which may use three-dimensional (3D) images of a target
(e.g., a tumor). The MRI apparatus of the MRI-Linac may
provide a plurality of images that corresponds to a partial
map of hydrogen nuclei in tissues of the patient. The patient
images may be acquired in a one-dimensional (1D) line, a
two-dimensional (2D) plane, or in a 3D volume. Because
organs and tumors move within a patient’s body, fast and
accurate 3D localization of the target is important. For
instance, a target organ or tumor may move because of
various types of motion (e.g., respiratory, cardiac, peristalsis
or other types of patient motion).

[0008] Treatment outcomes depend upon many factors.
Those factors include accurate target contouring, correct
dose calculation and delivery, precise radiation beam colli-
mation, and accurate patient positioning, which includes
precise localization of a moving tumor. Typically both
patient setup and intrafraction monitoring for radiation
therapy treatment uses image localization using bony land-
marks, fiducial markers, or soft tissue.

[0009] Images of the patient’s anatomy taken at different
times may be analyzed to determine the movement of this
anatomy over the intervening period. This may be done
between images of the same modality, or between images of
different modalities. A human operator monitoring the
patient’s position has problems of inattention, and is not able
to provide correction in real time. Therefore it is useful to
apply image analysis methods to localize the anatomy, and
adjust the treatment (e.g. linac gating, or MLC movement),
in real time. However, most localization algorithms do not
provide information whether the results of localization are
adequate for determining target motion. Therefore, what is
needed is a method and system that can quickly, efficiently,
and automatically determine in real-time the quality of the
localization of a target in an image, which can provide
information as to whether the treatment decision (to adjust
or not) can be considered reliable.
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SUMMARY

[0010] In one aspect, the present disclosure involves a
method for training a classifier for determining a quality of
target localization from a plurality of images acquired by an
imaging device during radiation therapy treatment to a
patient. The method may include determining a localization
result indicating a location of a target in a plurality of images
representative of images acquired in a radiation therapy
treatment session. The method may also include determining
a quality indicator for each localization result. The method
may further include extracting one or more features from
each localization result. In addition, the method may include
training the classifier using the localization result and one or
more of the extracted features.

[0011] In another aspect, the present disclosure involves a
method for determining a quality of target localization from
a plurality of images acquired by an imaging device during
radiation therapy treatment to a patient. The method may
include determining a localization result indicating a loca-
tion of a target in a plurality of images acquired during
radiation therapy treatment to the patient. The method may
also include determining a localization quality of the local-
ization result for tracking the location of the target using a
classifier. The method may further include providing to a
user an indication of the localization quality or taking
treatment related action based on the localization quality.

[0012] In a further aspect, the present disclosure involves
a system for training a classifier for determining a quality of
target localization from a plurality of images acquired by an
imaging device during radiation therapy treatment to a
patient. The system may include a memory for storing
computer-executable instructions. The system may also
include a processor communicatively coupled to the
memory. The computer-executable instructions, when
executed by the processor, may cause the processor to
perform various operations. The operations may include
determining a localization result indicating a location of a
target in a plurality of images representative of images
acquired in a radiation therapy treatment session. The opera-
tions may also include determining a quality indicator for
each localization result. The operations may further include
extracting one or more features from each localization result.
In addition, the operations may include training the classifier
using the localization result and one or more of the extracted
features.

[0013] In another aspect, the present disclosure involves a
system for determining a quality of target localization from
a plurality of images acquired by an imaging device during
radiation therapy treatment to a patient. The system may
include a memory for storing computer-executable instruc-
tions. The system may also include a processor communi-
catively coupled to the memory. The computer-executable
instructions, when executed by the processor, may cause the
processor to perform various operations. The operations
may include determining a localization result indicating a
location of a target in a plurality of images acquired during
radiation therapy treatment to the patient. The operations
may also include determining a localization quality of the
localization result for tracking the location of the target
using a classifier. The operations may further include pro-
viding to a user an indication of the localization quality or
taking treatment related action based on the localization

quality.
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[0014] In a further aspect, the present disclosure involves
a non-transitory computer-readable medium that stores a set
of instructions that is executable by at least one processor of
a device to cause the device to perform a method for training
a classifier for determining a quality of target localization
from a plurality of images acquired by an imaging device
during radiation therapy treatment to a patient. The method
may include determining a localization result indicating a
location of a target in a plurality of images representative of
images acquired in a radiation therapy treatment session.
The method may also include determining a quality indica-
tor for each localization result. The method may further
include extracting one or more features from each localiza-
tion result. In addition, the method may include training the
classifier using the localization result and one or more of the
extracted features.

[0015] In a further aspect, the present disclosure involves
a non-transitory computer-readable medium that stores a set
of instructions that is executable by at least one processor of
a device to cause the device to perform a method for
determining a quality of target localization from a plurality
of images acquired by an imaging device during radiation
therapy treatment to a patient. The method may include
determining a localization result indicating a location of a
target in a plurality of images acquired during radiation
therapy treatment to the patient. The method may also
include determining a localization quality of the localization
result for tracking the location of the target using a classifier.
The method may further include providing to a user an
indication of the localization quality or taking treatment
related action based on the localization quality.

[0016] Additional objects and advantages of the present
disclosure will be set forth in part in the following detailed
description, and in part will be obvious from the description,
or may be learned by practice of the present disclosure. The
objects and advantages of the present disclosure will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the appended claims.
[0017] It is to be understood that the foregoing general
description and the following detailed description are exem-
plary and explanatory only, and are not restrictive of the
invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Inthe drawings, which are not necessarily drawn to
scale, like numerals may describe similar components in
different views. Like numerals having letter suffixes or
different letter suffixes may represent different instances of
similar components. The drawings illustrate generally, by
way of example, but not by way of limitation, various
embodiments, and together with the description and claims,
serve to explain the disclosed embodiments. When appro-
priate, the same reference numbers are used throughout the
drawings to refer to the same or like parts. Such embodi-
ments are demonstrative and not intended to be exhaustive
or exclusive embodiments of the present apparatuses, sys-
tems, or methods.

[0019] FIG. 1 illustrates an exemplary radiotherapy sys-
tem to localize and track a three-dimensional target for
radiation therapy.

[0020] FIG. 2 illustrates an exemplary radiotherapy
device, a Gamma Knife that can be used in the radiotherapy
system of FIG. 1.
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[0021] FIG. 3 illustrates an exemplary radiotherapy
device, a linear accelerator that can be used in the radio-
therapy system of FIG. 1.

[0022] FIG. 4 depicts a block diagram illustrating training
a classifier.
[0023] FIG. 5 depicts a block diagram illustrating using

the classifier of FIG. 4 for target tracking.

[0024] FIG. 6 illustrates a flow chart of an exemplary
method to track a moving target during radiation therapy
using the classifier of FIG. 4.

DETAILED DESCRIPTION

[0025] FIG. 1 illustrates an exemplary radiotherapy sys-
tem 100 for generating a radiation therapy treatment plan or
updating an existing radiation therapy treatment plan using
a dose distribution as a treatment objective, wherein the
updated treatment plan can be used to treat a patient with
radiation therapy. The radiotherapy system 100 may include
a radiation therapy device 110 connected to a network 130
that is connected to the Internet 132. The network 130 can
connect the radiation therapy device 110 with a database
140, a hospital database 142, an oncology information
system (OIS) 150 (e.g., which may provide patient infor-
mation), a treatment planning system (TPS) 160 (e.g., for
generating radiation therapy treatment plans to be used by
the radiotherapy device 110), an image acquisition device
170, a display device 180, and/or an user interface 190.
[0026] The radiotherapy device 110 may include a pro-
cessor circuit 112, a memory device 116, and a communi-
cation interface 114. Memory device 116 may store com-
puter executable instructions for an operating system 118,
treatment plans 120, and any other computer executable
instructions to be executed by the processor circuit 112.
[0027] Processor circuit 112 may be communicatively
coupled to the memory device 116, and processor circuit 112
may be configured to execute computer executable instruc-
tions stored in the memory device 116. For example, pro-
cessor circuit 112 may execute treatment plans 120 to
implement functionalities of using a localization module
123, a quality module 124, a feature extraction module 127,
and a classification module 126. In some embodiments, an
optional supervised machine learning module 125 may also
be included in memory 116 to perform training operations
on the fly, for example to retrain a classifier in the clinic. In
FIG. 1, supervised machine learning module 125 is depicted
in dashed lines to indicate that it is an optional component.
Further the processor circuit 112 may capture a plurality of
images 122 from the image acquisition device 170 and store
the images 122 in memory device 116. In addition, processor
circuit 112 may execute the treatment plans 120 (e.g., such
as Monaco® software manufactured by Elekta).

[0028] The processor circuit 112 may be a processing
device, include one or more general-purpose processing
devices such as a microprocessor, a central processing unit
(CPU), a graphics processing unit (GPU), an accelerated
processing unit (APU), or the like. More particularly, pro-
cessor circuit 112 may be a complex instruction set com-
puting (CISC) microprocessor, a reduced instruction set
computing (RISC) microprocessor, a very long instruction
Word (VLIW) microprocessor, a processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processor circuit 112 may also be
one or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
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grammable gate array (FPGA), a digital signal processor
(DSP), a System on a Chip (SoC), or the like. As would be
appreciated by those skilled in the art, in some embodi-
ments, processor circuit 112 may be a special-purpose
processor, rather than a general-purpose processor. Proces-
sor circuit 112 may include one or more known processing
devices, such as a microprocessor from the Pentium™,
Core™, Xeon™, or Itanium® family manufactured by
Intel™, the Turion™, Athlon™, Sempron™, Opteron™,
FX™_ Phenom™ family manufactured by AMD™, or any
of various processors manufactured by Sun Microsystems.
Processor circuit 112 may also include graphical processing
units such as a GPU from the GeForce®, Quadro®, Tesla®
family manufactured by Nvidia™, GMA, Iris™ family
manufactured by Intel™, or the Radeon™ family manufac-
tured by AMD™. Processor circuit 112 may also include
accelerated processing units such as the Desktop A-4 (6, 8)
Series manufactured by AMD™, the Xeon Phi™ family
manufactured by Inte]™. The disclosed embodiments are
not limited to any type of processor(s) or processor circuits
otherwise configured to meet the computing demands of
identifying, analyzing, maintaining, generating, and/or pro-
viding large amounts of imaging data or manipulating such
imaging data to localize and track a target or to manipulate
any other type of data consistent with the disclosed embodi-
ments. In addition, the term “processor” or processor circuit
may include more than one processor, for example, a multi-
core design or a plurality of processors each having a
multi-core design. Processor circuit 112 can execute
sequences of computer program instructions, stored in
memory 116, to perform various operations, processes,
methods that will be explained in greater detail below.

[0029] Memory device 116 can store image data 122 (e.g.,
3D MRI, 4D MR, 2D slices, etc.) received from the image
acquisition device 170, or any other type of data/information
in any format that the radiotherapy device 110 may use to
perform operations consistent with the disclosed embodi-
ments. Memory device 116 may include a read-only
memory (ROM), a flash memory, a random access memory
(RAM), a dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM) or Rambus DRAM, a static
memory (e.g., flash memory, static random access memory),
etc., on which computer executable instructions are stored in
any format. The computer program instructions can be
accessed by the processor circuit 112, read from the ROM,
or any other suitable memory location, and loaded into the
RAM for execution by the processor circuit 112. For
example, memory 116 may store one or more software
applications. Software applications stored in memory 116
may include, for example, an operating system 118 for
common computer systems as well as for software-con-
trolled devices. Further, memory 116 may store an entire
software application or only a part of a software application
that is executable by processor circuit 112. For example,
memory device 116 may store one or more radiation therapy
treatment plans 120 generated by the treatment planning
system 160. In addition, memory device 116 may store a
plurality of software modules. For example, software mod-
ules can be a localization module 123, a quality module 124,
a feature extraction module 127, an optional supervised
machine learning module 125, and a classification module
126. The plurality of software modules may be used by the
TPS 160 along with the treatment plans 120 in order to
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generate a radiation therapy treatment plan or update an
existing radiation therapy treatment plan.

[0030] In some embodiments, memory device 116 may
include a machine-readable storage medium. While the
machine-readable storage medium in an embodiment may
be a single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of computer executable instructions or data. The
term “machine-readable storage medium” shall also be taken
to include any medium that is capable of storing or encoding
a set of instructions for execution by the machine and that
cause the machine to perform any one or more of the
methodologies of the present disclosure. The term “machine
readable storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, optical
and magnetic media.

[0031] In an embodiment, the memory device 116 may be
configured to store at least the following types of data:
DICOM data, dosage data, optimization parameters, jaw
position data, beamlet data, segment data, segment shapes,
voxel dose distribution data, initial dose data, and dose-
volume histogram (DVH) data, image data.

[0032] The radiotherapy device 110 can communicate
with a network 130 via a communication interface 114,
which is communicatively coupled to processor circuit 112
and memory 116. A radiation therapy device 110 may
include a source of radiation (e.g., such as a device that
provides gamma rays). Communication interface 114 may
include, for example, a network adaptor, a cable connector,
a serial connector, a USB connector, a parallel connector, a
high-speed data transmission adaptor (e.g., such as fiber,
USB 3.0, thunderbolt, and the like), a wireless network
adaptor (e.g., such as a WiFi adaptor), a telecommunication
adaptor (e.g., 3G, 4G/LTE and the like), and the like.
Communication interface 114 may include one or more
digital and/or analog communication devices that permit
radiotherapy device 110 to communicate with other
machines and devices, such as remotely located compo-
nents, via a network 130.

[0033] The network 130 may provide the functionality of
a local area network (LAN), a wireless network, a cloud
computing environment (e.g., software as a service, platform
as a service, infrastructure as a service, etc.), a client-server,
a wide area network (WAN), and the like. Therefore, net-
work 130 can allow data transmission between the radio-
therapy device 110 and a number of various other systems
and devices, such as for example: the treatment planning
system 160, the Oncology Information System 150, and the
image acquisition device 170. Further, data generated by the
treatment planning system 160, the OIS 150, and the image
acquisition device 170 may be stored in the memory 116,
database 140, or hospital databased 142. The data may be
transmitted/received via network 130 and/or communication
interface 114 in order to be accessed by the processor circuit
112.

[0034] In addition, the network 130 may be connected to
the internet 132 to communicate with servers or clients that
reside remotely and are connected to the internet. As
described herein, network 130 may include other systems S1
(134), S2 (136), S3 (138). Systems S1, S2, and/or S3 may be
identical to system 100 or may be different systems. In some
embodiments, one or more systems connected to network
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130 may form a distributed computing/simulation environ-
ment that collaboratively performs image acquisition, per-
forms dose optimization, determines dose distribution, per-
forms virtual couch shift, performs warm start optimization,
conducts target location, and conducts target tracking as well
as other aspects of providing radiotherapy to a patient.
[0035] Additionally, radiotherapy system 100 may com-
municate with the database 140 or the hospital database 142
in order to execute one or more programs stored remotely.
By way of example, database 140, hospital database 142, or
both may include relational databases such as Oracle™
databases, Sybase™ databases, or others and may include
non-relational databases, such as Hadoop sequence files,
HBase, Cassandra, or others. Such remote programs may
include, for example, oncology information system (OIS)
software or treatment planning software. The OIS software,
for instance, may be stored on the hospital database 142, the
database 140, or the OIS 150. The treatment planning
software, for example, may be stored on the database 140,
the hospital database 142, the treatment planning system 160
or the OIS 150. Thus, for instance, radiotherapy device 110
may communicate with the hospital database 142 to imple-
ment functionalities of the oncology information system
150.

[0036] In some embodiments, database 140 and/or hospi-
tal database 142 may be located remotely from the radio-
therapy device 110. Database 140 and hospital database 142
may include computing components (e.g., database manage-
ment system, database server, etc.) configured to receive and
process requests for data stored in memory devices of
database 140 or hospital database 142 and to provide data
from database 140 or hospital database(s) 142. One skilled
in the art would appreciate that databases 140, 142 may
include a plurality of devices located either in a central or
distributed manner.

[0037] In addition, radiotherapy device 110 may commu-
nicate with database 140 through network 130 to send/
receive a plurality of various types of data stored on database
140. For example, in some embodiments, database 140 may
be configured to store a plurality of images (e.g., 3D MRI,
4DMRI, 2D MRI slice images, CT images, ultrasound
images, 2D Fluoroscopy images, X-ray images, raw data
from MR scans or CT scans, Digital Imaging and Commu-
nications in Medicine (DICOM) data, etc.) from image
acquisition device 170. Database 140 may store data to be
used by the target localization module 123, the training
module 124, and the treatment plans 120. The radiation
therapy device 110 may receive the imaging data (e.g.,
3DMRI images, 4D MRI images, ultrasound images, etc.)
from the database 140.

[0038] Animage acquisition device 170 can acquire medi-
cal images (e.g., Magnetic Resonance Imaging (MRI)
images, 3D MRI, 2D streaming MRI, 4D volumetric MRI,
Computed Tomography (CT) images, Cone-Beam CT, Posi-
tron Emission Tomography (PET) images, functional MRI
images (e.g., fTMRI, DCE-MRI and diffusion MRI), X-ray
images, fluoroscopic image, ultrasound images, radio-
therapy portal images, single-photo emission computed
tomography (SPECT) images, and the like) of the patient.
Image acquisition device 170 may, for example, be an MRI
imaging device, a CT imaging device, a PET imaging
device, an ultrasound device, a fluoroscopic device, a
SPECT imaging device, or other medical imaging device for
obtaining one or more medical images of the patient. Images
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acquired by the imaging acquisition device 170 can be
stored within database 140 as either imaging data and/or test
data. By way of example, the images acquired by the
imaging acquisition device 170 can be also stored by the
radiotherapy device 110 in memory 116.

[0039] In an embodiment, for example, the image acqui-
sition device 170 may be integrated with the radiotherapy
device 110 as a single apparatus (e.g., a MRI device com-
bined with a linear accelerator, also referred to as a “MRI-
Linac” or as an integrated MRI device combined with a
Gamma Knife; a three-dimensional imager integrated with a
linear accelerator; a cone-beam CT integrated with a linear
accelerator, a CT-on-rails integrated with a linear accelera-
tor; a MR-on-rails integrated with a linear accelerator). Such
a MRI-Linac can be used, for example, to determine a
location of a target organ or a target tumor in the patient,
such as to direct radiation therapy according to the radiation
therapy treatment plan to a predetermined target.

[0040] The image acquisition device 170 can be config-
ured to acquire one or more images of the patient’s anatomy
for a region of interest (e.g., a target organ, a target tumor or
both). The one or more images may include a plurality of 2D
slices. Each 2D slice can include one or more parameters
(e.g., a 2D slice thickness, an orientation, and a location,
etc.). The one or more parameters can be adjusted by using
the processor circuit 112, to include the target. For instance,
selected features of the 2D slice can be manipulated, e.g., by
adjusting the magnetic field gradient or radio frequency (RF)
waveform properties. For example, the position of the slice
can be varied by changing the modulation frequency of the
RF pulse and maintaining the same gradient strength. Fur-
ther, the orientation of the slice can be varied, for example,
by using a physically different gradient axis (e.g., the
selected slice can be orthogonal to the gradient applied). In
an example, the image acquisition device 170 (e.g., an MRI
or an MRI-Linac) can acquire a 2D slice in any orientation.
For example, an orientation of the 2D slice can include a
sagittal orientation, a coronal orientation, an axial orienta-
tion, or an oblique orientation. In addition, these orienta-
tions, for example, can correspond to a magnetic field
gradient (e.g., Gx, Gy, or Gz, respectively) associated with
the MRI or the MRI-Linac. In an example, 2D slices can be
determined from information such as a 3D MRI volume.
Such 2D slices can be acquired by the image acquisition
device 170 in “real-time” while a patient is undergoing
radiation therapy treatment, for example, when using the
radiation therapy device 110. In an embodiment, the 2D
image slices can be provided by an ultrasound device as an
image acquisition device 170.

[0041] The treatment planning system 160 (e.g.,
MONACO®, manufactured by Elekta, XiO®, manufactured
by Elekta) may generate and store radiation therapy treat-
ment plans for a particular patient to be treated, radiation
therapy treatment plans for other patients, as well as other
radiotherapy information (e.g., beam angles, dose-histo-
gram-volume information, the number of radiation beams to
be used during therapy, the beam angles, the dose per beam,
and the like). For example, treatment planning system 160
may provide information about a particular radiation dose to
be applied to the patient and other radiotherapy related
information (e.g., type of therapy: such as image guided
radiation therapy (IGRT), intensity modulated radiation
therapy (IMRT), stereotactic radiotherapy; and the like).
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[0042] One type of radiation therapy treatment plan is
intensity modulated radiation therapy (IMRT). IMRT differs
from conformal radiation therapy, which delivers a uniform
radiation field of radiation. IMRT allows the modulation of
the dose distributions that are delivered by each beam. In
IMRT, each beam of radiation can be discretized by dividing
the aperture through which the radiation is delivered into
small rectangular regions; thus, dividing each beam into a
plurality of “beamlets.” Using IMRT, the radiation intensi-
ties (e.g., fluence) for each beamlet can be independently
modulated. For a given set of beams, the beamlet fluences
can influence the quality of the treatment plan, which is
determined by the ability of the radiation therapy treatment
to deposit the prescribed amount of dose to cancerous
targets, while simultaneous delivering a smaller amount of
dose to the Organs at Risk.

[0043] Due to the unpredictable nature of the radiation
beam within the patient, the dose received in a voxel may be
determined, for example, through Monte Carlo simulations.
A primary goal of IMRT treatment planning is to determine
radiation intensities for all segments and/or apertures and/or
control points and/or beamlets, which includes the MLC leaf
position and intensity of all segments/apertures/control
points in a beam. Although IMRT has been described above,
the methods, processes, systems disclosed are not limited to
IMRT, for example, they may apply to Volumetric Modu-
lated Arc Therapy (VMAT), Intensity Modulated Arc
Therapy (IMAT), dynamic MLC, helical Tomotherapy,
scanned-beam therapy, and the like.

[0044] For example, VMAT delivers radiation by rotating
a gantry of a radiation therapy device (see FIG. 3) through
one or more arcs with the radiation beam continuously on.
During a VMAT treatment, a number of parameters can be
varied, such as multileaf collimator (MLC) shape, fluence
output rate (e.g., dose rate), gantry rotation speed, the
orientation of the MLC, and IMRT (e.g., step-and-shoot or
sliding window). Typically, each arc can be divided into
evenly or unevenly distributed control points, where each
control point contains one beam. Each beam can be decom-
posed into a matrix of beamlets (e.g., where each beamlet
may be 3x10 mm?® or 3x5 mm?, depending on the MLC
size), and the radiation therapy treatment plan can be evalu-
ated by considering the dose distribution over a discretiza-
tion of the irradiated area into a number of cubes (e.g.,
voxels). Thus, in an embodiment, the processor circuit
perform a process for updating an existing radiation therapy
treatment plan using a dose distribution as a treatment
objective. The existing radiation therapy treatment plan
comprises a known dose distribution. In addition, the exist-
ing radiation therapy treatment plan comprises an initial set
of control points, wherein the initial set of control points do
not correspond to the known dose distribution. The proces-
sor can optimize the control points to approximate the
known dose distribution.

[0045] Generating the treatment plan may include com-
municating with the image acquisition device 170 (e.g.,a CT
device, a MRI device, a PET device, an X-ray device, an
ultrasound device, etc.) in order to access images of the
patient and to delineate a target, such as a tumor. In some
embodiments, the delineation of one or more organs at risk
(OARS), such as healthy tissue surrounding the tumor or in
close proximity to the tumor may be required. Therefore,
segmentation of the OAR may be performed when the OAR
is close to the target tumor. In addition, if the target tumor
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is close to the OAR (e.g., prostate in near proximity to the
bladder and rectum), the treatment planning system 160 may
allow study of the dose distribution not only in the target, but
also in the OAR.

[0046] Inorderto delineate a target organ or a target tumor
from the OAR, medical images, such as MRI images, CT
images, PET images, {MRI images, X-ray images, ultra-
sound images, SPECT images, a set of 3D medical images
and the like, of the patient undergoing radiotherapy may be
obtained by the image acquisition device 170 to reveal the
internal structure of a body part. Based on the information
from the medical images, a 3D structure may be obtained. In
addition, during a treatment planning process, many param-
eters may be taken into consideration to achieve a balance
between efficient treatment of the target tumor (e.g., such
that the target tumor receives enough radiation dose for an
effective therapy) and low irradiation of the OAR(s) (e.g.,
the OARC(s) receives as low a radiation dose as possible), the
location of the target organ and the target tumor, the location
of'the OAR, and the movement of the target in relation to the
OAR. For example, the 3D structure may be obtained by
contouring the target or contouring the OAR within each 2D
layer or slice of an MRI or CT image and combining the
contour of each 2D layer or slice. The contour may be
generated manually (e.g., by a physician, dosimetrist, or
health care worker) or automatically (e.g., using a program
such as the Atlas-based Autosegmentation software,
ABAS®, manufactured by Elekta, AB, Stockholm, Swe-
den). In certain embodiments, the 3D structure of a target
tumor or an OAR may be generated automatically by the
treatment planning system 160.

[0047] After the target tumor and the OAR(s) have been
located and delineated, a dosimetrist, physician or healthcare
worker may determine a dose of radiation to be applied to
the target tumor and any OAR proximate to the tumor (e.g.,
left and right parotid, optic nerves, eyes, lens, inner ears,
spinal cord, brain stem, and the like). After the radiation
dose is determined for each anatomical structure (e.g., target
tumor, OAR), a process known as inverse planning may be
performed to determine one or more treatment plan param-
eters. The result of inverse planning may constitute a radia-
tion therapy treatment plan that may be stored in the
treatment planning system 160 or database 140. At this time,
the expected degree of motion of these anatomical structures
during treatment may be incorporated into the planning
process. Some of these treatment parameters may be corre-
lated. For example, tuning one parameter (e.g., weights for
different objectives, such as increasing the dose to the target
tumor) in an attempt to change the treatment plan may affect
at least one other parameter, which in turn may result in the
development of a different treatment plan. Thus, the treat-
ment planning system 160 can generate a tailored radiation
therapy treatment plan having these parameters in order for
the radiotherapy device 110 to provide radiotherapy treat-
ment to the patient.

[0048] The radiation therapy plan may be dependent on
the degree of motion expected from the anatomical struc-
tures. If the structures are expected to move significantly
during treatment, the quality of the treatment plan may be
reduced. Also, if the structures were to move more during
treatment than what was expected when the plan was made,
this would reduce the effectiveness of the treatment. There-
fore, localization of one or more of the anatomical structures
during treatment delivery can be of benefit to the patient.
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[0049] In addition, the radiotherapy system 100 includes a
display device 180 and a user interface 190. The display
device 180 may include one or more display screens that
display medical images, interface information, treatment
planning parameters (e.g., contours, dose distributions,
beam angles, a set of control points, etc.) treatment plans, a
target, localizing a target and/or tracking a target, or any
related information to the user. The user interface 190 may
be akeyboard, a keypad, a touch screen or any type of device
that a user may input information to radiotherapy system
100.

[0050] Furthermore, any and all components of the radio-
therapy system 100, in an embodiment, may be implemented
as a virtual machine (e.g., VMWare, Hyper-V, and the like).
For instance, a virtual machine can be software that func-
tions as hardware. Therefore, a virtual machine can include
at least one or more virtual processors, one or more virtual
memories, and one or more virtual communication inter-
faces that together function as hardware. For example, the
OIS 150, the TPS 160, the image acquisition device 170
could be implemented as a virtual machine. Given the
processing power, memory, and computational capability
available, the entire radiotherapy system could be imple-
mented as a virtual machine.

[0051] FIG. 2 illustrates an example of one type of radia-
tion therapy treatment device 200, for example, a Leksell
Gamma Knife, manufactured by Elekta, AB, Stockholm,
Sweden. The Gamma Knife can be configured to utilize the
processor device 112 (shown in FIG. 1), which may
remotely access MRI images (e.g., from the image acquisi-
tion device 170) to localize a target tumor in the brain. In an
embodiment, an MRI apparatus, as an image acquisition
device 170, can be integrated with the Gamma Knife. As
shown in FIG. 2, during a radiotherapy treatment session, a
patient 210 may wear a coordinate frame 220 to keep stable
the patient’s body part (e.g., the head) undergoing surgery or
radiotherapy. Coordinate frame 220 and a patient position-
ing system 230 may establish a spatial coordinate system,
which may be used while imaging a patient or during
radiation surgery. Radiotherapy device 200 may include a
protective housing 240 to enclose a plurality of radiation
sources 250. Radiation sources 250 may generate a plurality
of radiation beams (e.g., beamlets) through beam channels
260. The plurality of radiation beams may be configured to
focus on an isocenter 270 from different directions. While
each individual radiation beam may have a relatively low
intensity, isocenter 270 may receive a relatively high level of
radiation when multiple doses from different radiation
beams accumulate at isocenter 270. In certain embodiments,
isocenter 270 may correspond to a target under surgery or
treatment, such as a tumor.

[0052] FIG. 3 illustrates another example of a type of
radiation therapy device 300 (e.g., a linear accelerator,
referred to as a LINAC, manufactured by Elekta, AB,
Stockholm, Sweden). When using the linear accelerator 300,
a patient 302 may be positioned on a patient table 304 to
receive the radiation dose determined by a radiation therapy
treatment plan generated by the treatment planning system
160 (shown in FIG. 1). The image data 122 and localization
module 123 can be used to localize and track a 3D target in
a volume, such as a target organ or a target tumor located
within the anatomy of the patient 302.

[0053] The linear accelerator 300 may include a radiation
head 306 connected to a gantry 308 that rotates around the
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patient 302. The radiation head 306 generates a radiation
beam 310 that is directed toward the target organ or target
tumor. As the gantry 308 rotates, the radiation head 306 can
rotate around the patient 302. While rotating, the radiation
head 306 may provide patient 302 with a plurality of varying
dosages of radiation depending upon the angle and the shape
and size of the tumor according to the treatment plan
generated by the treatment planning system 160 (shown in
FIG. 1). Because organs and tumors move within a patient’s
body, fast and accurate 3D localization of the target is
important. For instance, a target organ or tumor may move
because of various types of motion (e.g., respiratory, cardiac,
peristalsis or other types of patient motion). Therefore, the
linear accelerator 300 may be configured to localize the
target (e.g., organ or tumor) and track the target during
radiation therapy treatment by using target localization
module 123.

[0054] In addition, below the patient table 304, a flat panel
scintillator detector 312 may be provided, which may rotate
synchronously with the radiation head 306 around an iso-
center 314 located on a target organ or a target tumor on the
body of the patient 32. The flat panel scintillator can acquire
images with the highest achievable signal-to-noise ratio and
can be used for verification of the amount of radiation
received by the patient 302 during any particular radiation
therapy treatment session (e.g., a radiation therapy treatment
may require multiple sessions of radiation therapy, where
each session is typically referred to as a ‘fraction’). Further,
such images are used to determine the geometric accuracy of
patient positioning relative to the radiation head 306.
[0055] The intersection of an axis 316 with the center of
the beam 310, produced by the radiation head 306, is usually
referred to as the “isocenter”. The patient table 304 may be
motorized so the patient 302 can be positioned with the
tumor site at or close to the isocenter 314. For instance, the
patient table 304 may change positions relative to one or
more other components of the linear accelerator 300, such as
to elevate, change the longitudinal position, or the latitudinal
position of the patient 302 relative to a therapeutic radiation
source located in the radiation head 306.

[0056] As described above, there is a need for a method
and system that can quickly, efficiently, and automatically
determine in real-time the quality of the localization of a
target in an image, which can provide information as to a
change in patient positioning and target motion during
radiation therapy treatment. This method and system may
continuously validate that the detected changes are known
with confidence. FIG. 4 depicts a block diagram illustrating
generating and training a classifier using supervised machine
learning as one embodiment. A plurality of medical images
122 (e.g., CT, MRI, ultrasound and the like) are stored in
memory 116. The images 122, for example, can be three-
dimensional volumes representing a time series of observa-
tions of a prostate. In another embodiment, the images 122
can be two-dimensional images. The images 122 may
include images taken prior to radiation therapy treatment
and/or during radiation therapy treatment. The training data
may be obtained under conditions which do not involve real
treatment, but are only representative of it. As the target
moves, additional images 122 may be taken and stored in
memory 116.

[0057] After the images 122 are captured and stored, the
images 122 can be retrieved from memory 116 by processor
112, and the processor can retrieve a localization module
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123 where image registration is performed. In an embodi-
ment, the localization of the anatomy may be performed by
the localization module 123 that uses, for example, a rigid
six parameter transformation (e.g., 3 rotations and 3 trans-
lations). The localization module 123 can, for example,
register the current volumetric dataset to the first volumetric
dataset taken. In another embodiment, the localization mod-
ule can use segmentation to identify the target in each image.
In another embodiment, the localization module can use a
spatial hashing technique to identify the location from the
appearance of the target alone. The localization process
provides a mapping between at least two images to provide
an indication if the target has moved.

[0058] The localization process by itself does not define a
measure of quality. It may be necessary to define what is
meant by quality in a specific application. For example,
“good quality” may be defined as better than about 0.5 mm
of precision, “poor quality” may be defined as precision
between about 0.5 mm and about 2 mm, and a failure in
localization may be defined as greater than about 2 mm in
precision. The image sets provided for initial training may
be selected to provide “good quality” results.

[0059] In order to collect a plurality of localization results
of all the different types of qualities, the precision of the
localization process can be changed. Thus, the quality mod-
ule 124 is connected to the localization module 123 via a
feedback loop 119. For example, in an embodiment, the
localization process may use a registration algorithm. The
registration algorithm may use an initial guess of what is the
“correct” localization result to start the algorithm. The
values of the “initial guess” can be changed. For example,
the “initial guess” can be continuously adjusted from an
ideal value. By changing the initial starting point of the
localization process a plurality of localization results may be
obtained and stored in memory 116. In this way, abnormal
conditions can be created for the localization algorithm by
moving the initial guess further from ideal. Adjustment of
the initial guess can continue until poor quality or failure
results occur. By creating an abnormal condition to cause the
localization algorithm to fail, a plurality of poor quality and
failed cases can be generated to train the machine learning
module 125. The results of the localization module 123 are
input to both the quality module 124 and the feature extrac-
tion module 127.

[0060] The feature extraction module 127 extracts a plu-
rality of features from the localized images. In an embodi-
ment, the features may include a correlation score, a Kull-
back Leiber distance between histograms, a minimum
correlation score and a maximum correlation score of the
tracked object divided into octants, correlation scores 1 mm
away from a found position, an inverse compositional Hes-
sian scale factor, and combinations thereof.

[0061] Once a measure of quality is determined by the
quality module 124 for each of the localized images, and the
features have been extracted by the feature extraction mod-
ule 127, a supervised machine learning module 125 can be
used to train a classifier. Various types of machine learning
can be implemented by the supervised machine learning
module 125, such as Fisher discriminant analysis, Kernel
density estimators, random forests, support vector machines,
and the like. The supervised machine learning module 125
uses machine learning to create a plurality of subsets of
features, determine which of the subsets of features is the
best subset of features (primary features), and uses this best
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subset of features to train a classifier. For instance, the
features used may include one or more of a correlation score,
a similarity measure (e.g., a correlation score) computed a
predetermined distance away from the found localization,
similarity scores on subsets of the localized target, an
inverse compositional Hessian scale factor, the Kullback-
Leibler distance between histograms, internal subtotals or
other subcomputations of the similarity measure. In an
embodiment, the list of primary features can be used to train
the classifier. In one embodiment, the list of primary features
may include at least four features (e.g., correlation score, 1
mm window away, minimum and maximum orthant score)
that can be used to train the classifier.

[0062] The output of the supervised machine learning
module 125 is a classification module 126 (e.g., a trained
classifier) that is stored in memory 116. The classification
module 126 can be used to predict the quality of the image
localization for future image localizations. By predicting the
quality of the image localizations, the classification module
126 can provide an estimate of the quality of the tracking of
a target. For example, whether the tracking is within a
certain precision or whether the tracking has been lost.

[0063] FIG. 5 depicts a block diagram illustrating using
the classifier of FI1G. 4 for target tracking. In an embodiment,
an image acquisition device 170 (e.g., shown in FIG. 1) can
be used to acquire a plurality of images 122. For example,
an image acquisition device 170 can be an ultrasound
device. As the image acquisition device 170 acquires images
122 as it tracks a moving target in real-time, for each
tracking step (e.g., about 0.5 mm) image slices of the target
volume are acquired by the image acquisition device 170. A
four-dimensional (4D) monitoring algorithm (not shown)
acquires the image slices and cumulates the data, constantly
repeating in real-time until an image 122 is ready for
localization. In an embodiment the image 122 may be a
single image. In another embodiment, the image 122 may be
a plurality of images. The processor 112 retrieves the
localization module 123 from memory 116 and applies the
images 122 to the localization module 123. The localization
module 123 determines a localization result for each image
122. After the images 122 are localized, the processor 112
retrieves the feature extraction module 127 and the classi-
fication module 126 from memory 116. The feature extrac-
tion module 127 extracts the necessary features from the
images and the localization result, and the classification
module 126 uses the previously learned classifier to provide
a user an indication of target tracking quality. For example,
the classification module 126 indicates whether the local-
ization result has normal confidence, low confidence, or if
tracking has been lost. The output of the classification
module 126 provides the user an indication (510) of whether
to leave the radiation beam turned on and continue radiation
therapy, or whether to turn the radiation beam off because
target tracking has been lost. In another embodiment, the
radiation beam can be automatically turned off when the
classification module 126 indicates that the target has lost
tracking.

[0064] An advantage of using a classifier is that the
classifier, in an embodiment, can be updated or retrained, as
it is used in a clinical environment. For instance, as addi-
tional data is acquired from the clinical environment, the
classifier can be retrained on the fly based on the additional
data. The updated or retrained classifier may improve the
prediction results.
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[0065] FIG. 6 illustrates a flow chart of an exemplary
method to train a classifier and to track a moving target
during radiation therapy using the trained classifier. The flow
chart shown in FIG. 6 includes two parts. The first part is for
training the classifier, which can be performed during prod-
uct development phase or any pre-treatment configuration or
calibration. As discussed above, the classifier can be
retrained based on additional data when it is used in clinical
environment. The second part is for using the classifier to
evaluate localization quality, which can be performed during
treatment. Based on the localization quality, an indication
can be provided to a user to inform the user the localization
quality. Alternatively or additionally, the radiation beam can
be automatically gated based on the localization quality.
[0066] Asshown in FIG. 6, the first part 610 includes steps
for training the classifier. Training the classifier can be
performed in any stage before using the classifier and the
training process is not necessarily performed by processor
112 of radiotherapy device 110. In some embodiments, a
classifier may be retrained in clinic environment based on
updated image data, and the retraining process may be
performed by processor 112. In the following description,
reference will be made to processor 112, as an example,
when describing steps in the training process. However, it
should be understood that the training process can also be
performed by any other processors.

[0067] In steps 612, processor device 112 may retrieve a
set of stored images 122 representative of the patient’s
clinical presentation (e.g., ultrasound images, MR images,
etc.). In step 614, processor 112 may execute functions
provided by localization module 123 to perform image
registrations on each of the stored images. In step 616,
processor 112 may determine a quality indicator based on
the image registration results and quality measure provided
by quality module 124. In step 618, processor 112 may
execute functions provided by feature extraction module 127
to extract features from the images from which the quality
indicator is determined. In step 620, processor 112 may use
a supervised machine learning technique provided by super-
vised machine learning module 125 to identify a plurality of
relevant features. In step 622, processor 112 may generate a
classifier using classification module 126.

[0068] The second part 650 includes steps for using the
classifier during treatment to determine localization quality.
In step 652, a plurality of images may be acquired by image
acquisition device 170. In step 654, processor 112 may use
localization module 123 to determine localization of a target
(e.g., atumor, an organ, an OAR, etc.) in each image. In step
656, processor 112 may track real-time movement of the
target during radiation therapy treatment. In step 658, pro-
cessor 112 may use the classifier trained in part 1 (610) to
determine localization quality at each tracking step. In step
660, processor 112 may provide an indication to the user of
radiotherapy device 110, which may indicate the quality of
target tracking. The quality may include quality measures
such as normal, low confidence, lost tracking, etc. In step
662, processor 112 may control the radiation dose applica-
tion based on the quality, such as gating the radiation beam
when the tracking quality is not normal, turning off the
radiation therapy treatment beam if target tracking is lost,
etc.

[0069] All publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
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by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

[0070] The exemplary disclosed embodiments describe
systems and methods for target tracking using a quality
indicator during radiation therapy. The foregoing description
has been presented for purposes of illustration. It is not
exhaustive and is not limited to the precise forms or embodi-
ments disclosed. Modifications and adaptations of the
embodiments will be apparent from consideration of the
specification and practice of the disclosed embodiments.
[0071] In this document, the terms “a” or “an” are used, as
is common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In this document, the terms “including”
and “in which” are used as the plain-English equivalents of
the respective terms “comprising” and “wherein.” Also, in
the following claims, the terms “including” and “compris-
ing” are open-ended, that is, an apparatus, system, device,
article, composition, formulation, or process that includes
elements in addition to those listed after such a term in a
claim are still deemed to fall within the scope of that claim.
Moreover, in the following claims, the terms “first,” “sec-
ond,” and “third,” etc. are used merely as labels, and are not
intended to impose numerical requirements on their objects.
[0072] Method examples described herein can be machine
or computer-implemented at least in part. Some examples
can include a computer-readable medium or machine-read-
able medium encoded with instructions operable to config-
ure an electronic device to perform methods as described in
the above examples. An implementation of such methods
can include software code, such as microcode, assembly
language code, a higher-level language code, or the like. The
various programs or program modules can be created using
a variety of software programming techniques. For example,
program sections or program modules can be designed in or
by means of Java, Python, C, C++, assembly language, or
any known programming languages. One or more of such
software sections or modules can be integrated into a
computer system and/or computer-readable media. Such
software code can include computer readable instructions
for performing various methods. The software code may
form portions of computer program products or computer
program modules. Further, in an example, the software code
can be tangibly stored on one or more volatile, non-transi-
tory, or non-volatile tangible computer-readable media, such
as during execution or at other times. Examples of these
tangible computer-readable media can include, but are not
limited to, hard disks, removable magnetic disks, removable
optical disks (e.g., compact disks and digital video disks),
magnetic cassettes, memory cards or sticks, random access
memories (RAMs), read only memories (ROMs), and the
like.

[0073] Moreover, while illustrative embodiments have
been described herein, the scope includes any and all
embodiments having equivalent elements, modifications,
omissions, combinations (e.g., of aspects across various
embodiments), adaptations or alterations based on the pres-
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ent disclosure. The elements in the claims are to be inter-
preted broadly based on the language employed in the
claims and not limited to examples described in the present
specification or during the prosecution of the application,
which examples are to be construed as non-exclusive. Fur-
ther, the steps of the disclosed methods can be modified in
any manner, including by reordering steps or inserting or
deleting steps. It is intended, therefore, that the specification
and examples be considered as example only, with a true
scope and spirit being indicated by the following claims and
their full scope of equivalents.
[0074] The above description is intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereof) may be used in
combination with each other. Other embodiments can be
used, such as by one of ordinary skill in the art upon
reviewing the above description. Also, in the above Detailed
Description, various features may be grouped together to
streamline the disclosure. This should not be interpreted as
intending that an unclaimed disclosed feature is essential to
any claim. Rather, inventive subject matter may lie in less
than all features of a particular disclosed embodiment. Thus,
the following claims are hereby incorporated into the
Detailed Description as examples or embodiments, with
each claim standing on its own as a separate embodiment,
and it is contemplated that such embodiments can be com-
bined with each other in various combinations or permuta-
tions. The scope of the invention should be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.
1. A method for training a classifier for determining a
quality of target localization from a plurality of images
acquired by an imaging device during radiation therapy
treatment to a patient, the method comprising:
determining a localization result indicating a location of a
target in a plurality of images representative of images
acquired in a radiation therapy treatment session;

determining a quality indicator for each localization
result;

extracting one or more features from each localization

result; and

training the classifier using the localization result and one

or more of the extracted features.

2. The method of claim 1, further comprising:

selecting a subset of images from the plurality of images

to provide a quality measure; and

providing samples having a plurality types of qualities by

adjusting the localization result.

3. The method of claim 1, wherein training the classifier
comprises:

training the classifier using a supervised machine learning

technique, including:

creating a plurality of subsets of features;

determining primary features based on the plurality of

subsets of features; and

training the classifier using the primary features.

4. The method of claim 3, wherein the primary features
include at least one of:

a correlation score;

a similarity measure computed a predetermined distance

away from the location of the target;

a minimum orthant score; or

a maximum orthant score.



US 2018/0193674 Al

5. The method of claim 1, wherein the imaging device
includes an ultrasound probe and the plurality of images
include ultrasound images.

6. The method of claim 1, wherein the imaging device
includes an MRI device and the plurality of images include
MR images.

7. A method for determining a quality of target localiza-
tion from a plurality of images acquired by an imaging
device during radiation therapy treatment to a patient, the
method comprising:

determining a localization result indicating a location of a

target in a plurality of images acquired during radiation
therapy treatment to the patient;

determining a localization quality of the localization

result for tracking the location of the target using a
classifier; and

providing to a user an indication of the localization

quality or taking treatment related action based on the
localization quality.

8. The method of claim 7, wherein the indication of the
localization quality reflects a determination of at least a
normal tracking, a low confidence tracking, and a lost
tracking.

9. The method of claim 7, further comprising:

extracting one or more features from the plurality of

images and the location result; and

determining the localization quality using the classifier

based on the extracted one or more features.

10. The method of claim 7, further comprising:

tracking real-time movement of the target during the

radiation therapy treatment based on the localization
result and the localization quality.

11. The method of claim 7, wherein the treatment related
action includes turning off a radiation beam when the
localization quality indicates a lost tracking of the target.

12. The method of claim 7, further comprising:

updating or retraining the classifier in a clinical environ-

ment based on new data.

13. A system for training a classifier for determining a
quality of target localization from a plurality of images
acquired by an imaging device during radiation therapy
treatment to a patient, the system comprising:

a memory for storing computer-executable instructions;

and

a processor communicatively coupled to the memory,

wherein the computer-executable instructions, when

executed by the processor, cause the processor to

perform operations including:

determining a localization result indicating a location
of a target in a plurality of images representative of
images acquired in a radiation therapy treatment
session;

determining a quality indicator for each localization
result;

extracting one or more features from each localization
result; and

training the classifier using the localization result and
one or more of the extracted features.

14. The system of claim 13, wherein the operations further
comprise:

selecting a subset of images from the plurality of images

to provide a quality measure; and

providing samples having a plurality types of qualities by

adjusting the localization result.
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15. The system of claim 13, wherein the operation of
training the classifier comprises:

training the classifier using a supervised machine learning

technique, including:

creating a plurality of subsets of features;

determining primary features based on the plurality of
subsets of features; and

training the classifier using the primary features.

16. The system of claim 15, wherein the primary features
include at least one of:

a correlation score;

a similarity measure computed a predetermined distance

away from the location of the target;

a minimum orthant score; or

a maximum orthant score.

17. The system of claim 13, wherein the imaging device
includes an ultrasound probe and the plurality of images
include ultrasound images.

18. The system of claim 13, wherein the imaging device
includes an MRI device and the plurality of images include
MR images.

19. A system for determining a quality of target localiza-
tion from a plurality of images acquired by an imaging
device during radiation therapy treatment to a patient, the
system comprising:

a memory for storing computer-executable instructions;

and

a processor communicatively coupled to the memory,

wherein the computer-executable instructions, when

executed by the processor, cause the processor to

perform operations including:

determining a localization result indicating a location
of a target in a plurality of images acquired during
radiation therapy treatment to the patient;

determining a localization quality of the localization
result for tracking the location of the target using a
classifier; and

providing to a user an indication of the localization
quality or taking treatment related action based on
the localization quality.

20. The system of claim 19, wherein the indication of the
localization quality reflects a determination of at least a
normal tracking, a low confidence tracking, and a lost
tracking.

21. The system of claim 19, wherein the operations further
comprise:

extracting one or more features from the plurality of

images and the location result; and

determining the localization quality using the classifier

based on the extracted one or more features.

22. The system of claim 19, wherein the operations further
comprise:

tracking real-time movement of the target during the

radiation therapy treatment based on the localization
result and the localization quality.

23. The system of claim 19, wherein the treatment related
action includes turning off a radiation beam when the
localization quality indicates a lost tracking of the target.

24. The system of claim 19, wherein the operations further
comprise:

updating or retraining the classifier in a clinical environ-

ment based on new data.

25. A non-transitory computer-readable medium that
stores a set of instructions that is executable by at least one
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processor of a device to cause the device to perform a
method for training a classifier for determining a quality of
target localization from a plurality of images acquired by an
imaging device during radiation therapy treatment to a
patient, the method comprising:
determining a localization result indicating a location of a
target in a plurality of images representative of images
acquired in a radiation therapy treatment session;

determining a quality indicator for each localization
result;

extracting one or more features from each localization

result; and

training the classifier using the localization result and one

or more of the extracted features.

26. The non-transitory computer-readable medium of
claim 25, wherein the method further comprises:

selecting a subset of images from the plurality of images

to provide a quality measure; and

providing samples having a plurality types of qualities by

adjusting the localization result.

27. The non-transitory computer-readable medium of
claim 25, wherein training the classifier comprises:

training the classifier using a supervised machine learning

technique, including:

creating a plurality of subsets of features;

determining primary features based on the plurality of
subsets of features; and

training the classifier using the primary features.

28. The non-transitory computer-readable medium of
claim 27, wherein the primary features include at least one
of:

a correlation score;

a similarity measure computed a predetermined distance

away from the location of the target;

a minimum orthant score; or

a maximum orthant score.

29. The non-transitory computer-readable medium of
claim 25, wherein the imaging device includes an ultrasound
probe and the plurality of images include ultrasound images.

30. The non-transitory computer-readable medium of
claim 25, wherein the imaging device includes an MRI
device and the plurality of images include MR images.
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31. A non-transitory computer-readable medium that
stores a set of instructions that is executable by at least one
processor of a device to cause the device to perform a
method for determining a quality of target localization from
a plurality of images acquired by an imaging device during
radiation therapy treatment to a patient, the method com-
prising:

determining a localization result indicating a location of a

target in a plurality of images acquired during radiation
therapy treatment to the patient;

determining a localization quality of the localization

result for tracking the location of the target using a
classifier; and

providing to a user an indication of the localization

quality or taking treatment related action based on the
localization quality.

32. The non-transitory computer-readable medium of
claim 31, wherein the indication of the localization quality
reflects a determination of at least a normal tracking, a low
confidence tracking, and a lost tracking.

33. The non-transitory computer-readable medium of
claim 31, wherein the method further comprises:

extracting one or more features from the plurality of

images and the location result; and

determining the localization quality using the classifier

based on the extracted one or more features.

34. The non-transitory computer-readable medium of
claim 31, wherein the method further comprises:

tracking real-time movement of the target during the

radiation therapy treatment based on the localization
result and the localization quality.

35. The non-transitory computer-readable medium of
claim 31, wherein the treatment related action includes
turning off a radiation beam when the localization quality
indicates a lost tracking of the target.

36. The non-transitory computer-readable medium of
claim 31, wherein the method further comprises:

updating or retraining the classifier in a clinical environ-

ment based on new data.
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