
US 2005.0076195A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0076195A1

Fuller et al. (43) Pub. Date: Apr. 7, 2005

(54) TESTING DISTRIBUTED SERVICES BY Publication Classification
USING MULTIPLE BOOTS TO TIMESHARE
A SINGLE COMPUTER (51) Int. Cl." ... G06F 15/177

(52) U.S. Cl. .. 713/1
(75) Inventors: Billy J. Fuller, Woodinville, WA (US);

Samuel R. Devasahayam, Kirkland, (57) ABSTRACT
WA (US) An improved Scalability testing architecture for distributed

applications allows testing of Scalability with respect to a
Correspondence Address: given number of computers using a test network having only
LEYDIG, VOIT & MAYER, LTD. a Small fraction of that number of computers. Each client
TWO PRUDENTIAL PLAZA, SUITE 4900 computer in the test network hosts multiple bootable Sys
180 NORTH STETSON tems in bootable partitions which timeshare the host
CHICAGO, IL 60601-6780 (US) machine on a mutually exclusive basis. A launcher in each

bootable System Verifies Scheduling information for an
(73) Assignee: Microsoft Corporation, Redmond, WA instance of an application under test residing in the same

(US) partition and either permits or prevents continued operation
of the instance based on the Scheduling information. If

(21) Appl. No.: 10/680,651 continued operation is to be prevented, the launcher triggers
a boot next routine to exit and cede control of the computer

(22) Filed: Oct. 7, 2003 to the next bootable System on the computer.

701

MACNE 1 MACHINE 2 || BOOTABLE SYSTEM
B OOTABLE SYSTEM TEST TEST BOOTABLE SYSTEM 7

Domain
Controller
- 709

c

TEST SERVER

s

Patent Application Publication Apr. 7, 2005 Sheet 1 of 10 US 2005/0076195A1

20

SYSTEMMEMORY - 22 PERSONAL COMPUTER D
Monitor

(ROM) 21 48
24

47
BIOS

26

(RAM) - PROCESSING WoO
25 UNIT ADAPTER

OPERATING 53
SYSTEM

NETWORK APPLICATION
INTERFACE PROGRAM

OTHER

PROG HARD Disk Magdisk optical disk MODULES
ULES 37 Rive DRIVE DRM ET

INTERFACE INTERFACE iNTERFACE
PROGRAM
DATA

-- 38 hard disk -
drive Magnetic disk Optical drive

drive
MN Mx.

28

4C 52

OTHER
PROGRAM
MODULES

OPERATING APPLICATION
SYSTEM PROGRAMS

35 36 37 38

-

-rrrrrrr.P re s
REMOTE COMPUTER

F.G. 1

APPLICAON
36 PROGRAMS

L

US 2005/0076195 A1 Patent Application Publication Apr. 7, 2005 Sheet 2 of 10

MACHINE 7 MACHINE 8 MACHINE 9 MACHINE 10 MACHINE 11 MACHINE 12

FIGURE 2

Patent Application Publication Apr. 7, 2005 Sheet 3 of 10 US 2005/0076195A1

BOOTABLE SYSTEM 1A

BOOTABLE SYSTEM 1B

BOOTABLE SYSTEM 1C BOOTABLE SYSTEM2C
TEST TEST

BOOTABLE SYSTEM 1D w 1 w 2 BOOTABLE SYSTEM 2D

TEST
MACHINE 3

FIGURE 3A

Patent Application Publication Apr. 7, 2005 Sheet 4 of 10 US 2005/0076195A1

are as
see e.
coe E.

TEST ES5
MACHINE 3

TEST SERVER

FIGURE 3B

Patent Application Publication Apr. 7, 2005 Sheet 5 of 10 US 2005/0076195A1

BOOTABLE SYSTEM 4O1

LAUNCHER 4O3

SCHEDULER 405

SOFTWARE UNDER TEST
4O7

SERVER INFORMATION 4O9

FGURE 4

US 2005/0076195A1 Patent Application Publication Apr. 7, 2005 Sheet 6 of 10

513 511

MACHINE 1\ MACHINE 2\ MACHINE 3 MACHINE 4/MACHINE 5 /MACHINE 6

Domain
Controller

MACHINE 7 MACHINE 8 MACHINE 9 MACHINE 10 MACHINE 11 MACHINE 12

525 523 521 519 51% 516
FIGURE 5

Patent Application Publication Apr. 7, 2005 Sheet 7 of 10 US 2005/0076195A1

Launcher and
instance of the
software under
test begin to run

603
Launcher

aCCeSSeS Server
and retrieves
command file

605
Launcher runs
command file or
performs tasks
specified therein 609

607 \ / 611
Launcher 1
2CCCSSCS scurrenn YES EIS

scheduler to Q partition --> state for
ascertain scheduled to be predetermined

613 NO 615

Launcher runs 1
boot next routine

and exits

FIGURE 6

Patent Application Publication Apr. 7, 2005 Sheet 8 of 10 US 2005/0076195A1

BOOTABLE SYSTEM 1

BOOTABLE SYSTEM 2

BOOTABLE SYSTEM3

BOOTABLE SYSTEM y 1 MACNE2 || BOOTABLE SYSTEM8

Domain
Controller

TEST SERVER

TEST BC SYSTEM 11 CASE

MACHINE bootable system 12

FIGURE 7

US 2005/0076195A1 Patent Application Publication Apr. 7, 2005 Sheet 9 of 10

E

-801

E

MACHINE
5

MACHIN
11

FIGURE 8B

US 2005/0076195A1

MACHIN
6

Patent Application Publication Apr. 7, 2005 Sheet 10 of 10

FIGURE 8C

Domain

FIGURE 8)

US 2005/0076195 A1

TESTING DSTRIBUTED SERVICES BY USING
MULTIPLE BOOTS TO TIMESHARE A SINGLE

COMPUTER

FIELD OF THE INVENTION

0001. This invention relates generally to software testing
and, more particularly, relates to a System and method for
testing a distributed Service using multiple boots timesharing
individual computers in a test network.

BACKGROUND

0002 Businesses and other enterprises and entities are
increasingly utilizing computer networks to manage their
busineSS and other activities. Such networks provide numer
ous benefits including extended access to localized
resources, rapid sharing of information and So forth. Thus, a
number of applications and Services are now designed to run
over or utilize network connections as part of their normal
function. AS the networks used by businesses and others
become larger and more highly populated, the issue of
Scalability must be considered. For example, a distributed
System that works well with 10 computers may fail cata
strophically when used with 1000 computers. Such failures
are difficult to predict generally, and thus Scalability testing
is typically performed to Verify the proper operation of
products intended for large Scale application.

0.003 Typically, only one copy of a given application
(e.g. a client portion of a distributed Service) can be run on
each client machine, So Special techniques are typically used
to perform Scalability testing to Verify operation over a vast
network. Techniques that have been used in the past to
perform Scalability testing include (1) simply using the
System under test on the required number of machines and
observing the results, (2) simulation, (3) emulation, and (4)
alteration of the product under test to allow multiple copies
to run on a given machine. Each of these techniques,
however, has significant deficiencies.
0004. With respect to the first technique mentioned
above, the use of a collection of machines to directly test
scalability with respect to a network of the same number of
machines is not feasible for large networks. In particular,
network sizes can be So large that the cost of Securing and
Setting up the proper number of machines is prohibitive for
the tester. With respect to Simulation, this technique is also
not feasible for very large networks Since, among other
problems, the load on the System resources of the testing
machines becomes quite Severe. With respect to emulation,
typically the Software that is run during the test is an altered
form of the software for which scalability testing is desired.
Given this, Several drawbacks are apparent, including the
need to independently develop and test the new version. In
addition the test is an indirect test at best Since it does not test
the actual Software of interest.

0005 Finally, the modification of the software of interest
to allow multiple copies to run Simultaneously on a given
machine has a number of drawbacks, including Some of
those mentioned above. The use of Such modified applica
tions Still taxes the System resources as with Simulation,
requires resources for creation of the modified version, and
in addition does not provide a test of the actual product of
interest Since it tests a specialized version.

Apr. 7, 2005

0006 Thus, although scalability of Software products to
large networks is desirable and in many cases necessary,
existing methods of testing Such Scalability are unsatisfac
tory. A method of Scalability testing is needed whereby a
Software product or System can itself be tested for Scalability
without encountering the deficiencies found in prior testing
Systems and techniques.

BRIEF SUMMARY OF THE INVENTION

0007 Embodiments of the invention provide a novel
Scalability testing System and method that allows testing of
application or System Scalability to large networks without
Simulation or emulation of the application under test, and
without creating a test network of the same size as the target
network. In particular, embodiments of the invention
employ multiple timeshared bootable partitions on each of
one or more computers in a test network to test the Scal
ability of a Software System to a much greater number of
computers, e.g. the number of computers in the target
network. Each bootable partition comprises a copy of the
application under test, and in addition may comprise, in
embodiments of the invention, a launcher, a Scheduler, and
information regarding a Server for retrieving a command file
from the server.

0008. When a particular partition boots, the launcher runs
and initially copies the command file from the Server, and
runs the command file. Subsequently the launcher calls a
Scheduler to determine if the instance of the Software under
test in the particular bootable System corresponding to the
partition should be running. If the instance should be run
ning, then the launcher lies dormant for a predetermined
wait period Such as 1 minute, and then repeats the proceSS
beginning with the copying of the command file. If the
instance should not be running, then the launcher runs a boot
next routine to shut down the current partition and boot the
next partition on the computer. When the next bootable
System boots, it follows the same process described above.
In this way, the bootable Systems on each computer time
share the computer, running on a mutually exclusive basis.
0009. It will be appreciated that the system described
herein allows an application or System to be tested for
Scalability to a particular number of computers using a test
facility that utilizes only a fraction of that number of
computers. For example, if there are four bootable partitions
per computer, then a test network of 1000 computers can be
used to test scalability up to a target network size of 4000
computers. In addition, Since only a fraction of the total
number of bootable Systems will be online at a given time,
any probable unintended dependencies between machines in
the target network may be more easily identified in the test
network and eliminated during testing. Furthermore, no
Specialized versions of the Software under test are needed,
Since the actual Software of interest is run in each partition.
0010 Additional features and advantages of the inven
tion will be made apparent from the following detailed
description of illustrative embodiments which proceeds with
reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 While the appended claims set forth the features of
the present invention with particularity, the invention,
together with its objects and advantages, may be best

US 2005/0076195 A1

understood from the following detailed description taken in
conjunction with the accompanying drawings of which:
0012 FIG. 1 is a block diagram generally illustrating an
exemplary device architecture in which embodiments of the
present invention may be implemented;
0013 FIG. 2 is a schematic diagram of a target network
environment within which a distributed service may be
deployed;

0.014 FIG. 3A is a schematic diagram of an example test
network architecture corresponding to the target network
architecture of FIG. 2 and others within an embodiment of
the invention;
0.015 FIG. 3B is a schematic diagram of an alternative
test network architecture corresponding to the target net
work architecture of FIG. 2 and others within an embodi
ment of the invention;
0016 FIG. 4 is a schematic diagram of a bootable system
for use in a partition of a test machine in a test network
according to an embodiment of the invention;
0017 FIG. 5 is schematic diagram of a target network
environment within which a distributed data replication
Service may be deployed;
0.018 FIG. 6 is a flow chart showing steps taken in
accordance with an embodiment of the invention for running
a bootable System on a test machine in a test network;
0.019 FIG. 7 is a schematic diagram of an example test
network architecture corresponding to the target network
architecture of FIG. 5 and others within an embodiment of
the invention;
0020 FIG. 8A is a schematic illustration of a virtual
network environment corresponding to the test network of
FIG. 7, wherein the test network and corresponding virtual
environment are in a first State;
0021 FIG. 8B is a schematic illustration of a virtual
network environment corresponding to the test network of
FIG. 7, wherein the test network and corresponding virtual
environment are in a Second State;

0022 FIG. 8C is a schematic illustration of a virtual
network environment corresponding to the test network of
FIG. 7, wherein the test network and corresponding virtual
environment are in a third State; and

0023 FIG. 8D is a schematic illustration of a virtual
network environment corresponding to the test network of
FIG. 7, wherein the test network and corresponding virtual
environment are in a fourth State.

DETAILED DESCRIPTION

0024 Turning to the drawings, wherein like reference
numerals refer to like elements, the invention is illustrated as
being implemented in a Suitable computing environment.
Although not required, the invention will be described in the
general context of computer-executable instructions, Such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data Structures, etc. that perform particular tasks or
implement particular abstract data types. Moreover, those
skilled in the art will appreciate that the invention may be
practiced with other computer System configurations,

Apr. 7, 2005

including hand-held devices, multi-processor Systems,
microprocessor-based or programmable consumer electron
ics, network PCs, minicomputers, mainframe computers,
and the like. The invention may be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com
munications network. In a distributed computing environ
ment, program modules may be located in both local and
remote memory Storage devices.

0025. This description begins with a description of a
general-purpose computing device that may be used in an
exemplary System for implementing the invention, after
which the invention will be described in greater detail with
reference to the remaining figures. Turning now to FIG. 1,
a general purpose computing device is shown in the form of
a conventional computer 20, including a processing unit 21,
a System memory 22, and a System buS 23 that couples
various System components including the System memory to
the processing unit 21. The System buS 23 comprises one or
more physical buSSes of any of Several types of bus struc
tures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The System memory includes read only
memory (ROM) 24 and random access memory (RAM) 25.
Abasic input/output system (BIOS) 26, containing the basic
routines that help to transfer information between elements
within the computer 20, Such as during Start-up, is Stored in
ROM 24. The computer 20 further includes a hard disk drive
27 for reading from and writing to a hard disk 60, a magnetic
disk drive 28 for reading from or writing to a removable
magnetic disk 29, and an optical disk drive 30 for reading
from or writing to a removable optical disk 31 such as a CD
ROM or other optical media.

0026. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile Storage of computer readable instruc
tions, data Structures, program modules and other data for
the computer 20. Although the exemplary environment
described herein employs a hard disk 60, a removable
magnetic disk 29, and a removable optical disk 31, it will be
appreciated by those skilled in the art that other types of
computer readable media which can Store data that is
accessible by a computer, Such as magnetic cassettes, flash
memory cards, digital Video disks, Bernoulli cartridges,
random acceSS memories, read only memories, Storage area
networks, and the like may also be used in the exemplary
operating environment.

0027. A number of program modules may be stored on
the hard disk 60, magnetic disk 29, optical disk 31, ROM 24
or RAM 25, including an operating system 35, one or more
applications programs 36, other program modules 37, and
program data 38. In an embodiment of the invention, the
hard disk 60 comprises multiple bootable partitions, each of
which contains a bootable System, and each bootable System
may comprise an operating System and other elements as
described above.

0028. A user may enter commands and information into
the computer 20 through input devices such as a keyboard 40
and a pointing device 42. Other input devices (not shown)

US 2005/0076195 A1

may include a microphone, joystick, game pad, Satellite
dish, Scanner, or the like. These and other input devices are
often connected to the processing unit 21 through a Serial
port interface 46 that is coupled to the System bus, but may
be connected by other interfaces, Such as a parallel port,
game port or a universal Serial bus (USB) or a network
interface card. A monitor 47 or other type of display device
is also connected to the System buS 23 via an interface, Such
as a video adapter 48. In addition to the monitor, computers
may include other peripheral output devices, not shown,
Such as Speakers and printers.
0029. The computer 20 operates in a networked environ
ment using logical connections to one or more remote
computers, Such as a remote computer 49. The remote
computer 49 may be a domain controller, Server, a router, a
network PC, a personal computer, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the computer 20,
although only a memory Storage device 50 has been illus
trated in FIG. 1. The logical connections depicted in FIG.
1 include a local area network (LAN) 51 and a wide area
network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
Works, intranets and the Internet.
0.030. When used in a LAN networking environment, the
computer 20 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, the computer 20 typically includes
a modem 54 or other means for establishing communica
tions over the WAN 52. The modem 54, which may be
internal or external, is connected to the System buS 23 via the
Serial port interface 46. Program modules depicted relative
to the computer 20, or portions thereof, may be stored in the
remote memory Storage device if Such is present. It will be
appreciated that the network connections shown are exem
plary and other means of establishing a communications link
between the computers may be used.
0.031 Herein, the invention will generally be described
with reference to acts and Symbolic representations of
operations that are performed by one or more computers,
unless indicated otherwise. AS Such, it will be understood
that Such acts and operations, which are at times referred to
as being computer-executed, include the manipulation by
the processing unit of the computer of electrical signals
representing data in a structured form. This manipulation
transforms the data or maintains it at locations in the
memory System of the computer, which reconfigures or
otherwise alters the operation of the computer in a manner
well understood by those skilled in the art. The data struc
tures where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described
in the foregoing context, it is not meant to be limiting as
those of skill in the art will appreciate that various of the acts
and operations described hereinafter may also be imple
mented in hardware. In the following discussion, computing
devices Such as clients, domain controllers, Servers, and So
on may be of the architecture as described above with
respect to FIG. 1 regarding computer 20 and/or remote
computer 49, or may alternatively have any other type of
architecture.

0.032 FIG. 2 illustrates in simplified schematic form an
example computer network environment 201 within which a

Apr. 7, 2005

distributed application, Service, or System may be imple
mented. AS used herein, a distributed application, Service, or
System is any Software, Similar components or instances of
which run on a plurality of computing which components or
instances exploit the network connections of their respective
machines to Send and/or receive information.

0033. In the diagram of FIG.2, each of twelve computers
203, 205, 207, 209, 211,213, 215, 217, 219, 221, 223, and
225 is connected to each other of the computers 203, 205,
207, 209, 211, 213, 215, 217, 219, 221, 223, and 225 via
network 227. The aforementioned computers are labeled as
Machine 1 through Machine 12 for convenience of reference
hereinafter. It will be appreciated that the number of
machines shown in FIG. 2 is much less than the number of
machines that would typically be deployed in a large net
work for which Scalability is a concern, however, the num
ber of computers in the figure has been reduced for ease of
illustration and understanding. Thus, FIG. 2 is s simplified
diagram of a target network.

0034) Typically, in order to test the scalability of a
Software system to a network such as illustrated in FIG. 2
without Simulation, emulation, or modification of the Soft
ware of interest, the Software System would need to actually
be deployed in a matching network, i.e. a test network of
twelve machines for the illustrated example. After a suffi
cient period of Successful deployment in Such conditions,
scalability to networks of that same size can be inferred with
reasonable confidence. However, as noted above, typical
Systems wherein Scalability is a concern comprise thousands
of computers, and the cost of acquiring, Setting up, running,
and maintaining a network of Such a large number of
machines may be prohibitive for the tester, who is typically
a software developer with limited available hardware.
0035. The system according to the exemplary embodi
ments of the invention described herein allows for Scalabil
ity testing for a target network having a given number of
machines using a test network having just a Small fraction of
that number of machines. The architecture of one Such
System according to an embodiment of the invention is
illustrated in FIG. 3A. In particular, the illustrated architec
ture 301 employs three machines 303,305, and 307, referred
to as Test Machine 1, Test Machine 2, and Test Machine 3,
to test Scalability of a Software System to a target network of
twelve machines, such as the network shown in FIG. 2.
Each test machine 303, 305, 307 comprises four bootable
partitions, each of which comprises a bootable System to be
discussed in greater detail hereinafter.

0036) These bootable partitions are illustrated as Boot
able System 1A (311), Bootable System 1B (313), Bootable
System 1C (315), and Bootable System 1 D (317) with
respect to Test Machine 1 (303), Bootable System 2A(319),
Bootable System 2B (321), Bootable System 2C(323), and
Bootable System 2D (325) with respect to Test Machine 2
(305), and Bootable System 3A (327), Bootable System 3B
(3129), Bootable System 3C (331), and Bootable System 3D
(333) with respect to Test Machine 3 (307). Each of the
bootable systems 311, 313, 315, 317, 319, 321, 323,325,
327, 329, 331, and 333 runs on its respective test machine
303, 305, 307 on a time shared basis with each other
bootable System on the same test machine. In this manner,
three bootable systems are running in the test network 301
at any given time.

US 2005/0076195 A1

0037. An alternative architecture to the test network 301
is illustrated in FIG. 3B. The test network 311 of FIG. 3B
comprises Test Machine 1 (313), Test Machine 2 (315), and
Test Machine 3 (317) as in FIG.3A. Although not illustrated
for clarity, each test machine 313, 315, 317 similarly com
prises a plurality of bootable Systems. In addition, the test
network 311 comprises a test server 319 that does not
represent any portion of the actual target System. Rather, the
test Server 319 is used to aid in the test by logging Status or
other information and/or by providing Stimulus or test case
information to the test machines 313, 315, 317. The role of
the test server 319 according to an embodiment of the
invention will be described in greater detail hereinafter by
reference to other figures.
0.038. As described above, each machine in a test network
comprises a plurality of bootable systems. FIG. 4 schemati
cally illustrates a bootable system 401 according to an
embodiment of the invention. In particular, the illustrated
bootable system 401 comprises a launcher 403, a scheduler
405, the Software under test 407, and server information 409.
In brief overview, the launcher 403 and the Software under
test 407 both run when the particular partition boots. The
launcher 403 accesses the scheduler 405, which may be a
module containing instructions for returning Scheduling
information and/or a database of Scheduling information that
can be accessed and checked, to determine whether or not
the relevant instance 407 of the Software under test is
currently scheduled to run. If the relevant instance 407 of the
Software under test is currently scheduled to run, the
launcher 403 goes dormant for a predetermined period of
time, leaving the relevant instance 407 of the software under
test running, and then reactivates and again accesses the
scheduler 405. If at any point the check of the scheduler 405
reveals that the relevant instance 407 of the Software under
test is not currently scheduled to run, then the launcher 407
runs a boot next routine. The effect of running the boot next
routine is to shut down the current partition and boot up
another partition on the Same machine. AS will be described
later, the launcher 407 may perform a number of other tasks
as well while it is active.

0039. The flow chart of FIG. 6 illustrates the operation of
each bootable System on a machine in greater detail. The
environment within which the process shown in FIG. 6
operates is one in which the bootable System shares a
particular machine with one or more other bootable Systems
that run on a mutually exclusive basis in time. An example
of an appropriate bootable system is shown in FIG. 4. The
particular machine hosting the bootable Systems may be
linked over a network to one or more other similarly
configured machines, e.g. machines that also host a number
of mutually exclusive bootable systems that time share the
machine.

0040 Turning now to the illustrated process, at step 601
the launcher begins to run as does an instance of the Software
System under test. The running of these components may be
due either to a reboot of the host machine from a prior
partition on the same machine pursuant, e.g., to a boot next
routine, or may be due to a boot as the host machine is
initially powered up. From this point forward the instance of
the Software System under test continues to run until it is shut
down or until the partition is shut down in favor of another
partition as will be discussed. At step 603, the launcher
accesses a Server and retrieves a command file from the

Apr. 7, 2005

server, such as a file \\Server\id.command. At step 605, the
launcher runs the command file if the file is executable, or
otherwise performs tasks Specified therein. Examples of
tasks that may be mandated by the command file include
Sending diagnostic or other information to the Server or to
another Server or entity. To preserve the integrity of the test,
the tasks mandated by the command file preferably, although
not necessarily, occur independently of, and do not signifi
cantly impact or affect the operation of any instance of, the
Software under test.

0041 At step 607, the launcher accesses the scheduler to
ascertain Scheduling information. Subsequently, at Step 609,
the launcher, using the retrieved information, determines
whether the current partition is Scheduled to be running.
Note that the determination that a partition, and hence its
instance of the Software System under test, should or should
not "currently be running comprises, in an embodiment of
the invention, an evaluation of whether the instance or
partition is Scheduled to run in a short while if not imme
diately. The period of time that comprises a short while in
this context is not critical but may be on the order of a
minute. The interaction between the launcher and the Sched
uler may be the retrieval of a schedule or the retrieval of
Specific information explicitly indicting whether the current
partition should be running. In an embodiment of the inven
tion, the launcher itself incorporates logic or Scheduling
information sufficient to independently determine whether
the current partition should be running, and thus step 607 is
omitted in this embodiment of the invention.

0042. If at step 609 it is determined that the current
partition should in fact be running, then the launcher enters
a dormant wait State at Step 611 for a predetermined period
of time. In an embodiment of the invention, the wait state
persists for about one minute, although the precise length of
time is not important. Upon the expiration of the predeter
mined period, the process returns from step 611 to step 603
and the Steps that logically follow.
0043) If, on the other hand, it is determined at step 609
that the current partition should not be running, then the
process moves to Step 613, whereat the launcher runs a boot
next routine and exits. Pursuant to the boot next routine,
another partition on the same machine is booted up. The way
in which the next partition to boot is selected may be
predetermined or may be indeterminate. An example of a
predetermined mechanism is a Schedule, ordered list, or a
Simple reference in each partition to a Selected one of the
other partitions on the same machine. An example of an
indeterminate mechanism is a routine that randomly or
pseudo randomly Selects from among the other partitions on
the same machine. The boot next routine may be a System
function that the launcher accesses via a System command or
otherwise. Subsequent to Step 613 the process terminates at
step 615 with respect to the current partition and begins with
respect to another partition. It will be appreciated that the
process described is cyclical, and that the cycle will be
interrupted at the tester's discretion or otherwise to end the
teSt.

0044) In an embodiment of the invention, the scheduling
information retrieved from the scheduler by the launcher is
Sufficient So that the launcher does not need to again access
the Scheduler during the current Session. In that case, Step
607 would be omitted in future processing during a session
once it has been executed a first time.

US 2005/0076195 A1

0.045 Having described systems and functionalities
according to a general embodiment of the invention, a
specific embodiment will hereinafter be described for testing
a distributed System that replicates data over a network. One
example of an application that establishes a distributed
System of data replication is the Active Directory(E) product
distributed by Microsoft Corporation of Redmond, Wash.
Systems such as this allow for information to be replicated
and made available to other machines over the network. An
example of a typical usage environment is a corporation or
other entity that maintains a number of Sites at which a user
may login. In order for the user information (e.g. user name
and password) to be available to each site where login may
occur, that information is typically replicated from an initial
Site to a central repository, Such as a domain controller, and
from there the information is replicated to all other machines
asSociated with the domain controller.

0046) This type of network may be quite large, with
thousands of clients associated with a domain controller.
Thus, a company that distributes Such an application will
typically desire to test the application for a large number of
machines So that any guarantees to clients may be based on
experience rather than theory or conjecture. Although the
Figures illustrate a fairly small number of machines for the
Sake of clarity and Simplicity of understanding, it will be
appreciated that a network of interest for implementing
distributed replication Software will generally comprise a
much greater number of machines.
0047. An exemplary replication environment is illus
trated in FIG. 5. In particular, twelve computers 503, 505,
507, 509, 511, 513, 515, 517,519, 521, 523, and 525
(labeled as Machines 1 through 12) are shown connected via
network connections to a domain controller 527. Machines
1-12 and their respective network connections constitute a
target network. For purposes of the following discussion, a
client portion of a data replication System Such as Active
Directory(R) will be referred to as the client replication
application. In a distributed replication System, each of the
computers 503,505,507,509, 511,513,515,517,519,521,
523, 525 has an instance of the client replication application
installed and running thereon.
0048. A testing architecture 701 (test network) according
to an embodiment of the invention for testing the System
(target network) illustrated in FIG. 5 is shown in FIG. 7. In
particular, as with FIG. 3, the architecture 701 includes a
lesser number of client machines than would be used in the
target environment (FIG. 5). However, each of these test
machines, Test Machine 1 (703), Test Machine 2 (705), and
Test Machine 3 (707) comprises multiple bootable partitions
each having a bootable System (shown as Bootable Systems
1-12). The bootable systems may be as described with
respect to FIG. 4, i.e. comprising a launcher, Scheduler,
Server information, and an instance of the Software under
test, which, with respect to FIG. 7, comprises an instance of
the client replication application. The bootable Systems in
this System can function in the same manner described
above by way of FIG. 6. The architecture 701 of FIG. 7 also
comprises a domain controller 709 and a test server 711,
both of which are connected via network connections to
each of Test Machine 1 (703), Test Machine 2 (705), and
Test Machine 3 (707).
0049. When each instance of the client replication appli
cation is allowed to continue running, i.e. when the launcher

Apr. 7, 2005

in the same partition enters the wait State rather than
triggering the boot next routine, the instance of the client
replication application replicates data to and/or from the
domain controller 709. In particular, the instance of the
client replication application retrieves any updated or new
information (i.e. information that changed or became avail
able since the last replication) from the domain controller
709 and sends any updated or new information that it has to
the domain controller. In addition, a command file, if any, is
retrieved from the test server 711 and is executed or obeyed.
Note that each bootable system may be associated with a
different command file on the server 711, or instead each
bootable System may retrieve the same command file.

0050 Since each test machine 703,707, 709 hosts four
mutually exclusive partitions, about a quarter of the
instances of the client replication application that reside in
bootable Systems are active at any given time. This corre
sponds to a virtual network having twelve computers run
ning instances of the client replication application, in which
the client replication application instances on three of the
computers are active at any given time. Thus, the System
tested by the test network 701 of FIG. 7 corresponds
virtually to the system shown in FIG. 5, where each of
machines 1-12 corresponds to one bootable System in the
test network 701.

0051. The state of the virtual system as the test proceeds
is shown in FIGS. 8A-8D. In particular, machines hosting
active instances of the client replication application have
highlighted network connections to the domain controller
800. It can be seen that in each cycle 801, 803, 805, 807,
three instances are active. Thus, after the four cycles 801,
803, 805, 807 shown, each instance has replicated once.
Although the cycles shown in FIGS. 8A-8D are based on an
assumption that the replication time for each instance is
approximately the same, Such need not be the case. In
general, it is preferable to let the test proceed through a large
number of cycles (such as, e.g., 10 to 30 cycles) So that at
the end of the test, although Some instances may have
replicated more than others, each has replicated enough to
demonstrate the proper function of the System as a whole.

0.052 As can be seen from FIGS. 8A-8D, the virtual
System tested by the test network corresponds to System
within which only a fraction (e.g. the quotient of the number
of client computers in the target network and the number of
test machines in the test network) is active at any given time.
Thus, if there are any unintended interdependencies between
computers in the target network, these will be discovered in
the test network when one of the relevant bootable systems
is inactive when another bootable System is attempting to
use or connect to that System. In Such a case, the test may
fail, as may be reflected in real time diagnostic data Sent to
a test Server or otherwise.

0053 With respect to the schedule for each instance of
the client replication application, any Schedule may be used,
but in an embodiment of the invention each instance is
Scheduled to run for a time that is approximately twice the
amount of time that is expected to be needed to complete
replication for that instance. Thus, where each test machine
hosts X bootable partitions, and the time for replication for
each instance is expected to uniformly be approximately T,
then the time required for all instances to complete replica

US 2005/0076195 A1

tion at least once is approximately XT. The time required to
allow n replications per instance would thus be approxi
mately nxT.
0054. It will be appreciated that an improved system and
method for scalability testing have been described. In view
of the many possible embodiments to which the principles of
this invention may be applied, it should be recognized that
the embodiments described herein with respect to the draw
ing figures are meant to be illustrative only and should not
be taken as limiting the Scope of invention. For example,
those of Skill in the art will recognize that Some elements of
the illustrated embodiments shown in software may be
implemented in hardware and Vice versa or that the illus
trated embodiments can be modified in arrangement and
detail without departing from the spirit of the invention. For
example, although illustrations herein show relatively Small
target networks and test networks, the invention applies
equally to much larger or much Smaller target networks
and/or test networks. Moreover, although certain distributed
replication applications have been discussed with Specificity,
it will be appreciated that the invention applies as well to the
Scalability testing of any other distributed application, espe
cially those where network activity is only intermittently
required. In addition, there is no requirement that each test
machine host the same number of bootable Systems as
another test machine, or that the booting Schedule treat all
bootable Systems equivalently. Therefore, the invention as
described herein contemplates all Such embodiments as may
come within the scope of the following claims and equiva
lents thereof.

We claim:
1. A test computer network for testing Scalability of a

distributed application to a target computer network, the test
computer network comprising:

at least one test computer having thereon a plurality of
bootable partitions for controlling the at least one test
computer on a mutually exclusive time-shared basis,
and

a bootable system within each of the plurality of a
bootable partitions, each bootable System comprising:
an instance of the distributed application; and
a launcher for determining, when running, whether the

bootable System is Scheduled to be running, and for
causing another bootable System on the same test
computer to boot instead if the bootable system is not
Scheduled to be running.

2. The test network according to claim 1, wherein each
bootable system further comprises a scheduler usable by the
launcher for determining whether the bootable system is
Scheduled to be running.

3. The test network according to claim 1, wherein each
bootable System further comprises Server information usable
by the launcher for retrieving a command file from a
command Server.

4. The test network according to claim 3, wherein the
command file is usable by the launcher to cause diagnostic
data to be sent to a diagnostic Server.

5. The test network according to claim 4, wherein the
diagnostic Server and the command Server reside on a Single
computing device.

Apr. 7, 2005

6. The test network according to claim 1, wherein the
instance of the distributed application comprises an instance
of a data replication application, the test network further
comprising a controller computer Separate from the at least
one test computer for exchanging data with the instance of
the data replication application.

7. The test network according to claim 1, wherein each of
the at least one test computerS hosts the same number of
bootable Systems as each other of the at least one test
computers.

8. A method of testing a distributed application for use in
a target computer network using a test network having a
plurality of test computers, each test computer having a
plurality of bootable partitions, each bootable partition hav
ing therein a bootable System comprising an instance of the
distributed application, the method comprising:

booting a Selected one of the bootable partitions on a test
computer,

running the instance of the distributed application of the
bootable system associated with the selected bootable
partition;

determining whether the instance of the distributed appli
cation of the bootable system associated with the
Selected bootable partition is currently Scheduled to
run; and

if the instance of the distributed application of the boot
able system associated with the Selected bootable par
tition is currently Scheduled to run, allowing the
instance to continue to run, and otherwise causing
execution of a boot next routine to cause the Selected
one of the bootable partitions to shut down and to cause
another bootable partition of the same test computer to
boot.

9. The method according to claim 8, wherein the step of
determining whether the instance of the distributed applica
tion of the bootable system associated with the selected
bootable partition is currently Scheduled to run comprises
accessing a Scheduler that maintains information regarding
when the instance is Scheduled to run.

10. The method according to claim 8, further comprising:
retrieving, while the Selected one of the bootable parti

tions is running, a command file from a remote location
containing instructions, and

implementing the instructions contained in the command
file.

11. The method according to claim 10, wherein the step of
implementing the instructions contained in the command file
comprises:

retrieving diagnostic information regarding the State of
the Selected one of the bootable partitions, and

causing the retrieved diagnostic information to be trans
mitted to a remote location.

12. The method according to claim 8, wherein the dis
tributed application is a distributed data replication applica
tion, and wherein the Step of allowing the instance to
continue to run compriseS eXchanging data between the
instance of the distributed application and a remote com
puter.

13. An apparatus for testing a distributed application for
use in a target computer network using a test network having

US 2005/0076195 A1

a plurality of test computers, each test computer having a
plurality of bootable partitions, each bootable partition hav
ing therein a bootable System comprising an instance of the
distributed application, the apparatus comprising:
means for booting a Selected one of the bootable partitions

on a test computer;

means for running the instance of the distributed appli
cation of the bootable system associated with the
Selected bootable partition;

means for determining whether the instance of the dis
tributed application of the bootable System asSociated
with the selected bootable partition is currently sched
uled to run; and

means for allowing the instance to continue to run if the
instance of the distributed application of the bootable
System associated with the Selected bootable partition is
currently Scheduled to run, and for otherwise causing
execution of a boot next routine to cause the Selected
one of the bootable partitions to Shut down and to cause
another bootable partition of the same test computer to
boot.

14. The apparatus according to claim 13, further com
prising:

means for retrieving, while the Selected one of the boot
able partitions is running, a command file from a
remote location containing instructions, and

means for implementing the instructions contained in the
command file.

15. The apparatus according to claim 14, wherein the
means for implementing the instructions contained in the
command file comprise:
means for retrieving diagnostic information regarding the

State of the Selected one of the bootable partitions, and
means for causing the retrieved diagnostic information to

be transmitted to a remote location.
16. The apparatus according to claim 13, wherein the

distributed application is a distributed data replication appli
cation and wherein the means for allowing the instance to
continue to run further comprises means for exchanging data
between the instance of the distributed application and a
remote computer.

17. A computer readable medium having thereon com
puter readable instructions for performing a method of
testing a distributed Software System for use in a target
computer network using a test network having a plurality of

Apr. 7, 2005

test computers, each test computer having a plurality of
bootable partitions, each bootable partition having therein a
bootable System comprising an instance of the distributed
Software System, the computer readable instructions com
prising instructions for:

booting a Selected one of the bootable partitions on a test
computer,

running the instance of the distributed Software System of
the bootable system associated with the selected boot
able partition;

determining whether the instance of the distributed soft
ware system of the bootable system associated with the
Selected bootable partition is currently Scheduled to
run; and

if the instance of the distributed Software system of the
bootable system associated with the selected bootable
partition is currently Scheduled to run, allowing the
instance to continue to run, and otherwise causing
execution of a boot next routine to cause the Selected
one of the bootable partitions to shut down and another
bootable partition of the same test computer to boot.

18. The computer readable medium according to claim
17, further comprising computer readable instructions for:

retrieving, while the Selected one of the bootable parti
tions is running, a command file from a remote location
containing instructions, and

implementing the instructions contained in the command
file.

19. The computer readable medium according to claim
18, wherein the computer readable instructions for imple
menting the instructions contained in the command file
comprise computer readable instructions for:

retrieving diagnostic information regarding the State of
the Selected one of the bootable partitions, and

causing the retrieved diagnostic information to be trans
mitted to a remote location.

20. The computer readable medium according to claim
17, wherein the distributed software system is a distributed
data replication System, and wherein the computer readable
instructions for allowing the instance to continue to run
comprise computer readable instructions for exchanging
data between the instance of the distributed software system
and a remote computer.

k k k k k

