US 20210225068A1

a2y Patent Application Publication o) Pub. No.: US 2021/0225068 A1

a9y United States

Fursund et al.

43) Pub. Date: Jul. 22, 2021

(54) OBIECT ILLUMINATION IN HYBRID
RASTERIZATION AND RAY TRACED 3-D
RENDERING
(71) Applicant: Imagination Technologies Limited,
Kings Langley (GB)

(72) Inventors: Jens Fursund, Copenhagen (DK);
Luke T. Peterson, San Francisco, CA
(US)

@
(22)

Appl. No.: 17/221,005

Filed: Apr. 2, 2021

Related U.S. Application Data

Continuation of application No. 16/868,297, filed on
May 6, 2020, now Pat. No. 10,991,153, which is a
continuation of application No. 16/107,812, filed on
Aug. 21, 2018, now Pat. No. 10,679,405, which is a
continuation of application No. 14/644,830, filed on
Mar. 11, 2015, now Pat. No. 10,083,541.

(63)

16

(60) Provisional application No. 61/952,371, filed on Mar.
13, 2014.
Publication Classification
(51) Imt. CL
GO06T 15/80 (2006.01)
(52) US. CL
CPC i GO6T 15/80 (2013.01)
(57) ABSTRACT

Rendering systems that can use combinations of rasteriza-
tion rendering processes and ray tracing rendering processes
are disclosed. In some implementations, these systems per-
form a rasterization pass to identify visible surfaces of pixels
in an image. Some implementations may begin shading
processes for visible surfaces, before the geometry is
entirely processed, in which rays are emitted. Rays can be
culled at various points during processing, based on deter-
mining whether the surface from which the ray was emitted
is still visible. Rendering systems may implement rendering
effects as disclosed.

Visible surface
datarmination
15

geometry data
Buffering
24

goo e moew wwee oo

J Frarme shader |
| 44 |

k:

fragment shading N

T —

H
'

H

H

S |
e, i

'

:

~§ Texiure store 30

Y ¥
L{gh map Ray 'tra:«ersaﬁ .
maintenance . 45
28
e ‘ :‘i'-» Ray shading [|
48

Buffer
22

Blender
32

[N, AN — h 4

E Preview E buffer
1 40 ; 42

| ye—1

Visible surface
determination
15

Patent Application Publication

10

Jul. 22,2021 Sheet 1 of 11

3

fragment shading "

18

Buffer
22

US 2021/0225068 A1

g v o v e
geums‘i:gj data bE Frame shader |
Buffering i
24 i ‘ 9
T ‘é’
Lightmap Ray traversal
maintenance . 46
28 A
A
. iy RRay shading
48
Texiure store 30
¥
buffer
50
Blender
o 32

sooomcr oo s oo s

; Preview E buffer
; 40 E 42

e T

US 2021/0225068 A1

Jul. 22,2021 Sheet 2 of 11

Patent Application Publication

4
¢/ 16lgo jo BUIRL JO) JBlNng
JOPGE (17 W dno Jeisey

._ g9
N U898 ¢

29
deu

O WNISNI 4

99 109lq0

Zg auwiny

62

> odmsiA

-
< 8EL
m ssaocoud aoueusiuew dewguybr
' g]
~ Dunduies sanp@ UOHBLUIUN L
o din Huipus ! P
M ARG Bupuelg JBupeug ewbeid 1 108ig TBASA
o
<
& . . Sugdwies ainxs LORBLILUNY 9t
m nding Bupusig | Buipeyg wewbeid §f 0auQ WBOSA
74 VA y
z Gl
_ Q00 %wmo mcwa Augdwes ainxey | uoeuny .Mmmmgw‘ A
m Pusig Buipeys uswbel)ilg!
. m Qg
~N
-5 ¢l
2 | m T w
2 | VT |
-
o
&
i m.g.ommw UAMOUY
. SUWRBLABY ganping UMOUY
= Buipuslg | 2iqisiA AeuI0as > Zil
” TS “awy Huissenoig
g - umouy \
0= | UI0dmBIA —
m m W W w H .\xr ;\\ A\,V, w m\ W
= LYY v : m >3 Bussaooid
£ ‘ N - -
s f 7 0k
= owny e daid e 7 - olupy BUISSE00i
.m Aedsi jduses ¢ SABI AT 5V | /s0BAud S s A
= SunxXe | -
Ml y0L 0t 2ol
= SLipegs ™ ersey | ow Aeidsiqy | s Aedsiq | aw Aeydsig
m Beiy deud L i i ! i
3 fnsiosn T L T oL !

US 2021/0225068 A1

Jul. 22,2021 Sheet 4 of 11

Patent Application Publication

44"
s018AU

vl
uonesddy

SOUSHBIS g-U sLes
Bundwes 103 dew b m:‘wwwhm
O UOIEIBIB00Y
08l ..w/ .
018118 [-LE SUIBY
Bugdwesg 403 dew wibin
irl
3 HBpEng
41 oiboy P81 £8l _
¥ Butepdn W SONSHEIS U GuIRly waw@m
Sugdues | | Joj dew b LONBIBIB00Y
¥
&agggggag [———
g9l P96l m o
. . 8hi @i
oofpt DUIOBI [dfood o IBDBUS “ o O ==
Aey | OINRAGY ! Loneziesey Answiosn
i Y
157
0t ﬁw uDBZISRIEYD
UOIBLBA
¥
241
yot 2 e ¥ TESSSS——
SOUBLBIUIRLY jaues Suiduweg
dew by w
JO) BARY aoT =
291 051 SI0UNG 08D gam% .
doi } SOBLNS QQISIA e
f/!ﬂ!ﬂ&y aiduies ied

Patent Application Publication Jul. 22,2021 Sheet 5 of 11 US 2021/0225068 A1

Determine viewpoint & scens
modifications to be made for

frame
205
— i L Tinish gedhe |
sz;n;i:/za sel Lg Geometrf; éa;ocessmg AAAAAAAAAAAAAAAAAAAAAAAAAAAAA p< processing? Sy
slemenis 1o be % T - N
updated Y NP
200 Acceleration structure |
update/production i< %
b §1 3 Visible surface

determination
232 ;

g"ﬁ’eﬁ??e rays fof ¥
.M elements |
| tobe updated ;

| ;2 s

“A.8. Dong? ™
230

Cinish V.S

Y N Det? S
Y s ~X, Lomme I
Begin L.M. Update
236 & — .
& Fragment | RayFrame |
shading i shading
240 o242
B "
Ravs { | Rays |
248
| Lo |

274

Ray resuits ek
272

Ray traversal
252

-gps Byffering 278

:

- i Blending 280

3

:

Ray shading
278

Patent Application Publication Jul. 22,2021 Sheet 6 of 11 US 2021/0225068 A1

Start sampling/ierate to next light map
ovee B slement =
405

¥

Map light map slement to location on an
object surface
408

& Lacation on abject surfacs™ Skip
visible? - 416
Queue for sampling
414
Calculate depth Access normal for Project ray from
between mapped visible surface for mapped location on
location and that pixel object surface mappsd
vigwpoint 425 fowards viewpoint
420 430
Access depth of Access normal for e e
- . identify pixel {if any)
visible surface for mapped location on) o
- . intersected by ray
pixel object 429
422 427 ™

Ray
intersaction?
444

~ Normals
AAAAA 4 maich?
4432

S Accessed and™
& calculated depth =
>, equal?

Patent Application Publication

Jul. 22,2021 Sheet 7 of 11 US 2021/0225068 A1

< >
T e e ight
Reflection)’ "?;‘ ‘ 452
pattern . Light energy
488] 454
/ ;;'
Ohiject

454

viewpoint
450

Reflection) o
456 Low variability High variability
o ma
Surface map) 495
465 488 =

Lagend

Variation region

Unifarm region

Patent Application Publication Jul. 22,2021 Sheet 8 of 11

= Object 464

Reflection

patiern
Surface

465

Reflection
540

Object 464 ==,
Y S T\

/ 450

US 2021/0225068 A1

viewpoint

light
452

A\
\\\
Light energy
\ 545
\\

\
\
\
\
5 ez
5 ASRAN
Y 3%
\ 5 4
(s
. A I*
S 2
",

Refiection
patitern -\

468

465 B

Patent Application Publication Jul. 22,2021 Sheet 9 of 11 US 2021/0225068 A1

‘_mmfm
\

\

:

influence

| indicator
i 570

influences
indicator
8572

s ™
. §
/ ‘\\
) .
.
;
.
)
)
;
)
. Obiect 835
) 60 ; i
< 1
S |
.
/ 7 }
pral I
. |
/ EV }
y § K !
)
e i
|
-~ “
. s !
\\~ ¢ i
~ 4 4
;
, ,
;
/
.
.
.
)
)
)
.
.
)
;
.
.
;
y
)
~, Iv'
;
:
~, ,/
AN e
. ;
;
))
. Vs
. rd
.)
.)
~ - S
S i
)
- id

Patent Application Publication

Jul. 22,2021 Sheet 10 of 11

19

US 2021/0225068 A1

528

Geometry
148
: Object Lightmapped accelsration
& surface structure element ID
Acoalaration Structure
builder . S o
147
Acceleration structure
140
/““‘"‘ 500

Core Core T Core

501 502 e 503

A
515 o
7 N
’\u/ A “/}
RAM
L3 5286
817
e 520
interconnect Fabyric
530
GPU Storage N eiwg rR/ . VO
B30 534 Communications 540
538
? FIG. 20
Display

0ee
Ayoseiaiy ADLUSIY

¢

US 2021/0225068 A1

T giesisisnp eyl o T T T T T
e SlE 10§ A i m
| APREd 4 9z¢ 61 WO | 0LE
A A - A mwh. CM@»}M MHMWMWW«M M\Nm @&OQ W h@wwmm}w
ST TR AYE e1ea Ae
= oo (paseus) e
s | oo b o0 m
= | Adwg Sze m 806
- e auedid O/ WA OISER
[-P] goe amen o oo o p i i
2 e Zee o) 100 ainxey | ereq) Sndwon
2 | Aowap | (paseys) 0z 2100 w
= UDHUYS a0e
2 A
< W UoRORY00 M 4 m sesepy
o g (| Peaead
= i .
2 | mﬂm Muﬁm Hgdiel (L7 JUN [2SIGAES AR |
LY 1 voc seisen
0ve f1 BB Xauep
JUy 19%0Ed m_,

Patent Application Publication

3

£0e
BOBLIBI 1801

US 2021/0225068 Al

OBJECT ILLUMINATION IN HYBRID
RASTERIZATION AND RAY TRACED 3-D
RENDERING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of copending
application Ser. No. 16/107,812 filed Aug. 21, 2018, which
is a continuation of prior application Ser. No. 14/644,830
filed Mar. 11, 2015, now U.S. Pat. No. 10,083,541, which
claims priority from U.S. Provisional App. No. 61/952,371,
filed on Mar. 13, 2014, and entitled “Object Illumination in
Hybrid Rasterization and Ray Traced 3-D Rendering”,
which are incorporated by reference in their entirety herein
for all purposes.

BACKGROUND

[0002] In one aspect, the disclosure generally relates to
3-D rendering systems, system architectures, and methods,
and in a more particular aspect, the disclosure relates to
systems, architectures, and methods for asynchronous and
concurrent hybridized rendering, such as hybridized ray
tracing and rasterization-based rendering.

DESCRIPTION OF RELATED ART

[0003] Graphics Processing Units (GPUs) provide highly
parallelized rasterization-based rendering hardware. A tra-
ditional graphics processing unit (GPU) used a fixed pipe-
line only for rendering polygons with texture maps and
gradually evolved to a more flexible pipeline that allows
programmable vertex and fragment stages. Even though
modern GPUs support more programmability of geometry
and pixel processing, a variety of functions within a GPU are
implemented in fixed function hardware. Modern GPUs can
range in complexity, with high performance GPUs having
transistor budgets on the order of 4-6 billion transistors.
GPUs are often used in real time rendering tasks, and
optimizations for many GPU applications involve determin-
ing shortcuts to achieve a desired throughput of frames per
second, while maintaining a desired level of subjective
video quality. For example, in a video game, realistic
modeling of light behavior is not necessarily an objective;
rather, achieving a desired look or rendering effect is often
a principal objective.

[0004] Traditionally, ray tracing is a technique used for
high quality, non-real time graphics rendering tasks, such as
production of animated movies, or producing 2-D images
that more faithfully model behavior of light in different
materials. In ray tracing, control of rendering and pipeline
flexibility to achieve a desired result were often more critical
issues than maintaining a desired frame rate. Also, some of
the kinds of processing tasks needed for ray tracing are not
necessarily implementable on hardware that is well-suited
for rasterization.

SUMMARY

[0005] In one aspect, a 3-D rendering process comprises
determining, for each frame of a sequence of frames, visible
surfaces for pixels in the frame, from a respective viewpoint.
The pixels are shaded. Shading of the pixels involves, for at
least some of the pixels, sampling a texture that is mappable
to a surface visible at one or more of the pixels. The method
also provides for maintaining the texture during one or more

Jul. 22, 2021

of the determining of the visible surfaces and the shading by
performing sampling operations for a selection of elements
in the texture and performing a combining of existing data
and results of the sampling.

[0006] In one aspect, the determining of visible surfaces
for pixels in the frame comprises rasterizing a set of geom-
etry based on the respective viewpoint for the frame, and the
maintaining comprises, concurrent with the rasterizing, per-
forming a surface-specific lighting process. The surface-
specific lighting process involves emitting rays from dis-
tributed points on a surface of an object in the 3-D scene,
traversing the emitting rays to identify respective intersec-
tions between the rays and objects in the 3-D scene, and
shading the intersections between the rays and respective
objects that were intersected. The shading comprising deter-
mining an effect on one or more of the distributed points on
the surface of the object and updating a non-transitory
memory storing current lighting condition data for the
distributed points on the surface of the object. The raster-
izing comprises accessing the current lighting condition data
for one or more of the distributed points, in response to
determining, during the rasterizing, that those one or more
distributed points are visible in a frame of the sequence of
frames.

[0007] The texture may describe ambient lighting condi-
tions on one or more objects to which that texture maps. The
maintaining may comprise emitting rays for only a portion
of the elements in the texture, during rasterizing of each
frame in the sequence, and performing a weighted combi-
nation of results of the emitted rays with existing values for
the samples to which the rays pertain.

[0008] The maintaining of the texture may involve con-
trolling usage of a processing engine to maintain a pre-
determined set of light maps in a non-transitory memory.
Different light maps of the set can be associated with
different objects in a 3-D scene. Data in the light maps
persists in the non-transitory memory across multiple frames
in the sequence of frames.

[0009] The maintained texture can be stored in memory, to
which a rasterization process can be provided read access
while the texture is being maintained.

[0010] A budget may be allocated for how much sampling
can be performed for the texture during each of the frames,
in order to meet a target frame rate at which the sequence of
frames is to be displayed. Element selection for sampling
can be prioritized based on a likelihood that those elements
map to locations on the surface that will be visible at one or
more pixels in a frame of the sequence of frames.

[0011] The likelihood that elements map to locations on
the surface that are visible can be determined by comparing
a respective normal of the surface at a location to which an
element of the texture maps, with a normal of a visible
surface stored in a buffer produced by the determining, for
each frame of a sequence of frames, visible surfaces for each
pixel of the frame, from the respective viewpoint of that
frame. The likelihood that elements map to locations on the
surface that are visible also or instead can be determined by
tracing a ray from a location to which an element of the
texture maps towards the respective viewpoint of that frame,
and determining whether the ray hits any geometry in the
3-D scene. The likelihood that elements map to locations on
the surface that are visible also or instead can be determined
by calculating a depth from a location to which an element
of' the texture maps to the respective viewpoint of that frame,

US 2021/0225068 Al

and comparing the calculated depth with a depth stored in a
buffer produced by the determining, for each frame of a
sequence of frames, visible surfaces for each pixel of the
frame, from the respective viewpoint of that frame.

[0012] Implementations of the disclosure can be provided
in graphics processors, general purpose processors, or sys-
tems on chip having multiple components. Functions may be
implemented with programmable or fixed function or lim-
ited configurability circuitry.

[0013] These and many other variations and options that
can be implemented are disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] For a fuller understanding of aspects and examples
disclosed herein, reference is made to the accompanying
drawings in the following description.

[0015] FIG. 1 depicts an example rendering pipeline in
which can be implemented aspects of the disclosure;
[0016] FIG. 2 depicts an example toy 3-D scene, mapping
elements from a lightmap to a an object in the 3-D scene, and
raster outputs;

[0017] FIGS. 3-5 depict aspects of timing constituent
processes in a rendering pipeline in which multiple frames
can be processed concurrently;

[0018] FIG. 6 depicts a rendering pipeline that uses a
hybridization of rasterization and ray tracing;

[0019] FIG. 7 an example process for updating lightmaps
in a pipeline according to the example of FIG. 6;

[0020] FIG. 8 depicts an example process by which por-
tions of a lightmap can be selectively identified for sam-
pling;

[0021] FIG. 9 depicts aspects of an example process that

can be used in the process of FIG. 8;

[0022] FIG. 10 depicts an example toy scene in which a
lightmap is mappable to a surface and updated;

[0023] FIG. 11 depicts further a grid arrangement of an
example lightmap;

[0024] FIG. 12 depicts an example lightmap modeled
based on the scene of FIG. 10;

[0025] FIGS. 13 and 14 depict variability maps that can be
used as inputs to sampling control processes according to the
disclosure;

[0026] FIG. 15 depicts a toy scene in accordance with
FIG. 10, with a changed viewpoint;

[0027] FIG. 16 depicts a toy scene in accordance with
FIG. 10, with an introduction of an object that affects global
illumination conditions on object 464;

[0028] FIGS. 17 and 18 depict examples of associating
regions of influence indicators with scene objects;

[0029] FIG. 19 depicts a portion of a rendering pipeline
relating to producing an acceleration structure and data that
can be maintained by the acceleration structure;

[0030] FIG. 20 depicts an example system in which
aspects of the disclosure can be implemented; and

[0031] FIG. 21 depicts another example system in which
aspects of the disclosure can be practiced.

DETAILED DESCRIPTION

[0032] The following description is presented to enable a
person of ordinary skill in the art to make and use various
aspects of the inventions. Descriptions of specific tech-
niques, implementations and applications are provided only
as examples. Various modifications to the examples

Jul. 22, 2021

described herein may be apparent to those skilled in the art,
and the general principles defined herein may be applied to
other examples and applications without departing from the
scope of the invention.

[0033] In general, systems and methods of rasterization
have developed and been implemented largely separate from
systems and methods of ray tracing, Rasterization has most
often been used for real-time applications, and where con-
straints, such as computation or cost limits preclude usage of
ray tracing. In contrast, ray tracing has more often been used
in offline applications, where quality or physical correctness
are valued more than frame rate, and/or computation cost. In
one aspect, the disclosure relates to usages of ray tracing to
support rasterization-based 3-D rendering. Some aspects of
the disclosure relate to maintenance of lightmaps using ray
tracing during ongoing rendering operations.

[0034] In an example according to the disclosure, a light-
map is a two-dimensional data structure, with elements that
are addressable by parametric coordinates. Each element is
mappable to a location on a surface in the 3-D scene. For
example, the surface may be a surface of an object. In this
context, it should be understood that each element may map
to an area of a surface. How each element is mapped can
depend on a shape of the surface. For example, elements will
map differently to a curved surface than to a flat surface.
Also, as explained further below, such mapping may include
blending one element with other elements that are mapped
to the surface at adjacent locations, for example. Also, a
lightmap may have versions created at different resolutions
for the same object surface, and a version may be selected
based on distance from a viewpoint, for example, or a level
of detail indicator. As such, disclosure concerning mapping
to a ‘location’ is to be understood in these contexts, and that
this terminology does not imply mapping an element to a
single point, or an invariant area, or that the location be
entirely distinct from locations to which other elements are
mapped, and so forth.

[0035] A lightmap contains information that describes
lighting conditions for the surface to which that lightmap is
mappable. In aspects of the disclosure, the information
contained in a lightmap is a result of a sampling strategy that
may be selected according to implementation-specific con-
siderations. Implementations may use sampling strategies
designed to characterize global illumination conditions, such
as diffusely scattered light, e.g., diffuse inter-reflections,
specular reflection from intermediate surfaces, and non-
directional lighting.

[0036] Characterizing global illumination involves much
more sampling, in general, than characterizing direct light-
ing conditions. Characterizing global illumination can use a
variety of sampling techniques, such as biased and unbiased
techniques. In this disclosure, the term “ray tracing”
includes variants and refinements thereof, including Monte
Carlo sampling techniques, such as path tracing and distrib-
uted ray tracing, as well as beam and cone tracing. As such,
the term “ray tracing” does not imply a particular limitation
on a number of rays that are cast for sampling an element of
a lightmap, or which are cast to sample different domains, or
a limitation on a number of secondary rays that may be
generated.

[0037] FIG. 1 depicts a pipeline 10 for rendering 2-D
images from 3-D scene information. Such pipeline may
include some elements that use rasterization techniques and
other elements that use ray tracing techniques. Some imple-

US 2021/0225068 Al

mentations support background processes that perform ray
tracing operations to maintain global illumination data for
surfaces of objects in the 3-D scene. A visible surface
determination module 15 is coupled to output data for
visible surfaces to a buffer 24 for buffering data for visible
surfaces. Further details concerning FIG. 1 are disclosed
after description of FIG. 2, below.

[0038] With reference to FIG. 2, a viewpoint 60 and a
frame of pixels define a view frustrum 63 into a 3-D scene
65. An object 66 is located in 3-D scene 65. Visible surface
determination module 15 determines a surface for each pixel
in frame 62. Data for frame 62 can be stored in an output
buffer 72, and as shown, depicts a 2-D view 75 of object 66.
[0039] Rasterization of frame 62, in one implementation,
includes identifying one or more visible surfaces for each
pixel in frame 62. In some situations, fragments of multiple
different surfaces may be visible in a single pixel. In one
implementation, visible surface determination module 15
performs a rasterization process by which 3-D objects are
projected onto frame 62, in order to determine which pixels
each 3-D object overlaps, and then determine, based on
depth from viewpoint 60, which object is visible. A raster-
ization pass can be implemented using an immediate mode
approach, by which shading operations may begin before a
final visible surface for a pixel is determined, or a deferred
approach, by which geometry is first projected onto frame
62, and binned according to region, and then a visible
surface is determined before shading begins. As an example,
FIG. 4 depicts that object 66 is visible and rasterization
produces a 2-D render 75 for object 66 that is stored in buffer
72. Although eventually, a product of rendering may be a
color and intensity information for each pixel (after shad-
ing), buffer 72 here is characterized as storing values that are
used for such shading, rather than a product of shading. As
such, buffer 72 depicts which a mapping of visible surface
to pixel, which controls what data will be stored in buffer 72.
Special circumstances such as translucency of a closest
surface may also be handled by visible surface determina-
tion module 15 (e.g., data for multiple surfaces may be
stored in one example). Some implementations may handle
these circumstances uses ray tracing procedures, as
explained below.

[0040] Data produced by visible surface determination
module 15 may include an identifier for a visible surface,
parametric coordinates for a location on the visible surface
that is visible, a depth to the visible surface from a view-
point, interpolated values for parameters (e.g., colors, nor-
mals) associated with vertices defining the visible surface.
[0041] Visible surface module 15 also couples with a
fragment shading module 18. Fragment shading module 18
may be implemented using programmable computation ele-
ments, for example, and may execute code for determining
some aspects of how different pixels will appear in the frame
62 of pixels. Such fragment shading may include texture
sampling operations from a store 30 of texture data, as well
as other computations that can use parts of the data gener-
ated by visible surface determination module 15. These
fragment shading operations can result in data to be output
for buffering 22.

[0042] A light map maintenance element 28 may be imple-
mented. Light map maintenance element 28 can use data
produced by visible surface determination module 15, and
stored in buffering 24. Light map maintenance element 28
performs ray-tracing based sampling of global illumination

Jul. 22, 2021

conditions on surfaces of objects located in 3-D scene 65. As
an example, in FIG. 2, a light map 68 for object 66 presents
a 2-D surface that can be mapped, through a parameterized
mapping to a surface of object 66. Light map 68 includes a
plurality of elements, each of which can be addressed by a
parameterized coordinate pair. How each element of light
map 68 is mapped to the surface of object 66 may differ in
different circumstances. Light map 68 may be stored in
texture store 30, which also may contain other texture
information. Aspects of the disclosure relate to examples of
how light map maintenance process 28 can perform in the
context of other functions that are performed during render-
ing, and examples of processes, systems, apparatuses, and
usages of implementations of the disclosure.

[0043] In addition to ray tracing for maintenance of global
lighting information on surfaces, ray tracing may be con-
ducted as a result of rays emitted by shaders running during
fragment shading 18. Rays emitted by fragment shaders may
be provided to a ray traversal module 46, in order to
determine an intersection for each ray. In another imple-
mentation, a frame shader 44 may be executed for pixels of
frame 62. For example, frame shader 44 may input visible
surface information for each pixel, and then based on that
information, define a ray or rays to be traced for at least
some of the pixels. These rays may be emitted from the
visible surface, and can be for such purposes as handling
reflections, refractions, sampling direct illumination condi-
tions from lights in 3-D scene 62, and so on. Rays emitted
by frame shader 44 also may be traced by ray traversal
module 46. Ray traversal module may output intersection
data (e.g., identifying a surface intersected for each ray) to
a ray shading module 48.

[0044] Ray shading module 48 may invoke code to be
executed, in order to determine what effect each ray inter-
section should have. In an example, fragment shading 18
and ray shading 48 are implemented on a programmable set
of processing elements, such as a set of parallel processing
cores, which may support execution according to a single
instruction multiple data execution model.

[0045] Results of shading rays that were emitted for
lightmap maintenance 28 may be returned to lightmap
maintenance module 28. Rays that were emitted by either
fragment shading 18 or frame shader 44 may have results
accumulated into a buffer 50. Ray shading 48 may cause
additional rays to be created for traversal, which can be
traversed by ray traversal module 46.

[0046] Results from fragment shading 18, which can be
buffered in buffer 22, and results from ray shading 48 (which
can be buffered in buffer 50), can be blended in a blender 32.
Blender 32 may be implemented by a programmable pro-
cessor that is configured to combine different inputs or a
fixed function circuit or a combination thereof. In one
application, an output of blender 32 may be used to provide
a preview 40 output for a user interface to a graphical
application design tool or development environment. Also,
preview 40 may include outputs from texture store 30 that
show a current status or contents of a lightmap maintained
by lightmap maintenance module 28. In some implementa-
tions, preview 40 can implement a preview window that
shows a version of a 3-D scene to which has been mapped
elements of a lightmap maintained according to the disclo-
sure. The preview 40 can be updated as any one or more of
viewpoint, geometry, and lighting conditions change. Pre-
view 40 also can display a 2-D view of the lightmap itself.

US 2021/0225068 Al

Preview 40 may be used in conjunction with an editing or
development environment, such as a development environ-
ment for 3-D programs, such as applications, including
interactive applications and games.

[0047] In another example, blender 32 may output data to
be stored in a buffer 42. Buffer 42 may be read by a display
interface, for an application such as a game or other inter-
active graphical application, such as a modeling software, a
virtual reality application, an augmented reality application,
a renderer, and so on. Buffers 42, 22 and 50 may be
implemented by memory allocated from a memory hierar-
chy. In some cases, portions of such buffers may be imple-
mented in dedicated memory elements. Memory elements
used to implement any of these buffers also may be used to
store data used by or generated by different components of
a rendering pipeline. Lightmaps may be accessed as textures
from a texture store, by processes implementing fragment
shading operations, for example. Further details concerning
aspects of such light map maintenance are disclosed below.
[0048] FIGS. 1-2 presented an overview of a 3-D render-
ing pipeline 10 that uses both rasterization elements and ray
tracing elements. More particularly, pipeline 10 also can
support maintenance of lightmaps for surface(s) of 3-D
objects within a 3-D scene from which renderings may be
produced. Some implementations of the disclosure are used
for providing real time rendering, animation, or preview
modes, for example, in which a sequence of frames are
displayed within a portion of time. For example, 60 or more
frames per second may be generated and displayed. Imple-
mentations of the disclosure can have multiple frames in
flight.

[0049] FIGS. 3-5 present different perspectives on how
different processes and computations can be structured to
implement aspects of the disclosure. FIG. 3 depicts a
sequence of time intervals (T0-Tn), and during such time
intervals, a respective frame of pixels is displayed (display
times 102-104 depicted). The values for the pixels in the
frames displayed during these display times 102-104 were
calculated in respective processing times 110-112. Such
processing times may occur during display times for one or
more prior frames. In some implementations, such process-
ing time for one frame may overlap multiple display times.
Some operations performed for a given frame have depen-
dencies, prior to initiating that computation.

[0050] FIG. 4 depicts an example of pipelining of pro-
cessing of rendering for multiple frames. For example, in
order to process each frame, a visible surface determination
process is conducted (“V.S. Det.” 115-117). Other operations
that are depicted in the example include direct illumination
120, fragment shading/texture sampling 121, blending 122,
and outputting 123. The depiction is not to scale, in terms of
relative amounts of computation or time required for each
operation. As these frames are being rendered, a lightmap
maintenance process 138 operates concurrently. Lightmap
maintenance process 138 uses inputs from some portions of
the processes performed to render each frame, but also may
operate asynchronously from the rendering processes. FIG.
5 depicts an example of dependencies that can exist, among
different processes. Physics/user interface inputs can deter-
mine how a viewpoint will change between frames. Based
on this, a viewpoint adjustment for a particular frame can be
made. Also, geometry may have been added, removed, or
changed, resulting in geometry preparations. Then, once
scene geometry for the frame is known, an acceleration

Jul. 22, 2021

structure can be maintained or built. Also, as portions of
geometry are finalized, rasterization of such geometry can be
performed.

[0051] As shown in FIG. 1, some rays traced for a par-
ticular frame may be emitted by shading processes. How-
ever, as shown in FIG. 1, a process conducted by lightmap
maintenance element 138 is decoupled from dependencies
on particular shaders, and thus, lightmap maintenance can be
performed after an acceleration structure is updated. In this
example, lightmap maintenance can be deferred until an
acceleration structure is updated, so that rays created for
such lightmap maintenance can be traversed in the 3-D
scene using that acceleration structure. The arrow for such
lightmap maintenance shows that some implementations
may not entirely stop the light map maintenance, although
an amount of computation resources used for lightmap
maintenance may be dynamically changed. However, it is
desirable to perform as many light map updates as possible
to those areas of the light maps that are deemed more likely
to be sampled during fragment shading, for the frame
currently being rendered. So, some implementations may
more heavily load the light map calculations during a period
in which rasterization is performed for that frame. At some
point, visible surfaces for pixels of the frame are known,
upon which, fragment shading can occur (or, in the case of
immediate mode rendering, such shading can occur even
before an ultimate final visible surface is known.) Then, a
remainder of rendering processes, such as those depicted in
FIG. 4 may be performed.

[0052] FIG. 5 showed that light map maintenance does not
require determining visible surfaces for pixels of frame(s)
being rendered. However, some implementations may allo-
cate processing resources to prioritize light map mainte-
nance for portion(s) of a light map determined to be mapped
to visible surface(s). In one approach, inputs from one or
more of physics and user interface elements are used to
determine a setup for a 3-D scene, which will be used to
render a frame in a sequence of frames. For example,
physics or user interface inputs may affect geometry in the
3-D scene, and may affect a viewpoint. For these purposes,
factors such as programmatic inputs during game play can
be characterized as physics inputs. Geometry preparations
are undertaken to account for modifications to geometry, to
provide finalized geometry. Acceleration structure (A.S.)
preparation can be undertaken using the finalized geometry.

[0053] Finalized geometry also can be used to begin
rasterization of the 3-D scene, in order to identify visible
surfaces for the pixels of the frame. In some cases, genera-
tion of rays for light map maintenance can be conditioned on
finalization of the acceleration structure. After rasterization
identifies a visible surface, fragment shading of that visible
surface can begin (depending on an approach to rasteriza-
tion, such visible surface may be a final visible surface or a
surface that is currently visible, although it may be obscured
later.) Fragment shading may involve sampling textures that
are mapped to objects that are visible at one or more pixels
in the frame. These textures can include those being main-
tained using results of the tracing and shading of the light
map rays that are being processed for light map mainte-
nance. Fragment shading may include emitting rays for
purposes such as testing reflections, occlusion, or refrac-
tions. Some implementations also may provide a ray frame
shading step, in which rays are emitted based on character-
istics of surfaces visible at pixels of the frame. A portion of

US 2021/0225068 Al

rendering time may be allocated to blending various com-
ponent results, and ultimately, a time to display the frame is
reached.

[0054] FIG. 6 depicts an example graphics processing
pipeline implementing aspects of the disclosure. FIG. 7
depicts an example of a scheduling process that may be
implemented in the pipeline of FIG. 6. In FIG. 6, an
application 142 generates outputs, on which rendering will
be based. Such outputs include geometry specifications,
inputs indicative of user interaction, materials information,
and so on. A physics engine 144 can process data from
application 142 to determine how such data will affect a 3-D
scene; physics engine 144 can, for example, determine
updates to a position, a speed, direction of objects or whether
an object will be broken up into multiple separate objects,
identify collisions among objects and results of such colli-
sions, and so on. A geometry processing element 146 can
receive inputs from physics 144 and output geometry
according to the inputs. For example, physics engine 144
may specify objects as higher order surfaces, and geometry
processing element 146 may process these higher order
surfaces into a primitive mesh.

[0055] Rasterization subsystem 148 receives geometry
from geometry processing element 146 and begins visible
surface determination based on the geometry. A variety of
approaches to visible surface determine exist, and include,
for example, a tile-based rendering option, in which geom-
etry is first sorted according to regions of a frame overlapped
by each geometry element, and immediate mode rendering,
in which pixel shading is conducted without having identi-
fied a final visible surface for a pixel, even though such
shading may be wasted computation, when another element
of geometry obscures the prior element. Additionally, an
acceleration structure builder 147 receives geometry data
from geometry processing element 146. Such geometry data
can be a simplified set of geometry, in an example. Accel-
eration structure builder 147 may produce or update an
acceleration structure 140 based on the geometry. Some
implementations can support producing multiple versions of
geometry, where a relatively high resolution version of
geometry is used for rasterization and a reduced resolution
version of geometry is used for ray tracing. An acceleration
structure can be produced based on the higher, the lower, or
both versions of geometry. Some implementations can sup-
port tracing some rays based on the high resolution geom-
etry, and some rays based on the low resolution geometry.
For example, rays for maintaining lightmaps can be traced
using the higher resolution geometry, and reflection or
refraction rays generated by materials shaders can be traced
using the lower resolution geometry.

[0056] An output of rasterization 148 includes geometry
data buffers 150, which include per-pixel (per fragment)
geometry data, such as a depth of a visible surface, a level
of detail indicator, an interpolated normal, parametric coor-
dinates of a location on the surface visible at a given pixel,
and so on. Such buffers 150 also may include interpolated
parameters that were associated with vertices of geometry
defining the surface visible at that pixel.

[0057] Rasterization 148 also includes a fragment shading
subsystem, which operates to determine a color of a pixel.
Such fragment shading subsystem may output rays to be
traced by a ray tracing subsystem 168. Rasterization 148
also may access a texture memory 180 that stores texture
data. Texture memory 180 may be implemented by a

Jul. 22, 2021

memory hierarchy, some portions of which are shared with
other functions, while other portions may be dedicated to
texture accesses. Texture memory 180 is shown as storing
light maps (e.g., light map for frame n 182), each of which
are mappable to a surface of an object. Also, multiple
versions of a light map for one object may be maintained for
multiple frames. Such multiple versions may be imple-
mented as a baseline map, and the other maps may be
represented as differences from that baseline map. The
surfaces of the objects may or may not be visible in frames
being rendered.

[0058] A sampling control 152 is for updating light map
data stored in texture memory 180. Such updating proceeds
concurrently with other rendering processes, and results in
updates to the light maps that are then capable of being
accessed as textures by rasterization 148. In some imple-
mentations, sampling statistics 184 are maintained for each
light map. Sampling statistics may include sample aging
data. For example, an indication of when sampling was last
conducted for a given texture element may be maintained. A
variation characterization module 154 operates to charac-
terize variations of elements of the light maps (e.g., 184),
and may also update sampling statistics 184. For example,
variation characterization 154 can operate to identify regions
of light map 182 that have low variation within that light
map, can operate to identify elements that have had rela-
tively high variation among samples taken within one frame,
or within multiple frames. Outputs from variation charac-
terization 154 are inputs to sampling control 152. Sampling
control 152 also accesses data from geometry buffers 150.
Sampling control 152 can generate specifications for rays
164 to be traced in order to update one or more light maps.

[0059] A ray frame shader 156 also may be invoked,
which can execute to generate rays to be traced from the
visible surfaces for which fragment shading is being con-
ducted by rasterization 148. A number of and characteristics
of the rays emitted by ray frame shader 156 for each visible
surface can vary based on characteristics of such surface.
The rays emitted by rasterization 148, by ray frame shader
156, and by sampling control 152 can be collected into a
buffer 170, which feeds ray tracing subsystem 168. Ray
tracing subsystem 168 can be implemented as a ray traversal
element and a ray shading element. The ray shading element
can return results of shading a particular ray to the emitter
of such ray. Ray shading also may include emitting addi-
tional rays to be traced. Ray tracing subsystem 168 can use
acceleration structure 140 during ray traversal. With par-
ticular regard to light map maintenance, updating logic 175
can receive results for tracing rays 164, and combine those
received results with existing data to update an appropriate
light map. Updating logic 175 also can use level of detail
indicators from geometry buffers 150 in order to determine
how to update a given light map based on sample data.

[0060] FIG. 7 depicts, at 205, determining a viewpoint and
a 3-D scene, for a particular frame in a sequence of frames.
In one example, the particular frame may be a temporally
subsequent to a frame for which determining 205 was
performed. Such viewpoint and 3-D scene can be based on
modifications to a temporally prior viewpoint and 3-D
scene. One or more other frames may be in various stages of
processing when action 205 is performed. At 209, a set of
light map elements to be updated for that combination of
viewpoint and 3-D scene are determined. Inputs from geom-
etry processing 207 can be used in performing action 209.

US 2021/0225068 Al

Geometry processing 207 may include defining a final set of
geometry for rasterization, ray tracing, or both, for the
particular frame. Acceleration structure updating/produc-
tion, at 213, may use finalized geometry from geometry
processing 207. In another example, a portion of an accel-
eration structure may be produced based on information
defining extents of procedurally-defined geometry. In some
implementations, portions of the acceleration structure may
be completed before others. At 230, upon completing the
acceleration structure, or a relevant portion thereof, a light-
map update can commence at 236.

[0061] In examples according to the disclosure, light map
updating involves tracing rays in the 3-D scene, and a
variety of different approaches exist to trace rays in a 3-D
scene. Some implementations may always begin tracing rays
from a root node of an acceleration structure, while others
may begin tracing rays at other points within an acceleration
structure, or in limited circumstances, may not even use an
acceleration structure. As such, use of an acceleration struc-
ture and beginning a lightmap update after completing an
acceleration structure are example implementations, but are
not exclusive.

[0062] At 225, rays may be defined in accordance with the
set of lightmap elements, based on the viewpoint and 3-D
scene modifications, and inputs from geometry processing
207. As such, defining rays for lightmap updating does not
need to be conditioned on completion of an acceleration
structure, even if commencement of traversal of such rays is
conditioned on completion of the acceleration structure. In
one particular approach, a coarse-grained set of elements in
a hierarchical acceleration structure is defined, and detailed
acceleration structure elements are defined in a demand-
driven manner. In such approach, light map updating 236
may begin after the coarse-grained set of elements is
defined. FIG. 7 also depicts that rays 244 may be generated
by lightmap updating 236.

[0063] Light map update 236 outputs rays 244, which are
collected by a ray collector 274, for ray traversal 252. While
the above actions are undertaken, a decision whether geom-
etry processing is completed can be performed at 211, and
responsive to completion of geometry processing (for a part
of the geometry in the 3-D scene or the entirety thereof),
visible surface determination may begin at 232. Visible
surface determination 232 may be implemented by a tile
based approach, a tile-deferred approach, an immediate
mode approach, a tiled immediate mode approach, and so
on. Various approaches to hidden surface removal can be
employed in these approaches. According to a deferred
shading approach, at 233, a decision whether visible surface
determination has completed for a fragment, pixel or larger
portion of the frame (e.g., a tile, or the whole frame of
pixels) is performed, and if so, then shading of one or more
fragments can be undertaken at 240. Fragment shading 240
can emit rays 246, in some implementations. Also, as visible
surfaces are identified, a ray frame shader 242 may be
executed. Ray frame shader 242 can function to emit rays
248 from visible surfaces. Whether or not a particular
implementation supports fragment shaders emitting rays, or
supports a ray frame shader, or both, is a matter of imple-
mentation, and an application programming interface can be
provided that supports either or both. For example, if
fragment shaders are to be able to emit rays, then a trace call
may be provided that allows specification of a visible
surface. That visible surface can be associated with a ray

Jul. 22, 2021

shader code module that is executed to define what rays are
to be emitted. In another example, an interface accepts
definitions of rays that are defined by code integrated within
a fragment shader, or directly called by a fragment shader.

[0064] Ray traversal 252 outputs, to a ray shading unit
276, data for rays that have been found to intersect in the 3-D
scene (such intersection can be with respect to an object, or
to a background, for example, or any other condition under
which a ray may need to be shaded). Ray traversal 252 may
be organized according to a variety of approaches. In one
example, rays can be collected according to commonality of
computation to be performed (e.g., a traversal step within an
acceleration structure, or testing a ray for intersection with
one or more primitives), and also can be collected according
to commonality of the data elements to be involved in the
computation (e.g., collecting a set of rays that are to be tested
for intersection with the same group of primitives). Ray
traversal 252 can be implemented in a set of multi-threaded
Single Instruction Multiple Data (SIMD) cores, or may use
fixed function circuitry for performing functions, such as
traversal or primitive intersection testing.

[0065] Ray shading unit 276 may output results 272 of
shading rays that were emitted for light map updates (e.g.,
rays 244). These results are used to update the light maps to
which those rays pertain; these ray results also may be used
to determine subsequent samples to be taken for the light-
maps, if any. Ray shading 276 may output results to buff-
ering 278 (e.g., executing code modules may contribute
results of shading calculations to buffers in buffering 278, or
may return results to a fragment shading or ray frame
shading module, or both). A blending unit 280 may access
results buffered in buffering 278 and combine these results
according to blending instructions from ray shading 276. In
some examples, blending 280 may be implemented at least
partially on programmable computation elements that also
implement one or more of ray shading 276 and fragment
shading 240.

[0066] The above shows that implementations of the dis-
closure include apparatuses and processes that support 3-D
rendering using both rasterization and ray tracing processes,
and where ray tracing processes are used concurrently with
rasterization processes to produce light map data that is
accessible by rasterization shading processes. Such light
map data can be maintainable across a sequence of frames,
in which a portion of the elements in one or more light maps
may be updated, while other elements are not updated.
Examples of how selections of elements to be updated and
other considerations are addressed below, with respect to
FIGS. 8-18.

[0067] Some implementations of the disclosure focus on
providing indirect illumination condition information for
surfaces, which involves much more sampling than simple
direct illumination. Further, some aspects of the disclosure
focus on real-time production of lightmaps with indirect
illumination data and under conditions in which one or more
of a viewpoint, and geometry in the 3-D scene may be
changing dynamically. Some aspects of the disclosure also
focus on supporting real-time production, updating, or both,
of lightmaps within computation and power budgets that fit
within mobile device profiles, such as a smart phone, a
tablet, a laptop, and so on. As such, it is expected that
approaches to selecting subsets of elements within a light-
map for updating during a given frame in a sequence of

US 2021/0225068 Al

frames (e.g., during usage of an application or game) may
vary depending on the usage.

[0068] FIG. 8 depicts an example process by which ele-
ments of a lightmap can be selected for sampling. At 405,
sampling is started or a subsequent iteration to a next
lightmap element is conducted. Sampling can start at a
location within a tightmap to be sampled, such as a pre-
determined parametric coordinate value pair. At 408, that
element is mapped to a location on an object surface (for
example). At 412, a visibility determination process is
performed, and based on results from that process, a deter-
mination is made whether that location is visible at one or
more pixels of a frame. If visible, then that element is
queued for sampling at 414 and otherwise, that element is
skipped for sampling at 416. FIG. 9 depicts examples of
visibility determination processes that can be performed in
implementations.

[0069] FIG. 9 depicts that, at 420, a distance is calculated
between the mapped location and a viewpoint of the frame
to which the 3-D scene setup applies. The distance calcu-
lation may involve transforming a 3-D position of the
location on the surface, based on a transform used to
transform the geometry in the 3-D scene during rasteriza-
tion. A line segment between the viewpoint and the location
may traverse a pixel, or a fragment of a pixel of the frame.
During rasterization, such pixel or fragment will have a
depth value calculated and stored in a depth buffer. The
depth value for that pixel or fragment is accessed at 422 and
compared with a distance between the location and the
viewpoint. If the accessed depth and calculated distance are
equal (or within a range of each other indicative of being the
same surface), then the location is considered visible. In
another example, a normal for the visible surface at the pixel
(or fragment), as determined by rasterization, is accessed at
425, and a normal for the mapped location is accessed (or
calculated, such as through an interpolation) at 427. If the
normal match, at 442, then the location is considered visible.
As another example, at 430, a ray is projected from the
mapped location to the viewpoint (or conversely, from the
viewpoint to the mapped location) and if the closest inter-
section detected for the ray is at the mapped location, at 444,
then the mapped location is considered visible. In some
implementations, multiple of the approaches depicted in
FIG. 9 can be used. For example, a first order test may use
the normal, and for those elements that pass such test, a
depth test may be performed, and for those elements that
pass both tests, the ray test may be performed. In some
implementations, only the ray test may be performed. Which
tests and how many tests to be provided is an implementa-
tion-specific decision that balances a cost of the tests with an
amount of sampling activity that is performed.

[0070] Further, the above example was that an element is
either skipped for sampling or queued for sampling, based
on a visibility determination. However, some implementa-
tions may select a degree of sampling based on an outcome
of a visibility determination, an order of sampling, a degree
of priority in sampling, or some combination thereof. In one
example, some portion or all of the elements may have
samples taken at one sampling rate, and then elements that
map to locations considered likely to be visible can be
sampled at a higher sampling rate. Other approaches are
explained below.

[0071] FIG. 10 presents an example situation in which a
lightmap may be produced and maintained. A light 452 emits

Jul. 22, 2021

light energy (e.g., light energy 454) into a toy 3-D scene
including an object 464 and a surface 465. The 3-D scene is
viewed from a viewpoint 450. In accordance with a relative
position of object 464, surface 465, light 452 and viewpoint
450, a portion of object 464 on the same side of surface 465
as light 452 is generally directly illuminated by light 452.
However, an area of object 464 separated from light 452 by
surface 465 is in shadow 467. A reflection 456 of light
energy 454 onto object 464 also is present, creating a
reflection pattern 468. FIG. 11 depicts an example of a
lightmap 484 for object 464, which includes elements (ele-
ment 486 identified). These elements are created to have
data representing the lighting condition on object 464, as
exemplified in FIG. 12, in which map 484 is shown to
include data representing shadow 467, and reflection pattern
468. Since FIG. 10 depicts that portions of object 464 are
visible, rendering of pixels of a frame may include sampling
lightmap 484 to retrieve data from lightmap 484. In order to
create lightmap 484, sampling can be conducted for different
elements towards light 452 (e.g., elements within shadow
467 would have values defined at least in part by samples
that showed occlusion from light 452. Other samples would
be taken towards surface 465, which in turn would generate
secondary rays that would track back to light 452, so as to
define reflection pattern 468.

[0072] FIG. 13 depicts an example of a region variability
map 488, which can be produced based on values in light-
map 484. Variability map 488 identifies arcas of relatively
low variability, which can be termed uniform regions. In one
approach, these regions are defined by a binary value, either
indicating high or low variability. A threshold separating
high and low variability can be selected in accordance with
statistics concerning values for elements in the lightmap 484
and other information about the samples that produced such
values. Some implementations may allocate two or more
bits, such that binning of elements according to variability
may be performed. In some implementations, a variability
map can entries in a 1:1 correspondence with entries in
lightmap 484. In other implementations, variability map 488
can be defined by regions, such as regions defined by simple
polygons, such as rectangles, or an interconnected set of line
segments. In some implementations, a coarse representation
of areas of similar variability is sufficient, and in some
implementations, such representation is made conserva-
tively so that some areas of low variability may be included
within an area of higher variability, so that a buffer zone is
formed around high variability areas.

[0073] Also, in some implementations, a guard region can
be defined around regions having higher variability. For
example, a rate of change of variability may be used to
identify areas around high variability regions. Areas which
have a higher rate of change in variability between frames
can be considered areas more likely to need more sampling.
Variability can be determined within samples taken during a
single frame and across samples taken during rendering of
multiple frames. FIG. 14 depicts an example where a map
490 is created for high variability regions. Considerations
and techniques disclosed with respect to map 488 of FIG. 13
can also apply to map 490 of FIG. 14.

[0074] As introduced above, some implementations of the
disclosure are for handling dynamic conditions that may
affect light maps. FIG. 15 depicts a situation in which
viewpoint 450 has moved, relative to a position depicted in
FIG. 10. Such movement is relative to object 464, such that

US 2021/0225068 Al

now a portion of object 464 in shadow 467 is visible at
viewpoint 450, as shown by ray 505. In a practical example,
a change in position of viewpoint 450 between FIGS. 10 and
15 may occur over multiple frames. As such, a gradual
change in viewpoint can be detected, such as by using
techniques in accordance with the disclosure above. For
example, a portion of lightmap 484 that maps to a portion of
object 464 close to an intersection between object 464 and
surface 465 may have been only lightly sampled, or only
sampled for direct illumination conditions. As such, such
portion of lightmap 484 may have relatively coarse data, or
hard shadows, for example. As more and more of such
occluded portion of object 464 comes into view, more
sampling can be performed in those regions. As explained
above, such sampling can be based on a prediction of
movement of viewpoint 450. In some implementations, a
respective viewpoint for a plurality of frames may be
determined before rendering begins for those frames. How-
ever, some aspects of lightmap sampling can begin, and in
one example, selection of elements of a lightmap to be
sampled can be performed based on predictions or determi-
nations of a viewpoint for to-be-rendered frames.

[0075] In some implementations, sampling can be started
for portions of a lightmap that have high variability, and then
proceed outwardly from those portions into portions of
lower variability.

[0076] Newly-acquired samples can be combined with
existing lightmap data according to a weighted combination.
For example, each new sample may have a weighting that is
at last 10% of an element value. In some situations, an
element may have had many more than ten samples obtained
for that element, and as such, 10% represents a recency-
weighted combination. Some implementations may select a
weighting value based on changes that may have occurred
between frames. For example, introduction of new geometry
within a region of a lightmap may trigger a particularly
heavy weighting of newly-acquired sample values, as well
as more sampling of that lightmap, as explained in further
detail below. The above is an example.

[0077] FIG. 15 represented a situation where lightmap
data was not potentially invalidated between frames,
because sources of light energy and geometry were constant,
and so a consideration focused on allocation of sampling
opportunities in accordance with a revised viewpoint. FIG.
16 depicts an example in which geometry is dynamic,
resulting in potentially dramatic changes to lightmap 484.
FIG. 16 shows an additional object 535 that acts as a
reflector of light energy 545 onto object 464, causing a
reflection 540 on object 464. Other lighting effects including
reflection pattern 468, and shadow 467 remain valid.

[0078] As with movement of viewpoint 450, an appear-
ance of object 535 may be gradual, instead of immediate.
For example, object 535 may gradually come closer to
object 464. A variety of approaches may be used to deter-
mine how sampling for lightmap 484 may be performed. In
one approach, a low-density sampling of elements of light-
map 484 may detect object 535 when it is further away, and
when it casts a smaller and/or less intensive reflection on
object 464. So, sampling can be made to diffuse from those
elements from which sampling first detected object 535 to
encompass a larger area of lightmap 484, as object 535
approaches. Existing data in elements selected for sampling
may be invalidated, or weighted at a relatively small value

Jul. 22, 2021

to new sample data in such a circumstance, so that an effect
of object 535 on lightmap 484 can be accounted for quickly.

[0079] FIGS. 17 and 18 depict examples of indicators of
influence that can be associated with geometry in or intro-
duced into a 3-D scene. In an example, influence indicators
are data associated with geometry that can be used to
interpret what effect that geometry may have on light maps
associated with other objects in the 3-D scene. When con-
sidering fully accurate global illumination, a given element
of geometry, in theory, may affect rendering for practically
any other object in the 3-D scene. However, in seeking to
provide processes and systems that update lightmaps for
dynamic geometry fast enough to be useful for realtime
rendering, that theory strict condition can be relaxed in one
or more ways.

[0080] As such, influence indicators can be used to iden-
tify a region within which an associated element of geom-
etry can have a significant effect on global illumination of
another object. For example, in FIG. 17, an influence
indicator 570 is shown as defining curved volumes around
the faces of object 535. FIG. 17 shows that the curves can
be asymmetrical. A distance from object 535 of influence
indicator 570 can be determined based on characteristics of
object 535. For example, a shiny object that specularly
reflects would have a larger radius than an object that
scatters or absorbs incoming light. When an influence indi-
cator 570 comes within a region or intersects an object that
is associated with a lightmap, sampling can be started with
respect to that object. FIG. 18 depicts another example of an
influence indicator that establishes a bounding region around
an object. This approach is different than, for example,
characterizing a reflectance profile of the surface and using
that reflectance profile to determine lighting conditions on
the surface. The determining of what to sample and when
can be based on aspects of a reflectance profile, for example,
weights of coeflicients can be used to infer how far reflected
or refracted light can travel.

[0081] In one approach, coincidence between influence
indicators and lightmaps is determined by physics 144,
geometry 146, or acceleration structure builder 147 (see
FIG. 6). For example, physics 144 may be configured to
detect a collision between influence indicator 570 and object
535, and responsively generate an indicator that can be
passed through intermediate processing steps, or signaled to
sampling control 152. By further example, acceleration
structure builder 147 can define a bounding element based
on influence indicator 570 and determine whether bounding
elements for bounding object 535 share a common parent
acceleration structure element, or overlap a volume occu-
pied by the bounding element for the influence indicator
570. Conversely, increased separation, or sufficient separa-
tion, of object 535 and influence indicator 570 can be
detected, which can trigger reduction of sampling of that
object. As such, sampling for a lightmap or a region thereof
can be started, stopped, or modified in accordance with
aspects of the disclosure. Sampling for some elements of a
lightmap can be prioritized over sampling for other elements
of the lightmap based on lightmap influence data.

[0082] FIG. 19 depicts geometry process 146 outputs
geometry to an acceleration structure builder 147, which can
maintain a correlation between scene objects, lightmaps and
acceleration structure elements. This data can serve as inputs
into determining when sampling for a particular lightmap
should begin, how much sampling should be allocated to

US 2021/0225068 Al

different lightmaps, or both. For example a process by which
light map data sampling can be controlled includes that
geometry is received for an object and that geometry is
located relative to another acceleration structure, which is
indicated or flagged as an acceleration structure element that
includes a surface to which a light map is mapped. In some
situations, the acceleration structure element can be sized
and positioned based on considerations relevant for main-
taining the lightmap, rather than for ray intersection testing.
For example, while it usually is the case that tight bounding
is desired for testing rays for intersection, a looser bounding
may be desirable in this instance, because a goal is to
approximate or detect situations where global illumination
conditions are changing. If the object received is located in
the acceleration structure element, then lightmap sampling
conditions can be adjusted accordingly.

[0083] Other implementations may cast a ray or rays with
differentials towards a surface, in order to characterize a
footprint of the object on the surface. A ray differential can
be described by defining a spreading factor associated with
aray, such that the ray and its spreading factor circumstances
an area that varies based on distance from an origin of the
ray. A spreading factor can be selected based on character-
istics of an object from which the ray is cast.

[0084] Other aspects include that a mipmap of a lightmap
can be created based on a current set of values, and then
updated as values within the lightmap are changed. In some
implementations of these disclosures, a lightmap is updat-
able while it also is readable, and as such, it would be
desirable to frequently update a mipmap, so that a lookup in
the lightmap at a particular level of detail can reference
current lightmap data. However, frequently updating an
entire mipmap can be wasteful of computation, especially in
a circumstance where that lightmap could change shortly
after being updated. So, in some situations, sampling for a
lightmap is performed in regions, such that sampling for a
region of a lightmap can be considered completed, and then
a mipmap for that portion of the lightmap can be updated.

[0085] Some implementations can provide that sampling
for a lightmap for a current frame is completed before that
lightmap is used during shading of pixels for that current
frame. For example, shading of pixels for a prior frame may
be performed while sampling for updating a lightmap for a
current frame is conducted. In such implementations, a
mipmap can be updated or created based on that lightmap.
Also, in such circumstances, there can be a flip chain of
lightmaps relating to each frame in flight, where one light-
map is for a frame with pixels currently being shaded and
there are one or more lightmaps being updated for future
frames.

[0086] FIG. 20 depicts an example of a system 500 that
can implement aspects of the disclosure. System 500
includes a set of cores 501-503, which can each be capable
of executing one or more independent threads of control.
Each such core 501-503 can have an instruction decoder, for
decoding instructions according to an instruction set archi-
tecture. Each core 501-503 can have a private Layer 1 cache.
Each core 501-503 can support single instruction multiple
data processing, such as a four-wide, eight-wide, sixteen-
wide, twenty-four wide or thirty-two wide vector processing
unit. The example system 500 includes a Layer 2 cache 515
shared between a subset of cores (e.g., cores 501 and 502).
System 500 includes a Layer 3 cache 517 shared among all

Jul. 22, 2021

processor cores 501-503. These elements of system 500 can
be included within a module 520 that can itself be tiled.
[0087] Module 520 can have an interconnect or internal
fabric that connects L3 517 with the cores and with L2.
Cache coherency logic can be provided, to implement dif-
ferent cache coherence schemes. L1, L2 and L3 caches can
be maintained to be inclusive or exclusive. A RAM 526 may
serve all cores 501-503, and may be coherent or incoherent
with respect to GPU 532. An interconnect fabric 530 can
connect multiple modules 520, a Graphics Processing Unit
532, a storage unit 534 (e.g., mass storage such as magnetic
hard drives, or flash memory), one or more network inter-
faces 538, and an input/output 540 interface, such as PCI-
express, an optical interconnect Universal Serial Bus (USB),
and so on. System 500 also can have a display 525, which
can be coupled with GPU 532. As such, FIG. 20 depicts an
example system that is generally in accordance with a
conventional computation system, such as a personal com-
puter, a server, a laptop, or even to a tablet or cellphone.
Different of these system types can provide different num-
bers, configurations of the depicted elements, according to
target design criteria, such as processing capability, power
consumption, display resolution, and so on.

[0088] For example, a server can have a vastly higher
power consumption envelope than a tablet form factors, as
well as a higher pricepoint, which allows more processing
capability in module 520, such as more cores, more com-
plicated cores, such as out of order, multiple issue cores,
wider SIMD vectors, larger caches, and so on. Some systems
may implement many of the functional components shown
in within a system on chip. For example, cores 501-503 and
GPU 532 may be monolithically fabricated, and may inter-
face to an L3 cache formed on a separate die.

[0089] FIG. 21 depicts an example of a hardware archi-
tecture 301 in which aspects of the disclosure can be
implemented. FIG. 21 depicts that an array of computation
clusters 315 provides a programmable set of computation
elements that can be configured to perform computations
such as geometry and pixel shading. Array 315 comprises a
set of cores 320-323, each with respective local memories
76-79. Shared texture pipelines 325-326 can be used by
cores 320-323. A tiling memory may be provided in imple-
mentations that support tile based visibility calculations.
Such tiling memory may be used for holding display lists
produced during a tiling of geometry.

[0090] Texture pipelines 325-326 can operate to perform
texture sampling, filtering, and other processes specific to
texturing. Some applications may use texture pipelines
325-326 for more general filtering and blending or other
more general purpose compute applications. A memory
hierarchy 330 may comprise various levels of caching and
mass data storage for use by array 600. A packet unit 340
may comprise a ready stack 342, a collection definition
memory 344, an empty stack 346 and a packer 348. Packet
unit 340 may operate to collect specific instances of com-
putation against different scheduling keys and form collec-
tions of such instances grouped according to scheduling key.
Collections that are ready for further processing can be
indicated by data on ready stack 342, while slots that are
ready to be filled by new collections may be identified on
empty stack 346. Packer 348 receives results of computa-
tions performed in array 315 and appends appropriate data
to collections determined according to the received results.
Elements of provides A set of data masters, including vertex

US 2021/0225068 Al

304, pixel 306, compute 308 and ray 310, determine work-
loads to be performed on array of clusters 315. A host
interface 303 may be provided to connect to another com-
putation unit, not depicted. A bus 365, which can be imple-
mented as a switch fabric or other appropriate data distri-
bution mechanism, sized and arranged according to the
throughput and connectivity requirements of a particular
implementation may be provided.

[0091] The term “subsystem” was used in naming various
structural components that may be found in implementations
of the disclosure. The term “subsystem” by itself does not
imply that structures or circuitry used to implement such a
subsystem need to be separate or distinct from structures or
circuits that implement other subsystems. In fact, it is
expected that programmable elements within a system can
be used to implement different subsystems of that system. In
general, any subsystem, unit or functional component
described herein can be implemented using a programmable
computation unit, such as a processor, in conjunction with
supporting circuitry that is configured to execute a relevant
function or process. Some subsystems, units or functional
components may be entirely or partially implemented in
limited programmability or fixed function hardware. For
example, a scanning component can be implemented using
limited configurability circuitry that accepts parameters to
setup a triangular primitive for scanning, but does not
support scanning of an arbitrary primitive shape. Similarly,
a ray tracing subsystem can include a ray intersection testing
element that supports a particular kind of intersection test for
triangles, and a particular kind of acceleration structure
element, in limited programmability circuitry (or two dif-
ferent portions of circuitry). In each of these cases, machine
code could be used to configure a processor for implement-
ing these functions, but with an anticipated loss of efficiency.
[0092] Also, subsystems themselves may have multiple
functional components, and structures used to implement
different of these functional components also may imple-
ment other functional components. Still further, in some
situations, the operation or function of one functional com-
ponent may also serve to implement another functional
component or some portion thereof. For example, a raster-
ization subsystem can identify visible surfaces for pixels in
a frame. Such rasterization subsystem can involve a com-
ponent that transforms geometry into screen space, a scan-
ning component that determines what pixel is overlapped by
each element of geometry and a sorting component that
identifies which element of geometry is closest. While such
components function, a byproduct can be interpolated
parameters for pixels overlapped by the geometry.

[0093] For clarity in description, data for a certain type of
object, e.g., a primitive (e.g., coordinates for three vertices
of a triangle) often is described simply as the object itself,
rather than referring to the data for the object. For example,
if referring to “a primitive”, it is to be understood that such
terminology can in effect refer to data representative of that
primitive.

[0094] Although some subject matter may have been
described in language specific to examples of structural
features and/or method steps, it is to be understood that the
subject matter defined in the appended claims is not neces-
sarily limited to these described features or acts. For
example, a given structural feature may be subsumed within
another structural element, or such feature may be split
among or distributed to distinct components. Similarly, an

Jul. 22, 2021

example portion of a process may be achieved as a by-
product or concurrently with performance of another act or
process, or may be performed as multiple separate acts in
some implementations. As such, implementations according
to this disclosure are not limited to those that have a 1:1
correspondence to the examples depicted and/or described.

[0095] Above, various examples of computing hardware
and/or software programming were explained, as well as
examples how such hardware/software can intercommuni-
cate. These examples of hardware or hardware configured
with software and such communications interfaces provide
means for accomplishing the functions attributed to each of
them. For example, a means for performing implementations
of each of the processes described herein includes machine
executable code used to configure a machine to perform
such process implementation. Other means for realizing
implementations of the disclosed processes includes using
special purpose or limited-programmability hardware to
realize portions of the processes, while allocating overall
control and management and a decision when to invoke such
hardware to software executing on a general purpose com-
puter. Combinations of software and hardware may be
provided as a system to interface with software provided by
third parties. Such third party software may be written to use
a programming semantic specified by the API, which may
provide specified built-in functions or provide a library of
techniques that may be used during ray tracing based
rendering.

[0096] Aspects of functions, and methods described and/
or claimed may be implemented in a special purpose or
general-purpose computer including computer hardware, as
discussed in greater detail below. Such hardware, firmware
and software can also be embodied on a video card or other
external or internal computer system peripherals. Various
functionality can be provided in customized FPGAs or
ASICs or other configurable processors, while some func-
tionality can be provided in a management or host processor.
Such processing functionality may be used in personal
computers, desktop computers, laptop computers, message
processors, hand-held devices, multi-processor systems,
microprocessor-based or programmable consumer electron-
ics, game consoles, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, tablets and the
like.

[0097] In addition to hardware embodiments (e.g., within
or coupled to a Central Processing Unit (“CPU”), micro-
processor, microcontroller, digital signal processor, proces-
sor core, System on Chip (“SOC”), or any other program-
mable or electronic device), implementations may also be
embodied in software (e.g., computer readable code, pro-
gram code, instructions and/or data disposed in any form,
such as source, object or machine language) disposed, for
example, in a computer usable (e.g., readable) medium
configured to store the software. Such software can enable,
for example, the function, fabrication, modeling, simulation,
description, and/or testing of the apparatus and methods
described herein. For example, this can be accomplished
through the use of general programming languages (e.g., C,
C++), GDSII databases, hardware description languages
(HDL) including Verilog HDL, VHDL, SystemC Register
Transfer Level (RTL) and so on, or other available pro-
grams, databases, and/or circuit (i.e., schematic) capture
tools. Embodiments can be disposed in computer usable
medium including non-transitory memories such as memo-

US 2021/0225068 Al

ries using semiconductor, magnetic disk, optical disk, fer-
rous, resistive memory, and so on.

[0098] As specific examples, it is understood that imple-
mentations of disclosed apparatuses and methods may be
implemented in a semiconductor intellectual property core,
such as a microprocessor core, or a portion thereof, embod-
ied in a Hardware Description Language (HDL)), that can be
used to produce a specific integrated circuit implementation.
A computer readable medium may embody or store such
description language data, and thus constitute an article of
manufacture. A non-transitory machine readable medium is
an example of computer readable media. Examples of other
embodiments include computer readable media storing Reg-
ister Transfer Language (RTL) description that may be
adapted for use in a specific architecture or microarchitec-
ture implementation. Additionally, the apparatus and meth-
ods described herein may be embodied as a combination of
hardware and software that configures or programs hard-
ware.

[0099] Also, in some cases terminology has been used
herein because it is considered to more reasonably convey
salient points to a person of ordinary skill, but such termi-
nology should not be considered to impliedly limit a range
of implementations encompassed by disclosed examples and
other aspects. For example, a ray is sometimes referred to as
having an origin and direction, and each of these separate
items can be viewed, for understanding aspects of the
disclosure, as being represented respectively as a point in
3-D space and a direction vector in 3-D space. However, any
of a variety of other ways to represent a ray can be provided,
while remaining within the present disclosures. For
example, a ray direction also can be represented in spherical
coordinates. It also would be understood that data provided
in one format can be transformed or mapped into another
format, while maintaining the significance of the informa-
tion of the data originally represented. The use of the articles
“a” and “an”, unless explicitly stated otherwise, include both
the singular and plural. Also, the identification of a plurality
of elements, such as a plurality of processing cores, or a
plurality of rays, does not imply that such plurality includes
all such elements that may exist or be processed within.

[0100] Also, a number of examples have been illustrated
and described in the preceding disclosure, each illustrating
different aspects that can be embodied systems, methods,
and computer executable instructions stored on computer
readable media according to the following claims. By neces-
sity, not every example can illustrate every aspect, and the
examples do not illustrate exclusive compositions of such
aspects. Instead, aspects illustrated and described with
respect to one figure or example can be used or combined
with aspects illustrated and described with respect to other
figures. As such, a person of ordinary skill would understand
from these disclosures that the above disclosure is not
limiting as to constituency of embodiments according to the
claims, and rather the scope of the claims define the breadth
and scope of inventive embodiments herein. The summary
and abstract sections may set forth one or more but not all
exemplary embodiments and aspects of the invention within
the scope of the claims.

What is claimed is:

1. A rendering method for rendering a sequence of frames,
the method comprising:

Jul. 22, 2021

maintaining an indication of lighting conditions on one or
more objects across multiple frames of the sequence of
frames, wherein the maintaining comprises:
selecting only a portion of the indication of lighting
conditions, and
updating existing values for the selected portion of the
indication of lighting conditions; and
rendering the frames of the sequence of frames, wherein
said rendering comprises sampling the maintained indi-
cation of lighting conditions.

2. The method of claim 1, wherein said updating existing
values for the selected portion of the indication of lighting
conditions comprises updating existing values for the
selected portion of the indication of lighting condition in
dependence on dynamic conditions.

3. The method of claim 2, wherein said updating existing
values for the selected portion of the indication of lighting
conditions comprises updating the existing values for the
selected elements of the indication of lighting conditions in
dependence on changes in one or more of viewpoint, light-
ing conditions and geometry.

4. The method of claim 1, where the maintaining further
comprises tracing rays from locations corresponding to the
selected portion of the indication of lighting conditions.

5. The method of claim 4, wherein the updating existing
values for the selected portion of the indication of lighting
conditions comprises performing a weighted combination of
the results of rays traced with existing values for the
elements to which the rays pertain.

6. The method of claim 1, wherein said maintaining the
indication of lighting conditions is performed concurrently
with said rendering the frames.

7. The method of claim 1, wherein said maintaining the
indication of lighting conditions is performed asynchro-
nously with said rendering the frames.

8. The method of claim 1, wherein said existing values are
values for the samples from a previous frame in the sequence
of frames.

9. The method of claim 1, wherein said indication of
lighting conditions comprises a texture describing light
conditions on one or more objects to which that texture
maps.

10. The method of claim 9, wherein said rendering the
frames comprises:

determining, for each frame of a sequence of frames,

visible surfaces for pixels in the frame, from a respec-
tive viewpoint; and

shading the pixels, the shading for at least some of the

pixels comprising said sampling the maintained tex-
ture, wherein the texture is mappable to a surface
visible at one or more of the pixels.

11. The method of claim 10, wherein the determining
comprises rasterizing a set of geometry based on the respec-
tive viewpoint for the frame, and the maintaining comprises,
concurrent with the rasterizing, performing a surface-spe-
cific lighting process comprising:

emitting rays from distributed points on a surface of an

object in a 3-D scene,

traversing the emitted rays to identify respective intersec-

tions between the rays and objects in the 3-D scene,
shading the intersections between the rays and respective
objects that were intersected, the shading comprising
determining an effect on one or more of the distributed
points on the surface of the object and updating a

US 2021/0225068 Al

non-transitory memory storing current lighting condi-
tion data for the distributed points on the surface of the
object;

wherein the rasterizing comprises accessing the current
lighting condition data for one or more of the distrib-
uted points, in response to determining, during the
rasterizing, that those one or more distributed points are
visible in a frame of the sequence of frames.

12. The method of claim 9, wherein the maintaining of the
texture comprises controlling usage of a processing engine
to maintain a pre-determined set of light maps in a non-
transitory memory, wherein different light maps of the set
are associated with different objects in a 3-D scene, data in
the light maps persisting in the non-transitory memory
across the multiple frames in the sequence of frames.

13. The method of claim 1, further comprising storing the
indication of lighting conditions in memory and providing
read access to the indication of lighting conditions in the
memory, by said process of rendering the frames of the
sequence of frames, while the maintaining is being per-
formed.

14. The method of claim 5, wherein said performing a
weighted combination comprises either weighting the
results more heavily, relative to the existing data, or invali-
dating the existing data, in response to a change in geometry
in the scene across the frames.

15. The method of claim 1, wherein the selection of the
portion of the indication of lighting conditions is made by
prioritizing portions of the indication of lighting conditions
based on a likelihood that those portions map to locations on
a surface that will be visible at one or more pixels in a frame
of the sequence of frames.

16. The method of claim 1, wherein the indication of
lighting conditions is updatable while it also is readable.

17. The method of claim 9, wherein making the selection
of a portion of the indication of lighting conditions com-
prises setting a sampling density for the texture, based on a
level of detail indicator, generated during rasterization appli-
cable to that surface.

18. Apparatus for rendering a sequence of frames, the
apparatus comprising:

a maintenance subsystem configured to maintain an indi-
cation of lighting conditions on one or more objects
across multiple frames of the sequence of frames,
wherein the maintenance subsystem is configured to
maintain the indication of lighting conditions by:
selecting only a portion of the indication of lighting

conditions; and
updating existing values for the selected portion of the
indication of lighting conditions; and

Jul. 22, 2021

rendering logic configured to render the frames of the
sequence of frames, wherein said rendering comprises
sampling the maintained indication of lighting condi-
tions.

19. The apparatus of claim 18, wherein the rendering logic

comprises:

a set of programmable computation units;

a rasterization subsystem configured to receive a stream
of geometry elements, for each of the frames in the
sequence of frames, and determine a respective visible
geometry element for each pixel in each frame in the
sequence of frames, wherein the set of programmable
computation units is configurable to execute rasteriza-
tion shading code for the visible geometry elements,
the executing rasterization shading code capable of
outputting texture sample requests;

a texture sampling subsystem coupled to receive texture
sample requests and to return texture data for each
texture sample request based on current texture data
stored in a memory, wherein a texture stored in the
texture memory is mappable to a surface of a geometry
element; and

a ray tracing subsystem configured to traverse rays
through an acceleration structure to identify respective
portions of geometry elements to be tested for inter-
section with the rays, wherein the set of programmable
computation units are further configurable to execute
ray shading code for intersections determined between
rays and geometry elements.

20. A non-transitory computer readable medium having
stored thereon computer readable code in a hardware
description language that, when processed, enables fabrica-
tion of an apparatus for rendering a sequence of frames, the
apparatus comprising:

a maintenance subsystem configured to maintain an indi-
cation of lighting conditions on one or more objects
across multiple frames of the sequence of frames,
wherein the maintenance subsystem is configured to
maintain the indication of lighting conditions by:
selecting only a portion of the indication of lighting

conditions to be updated; and
updating existing values for the selected portion of the
indication of lighting conditions; and

rendering logic configured to render the frames of the
sequence of frames, wherein said rendering comprises
sampling the maintained indication of lighting condi-
tions.

