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(57) ABSTRACT

A catheter system for treating site within or adjacent to a
vessel wall or a heart valve includes a light source, a first and
second light guide, and an optical alignment system. The
light source generates light energy. The first and second light
guides receive the light energy from the light source and
have respective guide proximal ends. A multiplexer directs
the light energy toward the guide proximal ends of the first
and second light guides. The optical alignment system
determines an alignment of the light energy relative to at
least one of the guide proximal ends and adjusts the posi-
tioning of the light energy relative to the at least one of the
guide proximal ends based at least partially on the alignment
of the light energy relative to the at least one of the guide
proximal ends.
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ACTIVE ALIGNMENT SYSTEM AND
METHOD FOR LASER OPTICAL COUPLING

RELATED APPLICATION

This Application is related to and claims priority on U.S.
Provisional Patent Application Ser. No. 63/197,959 filed on
Jun. 7, 2021, and entitled “ACTIVE ALIGNMENT SYS-
TEM AND METHOD FOR LASER OPTICAL COU-
PLING.” To the extent permissible, the contents of U.S.
Provisional Application Ser. No. 63/197,959 are incorpo-
rated in their entirety herein by reference.

BACKGROUND

Vascular lesions within vessels in the body can be asso-
ciated with an increased risk for major adverse events, such
as myocardial infarction, embolism, deep vein thrombosis,
stroke, and the like. Severe vascular lesions can be difficult
to treat and achieve patency for a physician in a clinical
setting.

Vascular lesions may be treated using interventions such
as drug therapy, balloon angioplasty, atherectomy, stent
placement, and vascular graft bypass, to name a few. Such
interventions may not always be ideal or may require
subsequent treatment to address the lesion.

SUMMARY

The present invention is directed toward a catheter system
for treating a treatment site within or adjacent to a vessel
wall or a heart valve. In various embodiments, the catheter
system includes a light source, a first light guide, a second
light guide, and an optical alignment system. The light
source generates light energy. The first light guide receives
the light energy from the light source, the first light guide has
a guide proximal end. The second light guide receives the
light energy from the light source, the second light guide has
a guide proximal end. A multiplexer directs the light energy
toward the guide proximal end of the first light guide and the
guide proximal end of the second light guide. An optical
alignment system determines an alignment of the light
energy relative to at least one of the guide proximal ends.
The optical alignment system adjusts the positioning of the
light energy relative to the at least one of the guide proximal
ends based at least partially on the alignment of the light
energy relative to the at least one of the guide proximal ends.

In some embodiments, the optical alignment system is
configured to improve optical coupling between the light
energy and at least one of the light guides.

In certain embodiments, the optical alignment system
further includes an image sensor that senses the alignment of
the light energy relative to at least one of the guide proximal
ends, the image sensor being configured to provide a visu-
alization of the alignment.

In various embodiments, the catheter system further
includes a system controller that is configured to control the
optical alignment system so that the light energy is substan-
tially coupled to the at least one of the guide proximal ends.

In some embodiments, at least one of the light guides is
an optical fiber.

In certain embodiments, the light source is a laser.

In various embodiments, the optical alignment system
further includes an optical aligner that is configured to align
the light energy with the at least one of the guide proximal
ends.
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In some embodiments, the optical aligner is controlled by
the system controller.

In certain embodiments, the optical alignment system
further includes an imaging system including an imaging
sensor, the imaging system being configured to capture
images of a focal point of the light source, and the at least
one of the guide proximal ends.

In various embodiments, the imaging system is config-
ured to simultaneously capture images of the focal point of
the light source and a scattered energy beam scattered off the
at least one of the guide proximal ends.

In some embodiments, the imaging system is configured
to utilize an image reference frame that allows direct com-
putation of distance offset from the center of the at least one
of the guide proximal ends.

In certain embodiments, the imaging system is configured
to determine the offset and compute compensation adjust-
ment of the alignment of the light energy relative to the at
least one of the guide proximal ends.

In various embodiments, the optical alignment system
further includes an alignment positioner that positions the
alignment of the light energy relative to the at least one of
the guide proximal ends based on a computed compensation
adjustment to substantially couple the light source and the at
least one of the guide proximal ends.

In some embodiments, the catheter system further
includes a system controller that is configured to control an
optics mover that positions the multiplexer and aligns the
light energy relative to the at least one of the guide proximal
ends.

In certain embodiments, the catheter system further
includes a light source mover coupled to the multiplexer, the
light source mover being connected to the optics mover so
that the optics mover can position the multiplexer along the
light source mover.

In various embodiments, the system controller is config-
ured to align the light source into one of (i) a third light guide
that receives the light energy from the light source, the third
light guide having a guide proximal end, and (ii) a third light
guide that receives the light energy from the light source, the
third light guide having a guide proximal end.

In some embodiments, the light source is a pulsed IR
laser.

In certain embodiments, the multiplexer further includes
optical elements including a dichroic beamsplitter that splits
the light source into at least two light beams.

In various embodiments, the dichroic beamsplitter is
configured to reflect a reflected light energy with a shorter
wavelength than the light energy emitted by the light source.

In some embodiments, the dichroic beamsplitter includes
a dichroic coating that is tuned to reflect a portion of the light
energy emitted by the light source so that between 99% and
0.01% is reflected.

In certain embodiments, the dichroic beamsplitter is con-
figured to reflect a portion of the light energy emitted by the
light source as an imaging beam.

In various embodiments, the imaging beam is directed
toward a detector for analysis of the light energy reflected
from at least one of the light guides.

In some embodiments, the optical alignment system fur-
ther includes an illuminator that illuminates the at least one
of the guide proximal ends to provide improved image
quality and brightness.

In certain embodiments, the system controller controls the
illuminator and adjusts an image brightness and contrast.

In various embodiments, wherein the optical alignment
system further includes one of a stepper motor and a piezo
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actuator that is configured to adjust the yaw, pitch, and roll
of at least one of the light guides.

In some embodiments, wherein the optical alignment
system further includes optical compensators that are con-
figured to adjust the positioning of the light source relative
to the at least one of the guide proximal ends.

In certain embodiments, the optical compensators include
a plurality of optical steering wedges positioned in the path
of the light source, the plurality of optical steering wedges
being configured to improve the coupling of the light source,
and the at least one of the guide proximal ends.

The present invention is also directed toward a method for
treating a vascular lesion within or adjacent to a vessel wall
within a body of a patient using the catheter system of any
of the embodiments described herein.

The present invention is further directed toward a method
for manufacturing the catheter system of any of the embodi-
ments described herein.

The present invention is also directed toward a method for
treating a treatment site within or adjacent to a vessel wall
or a heart valve using a catheter system. In various embodi-
ments, the method can include the steps of generating light
energy using a light source, directing the light energy toward
at least one of a guide proximal end of a first light guide and
a guide proximal end of a second light guide, determining an
alignment of the light energy relative to at least one of the
guide proximal ends of the light guides with an optical
alignment system, and adjusting a positioning of the light
energy relative to the at least one of the guide proximal ends
of the light guides with the optical alignment system based
on the alignment of the light energy.

In some embodiments, the optical alignment system is
configured to improve optical coupling between the light
energy and the at least one of the guide proximal ends of the
light guides.

In certain embodiments, the optical alignment system
further includes an image sensor that senses the alignment
between the light energy and to the at least one of the guide
proximal ends of the light guides, the image sensor being
configured to provide a visualization of the alignment.

In various embodiments, the method can further include
the step of configuring a system controller that is configured
to control the optical alignment system so that the light
energy is substantially coupled to the at least one of the
guide proximal ends of the light guides.

In some embodiments, at least one of the light guides is
an optical fiber.

In certain embodiments, the light source is a laser.

In various embodiments, the optical alignment system
further includes an optical aligner that is configured to align
the light energy with the at least one of the guide proximal
ends of the light guides.

In some embodiments, the optical aligner is controlled by
the system controller.

In certain embodiments, the optical alignment system
further includes an imaging system including an imaging
sensor, the imaging system being configured to capture
images of a focal point of the light source.

In various embodiments, the imaging system is config-
ured to simultaneously capture images of the focal point of
the light source and a scattered energy beam scattered off the
at least one of the guide proximal ends of the light guides.

In some embodiments, the imaging system is configured
to utilize an image reference frame that allows direct com-
putation of distance offset from the center of the at least one
of the guide proximal ends of the light guides.
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In certain embodiments, the imaging system is configured
to determine the offset and compute compensation adjust-
ment of the alignment of the light energy and the at least one
of the guide proximal ends of the light guides.

In various embodiments, the method can further include
the step of configuring a system controller that is configured
to control an optics mover that positions the multiplexer and
aligns the source and the at least one of the guide proximal
ends of the light guides.

In some embodiments, the method can further include the
step of coupling a light source mover to the multiplexer, the
light source mover being connected to the optics mover so
that the optics mover can position the multiplexer along the
light source mover.

In certain embodiments, the system controller is config-
ured to align the light source into one of (i) a third light guide
that receives the light energy from the light source, the third
light guide having a guide proximal end, and (ii) a third light
guide that receives the light energy from the light source, the
third light guide having a guide proximal end.

In various embodiments, the light source is a pulsed IR
laser.

In some embodiments, the multiplexer further includes
optical elements including a dichroic beamsplitter that splits
the light source into at least two guide beams.

In certain embodiments, the dichroic beamsplitter is con-
figured to reflect a reflected light energy with a shorter
wavelength than the light energy emitted by the light source.

In various embodiments, the dichroic beamsplitter
includes a dichroic coating that is tuned to reflect a portion
of the light energy emitted by the light source so that
between 99% and 0.01% is reflected.

In some embodiments, the dichroic beamsplitter is con-
figured to reflect a portion of the light energy emitted the at
least one of the guide proximal ends of the light guides as an
imaging beam.

In certain embodiments, the method can further include
the step of directing the light energy reflected from the at
least one of the guide proximal ends of the light guides
toward a detector for analysis.

In various embodiments, the optical alignment system
further includes an illuminator that illuminates the at least
one of the guide proximal ends of the light guides to provide
improved image quality and brightness.

In some embodiments, the system controller controls the
illuminator and adjusts an image brightness and contrast.

In certain embodiments, the optical alignment system
further includes one of a stepper motor and a piezo actuator
that is configured to adjust the yaw, pitch, and roll of at least
one of the light guides.

In various embodiments, the optical alignment system
further includes optical compensators that are configured to
adjust the positioning of the individual guide beam relative
to at least one of the light guides.

In some embodiments, the optical compensators include a
plurality of optical steering wedges positioned in the path of
the light source, the plurality of optical steering wedges
being configured to improve the coupling of the light source,
and the at least one of the guide proximal ends of the light
guides.

In certain embodiments, the optical alignment system
further includes a reflector and a reflector mover that moves
the reflector.

The present invention is also directed toward a method for
treating a treatment site within or adjacent to a vessel wall
or a heart valve using a catheter system. In various embodi-
ments, the method can include the steps of determining an
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alignment of a light energy relative to at least one of a guide
proximal ends of a first light guide and a guide proximal end
of a second light guide with an optical alignment system,
and adjusting a positioning of the light energy relative to the
at least one of the guide proximal ends of the light guides
with the optical alignment system based on the alignment of
the light energy.

The present invention is directed toward a catheter system
for treating a treatment site within or adjacent to a vessel
wall or a heart valve. In various embodiments, the catheter
system includes a light source, a first light guide, a second
light guide, and a light source mover. The light source
generates light energy. The first light guide receives the light
energy from the light source, the first light guide having a
guide proximal end. The second light guide that receives the
light energy from the light source, the second light guide
having a guide proximal end. An optical alignment system
determines an alignment of the light energy relative to at
least one of the guide proximal ends, the optical alignment
system adjusting the positioning of the light energy relative
to the at least one of the guide proximal ends based at least
partially on the alignment of the light energy relative to the
at least one of the guide proximal ends.

The present invention is also directed toward a method for
treating a treatment site within or adjacent to a vessel wall
or a heart valve using a catheter system. In various embodi-
ments, the method can include the steps of generating light
energy using a light source; receiving light energy into one
of a first light guide and a second light guide; moving, using
a light source mover, the light source so that the light energy
s aligned within a guide proximal end of (i) the first light
guide and (ii) the second light guide, and detecting, using the
light source mover, the alignment of the light energy relative
to the guide proximal end of at least one of the light guides.

This summary is an overview of some of the teachings of
the present application and is not intended to be an exclusive
or exhaustive treatment of the present subject matter. Further
details are found in the detailed description and appended
claims. Other aspects will be apparent to persons skilled in
the art upon reading and understanding the following
detailed description and viewing the drawings that form a
part thereof, each of which is not to be taken in a limiting
sense. The scope herein is defined by the appended claims
and their legal equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the
invention itself, both as to its structure and its operation, will
be best understood from the accompanying drawings, taken
in conjunction with the accompanying description, in which
in most cases, similar reference characters refer to similar
parts, and in which:

FIG. 1 is a schematic cross-sectional view of an embodi-
ment of a catheter system in accordance with various
embodiments herein, the catheter system including a mul-
tiplexer having features of the present invention;

FIG. 2 is a simplified schematic view of a portion of an
embodiment of the catheter system, including an embodi-
ment of an optical alignment system, the optical alignment
system being utilized in a first alignment configuration;

FIG. 3 is a simplified schematic view of a portion of an
embodiment of the catheter system, including an embodi-
ment of the optical alignment system, the optical alignment
system being utilized in a second alignment configuration;

FIG. 4 is a simplified schematic view of a portion of an
embodiment of the catheter system, including an embodi-
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ment of the optical alignment system, the optical alignment
system being utilized in a third alignment configuration;

FIG. 5A is a simplified view of a guide proximal end of
a light guide, and a portion of the guide beam reflected off
the guide proximal end of the light guide, the portion of the
guide beam being shown in an unaligned state;

FIG. 5B is a simplified view of a guide proximal end of
a light guide, and a portion of the guide beam reflected off
the guide proximal end of the light guide, the portion of the
guide beam being shown in an aligned state; and

FIG. 6 is a flow chart of one embodiment of a method for
treating a treatment site within or adjacent to a vessel wall
or a heart valve using a catheter system having features
and/or steps of the present invention.

While embodiments of the present invention are suscep-
tible to various modifications and alternative forms, specif-
ics thereof have been shown by way of example and
drawings, and are described in detail herein. It is understood,
however, that the scope herein is not limited to the particular
embodiments described. On the contrary, the intention is to
cover modifications, equivalents, and alternatives falling
within the spirit and scope herein.

DESCRIPTION

Treatment of vascular lesions (also sometimes referred to
herein as “treatment sites”) can reduce major adverse events
or death in affected subjects. As referred to herein, a major
adverse event is one that can occur anywhere within the
body due to the presence of a vascular lesion. Major adverse
events can include but are not limited to, major adverse
cardiac events, major adverse events in the peripheral or
central vasculature, major adverse events in the brain, major
adverse events in the musculature, or major adverse events
in any of the internal organs.

As used herein, the terms “intravascular lesion,” “vascular
lesion,” and “treatment site” are used interchangeably unless
otherwise noted. The intravascular lesions and/or the vas-
cular lesions are sometimes referred to herein simply as
“lesions.” Also, as used herein, the terms “focused location”
and “focused spot” can be used interchangeably unless
otherwise noted and can refer to any location where the light
energy is focused to a small diameter than the initial
diameter of the light source.

Those of ordinary skill in the art will realize that the
following detailed description of the present invention is
illustrative only and is not intended to be in any way
limiting. Other embodiments of the present invention will
readily suggest themselves to such skilled persons having
the benefit of this disclosure. Reference will now be made in
detail to implementations of the present invention, as illus-
trated in the accompanying drawings.

In the interest of clarity, not all of the routine features of
the implementations described herein are shown and
described. It will, of course, be appreciated that in the
development of any such actual implementation, numerous
implementation-specific decisions must be made in order to
achieve the developer’s specific goals, such as compliance
with application-related and business-related constraints,
and that these specific goals will vary from one implemen-
tation to another and from one developer to another. More-
over, it is appreciated that such a development effort might
be complex and time-consuming, but would nevertheless be
a routine undertaking of engineering for those of ordinary
skill in the art having the benefit of this disclosure.

The catheter systems disclosed herein can include many
different forms. Referring now to FIG. 1, a schematic

29



US 11,806,075 B2

7

cross-sectional view is shown of a catheter system 100 in
accordance with various embodiments. The catheter system
100 is suitable for imparting pressure waves to induce
fractures in one or more treatment sites within or adjacent to
a vessel wall of a blood vessel, or on or adjacent to a heart
valve, within a body of a patient. In the embodiment
illustrated in FIG. 1, the catheter system 100 can include one
or more of a catheter 102, a light guide bundle 122 including
one or more light guides 122A, a source manifold 136, a
fluid pump 138, a multiplexer 123 including one or more of
a light source 124, a power source 125, a system controller
126, and a graphic user interface 127 (a “GUI”), a handle
assembly 128, and an optical analyzer assembly 142. Alter-
natively, the catheter system 100 can include more compo-
nents or fewer components than those specifically illustrated
and described in relation to FIG. 1.

It is appreciated that while the catheter system 100 is
generally described herein as including a light guide bundle
122 including one or more light guides 122A, and a light
source 124, in some alternative embodiments, the catheter
system 100 can include an energy guide bundle that includes
different types of energy guides, and/or a different type of
energy source.

In various embodiments, the catheter 102 is configured to
move to a treatment site 106 within or adjacent to a vessel
wall 108A of a blood vessel 108 within a body 107 of a
patient 109. The treatment site 106 can include one or more
vascular lesions 106 A, such as calcified vascular lesions, for
example. Additionally, or in the alternative, the treatment
site 106 can include vascular lesions 106A, such as fibrous
vascular lesions. Still alternatively, in some implementa-
tions, the catheter 102 can be used at a treatment site 106
within or adjacent to a heart valve within the body 107 of the
patient 109.

The catheter 102 can include an inflatable balloon 104
(sometimes referred to herein simply as a “balloon”), a
catheter shaft 110, and a guidewire 112. The balloon 104 can
be coupled to the catheter shaft 110. The balloon 104 can
include a balloon proximal end 104P and a balloon distal end
104D. The catheter shaft 110 can extend from a proximal
portion 114 of the catheter system 100 to a distal portion 116
of the catheter system 100. The catheter shaft 110 can
include a longitudinal axis 144. The catheter shaft 110 can
also include a guidewire lumen 118, which is configured to
move over the guidewire 112. As utilized herein, the
guidewire lumen 118 defines a conduit through which the
guidewire 112 extends. The catheter shaft 110 can further
include an inflation lumen (not shown) and/or various other
lumens for various other purposes. In some embodiments,
the catheter 102 can have a distal end opening 120 and can
accommodate and be tracked over the guidewire 112 as the
catheter 102 is moved and positioned at or near the treatment
site 106. In some embodiments, the balloon proximal end
104P can be coupled to the catheter shaft 110, and the
balloon distal end 104D can be coupled to the guidewire
lumen 118.

The balloon 104 includes a balloon wall 130 that defines
a balloon interior 146. The balloon 104 can be selectively
inflated with a balloon fluid 132 to expand from a deflated
state suitable for advancing the catheter 102 through a
patient’s vasculature, to an inflated state (as shown in FIG.
1) suitable for anchoring the catheter 102 in position relative
to the treatment site 106. Stated in another manner, when the
balloon 104 is in the inflated state, the balloon wall 130 of
the balloon 104 is configured to be positioned substantially
adjacent to the treatment sites 106. It is appreciated that
although FIG. 1 illustrates the balloon wall 130 of the
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balloon 104 is shown spaced apart from the treatment site
106 of the blood vessel 108 when in the inflated state, this
is done merely for ease of illustration. It is recognized that
the balloon wall 130 of the balloon 104 will typically be
substantially directly adjacent to and/or abutting the treat-
ment site 106 when the balloon 104 is in the inflated state.

The balloon 104 suitable for use in the catheter system
100 includes those that can be passed through the vascula-
ture of a patient 109 when in the deflated state. In some
embodiments, the balloon 104 is made from silicone. In
other embodiments, the balloon 104 can be made from
polydimethylsiloxane (PDMS), polyurethane, polymers
such as PEBAX™ material, nylon, or any other suitable
material.

The balloon 104 can have any suitable diameter (in the
inflated state). In various embodiments, the balloon 104 can
have a diameter (in the inflated state) ranging from less than
one millimeter (mm) up to 25 mm. In some embodiments,
the balloon 104 can have a diameter (in the inflated state)
ranging from at least 1.5 mm up to 14 mm. In some
embodiments, the balloons 104 can have a diameter (in the
inflated state) ranging from at least two mm up to five mm.

In some embodiments, the balloon 104 can have a length
ranging from at least three mm to 300 mm. More particu-
larly, in some embodiments, the balloon 104 can have a
length ranging from at least eight mm to 200 mm. It is
appreciated that a balloon 104 having a relatively longer
length can be positioned adjacent to larger treatment sites
106, and, thus, may be used for imparting pressure waves
onto and inducing fractures in larger vascular lesions 106 A
or multiple vascular lesions 106 A at precise locations within
the treatment site 106. It is further appreciated that a longer
balloon 104 can also be positioned adjacent to multiple
treatment sites 106 at any one given time.

The balloon 104 can be inflated to inflation pressures of
between approximately one atmosphere (atm) and 70 atm. In
some embodiments, the balloon 104 can be inflated to
inflation pressures of from at least 20 atm to 60 atm. In other
embodiments, the balloon 104 can be inflated to inflation
pressures of from at least six atm to 20 atm. In still other
embodiments, the balloon 104 can be inflated to inflation
pressures of from at least three atm to 20 atm. In yet other
embodiments, the balloon 104 can be inflated to inflation
pressures of from at least two atm to ten atm.

The balloon 104 can have various shapes, including, but
not to be limited to, a conical shape, a square shape, a
rectangular shape, a spherical shape, a conical/square shape,
a conical/spherical shape, an extended spherical shape, an
oval shape, a tapered shape, a bone shape, a stepped diam-
eter shape, an offset shape, or a conical offset shape. In some
embodiments, the balloon 104 can include a drug-eluting
coating or a drug-eluting stent structure. The drug-eluting
coating or drug-eluting stent can include one or more
therapeutic agents, including anti-inflammatory agents, anti-
neoplastic agents, anti-angiogenic agents, and the like.

The balloon fluid 132 can be a liquid or a gas. Some
examples of the balloon fluid 132 suitable for use can
include, but are not limited to one or more of water, saline,
contrast medium, fluorocarbons, perfluorocarbons, gases,
such as carbon dioxide, or any other suitable balloon fluid
132. In some embodiments, the balloon fluid 132 can be
used as a base inflation fluid. In some embodiments, the
balloon fluid 132 can include a mixture of saline to contrast
medium in a volume ratio of approximately 50:50. In other
embodiments, the balloon fluid 132 can include a mixture of
saline to contrast medium in a volume ratio of approxi-
mately 25:75. In still other embodiments, the balloon fluid
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132 can include a mixture of saline to contrast medium in a
volume ratio of approximately 75:25. However, it is under-
stood that any suitable ratio of saline to contrast medium can
be used. The balloon fluid 132 can be tailored on the basis
of composition, viscosity, and the like so that the rate of
travel of the pressure waves are appropriately manipulated.
In certain embodiments, the balloon fluid 132 suitable for
use herein is biocompatible. A volume of balloon fluid 132
can be tailored by the chosen light source 124 and the type
of balloon fluid 132 used.

In some embodiments, the contrast agents used in the
contrast media can include, but are not to be limited to,
iodine-based contrast agents, such as ionic or non-ionic
iodine-based contrast agents. Some non-limiting examples
of ionic iodine-based contrast agents include diatrizoate,
metrizoate, iothalamate, and ioxaglate. Some non-limiting
examples of non-ionic iodine-based contrast agents include
iopamidol, iohexol, ioxilan, iopromide, iodixanol, and iover-
sol. In other embodiments, non-iodine based contrast agents
can be used. Suitable non-iodine containing contrast agents
can include gadolinium (II1)-based contrast agents. Suitable
fluorocarbon and perfluorocarbon agents can include, but are
not to be limited to, agents such as perfluorocarbon dode-
cafluoropentane (DDFP, C5F12).

The balloon fluids 132 can include those that include
absorptive agents that can selectively absorb light in the
ultraviolet region (e.g., at least ten nanometers (nm) to 400
nm), the visible region (e.g., at least 400 nm to 780 nm), or
the near-infrared region (e.g., at least 780 nm to 2.5 um) of
the electromagnetic spectrum. Suitable absorptive agents
can include those with absorption maxima along the spec-
trum from at least ten nm to 2.5 pum. Alternatively, the
balloon fluid 132 can include absorptive agents that can
selectively absorb light in the mid-infrared region (e.g., at
least 2.5 um to 15 pm), or the far-infrared region (e.g., at
least 15 um to one mm) of the electromagnetic spectrum. In
various embodiments, the absorptive agent can be those that
have an absorption maximum matched with the emission
maximum of the laser used in the catheter system 100. By
way of non-limiting examples, various lasers described
herein can include neodymium:yttrium-aluminum-garnet
(Nd: YAG-emission maximum=1064 nm) lasers, holmium:
YAG (Ho:YAG-emission maximum=2.1 pm) lasers, or erbi-
um:YAG (Er:YAG-emission maximum=2.94 um) lasers. In
some embodiments, the absorptive agents can be water-
soluble. In other embodiments, the absorptive agents are not
water-soluble. In some embodiments, the absorptive agents
used in the balloon fluids 132 can be tailored to match the
peak emission of the light source 124. Various light sources
124 having emission wavelengths of at least ten nanometers
to one millimeter are discussed elsewhere herein.

The catheter shaft 110 of the catheter 102 can be coupled
to the one or more light guides 122A of the light guide
bundle 122 that are in optical communication with the light
source 124. The light guide(s) 122A can be disposed along
the catheter shaft 110 and within the balloon 104. Each of the
light guides 122A can have a guide distal end 122D that is
at any suitable longitudinal position relative to a length of
the balloon 104. In some embodiments, each light guide
122A can be an optical fiber, and the light source 124 can be
a laser. The light source 124 can be in optical communica-
tion with the light guides 122A at the proximal portion 114
of the catheter system 100. More particularly, the light
source 124 can selectively, simultaneously, sequentially,
and/or alternatively be in optical communication with each
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of the light guides 122A in any desired combination, order,
and/or pattern due to the presence and operation of the
multiplexer 128.

In some embodiments, the catheter shaft 110 can be
coupled to multiple light guides 122A, such as a first light
guide, a second light guide, a third light guide, etc., which
can be disposed at any suitable positions about the guidewire
lumen 118 and/or the catheter shaft 110. For example, in
certain non-exclusive embodiments, two light guides 122A
can be spaced apart by approximately 180 degrees about the
circumference of the guidewire lumen 118 and/or the cath-
eter shaft 110; three light guides 122A can be spaced apart
by approximately 120 degrees about the circumference of
the guidewire lumen 118 and/or the catheter shaft 110; or
four light guides 122A can be spaced apart by approximately
90 degrees about the circumference of the guidewire lumen
118 and/or the catheter shaft 110. Still alternatively, multiple
light guides 122A need not be uniformly spaced apart from
one another about the circumference of the guidewire lumen
118 and/or the catheter shaft 110. More particularly, the light
guides 122A can be disposed either uniformly or non-
uniformly about the guidewire lumen 118 and/or the catheter
shaft 110 to achieve the desired effect in the desired loca-
tions.

The catheter system 100 and/or the light guide bundle 122
can include any number of light guides 122A in optical
communication with the light source 124 at the proximal
portion 114, and with the balloon fluid 132 within the
balloon interior 146 of the balloon 104 at the distal portion
116. For example, in some embodiments, the catheter sys-
tem 100 and/or the light guide bundle 122 can include from
one light guide 122A to five light guides 122A. In other
embodiments, the catheter system 100 and/or the light guide
bundle 122 can include from five light guides 122 A to fifteen
light guides 122A. In yet other embodiments, the catheter
system 100 and/or the light guide bundle 122 can include
from ten light guides 122A to thirty light guides 122A.
Alternatively, in still other embodiments, the catheter system
100 and/or the light guide bundle 122 can include greater
than 30 light guides 122A.

The light guides 122A can have any suitable design for
purposes of generating plasma and/or pressure waves in the
balloon fluid 132 within the balloon interior 146. In certain
embodiments, the light guides 122A can include an optical
fiber or flexible light pipe. The light guides 122A can be thin
and flexible and can allow light signals to be sent with very
little loss of strength. The light guides 122A can include a
core surrounded by a cladding about its circumference. In
some embodiments, the core can be a cylindrical core or a
partially cylindrical core. The core and cladding of the light
guides 122A can be formed from one or more materials,
including but not limited to one or more types of glass,
silica, or one or more polymers. The light guides 122A may
also include a protective coating, such as a polymer. It is
appreciated that the index of refraction of the core will be
greater than the index of refraction of the cladding.

Each light guide 122A can guide light energy along its
length from a guide proximal end 122P to the guide distal
end 122D having at least one optical window (not shown)
that is positioned within the balloon interior 146.

In various embodiments, the guide distal end 122D can
further include and/or incorporate a distal light receiver
122R that enables light energy to be moved back into and
through the light guide 122A from the guide distal end 122D
to the guide proximal end 122P. Stated another way, the light
energy can move in a first direction 121F along the light
guide 122A that is generally from the guide proximal end
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122P toward the guide distal end 122D of the light guide
122A. At least a portion of the light energy can also move
in a second direction 1218 along the light guide 122A that
is substantially opposite the first direction 121F, i.e., from
the guide distal end 122D toward the guide proximal end
122P of the light guide 122A. Moreover, as described in
greater detail herein below, the light energy emitted from the
guide proximal end 122P after being moved back through
the light guide 122A (in the second direction 121S) can be
separated and then optically detected, interrogated, and/or
analyzed through use of the optical analyzer assembly 142.

The light guides 122A can assume many configurations
about and/or relative to the catheter shaft 110 of the catheter
102. In some embodiments, the light guides 122A can run
parallel to the longitudinal axis 144 of the catheter shaft 110.
In some embodiments, the light guides 122A can be physi-
cally coupled to the catheter shaft 110. In other embodi-
ments, the light guides 122 A can be disposed along a length
of an outer diameter of the catheter shaft 110. In yet other
embodiments, the light guides 122A can be disposed within
one or more light guide lumens within the catheter shaft 110.

The light guides 122 A can also be disposed at any suitable
positions about the circumference of the guidewire lumen
118 and/or the catheter shaft 110, and the guide distal end
122D of each of the light guides 122 A can be disposed at any
suitable longitudinal position relative to the length of the
balloon 104 and/or relative to the length of the guidewire
lumen 118 to more effectively and precisely impart pressure
waves for purposes of disrupting the vascular lesions 106 A
at the treatment site 106.

In certain embodiments, the light guides 122 A can include
one or more photoacoustic transducers 154, where each
photoacoustic transducer 154 can be in optical communica-
tion with the light guide 122A within which it is disposed.
In some embodiments, the photoacoustic transducers 154
can be in optical communication with the guide distal end
122D of'the light guide 122A. Additionally, in such embodi-
ments, the photoacoustic transducers 154 can have a shape
that corresponds with and/or conforms to the guide distal
end 122D of the light guide 122A.

The photoacoustic transducer 154 is configured to convert
light energy into an acoustic wave at or near the guide distal
end 122D of the light guide 122A. The direction of the
acoustic wave can be tailored by changing an angle of the
guide distal end 122D of the light guide 122A.

In certain embodiments, the photoacoustic transducers
154 disposed at the guide distal end 122D of the light guide
122A can assume the same shape as the guide distal end
122D of the light guide 122A. For example, in certain
non-exclusive embodiments, the photoacoustic transducer
154 and/or the guide distal end 122D can have a conical
shape, a convex shape, a concave shape, a bulbous shape, a
square shape, a stepped shape, a half-circle shape, an ovoid
shape, and the like. The light guide 122A can further include
additional photoacoustic transducers 154 disposed along one
or more side surfaces of the length of the light guide 122A.

In some embodiments, the light guides 122A can further
include one or more diverting features or “diverters” (not
shown in FIG. 1) within the light guide 122A that are
configured to direct light to exit the light guide 122A toward
a side surface which can be located at or near the guide distal
end 122D of the light guide 122A, and toward the balloon
wall 130. A diverting feature can include any feature of the
system that diverts light energy from the light guide 122A
away from its axial path toward a side surface of the light
guide 122A. Additionally, the light guides 122A can each
include one or more light windows disposed along the
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longitudinal or circumferential surfaces of each light guide
122 A and in optical communication with a diverting feature.
Stated in another manner, the diverting features can be
configured to direct light energy in the light guide 122A
toward a side surface that is at or near the guide distal end
122D, where the side surface is in optical communication
with a light window. The light windows can include a
portion of the light guide 122A that allows light energy to
exit the light guide 122A from within the light guide 122A,
such as a portion of the light guide 122A lacking a cladding
material on or about the light guide 122A.

Examples of the diverting features suitable for use include
a reflecting element, a refracting element, and a fiber dif-
fuser. The diverting features suitable for focusing light
energy away from the tip of the light guides 122A can
include, but are not to be limited to, those having a convex
surface, a gradient-index (GRIN) lens, and a mirror focus
lens. Upon contact with the diverting feature, the light
energy is diverted within the light guide 122A to one or more
of a plasma generator 133 and the photoacoustic transducer
154 that is in optical communication with a side surface of
the light guide 122 A. As noted, the photoacoustic transducer
154 then converts light energy into an acoustic wave that
extends away from the side surface of the light guide 122A.

The source manifold 136 can be positioned at or near the
proximal portion 114 of the catheter system 100. The source
manifold 136 can include one or more proximal end open-
ings that can receive the one or more light guides 122A of
the light guide bundle 122, the guidewire 112, and/or an
inflation conduit 140 that is coupled in fluid communication
with the fluid pump 138. The catheter system 100 can also
include the fluid pump 138 that is configured to inflate the
balloon 104 with the balloon fluid 132 as needed.

As noted above, in the embodiment illustrated in FIG. 1,
the multiplexer 123 includes one or more of the light source
124, the power source 125, the system controller 126, and
the GUI 127. Alternatively, the multiplexer 123 can include
more components or fewer components than those specifi-
cally illustrated in FIG. 1. For example, in certain non-
exclusive alternative embodiments, the multiplexer 123 can
be designed without the GUI 127. Still alternatively, one or
more of the light source 124, the power source 125, the
system controller 126, and the GUI 127 can be provided
within the catheter system 100 without the specific need for
the multiplexer 123.

In some embodiments, the multiplexer 123 can include a
two-channel splitter design. The guide bundle 122 can
include a manual positioning mechanism that is mounted on
an optical breadboard and/or platen. This design enables
linear positional adjustment and array tilting by rotating
about a channel one light guide 122A axis (not shown in
FIG. 1). The adjustment method, in other embodiments, can
two adjustment steps, 1) aligning the planar positions of the
source beam 124B at Channel 1, and 2) adjusting the light
guide bundle 122 to achieve the best alignment at Channel
10.

As illustrated in FIG. 1, in certain embodiments, at least
a portion of the optical analyzer assembly 142 can also be
positioned substantially within the multiplexer 123. Alter-
natively, components of the optical analyzer assembly 142
can be positioned in a different manner than what is spe-
cifically shown in FIG. 1.

As shown, the multiplexer 123, and the components
included therewith, is operatively coupled to the catheter
102, the light guide bundle 122, and the remainder of the
catheter system 100. For example, in some embodiments, as
illustrated in FIG. 1, the multiplexer 123 can include a
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console connection aperture 148 (also sometimes referred to
generally as a “socket”) by which the light guide bundle 122
is mechanically coupled to the multiplexer 123. In such
embodiments, the light guide bundle 122 can include a guide
coupling housing 150 (also sometimes referred to generally
as a “ferrule”) that houses a portion, e.g., the guide proximal
end 122P, of each of the light guides 122A. The guide
coupling housing 150 is configured to fit and be selectively
retained within the console connection aperture 148 to
provide the mechanical coupling between the light guide
bundle 122 and the multiplexer 123.

The light guide bundle 122 can also include a guide
bundler 152 (or “shell”) that brings each of the individual
light guides 122A closer together so that the light guides
122A and/or the light guide bundle 122 can be in a more
compact form as it extends with the catheter 102 into the
blood vessel 108 during use of the catheter system 100. In
some embodiments, the light guides 122A leading to the
plasma generator 133 can be organized into a light guide
bundle 122, including a linear block with an array of
precision holes forming a multi-channel ferrule. In other
embodiments, the light guide bundle 122 could include a
mechanical connector array or block connector that orga-
nizes singular ferrule into a linear array

The light source 124 can be selectively and/or alterna-
tively coupled in optical communication with each of the
light guides 122A, i.e., to the guide proximal end 122P of
each of the light guides 122A, in the light guide bundle 122.
In particular, the light source 124 is configured to generate
light energy in the form of a source beam 124A, such as a
pulsed source beam, that can be selectively and/or alterna-
tively directed to and received by each of the light guides
122A in the light guide bundle 122 as an individual guide
beam 124B. Alternatively, the catheter system 100 can
include more than one light source 124. For example, in one
non-exclusive alternative embodiment, the catheter system
100 can include a separate light source 124 for each of the
light guides 122A in the light guide bundle 122. The light
source 124 can be operated at low energies.

The light source 124 can have any suitable design. In
certain embodiments, the light source 124 can be configured
to provide sub-millisecond pulses of light energy from the
light source 124 that are focused onto a small spot in order
to couple it into the guide proximal end 122P of the light
guide 122A. Such pulses of light energy are then directed
and/or guided along the light guides 122A to a location
within the balloon interior 146 of the balloon 104, thereby
inducing plasma formation (also sometimes referred to
herein as a “plasma flash”) in the balloon fluid 132 within
the balloon interior 146 of the balloon 104, such as via the
plasma generator 133 that can be located at the guide distal
end 122D of the light guide 122A. In particular, the light
emitted at the guide distal end 122D of the light guide 122A
energizes the plasma generator 133 to form the plasma
within the balloon fluid 132 within the balloon interior 146.
The plasma formation causes rapid bubble formation and
imparts pressure waves upon the treatment site 106. An
exemplary plasma-induced bubble 134 is illustrated in FIG.
1

When the plasma initially forms in the balloon fluid 132
within the balloon interior 146, it emits broad-spectrum
electromagnetic radiation. This can be seen as a flash of
broad-spectrum light detectable by the naked eye. A portion
of the light emitted from the plasma bubble 134 can be
coupled into the distal light receiver 122R at the guide distal
end 122D of the light guide 122A and travel back to the
guide proximal end 122P, where it can be separated,
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detected, and analyzed through use of the optical analyzer
assembly 142. The intensity and timing of the visible light
pulse relative to the plasma generating pulse provides an
indication that the plasma generator 133 functioned, its
energy output, and its functional condition. Visible light
flashes may occur in other locations of the light guide 122A
if the light guide 122A is damaged or broken. Such other
visible light flashes will also be coupled into the light guide
122A and carried back to the guide proximal end 122P. The
intensity and timing of these other light pulses provide an
indication of damage to or failure of the light guide 122A or
the plasma generator 133. In such situations, the optical
analyzer assembly 142 can include a safety shutdown sys-
tem 283 (illustrated in FIG. 2A) that can be selectively
activated to shut down operation of the catheter system 100.

The configuration of the plasma generator 133 and/or the
distal light receiver 122R further allows ambient light that
originates outside of the catheter 102 to be coupled into the
guide distal end 122D of the light guide 122A. In one
implementation, the optical analyzer assembly 142 monitors
for returned ambient light energy that traverses the light
guide 122A from the guide distal end 122D to the guide
proximal end 122P. If any ambient light energy is present
and detected by the optical analyzer assembly 142 in such
situations, this is an indication that the catheter 102 is
located outside of the body 107 of the patient 109, and the
optical analyzer assembly 142 can be configured to lock out
the light source 124 accordingly. In particular, in such
situations, the safety shutdown system 283 of the optical
analyzer assembly 142 can be selectively activated to shut
down operation of the catheter system 100.

In various non-exclusive alternative embodiments, the
sub-millisecond pulses of light energy from the light source
124 can be delivered to the treatment site 106 at a frequency
of between approximately one hertz (Hz) and 5000 Hz,
between approximately 30 Hz and 1000 Hz, between
approximately ten Hz and 100 Hz, or between approxi-
mately one Hz and 30 Hz. Alternatively, the sub-millisecond
pulses of light energy can be delivered to the treatment site
106 at a frequency that can be greater than 5000 Hz or less
than one Hz, or any other suitable range of frequencies.

It is appreciated that although the light source 124 is
typically utilized to provide pulses of light energy, the light
source 124 can still be described as providing a single source
beam 124A, i.e., a single pulsed source beam.

The light sources 124 suitable for use can include various
types of light sources, including lasers and lamps. For
example, in certain non-exclusive embodiments, the light
source 124 can be an infrared laser that emits light energy in
the form of pulses of infrared light. Alternatively, as noted
above, the light sources 124, as referred to herein, can
include any suitable type of energy source.

Suitable lasers can include short pulse lasers on the
sub-millisecond timescale. In some embodiments, the light
source 124 can include lasers on the nanosecond (ns)
timescale. The lasers can also include short pulse lasers on
the picosecond (ps), femtosecond (fs), and microsecond (us)
timescales. It is appreciated that there are many combina-
tions of laser wavelengths, pulse widths, and energy levels
that can be employed to achieve plasma in the balloon fluid
132 of the catheter 102. In various non-exclusive alternative
embodiments, the pulse widths can include those falling
within a range including from at least ten ns to 3000 ns, at
least 20 ns to 100 ns, or at least one ns to 500 ns.
Alternatively, any other suitable pulse width range can be
used.
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Exemplary nanosecond lasers can include those within the
UV to IR spectrum, spanning wavelengths of about ten
nanometers (nm) to one millimeter (mm). In some embodi-
ments, the light sources 124 suitable for use in the catheter
system 100 can include those capable of producing light at
wavelengths of from at least 750 nm to 2000 nm. In other
embodiments, the light sources 124 can include those
capable of producing light at wavelengths of from at least
700 nm to 3000 nm. In still other embodiments, the light
sources 124 can include those capable of producing light at
wavelengths of from at least 100 nm to ten micrometers
(um). Nanosecond lasers can include those having repetition
rates of up to 200 kHz. In some embodiments, the laser can
include a Q-switched thulium:yttrium-aluminum-garnet
(Tm:YAG) laser. In other embodiments, the laser can
include a neodymium:yttrium-aluminum-garnet (Nd:YAG)
laser, holmium:yttrium-aluminum-garnet (Ho:YAG) laser,
erbium:yttrium-aluminum-garnet (Er:YAG) laser, excimer
laser, helium-neon laser, carbon dioxide laser, as well as
doped, pulsed, fiber lasers.

The catheter system 100 can generate pressure waves
having maximum pressures in the range of at least one
megapascal (MPa) to 100 MPa. The maximum pressure
generated by a particular catheter system 100 will depend on
the light source 124, the absorbing material, the bubble
expansion, the propagation medium, the balloon material,
and other factors. In various non-exclusive alternative
embodiments, the catheter system 100 can generate pressure
waves having maximum pressures in the range of at least
approximately two MPa to 50 MPa, at least approximately
two MPa to 30 MPa, or at least approximately 15 MPa to 25
MPa.

The pressure waves can be imparted upon the treatment
site 106 from a distance within a range from at least
approximately 0.1 millimeters (mm) to greater than approxi-
mately 25 mm, extending radially from the light guides
122A when the catheter 102 is placed at the treatment site
106. In various non-exclusive alternative embodiments, the
pressure waves can be imparted upon the treatment site 106
from a distance within a range from at least approximately
ten mm to 20 mm, at least approximately one mm to ten mm,
at least approximately 1.5 mm to four mm, or at least
approximately 0.1 mm to ten mm extending radially from
the light guides 122A when the catheter 102 is placed at the
treatment site 106. In other embodiments, the pressure
waves can be imparted upon the treatment site 106 from
another suitable distance that is different than the foregoing
ranges. In some embodiments, the pressure waves can be
imparted upon the treatment site 106 within a range of at
least approximately two MPa to 30 MPa at a distance from
at least approximately 0.1 mm to ten mm. In some embodi-
ments, the pressure waves can be imparted upon the treat-
ment site 106 from a range of at least approximately two
MPa to 25 MPa at a distance from at least approximately 0.1
mm to ten mm. Still alternatively, other suitable pressure
ranges and distances can be used.

The power source 125 is electrically coupled to and is
configured to provide the necessary power to each of the
light source 124, the system controller 126, the GUI 127, the
handle assembly 128, and the optical analyzer assembly 142.
The power source 125 can have any suitable design for such
purposes.

The system controller 126 is electrically coupled to and
receives power from the power source 125. Additionally, the
system controller 126 is coupled to and is configured to
control operation of each of the light source 124, the GUI
127, and the optical analyzer assembly 142. The system
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controller 126 can include one or more processors or circuits
for purposes of controlling the operation of at least the light
source 124, the GUI 127, and the optical analyzer assembly
142. For example, the system controller 126 can control the
light source 124 for generating pulses of light energy as
desired and/or at any desired firing rate. Additionally, the
system controller 126 can control and/or operate in conjunc-
tion with the optical analyzer assembly 142 to effectively
provide continuous real-time monitoring of the perfor-
mance, reliability, safety, and proper usage of the catheter
system 100.

The system controller 126 can further be configured to
control operation of other components of the catheter system
100 such as the positioning of the catheter 102 adjacent to
the treatment site 106, the inflation of the balloon 104 with
the balloon fluid 132, etc. Further, or in the alternative, the
catheter system 100 can include one or more additional
controllers that can be positioned in any suitable manner for
purposes of controlling the various operations of the catheter
system 100. For example, in certain embodiments, an addi-
tional controller and/or a portion of the system controller
126 can be positioned and/or incorporated within the handle
assembly 128.

The GUI 127 is accessible by the user or operator of the
catheter system 100. Additionally, the GUI 127 is electri-
cally connected to the system controller 126. With such
design, the GUI 127 can be used by the user or operator to
ensure that the catheter system 100 is effectively utilized to
impart pressure onto and induce fractures at the treatment
site(s) 106. The GUI 127 can provide the user or operator
with information that can be used before, during, and after
use of the catheter system 100. In one embodiment, the GUI
127 can provide static visual data and/or information to the
user or operator. In addition, or in the alternative, the GUI
127 can provide dynamic visual data and/or information to
the user or operator, such as video data or any other data that
changes over time during use of the catheter system 100. In
various embodiments, the GUI 127 can include one or more
colors, different sizes, varying brightness, etc., that may act
as alerts to the user or operator. Additionally, or in the
alternative, the GUI 127 can provide audio data or infor-
mation to the user or operator. The specifics of the GUI 127
can vary depending upon the design requirements of the
catheter system 100, or the specific needs, specifications,
and/or desires of the user or operator.

As shown in FIG. 1, the handle assembly 128 can be
positioned at or near the proximal portion 114 of the catheter
system 100, and/or near the source manifold 136. In this
embodiment, the handle assembly 128 is coupled to the
balloon 104 and is positioned spaced apart from the balloon
104. Alternatively, the handle assembly 128 can be posi-
tioned at another suitable location.

The handle assembly 128 is handled and used by the user
or operator to operate, position, and control the catheter 102.
The design and specific features of the handle assembly 128
can vary to suit the design requirements of the catheter
system 100. In the embodiment illustrated in FIG. 1, the
handle assembly 128 is separate from, but in electrical
and/or fluid communication with one or more of the system
controller 126, the light source 124, the fluid pump 138, the
GUI 127, and the optical analyzer assembly 142. In some
embodiments, the handle assembly 128 can integrate and/or
include at least a portion of the system controller 126 within
an interior of the handle assembly 128. For example, as
shown, in certain such embodiments, the handle assembly
128 can include circuitry 156 that can form at least a portion
of the system controller 126. In some embodiments, the
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circuitry 156 can receive electrical signals or data from the
optical analyzer assembly 142. Further, or in the alternative,
the circuitry 156 can transmit such electrical signals or
otherwise provide data to the system controller 126.

In one embodiment, the circuitry 156 can include a
printed circuit board having one or more integrated circuits,
or any other suitable circuitry. In an alternative embodiment,
the circuitry 156 can be omitted, or can be included within
the system controller 126, which in various embodiments
can be positioned outside of the handle assembly 128, e.g.,
within the multiplexer 123. It is understood that the handle
assembly 128 can include fewer or additional components
than those specifically illustrated and described herein.

FIG. 2 is a simplified schematic view of a portion of an
embodiment of the catheter system 200, including an
embodiment of the optical alignment system 257, the optical
alignment system 257 being utilized in a first alignment
configuration.

The design of the catheter system 200 is substantially
similar to the embodiments illustrated and described herein.
It is appreciated that various components of the catheter
system 200, such as are shown in FIG. 1, are not illustrated
in FIG. 2 for purposes of clarity and ease of illustration.
However, it is appreciated that the catheter system 200 can
include most, if not all, of such components. Additionally, in
some embodiments, the components of the catheter system
200 can be mounted and/or fixed on platens.

As shown in FIG. 2, the catheter system 200 again
includes a light source 224 that is configured to generate
light energy in the form of a source beam 224A, e.g., a
pulsed source beam, that can be selectively and/or alterna-
tively directed to and received by each light guide 222A
(within the light guide bundle 222) as an individual guide
beam 224B (illustrated in FIG. 2A). In one non-exclusive
embodiment, the light source 224 is an infrared laser source,
and the light guide 222A is a small diameter, multimode
optical fiber.

In certain embodiments, as shown in FIG. 2, the source
beam 224 A from the light source 224 passes through at least
one optical element, including but not limited to one or more
beamsplitters 258 (two beamsplitters 258 are illustrated in
FIG. 2), one or more reflectors 260 (one reflector 260 is
illustrated in FIG. 2), one or more coupling lenses 262 (one
coupling lens 262 is illustrated in FIG. 2), one or more
imaging lenses 263 (one imaging lens 263 is illustrated in
FIG. 2), and/or one or more filters 264 (two filters 264 are
illustrated in FIG. 2). Each optical element can be config-
ured to focus, reflect, and/or filter the source beam 224A as
the individual guide beam 224B down onto a guide proximal
end 222P of the light guide 222A, thereby coupling the
individual guide beam 224B in the form of the pulse of
infrared energy into the light guide 222A. The individual
guide beam 224B, when aligned with the light guide 222A,
travels toward the plasma generator 233. In some embodi-
ments, each optical element can be configured to focus,
reflect, and/or filter an imaging beam 224C toward a camera
265.

The light energy of the individual guide beam 224B is
guided along the light guide 222A from the guide proximal
end 222P to the guide distal end 222D and energizes the
plasma generator 233 that is positioned and/or incorporated
at or near a guide distal end 222D of the light guide 222A.
The plasma generator 233 utilizes the pulse of infrared
energy to create a localized plasma in the balloon fluid 132
within the balloon interior 146 of the balloon 104.

The optical alignment system 257 can include any and/or
all of the components shown in the embodiment illustrated
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in FIG. 2, FIG. 3, and FIG. 4. The optical alignment system
257 aligns the light energy in the form of the source beam
224 A and/or the individual guide beam 224B so that the light
energy is coupled with one or more light guides 222A.

The optical alignment system 257 can vary depending on
the design requirements of the catheter system 200, the light
guides 222 A, and/or the energy source 224. It is understood
that the optical alignment system 257 can include additional
systems, subsystems, components, and elements than those
specifically shown and/or described herein. Additionally, or
alternatively, the optical alignment system 257 can omit one
or more of the systems, subsystems, and elements that are
specifically shown and/or described herein.

In various embodiments, the optical alignment system
257 can include a multiplexer 223. The optical elements
described herein can be included within a multiplexer 223
(such as the multiplexer 128 described in relation to FIG. 1).
As displayed in the embodiment shown in FIG. 2, the
multiplexer 223 can be movable about a multiplexer axis
223X. In some embodiments, the multiplexer 223 can be
fixed or mounted to a multiplexer platen.

In some embodiments, the optical alignment system 257
can include one or more of the beamsplitter(s) 258, the
reflector(s) 260, the coupling lens(es) 262, the imaging
lens(es) 263, the filter(s) 264, a camera 265, a camera
controller 266, an amplifier 267, a system controller 268, a
signal processor 269, an optics mover 270, a light source
mover 271, an illuminator 272, an alignment controller 273,
a detector 274, and/or an aligner 275.

The beamsplitter 258, such as a dichroic beamsplitter in
one embodiment, can be positioned in the optical path of the
source beam 224A between the light source 224 and the
guide proximal end 222P of the light guide 222A. In certain
embodiments, the beam splitter 258 is configured to pass
light for wavelengths longer than those visible to the other
optical elements of the optical alignment system 257 so that
the individual guide beam 224B that is directed toward the
guide proximal end 222P of the light guide 222A. Such
threshold wavelength can be referred to as the cutoff wave-
length. The beamsplitter 258 can be further configured to
reflect all light having a wavelength that is shorter than the
cutoff wavelength. In some embodiments, the cutoff wave-
length can be 950 nm. The dichroic beamsplitter 258 can
reflect a small percentage of light energy depending on the
ratio of dichroic coating on the beamsplitter 258.

In some embodiments, other optical elements (e.g., the
coupling lens 262) can be positioned between one or more
of'the beamsplitters 258 and the light guide 222 A. The beam
splitter 258 can be configured to focus the individual guide
beam 224B down onto the guide proximal end 222P of the
light guide 222A, thereby coupling the individual guide
beam 224B into the light guide 222A. One or more of the
beamsplitters 258 can be used in combination with other
optical elements, such as the imaging lens 263 and the filter
264, in order to focus the imaging beam 224C into the
camera 265.

In other embodiments, one or more of the beamsplitters
258 can be positioned in the path of the imaging beam 224C
to allow a percentage of the imaging beam 224C to be
directed to the detector 274 for analysis of light energy
returning through the light guide 222A or the face of the
guide proximal end 222P. This photo-analysis can be used
for diagnostics and for failure detection methods.

The beamsplitter(s) 258 can vary depending on the design
requirements of the catheter system 200, the light guides
222A, and/or the optical alignment system 257. It is under-
stood that the beamsplitter 258 can include additional sys-
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tems, subsystems, components, and elements than those
specifically shown and/or described herein.

The reflector(s) 260 can reflect the light energy emitted by
the light source 224 to one or more optical elements of the
optical alignment system 257. In one embodiment, the
reflector(s) 260 can include a mirror. In certain embodi-
ments, one or more of the reflectors 260 can fold the source
beam 224A from the light source 224 at an angle of
approximately 90 degrees. Alternatively, one or more of the
reflectors 260 can fold the source beam 224 A from the light
source 224 at an angle that is greater or less than 90 degrees.
The reflector(s) 260 can direct the source beam 224A
through the coupling lens 262 toward one or more light
guides 222A. In one embodiment, one or more of the
reflectors 260 can be fixed. Alternatively, one or more of the
reflectors 260 can be movable, either manually or by one or
more optics movers 270, such as by one or more piezoelec-
tric actuators in one non-exclusive embodiment.

The reflector 260 can vary depending on the design
requirements of the catheter system 200, the light guides
222A, and/or the optical alignment system 257. It is under-
stood that the reflector 260 can include additional systems,
subsystems, components, and elements than those specifi-
cally shown and/or described herein.

The coupling lens 262 can couple the individual guide
beam 224B onto the guide proximal end 222P of one or more
light guides 222A. The coupling lens 262 can focus and/or
collimate the source beam 224A into the individual guide
beam 224B. The coupling lens 262 can be used to focus the
guide beam 224B down to form a spot that will couple into
at least one of the light guides 222A. The coupling lens 262
can also collimate light sources (e.g., the light source 224)
near the focusing location (see, e.g., the source beam 524B,
FIG. 5B), which is set to be near the guide proximal end
222P of the light guide 222A. The light energy from the
guide beam 224B is scattered off of the focused spot on the
guide proximal end 222P.

In some embodiments, since the source beam 224B and/or
the imaging beam 224C can be collimated, a separate set of
optics can focus the source beam 224B and/or the imaging
beam 224C to form an image. In various embodiments, since
the source beam 224B and/or the imaging beam 224C
between the coupling lens 262 and the imaging lens 262 is
collimated, the separation between the optical elements is
not critical to imaging performance. The various light beams
disclosed herein can be separated by a distance convenient
for arranging optical elements on any given platen. The focal
length of the optics controls the magnification of the light
guide 222A on the sensor (such as the camera 265). The
separation between optics and image sensor allows for
focusing of the image generated at the desired plane at the
object independent of the location where the energy source
is focused.

The coupling lens 262 can vary depending on the design
requirements of the catheter system 200, the light guides
222A, and/or the optical alignment system 257. It is under-
stood that the coupling lens 262 can include additional
systems, subsystems, components, and elements than those
specifically shown and/or described herein. Additionally, or
alternatively, the coupling lens 262 can omit one or more of
the systems, subsystems, and elements that are specifically
shown and/or described herein.

The imaging lens 263 can couple the imaging beam 224C
onto the camera 265 or any suitable imaging system of the
optical alignment system 257. The imaging lens 263 can
vary depending on the design requirements of the catheter
system 200, the light guides 222A, and/or the optical align-
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ment system 257. It is understood that the imaging lens 263
can include additional systems, subsystems, components,
and elements than those specifically shown and/or described
herein.

The filter 264 can filter the light energy from the source
beam 224 A, the guide beam 224B and/or the imaging beam
224C. The filter 264 can vary depending on the design
requirements of the catheter system 200, the light guides
222A, the optical alignment system 257, and/or the camera
265. It is understood that the filter 264 can include additional
systems, subsystems, components, and elements than those
specifically shown and/or described herein.

The optical elements disclosed in the various embodi-
ments herein can be configured in any position or order. In
some embodiments, such as the embodiment illustrated in
FIG. 2, can create optical paths for 1) coupling primary IR
energy and 2) imaging the end face of the ferrule (e.g., the
guide proximal end 222P), and imaging some of the primary
energy scattered or reflected at the end face of the ferrule or
conveniently collocated target.

The camera 265 can capture images of the light energy in
the form of the imaging beam 224C. In the first alignment
configuration (as shown in the embodiment displayed in
FIG. 2) of the optical alignment system 257, the camera
receives the imaging beam 224C that is reflected and/or
scattered back from the guide proximal end 222P. This
scattered light is captured by the coupling lens 262 and
focused by the imaging lens 263 to form an image of the
focused spot.

In various embodiments, the image of the focused spot
will be superimposed on the image of the guide proximal
end 222P in the same image space. An additional filter 264
can be added to reduce the amount of IR signal arriving from
the scattered source and to balance the intensity of the
focused spot in the image relative to the guide proximal end
222P and light guide 222A.

In certain embodiments, as the multiplexer 223 scans
laterally across the guide proximal end 222P of one or more
light guides 222A, the camera 265 creates an image of the
guide proximal end 222P in the visible spectrum. This could
rely on ambient visible light as an illumination source.
Alternatively, a separate source such as the illuminator 272
could illuminate the guide proximal end 222P to improve
image quality and brightness.

The camera 265 can vary depending on the design
requirements of the catheter system 200 and/or the optical
alignment system 257. It is understood that the camera 265
can include additional systems, subsystems, components,
and elements than those specifically shown and/or described
herein.

The camera controller 266 can control the camera 265.
The camera controller 266 can also send signals to the signal
processor 269. The camera controller 266 can control the
illuminator 272 as necessary to adjust image brightness and
contrast. The camera controller 266 can vary depending on
the design requirements of the catheter system 200, the light
guides 222A, the optical alignment system 257, the camera
265, and/or the signal processor 269. It is understood that the
camera controller 266 can include additional systems, sub-
systems, components, and elements than those specifically
shown and/or described herein.

The amplifier 267 can amplify various signals sent from
components of the optical alignment system 257. As shown
in FIG. 2, the signal from the detector 274 can be directed
to the amplifier, where the detection of and intensity evalu-
ation of the imaging beam 224C are determined. In particu-
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lar, in certain embodiments, the signal from the detector 274
is directed toward the amplifier 267, where the signal from
the detector 274 is amplified.

The amplifier 267 can vary depending on the design
requirements of the catheter system 200, the light guides
222A, the optical alignment system 257, the camera 265,
and/or the signal processor 269. It is understood that the
amplifier 267 can include additional systems, subsystems,
components, and elements than those specifically shown
and/or described herein.

The system controller 268 can control any and/or all of the
components of the catheter system 200, the multiplexer 223,
and/or the optical alignment system 257. In some embodi-
ments, the system controller 268 controls the emission of
light energy from the light source 224. In other embodi-
ments, the system controller 268 controls the optics mover
270.

The system controller 268 can vary depending on the
design requirements of the catheter system 200, the multi-
plexer 223, and/or the optical alignment system 257. It is
understood that the system controller 268 can include addi-
tional systems, subsystems, components, and elements than
those specifically shown and/or described herein.

The signal processor 269 can process various signals sent
from components of the optical alignment system 257. The
signal processor 269 can monitor and record data of the
image information and/or other received signals. The signal
processor 269 can segment the image to obtain the light
guide 222 A core/center location and direct the optical align-
ment system 257 to align the guide beam 224B to the
focused spot location in the image space.

In other embodiments, the signal processor 269 can use
the scaling of the image and separate calibrations to deter-
mine the exact displacement of the actual focal spot relative
to the location of the center/core of the light guide 222A for
improved coupling. These calibrations can account for all
offsets and drifts in the guide beam 224B and the physical
location of the aligned light guide 222A due to the mechani-
cal tolerances and stack-ups. The system controller 268 can
then use the data to adjust the location of the light guide
bundle 222 using the aligner 275. This brings the focused
location into perfect alignment with the core/center of the
aligned light guide 222A.

The signal processor 269 can vary depending on the
design requirements of the catheter system 200, the light
guides 222A, the optical alignment system 257, the camera
265, and/or the amplifier 267. It is understood that the signal
processor 269 can include additional systems, subsystems,
components, and elements than those specifically shown
and/or described herein.

The optics mover 270 moves and/or controls moving
components of the optical alignment system 257, such as the
light source mover 271. The optics mover 270 can vary
depending on the design requirements of the catheter system
200, the optical alignment system 257, and/or the light
source mover 271. It is understood that the optics mover 270
can include additional systems, subsystems, components,
and elements than those specifically shown and/or described
herein.

The light source mover 271 can move the light energy, the
light source 224, and/or the multiplexer 223 so that the light
energy is properly aligned within at least one of the light
guides 222A. In some embodiments, the system controller
268 controls the optics mover 270 that is connected to the
light source mover that positions the multiplexer 223 and
aligns a beam axis (not shown) of the guide beam 224B
within one or more of the light guides 222A. Using the
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embodiments disclosed herein, the optical alignment system
257 can utilize the light source mover 271 to align the
energy source 224 with any desired channel within the light
guide bundle 222, trigger the energy source 224, and move
to the next desired channel within the light guide bundle
222.

The light source mover 271 can vary depending on the
design requirements of the catheter system 200, the light
guides 222A, the optical alignment system 257, and/or the
optics mover 270. It is understood that light source mover
271 can include additional systems, subsystems, compo-
nents, and elements than those specifically shown and/or
described herein.

In some embodiments, the light source mover 271 can
include a linear translation stage. The multiplexer 223 can be
configured to move across the linear translation stage about
the multiplexer axis 223X.

The illuminator 272 can illuminate the guide proximal
end 222P so that the alignment of the light energy and the
guide proximal end 222P is easier to detect and analyze by
the optical alignment system 257. The illuminator 272 can
vary depending on the design requirements of the catheter
system 200, the light guides 222A, and/or the optical align-
ment system 257. It is understood that the illuminator 272
can include additional systems, subsystems, components,
and elements than those specifically shown and/or described
herein. In some embodiments, the illuminator 272 can
include a visible light source such as a visible LED.

The alignment controller 273 controls the alignment com-
ponents of the optical alignment system 257, such as the
aligner 275. The alignment controller 273 can vary depend-
ing on the design requirements of the catheter system 200,
the light guides 222A, the optical alignment system 257,
and/or the aligner 275. It is understood that the alignment
controller 273 can include additional systems, subsystems,
components, and elements than those specifically shown
and/or described herein.

The detector 274 can receive the light energy from the
imaging beam 224C when the optical alignment system 257
is in a second alignment configuration (shown in FIG. 3).
The detector 274 can detect the light energy from the
imaging beam 224C and converts the detected light energy
to signals. The detector 274 can send the signals to the
amplifier 267 to be amplified and sent to the signal processor
269.

The detector 274 can vary depending on the design
requirements of the catheter system 200, the optical align-
ment system 257, the amplifier 267, and/or the signal
processor 269. It is understood that the detector 274 can
include additional systems, subsystems, components, and
elements than those specifically shown and/or described
herein.

The aligner 275 can align various components of the
alignment system 257, such as the light guide bundle 222
and the light source mover 271. The aligner 275 can vary
depending on the design requirements of the catheter system
200, the light guides 222A, the optical alignment system
257, and/or the alignment controller 273. It is understood
that the aligner 275 can include additional systems, subsys-
tems, components, and elements than those specifically
shown and/or described herein.

In other embodiments, the aligner 275 can include stepper
motors, and/or piezo actuators to adjust the height and tilt of
the light guide bundle 222. In one alignment process, the
optical alignment system 257 would alight the light source
mover 271 near a first channel in the light guide bundle 222
(corresponding with one light guide 222A) and capture an
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image of the guide proximal end 222P and the corresponding
light guide 222A with the guide beam 224B focused loca-
tion.

In certain embodiments, the magnification of the light
guide 222A in the image can be controlled so that the image
is small relative to the light guide bundle 222 size in the
image. The system controller 268 can calculate the offset
and adjust movement parameters in at least two directions to
align the focused location with the center/core of the light
guide 222A. The system controller 268 can align the source
beam 224B with the final light guide 222A in the linear array
of the light guide bundle 222 and capture an image of the
guide proximal end 222P and the light guide 222A along
with the focused location. The positional offset can be used
to set the tilt of the light guide bundle 222 by rotating it
around the center of one of the light guides 222A. This
process could continue iteratively to adjust position and tilt
parameters for the light guide 222A as a whole. The process
can continue to return to each light guide 222 A location and
adjust the linear position along the multiplexer axis 223X.
This process can be executed as an initial alignment of light
source 224 and the optical alignment system 257 to a new
guide bundle 222. Once the configuration described herein
is completed, the optical alignment system 257 can operate
over a time interval during which the alignment would
remain stable.

In various embodiments, the optical alignment system
257 would utilize optical compensation devices (e.g., mul-
tiple reflectors 260, steering wedges) to adjust the focused
location relative to the light guide bundle 222. Steering
wedges (not shown) can be placed in the path of the source
beam 224 A, the guide beam 224B, and/or the imaging beam
224C in order to account for deviations in linear directions
within a plane. The optical alignment system 257 can adjust
the guide beam 224B location to a pre-aligned light guide
bundle 222.

In some embodiments, the image of the focused location
could also be obtained from other surfaces or targets than the
guide proximal end 222P and/or the light guide 222A. For
example, a flat ceramic target could be located near the light
guide 222A along a bundle axis of the guide bundle 222. The
light source mover 222 could offset the multiplexer 223 a set
distance to track the location of the focused location on the
new target. The signal processor 269 can subtract the offset
when determining the location of the focused location
relative to the light guide 222A image space.

In various embodiments, the first alignment configuration
can be an initial setup and alignment configuration. In the
first alignment configuration, the light guide bundle 222,
including the individual light guides 222A, is coupled to the
multiplexer 223. The system controller 268 can position the
light source mover 271 at the first light guide 222 A position.
The camera controller 266 can engage the illuminator 272
and begin to capture images of the light guide 222A and the
guide proximal end 222P. The system controller 268 can
engage pulses of the light source 224 at low energy, and the
camera 265 can capture a suitable image. The signal pro-
cessor 269 can analyze this image and computes the offset
to line up linear positional parameters to improve coupling
for the first optical channel (e.g., the first light guide 222A
in the light guide bundle 222). The optical alignment system
257 can then reiterate the process for each channel in the
light guide bundle 222.

FIG. 3 is a simplified schematic view of a portion of an
embodiment of the catheter system 300, including an
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embodiment of the optical alignment system 357, the optical
alignment system 357 being utilized in a second alignment
configuration.

The design of the catheter system 300 is substantially
similar to the embodiments illustrated and described herein.
It is appreciated that various components of the catheter
system 300, such as are shown in FIG. 1, are not illustrated
in FIG. 3 for purposes of clarity and ease of illustration.
However, it is appreciated that the catheter system 300 can
include most, if not all, of such components.

As shown in FIG. 3, the catheter system 300 again
includes a light source 324 that is configured to generate
light energy in the form of a source beam 324A, e.g., a
pulsed source beam, that can be selectively and/or alterna-
tively directed to and received by each light guide 322A
(within the light guide bundle 322) as an individual guide
beam 324B. In one non-exclusive embodiment, the light
source 324 is an infrared laser source, and the light guide
322A is a small diameter, multimode optical fiber.

In certain embodiments, as shown in FIG. 3, the source
beam 324 A from the light source 324 passes through at least
one optical element, such as one or more beamsplitters 358,
one or more reflectors 360, one or more coupling lenses 362,
one or more imaging lenses 363, and/or one or more filters
364. Some or all of the optical elements can be configured
to focus, reflect, and/or filter the source beam 324A as the
individual guide beam 324B down onto a guide proximal
end 322P of the light guide 322A, thereby coupling the
individual guide beam 324B in the form of the pulse of
infrared energy into the light guide 322A. The individual
guide beam 324B, when aligned with the light guide 322A,
travels toward the plasma generator 333. In some embodi-
ments, each optical element can be configured to focus,
reflect, and/or filter an imaging beam 324C toward the
camera 365.

As illustrated in the embodiment of FIG. 3, the catheter
system 300 can again include the multiplexer 323 having the
multiplexer axis 323X, the camera controller 366, the ampli-
fier 367, the system control 368, the signal processor 369,
the optics mover 370, the light source mover 371, the
illuminator 372, the alignment controller 373, the detector
374, and/or the aligner 375. Each of the components can
have the same and/or substantially similar functionality
and/or components as described in the embodiments dis-
closed herein.

In the second alignment configuration (shown in FIG. 3),
the detector 374 can receive the light energy from the
imaging beam 324C. The detector 374 can detect the light
energy from the imaging beam 324C and converts the
detected light energy to signals. The detector 374 can send
the signals to the amplifier 367 to be amplified and sent to
the signal processor 369.

In other embodiments, the second alignment configura-
tion can be a high-energy mode. In the second alignment
configuration, the optical alignment system 357 would have
already completed the initial setup and alignment process
described in the first alignment configuration. In the second
alignment configuration, the optical alignment system 357
can the light source mover 371 at a predetermined position
along the multiplexer axis 323X for a given optical channel
and fire the light source 324. The optical alignment system
357 collects light that is reflected as the imaging beam 324C
and directs the imaging beam 324 to the detector 374. The
detector 374 can be used in the second alignment configu-
ration to analyze for optical failures at the proximal and
distal end of the light guides 322A as well as monitor the
plasma generated by the plasma generator 333. The optical
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alignment system 357 can capture and analyze this data and
determine whether to move the guide beam 324B to the next
optical channel. If the optical alignment system 357 is
nominal, then it aligns the guide beam 324B to the next
channel and triggers the light source 324, repeating the
process down the full array of the light guide bundle 322.

FIG. 4 is a simplified schematic view of a portion of an
embodiment of the catheter system 400, including an
embodiment of the optical alignment system 457, the optical
alignment system 457 being utilized in a third alignment
configuration.

The design of the catheter system 400 is substantially
similar to the embodiments illustrated and described herein.
It is appreciated that various components of the catheter
system 400, such as are shown in FIG. 1, are not illustrated
in FIG. 4 for purposes of clarity and ease of illustration.
However, it is appreciated that the catheter system 400 can
include most, if not all, of such components.

As shown in FIG. 4, the catheter system 400 again
includes a light source 424 that is configured to generate
light energy in the form of a source beam 424A, e.g., a
pulsed source beam, that can be selectively and/or alterna-
tively directed to and received by each light guide 422A
(within the light guide bundle 422) as an individual guide
beam 424B. Some or all of the optical elements can be
configured to focus, reflect, and/or filter the source beam
424A as the individual guide beam 424B down onto a guide
proximal end 422P of the light guide 422A, thereby coupling
the individual guide beam 424B in the form of the pulse of
infrared energy into the light guide 422A. The individual
guide beam 424B, when aligned with the light guide 422A,
travels toward the plasma generator 433.

In certain embodiments, as shown in FIG. 4, the source
beam 424A from the light source 424 passes through,
reflects off of, or otherwise interacts with, at least one optical
element, such as one or more reflectors 460. Each reflector
460 can include one or more adjustable mirrors and/or
mounted mirrors. In some embodiments, the reflector 460
can include one or more adjustment fasteners (not shown)
that enable the positioning and/or adjustment of the reflector
460. It is appreciated that, in certain embodiments, one or
more of the reflectors 460 can be fixed and immovable. In
some embodiments, the optical alignment system 457 can
further include one or more reflector movers 461.

Each reflector mover 461 can move one of the reflectors
460 to more accurately guide the source beam 424 A and/or
the individual guide beams 424B throughout the catheter
system 400 and into the guide proximal end 422P of the light
guide 422A. The reflector mover 461 can be controlled by
the alignment controller 473 and/or the system controller
463.

Each reflector mover 461 can include one or more suitable
actuators, such as a stepper motor, a piezoelectric actuator,
or any other suitable type of actuator. The reflector mover
461 can move a corresponding reflector 460 with at least
one, and up to six, degrees of freedom along and/or about the
X, Y, and Z axes (not shown) of the reflector 460.

As illustrated in the embodiment of FIG. 4, the catheter
system 400 can include the optics mover 470. The optics
mover 470 can have the same and/or substantially similar
functionality and/or components as described in the embodi-
ments disclosed herein. For example, the optics mover 470
can include a stepper motor, a piezoelectric actuator, or any
other suitable type of actuator.

FIG. 5A is a simplified view of a guide proximal end
522P, and a portion of the guide beam 524B reflected off the
light guide 522A, the portion of the guide beam 524B being
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shown in an unaligned state. As shown in the embodiment
illustrated in FIG. 5A, the unaligned state is when the
portion of the guide beam 524 is not substantially within a
guide center 522C of the light guide 522A. FIG. 5A shows
the focused location of the guide beam 324B (illustrated in
FIG. 3) that has been scattered off of the guide proximal end
322P (illustrated in FIG. 3). By adjusting the position of the
light guide bundle and/or the guide beam 324, the scattered
light can be captured by the camera 365 (illustrated in FIG.
3.

FIGS. 5A and 5B can illustrate a dual-imaging approach
to optical alignment. FIGS. 5A and 5B can demonstrate
some of the images captured by the camera 365 of the
optical alignment system 357 (illustrated in FIG. 3).

FIG. 5B is a simplified view of a guide proximal end
522P, and a portion of the guide beam 524B reflected off the
light guide 522A, the portion of the guide beam 524B being
shown in an aligned state. In the embodiment shown in FIG.
5B, the portion of the guide beam 524B is shown in the
aligned state, with the portion of the guide beam substan-
tially within the guide center 522C of the light guide 522A.
FIG. 5B demonstrates Fresnel reflection from fused silica
surfaces within the light guide 522A, rather than the scat-
tering depicted in FIG. 5A.

FIG. 6 is a flow chart of one embodiment of a method for
treating a treatment site within or adjacent to a vessel wall
or a heart valve using a catheter system having features
and/or steps of the present invention. It is understood that the
method pursuant to the disclosure herein can include greater
or fewer steps than those shown and described relative to
FIG. 6. Stated another way, the method according to the
present invention can omit one or more steps illustrated in
FIG. 6 or add additional steps not shown and described in
FIG. 6 and still fall within the purview of the present
invention. Further, the sequence of the steps can be varied
from those shown and described relative to FIG. 6. The
sequence of steps illustrated in FIG. 6 is not intended to limit
the sequencing of steps in any manner.

In the embodiment illustrated in FIG. 6, at step 676, a
system controller is configured to control an optics mover.

At step 678, the system controller can be configured to
control an optical alignment system and/or any component
of the optical alignment system, such as a light source, a
camera, an aligner, an amplifier, an illuminator, a detector, a
filter, a beamsplitter, a camera controller, a signal processor,
a multiplexer and/or a light guide bundle.

At step 680, a light mover is coupled to the multiplexer so
the light mover can move the multiplexer. In some embodi-
ments, the light mover is a linear translational stage.

At step 682, the light source generates light energy.

At step 684, the multiplexer receives the light energy
generated by the light source.

At step 686, the multiplexer directs the light energy within
a light guide.

At step 688, the light guide reflects a portion of the light
energy back towards a detector.

At step 690, the detector or another component of the
optical alignment system detects the alignment of the light
energy and the light guide.

At step 692, the optical alignment system aligns the light
energy with the light guide, so they are substantially
coupled.

It is appreciated that the active detection and alignment of
the coupling of the light energy with the light guide, through
the use of the present invention, provides multiple advan-
tages with respect to the performance, reliability, and proper
usage of an IVL catheter, in particular one that utilizes an
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energy source to create a localized plasma which in turn
produces a high energy bubble inside a balloon catheter.
Specific advantages this invention provides include: 1) pro-
viding active compensation for connector and ferrule
mechanical tolerances, thereby reducing system perfor-
mance dependence on light carrier’s mechanical tolerances
and tolerances of their location in a multi-channel array, and
2) providing active compensation for drift in energy beam
pointing that occurs in the source itself or through changes
or motion of internal or coupling optics due to thermal drift
or other factors. The active compensation ultimately reduces
performance dependence on the accuracy of connecting and
aligning the multi-channel array to the multiplexer and
improves the speed and performance of the multiplexer and
multi-channel ferrule system.

In particular, in various embodiments, the present inven-
tion comprises a multiplexer as a precision linear mecha-
nism that translates coupling optics along a linear path. This
approach can include a single degree of freedom. A ferrule
can organize the individual optical fibers into a liner pattern
with precise interval spacing. An example of a ferrule that
can be used by the system is a V-groove ferrule block, as
used in multi-channel fiber optics communication systems.
The linear translation mechanism can be electronically con-
trolled by the optical alignment system to line the beam path
up sequentially with each individual fiber organized in the
ferrule. The translating mechanism carries necessary beam
directing optics and focusing optics to focus the laser energy
onto each fiber to improve the optical coupling. By utilizing
the systems and methods disclosed herein, the low diver-
gence of the laser beam over the short distance of motion of
the translated coupling mechanism has a minimum impact
on coupling efficiency to the fiber. The optical alignment
system can drive the mechanism to align the beam path with
a selected fiber optic channel and then fires the laser in
pulsed or semi-CW mode.

In other embodiments, the optical alignment system can
incorporate secondary optics and an image sensor to directly
image the ferrule block and the optical fibers. This subsys-
tem simultaneously images the focused spot of the energy
beam scattered off the ferrule or a strategically located
nearby target. The image of the energy spot is in the same
image reference frame allowing direct computation of offset
from the core of the optical fiber. This data can be computed
using image processing methods and algorithms to deter-
mine offset and compute compensation adjustment. A posi-
tioning mechanism can then adjust the positioning of the
ferrule array to provide improved coupling of the focused
spot to the fiber core.

The systems and methods disclosed in the various
embodiments provided herein can be implemented on any
multiplexer configuration, including linear, circular, pat-
terned, or scanned configurations, provided that the wave-
length separating beamsplitter can be inserted in the beam
path between the coupling optics and the energy source. The
systems and methods disclosed herein can enable the cou-
pling lens to function in dual-use mode, both coupling
energy into a light guide and part of the imaging lens to
image the light guide.

It is appreciated that the systems and methods of optical
alignment provided herein address multiple potential issues
with the performance, reliability, and proper usage of an IVL
catheter, in particular one that utilizes an energy source to
create a localized plasma which in turn produces a high
energy bubble inside a balloon catheter. Specific problems
solved by the systems and methods disclosed herein include:
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1) Complex laser systems with moving components suffer
from beam pointing errors. These pointing errors can be
induced by vibration, the thermal drift of optical com-
ponents and mirrors, and long-term mechanical
changes in mounting the source and optics. This drift in
beam pointing can be angular or lateral and would
create offsets in the focused spot location. Without
compensation for these drifts, the error in spot location
relative to the optical fiber core leads to a loss in
coupling efficiency and damage to the fiber at high
energies. The systems and methods disclosed herein
provide active compensation for actual beam drift as it
occurs at the point of coupling.

2) The systems and methods disclosed herein provide
compensation for mechanical tolerance stack-ups of
assemblies and true alignment for optical fibers, ferrule,
connector, and receptacle, thereby making it possible to
use low-cost, low-precision components on the SUD
and improve COGS.

3) The systems and methods disclosed herein reduce the
multiplexer performance dependence on the accuracy
of static or fixed positioning mechanism in multiplexer
and associated quality and precision of its optical and
mechanical components, thereby improving the speed
and performance of the multiplexer and multi-channel
ferrule system.

It should be noted that, as used in this specification and the
appended claims, the singular forms “a,” “an,” and “the”
include plural referents unless the content and/or context
clearly dictates otherwise. It should also be noted that the
term “or” is generally employed in its sense including
“and/or” unless the content or context clearly dictates oth-
erwise.

It should also be noted that, as used in this specification
and the appended claims, the phrase “configured” describes
a system, apparatus, or other structure that is constructed or
configured to perform a particular task or adopt a particular
configuration. The phrase “configured” can be used inter-
changeably with other similar phrases such as arranged and
configured, constructed and arranged, constructed, manu-
factured and arranged, and the like.

The headings used herein are provided for consistency
with suggestions under 37 CFR 1.77 or otherwise to provide
organizational cues. These headings shall not be viewed to
limit or characterize the invention(s) set out in any claims
that may issue from this disclosure. As an example, a
description of a technology in the “Background” is not an
admission that technology is prior art to any invention(s) in
this disclosure. Neither is the “Summary” or “Abstract” to
be considered as a characterization of the invention(s) set
forth in issued claims.

The embodiments described herein are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed in the detailed description provided herein. Rather,
the embodiments are chosen and described so that others
skilled in the art can appreciate and understand the prin-
ciples and practices. As such, aspects have been described
with reference to various specific and preferred embodi-
ments and techniques. However, it should be understood that
many variations and modifications may be made while
remaining within the spirit and scope herein.

It is understood that although a number of different
embodiments of the catheter systems have been illustrated
and described herein, one or more features of any one
embodiment can be combined with one or more features of
one or more of the other embodiments, provided that such
combination satisfies the intent of the present invention.
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While a number of exemplary aspects and embodiments
of the catheter systems have been discussed above, those of
skill in the art will recognize certain modifications, permu-
tations, additions, and sub-combinations thereof. It is there-
fore intended that the following appended claims and claims
hereafter introduced are interpreted to include all such
modifications, permutations, additions, and sub-combina-
tions as are within their true spirit and scope, and no
limitations are intended to the details of construction or
design herein shown.

What is claimed is:

1. A catheter system for treating a treatment site within or
adjacent to a vessel wall or a heart valve, the catheter system
comprising:

a light source that generates light energy;

a first light guide that receives the light energy from the
light source, the first light guide having a guide proxi-
mal end;

a second light guide that receives the light energy from the
light source, the second light guide having a guide
proximal end;

a multiplexer that directs the light energy toward the guide
proximal end of the first light guide and the guide
proximal end of the second light guide; and

an optical alignment system that determines an alignment
of the light energy relative to at least one of the guide
proximal ends, the optical alignment system adjusting
a positioning of the light energy relative to the at least
one of the guide proximal ends based at least partially
on the alignment of the light energy relative to the at
least one of the guide proximal ends, the optical align-
ment system including an imaging system including an
imaging sensor that is configured to capture images of
a focal point of the light source and the at least one of
the guide proximal ends.

2. The catheter system of claim 1 wherein the imaging
system is configured to simultaneously capture images of the
focal point of the light source and a scattered energy beam
scattered off the at least one of the guide proximal ends.

3. The catheter system of claim 1 wherein the imaging
system is configured to utilize an image reference frame that
allows direct computation of a distance offset from a center
of the at least one of the guide proximal ends.

4. The catheter system of claim 3 wherein the imaging
system is configured to determine the distance offset and
compute a compensation adjustment of the alignment of the
light energy relative to the at least one of the guide proximal
ends.

5. The catheter system of claim 4 wherein the optical
alignment system further includes an alignment positioner
that positions the alignment of the light energy relative to the
at least one of the guide proximal ends based on the
computed compensation adjustment to substantially couple
the light source and the at least one of the guide proximal
ends.

6. The catheter system of claim 1 wherein the optical
alignment system further includes a reflector and a reflector
mover that moves the reflector.

7. The catheter system of claim 1 wherein the light source
is a pulsed IR laser.

8. The catheter system of claim 1 wherein the optical
alignment system further includes an illuminator that illu-
minates the at least one of the guide proximal ends to
provide improved image quality and brightness.

9. The catheter system of claim 8, wherein the system
controller controls the illuminator and adjusts an image
brightness and contrast.

15

20

25

30

35

40

45

50

55

60

65

30

10. A catheter system for treating a treatment site within
or adjacent to a vessel wall or a heart valve, the catheter
system comprising:

a light source that generates light energy;

a first light guide that receives the light energy from the
light source, the first light guide having a guide proxi-
mal end;

a second light guide that receives the light energy from the
light source, the second light guide having a guide
proximal end;

a multiplexer that directs the light energy toward the guide
proximal end of the first light guide and the guide
proximal end of the second light guide; and

an optical alignment system that determines an alignment
of the light energy relative to at least one of the guide
proximal ends, the optical alignment system adjusting
a positioning of the light energy relative to the at least
one of the guide proximal ends based at least partially
on the alignment of the light energy relative to the at
least one of the guide proximal ends, the optical align-
ment system including an imaging system including an
imaging sensor that is configured to capture images of
a focal point of the light source and the at least one of
the guide proximal ends;

wherein the optical alignment system further includes one
of a stepper motor and a piezo actuator that is config-
ured to adjusts a yaw, pitch, and roll of at least one of
the light guides.

11. The catheter system of claim 10 further comprising a
system controller that is configured to control the optical
alignment system so that the light energy is substantially
coupled to the at least one of the guide proximal ends.

12. The catheter system of claim 10 wherein at least one
of the light guides is an optical fiber and the light source is
a laser.

13. The catheter system of claim 10 wherein the optical
alignment system further includes an optical aligner that is
configured to align the light energy with the at least one of
the guide proximal ends.

14. The catheter system of claim 13 wherein the optical
aligner is controlled by the system controller.

15. The catheter system of claim 10 further comprising a
system controller that is configured to control an actuator
that positions the multiplexer and aligns the light energy
relative to the at least one of the guide proximal ends.

16. The catheter system of claim 10 wherein the light
source is a pulsed IR laser.

17. The catheter system of claim 10 wherein the optical
alignment system further includes optical compensators that
are configured to adjust the positioning of the light source
relative to the at least one of the guide proximal ends, the
optical compensators including a plurality of optical steering
wedges positioned in a path of the light source, the plurality
of optical steering wedges being configured to improve a
coupling of the light source and the at least one of the guide
proximal ends.

18. The catheter system of claim 10 wherein the optical
alignment system further includes a reflector and a reflector
mover that moves the reflector.

19. The catheter system of claim 10 wherein the optical
alignment system further includes an illuminator that illu-
minates the at least one of the guide proximal ends to
provide improved image quality and brightness.

20. The catheter system of claim 19 wherein the system
controller controls the illuminator and adjusts an image
brightness and contrast.
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