US 20170199722A1

a2y Patent Application Publication (o) Pub. No.: US 2017/0199722 Al

a9y United States

Peters et al.

43) Pub. Date: Jul. 13, 2017

(54) ZERO-DELAY COMPRESSION FIFO
BUFFER

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Hagen W. Peters, Sunnyvale, CA (US);
Hans Eberle, Mountain View, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 14/993,879

(52) US.CL
CPC ... GOGF 5/065 (2013.01); GOGF 3/0611
(2013.01); GOGF 3/0656 (2013.01); GO6F
3/0683 (2013.01); GOG6F 2205/067 (2013.01)

(57) ABSTRACT

A compression first in, first out (cFIFO) that includes at least
two FIFOs is described. A first FIFO is used to store
instances of higher words in data entries, and a second FIFO
is used to store corresponding instances of lower words in
the data entries. If an instance of the higher word for a data
entry has a different value than an immediately preceding
stored instance of the higher word associated with at least an
immediately preceding data entry which is stored in the

22) Filed: Jan. 12, 2016 . .
(22) File a second FIFO, memory pointers are incremented so that a
Publication Classificati subsequent instance of the higher word will be stored in the
ublication €assilication second FIFO without overwriting the instance of the higher
(51) Int. CL word. Otherwise, the memory pointers are unchanged,
GO6F 5/06 (2006.01) which associates the instance of the lower word with the
GO6F 3/06 (2006.01) immediately preceding stored instance of the higher word.
cFIFO
200
MEMORY MEMORY
QUEUE QUEUE
full €—— 210 212 empty
din——» dout
wen——p 4—ren
CONTROL MEMORY
LOGIC — QUEUE
214 216




Patent Application Publication  Jul. 13,2017 Sheet 1 of 6 US 2017/0199722 A1

full €— empty
din ——p| FIFO dout
wen ——p ren
FIG. 1
(PRIOR ART)
CFIFO
200
MEMORY MEMORY
QUEUE QUEUE
full 4—— 210 212 empty
din —pi dout
we —7p 4—ren
CONTROL MEMORY
LOGIC — QUEUE

214 216

FIG. 2



Patent Application Publication

Jul. 13,2017 Sheet 2 of 6

Hi.last

cFIFO

Hi.head 200 [o.head

Hi.tail Lo.tail
Hi Lo / ldx  [dx.tail

o[

ldx.head

FIG. 3

US 2017/0199722 Al



2017/0199722 A1

Patent Application Publication  Jul. 13,2017 Sheet 3 of 6 US
A C
Enqueue(010001) Enqueue(100001)
cFIFO cFIFO
200 Lo.head 200 Lo.head
Hi tail Lo.tail Hi tail Lo.tail
Hilast Hi Lo Idx  jdx.tail Hi.last Hi Lo ldx  Jdx.tail
010 010 001 0 100 010 o 2
ldx.head 100 101
Hinead I | [ | | | [ ] [ | /dx.head
| [ [ | Hihead [ | |
B D
Engqueue(010101) Enqueue(100011)
cFIFO cFIFO
200  Lo.head 200  Lo.head
Hi.tail Lo .tail Hi.tail Lo tail
Hi.last Hi Lo ldx  Idx.tail Hi.last Hi Lo ldx  [dx.tail
luly oo o1 T n 010 oo 2
[ | [ ] [ | 1axhead [ | [ ] |
Hi.head [ | [ | | o | [~ | /dx.head
— | [ | | Hihead [ | [.. | B

FIG. 4




Patent Application Publication

Jul. 13,2017 Sheet 4 of 6

US 2017/0199722 Al

A C
Dequeue() — 010001 Dequeue() — 100001
cFIFO cFIFO
200  (o.head 200 [o.head
Hi.tail Lo.tail Hi.tail Lo .tail
Hi Lo Idx  ldx tail Hi Lo ldx
100 ? ? T 100 ? ? T Idx tail
(e | [ | oo | [ ] [ |
Hihead [ o] o] [ | /dx.head o | [ | [ | iax head
| [ ] | Hinead [~ | [on] |
B D
Dequeue() — 010101 Dequeue() — 100011
cFIFO cFIFO
200  [o.head 200  [o.head
Hi.tail Lo tail Hi.tail Lo tail
Hi Lo Idx Hi Lo Idx
010 001 2 | ldx.tail 010 oo1 2 | Jdx.tail
100 101 3 <_L 100 11 3
o] [ [ | iaxhead oo | [ | [ | iax head
Hihead [ | [on | | Hihead | | [on | |

FIG. 5



Patent Application Publication

A 4

Jul. 13,2017 Sheet S of 6

RECEIVE DATA ENTRIES
810

v

STORE AN INSTANCE OF A LOWER WORD
IN A FIRST MEMORY QUEUE
812

v

STORE AN INSTANCE OF A HIGHER WORD
IN A SECOND MEMORY QUEUE
614

v

STORE AN INSTANCE OF A FIRST MEMORY
POINTER IN A THIRD MEMORY QUEUE
816

DIFFERENT
VALUE?
818

LEAVE THE SECOND MEMORY
POINTER AND THE THIRD
MEMORY POINTER
UNCHANGED
622

US 2017/0199722 Al

~— 600

A 4

INCREMENT A SECOND
MEMORY POINTER AND A
THIRD MEMORY POINTER

620

END

FIG. 6



Patent Application Publication

Jul. 13,2017 Sheet 6 of 6 US 2017/0199722 Al

cFIFO
710

MEMORY
SUBSYSTEM
(OPTIONAL)
714

FIG. 7

SYSTEM
700
BUS
PROCESSING
SUBSYSTEM
(OPTIONAL)
712




US 2017/0199722 Al

ZERO-DELAY COMPRESSION FIFO

BUFFER
BACKGROUND
[0001] Field
[0002] The present disclosure relates to a first in, first out

(FIFO) butffer, and, in particular, to a compression FIFO
buffer with zero delay.

[0003] Related Art

[0004] A FIFO buffer (which is henceforth referred to as
a ‘FIFO’) organizes and manipulates data so that the oldest
(first) entry or ‘head’ of the queue in the FIFO is processed
first. Thus, during operation a FIFO exhibits first-come,
first-served behavior, so that data leaves the queue in the
order in which it arrived.

[0005] FIG. 1 presents an existing FIFO, a FIFO may be
implemented using a DEPTHxWIDTH hardware FIFO. If
the write-enable (wen) is set during operation of FIFO, one
width-wide data word (din) is enqueued. Moreover, if the
read-enable (ren) is set, a width-wide data word (dout) is
dequeued. Furthermore, the signal empty indicates that the
FIFO queue is empty, and the signal full indicates that the
FIFO queue already holds depth data words and there is no
memory space left to store more data.

[0006] However, in many applications as little delay as
possible is desired for when the data is read from or written
to memory. This can make it difficult to compress and
decompress the data stored in a FIFO.

[0007] Hence, what is needed is a FIFO without the
above-described problems.

SUMMARY

[0008] One embodiment of the present disclosure relates
to a data buffer. This data buffer includes: a first memory
queue; a second memory queue; a third memory queue; and
control logic. During operation, the control logic receives
data entries, where a given data entry includes an instance of
an higher word and an instance of a lower word as specified
by a word length. Then, the control logic stores the instance
of the lower word in the first memory queue at a location
specified by a first memory pointer. Moreover, the control
logic stores the instance of the higher word in the second
memory queue at a location specified by a second memory
pointer, and stores an instance of the first memory pointer in
the third memory queue at a location specified by a third
memory pointer. Furthermore, the control logic determines
if the instance of the higher word includes a different value
than an immediately preceding stored instance of the higher
word associated with at least an immediately preceding data
entry, which is stored in the second memory queue. When
the instance of the higher word includes the different value,
the control logic increments the second memory pointer and
the third memory pointer so that a subsequent instance of the
higher word will be stored in the second memory queue
without overwriting the instance of the higher word and the
first memory pointer will be stored in the third memory
queue without overwriting the instance of the first memory
pointer. Otherwise, the control logic leaves the second
memory pointer and the third memory pointer unchanged,
which associates the instance of the lower word with the
immediately preceding stored instance of the higher word.
[0009] Note that the data buffer includes a first-in, first-out
(FIFO) data buffer. For example, the first memory queue

Jul. 13,2017

may include a first FIFO, the second memory queue may
include a second FIFO, and the third memory queue may
include a third FIFO.

[0010] Moreover, the word length may be predefined. For
example, the word length may maximize compression of the
data entries.

[0011] Furthermore, instances of the higher word and the
lower word may be stored in the data buffer for each clock
cycle.

[0012] In some embodiments, the data entries include
timestamps.
[0013] Additionally, the control logic may parse the data

entries into instances of higher words and instances of lower
words based on the word length.

[0014] Another embodiment provides a system including:
a processor; and the data buffer coupled to the processor.
[0015] Another embodiment provides a method for com-
pressing data entries, which may be performed by the data
buffer. During the method, the data buffer receives the data
entries, where the given data entry includes the instance of
the higher word and the instance of the lower word as
specified by the word length. Then, the data buffer stores the
instance of the lower word in the first memory queue at a
location specified by a first memory pointer. Moreover, the
data buffer stores the instance of the higher word in the
second memory queue at a location specified by a second
memory pointer. Furthermore, the data buffer stores an
instance of the first memory pointer in a third memory queue
at a location specified by a third memory pointer. Next, the
data buffer determines if the instance of the higher word
includes a different value than an immediately preceding
stored instance of the higher word associated with at least an
immediately preceding data entry, which is stored in the
second memory queue. When the instance of the higher
word includes the different value, the data buffer increments
the second memory pointer and the third memory pointer so
that a subsequent instance of the higher word will be stored
in the second memory queue without overwriting the
instance of the higher word and the first memory pointer will
be stored in the third memory queue without overwriting the
instance of the first memory pointer. Otherwise, the data
buffer leaves the second memory pointer and the third
memory pointer unchanged, which associates the instance of
the lower word with the immediately preceding stored
instance of the upper word.

BRIEF DESCRIPTION OF THE FIGURES

[0016] FIG. 1 is a block diagram illustrating an existing
first in, first out (FIFO).

[0017] FIG. 2 is a block diagram illustrating a cFIFO in
accordance with an embodiment of the present disclosure.

[0018] FIG. 3 is a drawing illustrating an initial state of the
cFIFO of FIG. 2 in accordance with an embodiment of the
present disclosure.

[0019] FIG. 4 is a drawing illustrating an enqueue opera-
tion in the cFIFO of FIG. 2 in accordance with an embodi-
ment of the present disclosure.

[0020] FIG. 5is a drawing illustrating a dequeue operation
in the cFIFO of FIG. 2 in accordance with an embodiment
of the present disclosure.

[0021] FIG. 6 is a method for compressing data entries in
the cFIFO of FIG. 2 in accordance with an embodiment of
the present disclosure.



US 2017/0199722 Al

[0022] FIG. 7 is a block diagram illustrating a system that
includes the cFIFO of FIG. 2 in accordance with an embodi-
ment of the present disclosure.

[0023] Table 1 provides pseudocode used to enqueue data
in the cFIFO of FIG. 2 in accordance with an embodiment
of the present disclosure.

[0024] Table 2 provides pseudocode used to dequeue data
in the cFIFO of FIG. 2 in accordance with an embodiment
of the present disclosure.

[0025] Table 3 provides memory consumption as a func-
tion of WIDTHHI in an existing FIFO and in the cFIFO of
FIG. 2 in accordance with an embodiment of the present
disclosure.

[0026] Note that like reference numerals refer to corre-
sponding parts throughout the drawings. Moreover, multiple
instances of the same part are designated by a common
prefix separated from an instance number by a dash.

DETAILED DESCRIPTION

[0027] Embodiments of a compression first in, first out
buffer or cFIFO, a system that includes the cFIFO, and a
method for compressing data entries are described. This
cFIFO leverages knowledge about redundant information in
the data to avoid storing the redundant information and,
thus, to reduce the memory footprint of the cFIFO. In
addition, the cFIFO has zero-delay compression when data
is written into the cFIFO queue and zero-delay decompres-
sion when data is read from the cFIFO queue. In particular,
the cFIFO may include at least two FIFOs, a first FIFO that
is used to store instances of higher words in data entries, and
a second FIFO that is used to store corresponding instances
of lower words in the data entries. If an instance of the
higher word for a data entry has a different value than an
immediately preceding stored instance of the higher word
associated with or related to at least an immediately pre-
ceding data entry which is stored in the second FIFO,
memory pointers are incremented so that a subsequent
instance of the higher word will be stored in the second
memory queue without overwriting the instance of the
higher word. Otherwise, the memory pointers are
unchanged, which associates the instance of the lower word
with the immediately preceding stored instance of the upper
word.

[0028] By leveraging the knowledge about the redundant
information, the cFIFO may not have increased delay (and,
more significantly, no delay is added in the critical path to
and from memory) and may have a significantly smaller
memory footprint than existing cFIFOs.

[0029] We now describe embodiments of a data buffer,
such as a cFIFO. In many applications, subsequent elements
in data sequences enqueued to a FIFO queue are not com-
pletely independent. For example, subsequent sensor data
readings or measurements from sensors (such as velocity,
temperature, altitude, etc.) may be related, e.g., subsequent
readings may not differ by very much from previous read-
ings. However, in other applications the relationships may
be even stronger. In particular, if a FIFO is used to store
running counters or timestamps, the data sequence enqueued
to the FIFO may actually be (piecewise) monotonic. In such
cases, a FIFO implementation without compression will
store a lot of redundant data in memory.

[0030] The cFIFO described below leverages additional
knowledge about the nature of the data sequence to reduce
the amount of redundant data stored in memory and to

Jul. 13,2017

reduce the memory footprint of the cFIFO. The inputs to and
outputs from this cFIFO are similar to those in existing
FIFOs. However, in addition to having the reduced memory
footprint, the cFIFO does not add delay to enqueue and
dequeue operations. Note that, in general, a cFIFO performs
compression on data in a FIFO to overcome the limitations
imposed by constrained resources, such as the memory size
for the queue.

[0031] FIG. 2 presents a block diagram of cFIFO 200
(and, more generally, a data buffer). This cFIFO includes a
memory queue 210 (such as a FIFO) and a memory queue
212 (such as a FIFO). In addition, cFIFO 200 includes
control logic 214 and memory queue 216. During operation,
control logic 214 receives data entries, where a given data
entry includes an instance of an higher word and an instance
of'a lower word as specified by a word length. Then, control
logic 214 stores the instance of the lower word in memory
queue 210 at a location specified by a first memory pointer.
Moreover, control logic 214 stores the instance of the higher
word in memory queue 212 at a location specified by a
second memory pointer. Next, control logic 214 stores an
instance of the first memory pointer in memory queue 216
at a location specified by a third memory pointer. Further-
more, control logic 216 determines if the instance of the
higher word includes a different value than an immediately
preceding stored instance of the higher word associated with
at least an immediately preceding data entry, which is stored
in memory queue 212. When the instance of the higher word
includes the different value, control logic 214 increments the
second memory pointer and the third memory pointer so that
a subsequent instance of the higher word will be stored in
memory queue 212 without overwriting the instance of the
higher word and the first memory pointer will be stored in
memory queue 216 without overwriting the instance of the
first memory pointer. Otherwise, control logic 214 leaves the
second memory pointer and the third memory pointer
unchanged, which associates the instance of the lower word
with the immediately preceding stored instance of the higher
word

[0032] Note that the word length may be predefined. For
example, the word length may maximize compression of the
data entries. For a hardware implementation of cFIFO 200,
the word length is set at tape out or when synthesizing the
hardware. Alternatively, if cFIFO 200 is implemented in
software, this parameter may be set at compile time or
startup time. Moreover, control logic 214 may parse the data
entries into instances of higher words and instances of lower
words based on the word length. Thus, in some embodi-
ments control logic 214 implements dynamic parsing or
sizing.

[0033] Furthermore, instances of the higher word and the
lower word may be stored in cFIFO 200 for each clock cycle
(i.e., cFIFO 200 may have zero additional delay). In par-
ticular, control logic 214 may not impact a critical path when
data is written into memory queues 210 and/or 212. Instead,
one or more previously stored instances of the higher word
and/or one or more memory pointers may be overwritten
subsequently (such as during the next write operation).

[0034] As noted previously and described further below,
cFIFO 200 may leverage knowledge about redundant infor-
mation in the data entries to significantly reduce the amount
of memory (such as memory 212) used in cFIFO 200. For
example, the data entries may include timestamps.



US 2017/0199722 Al

[0035] In an exemplary embodiment, the cFIFO is
designed for use in a network message rate limiter that has
a sliding-window history. In this application, the sliding
window history may be implemented with a FIFO queue.
This FIFO queue may be used to store a timestamp for each
of the incoming messages. The precision of the timestamps
may be such that all the timestamps in the sliding window
are pairwise unique. However, the timestamp values may
wrap, i.e., the data sequence d,, . . ., d, in the sliding window
may be either monotonic or may include up to two mono-
tonic pieces d,, . .. d,and d,,,, . . . d, with 1=i<n. In some
embodiments of the cFIFO, the limited availability of
memory constrains the depth of the history and, thus, the
size of the sliding window.

[0036] Many typical DEPTHxWIDTH FIFO queue imple-
mentations use a memory (e.g., with head/tail pointers) that
can hold DEPTH words of width WIDTH, i.e., the FIFO
consumes DEPTHxWIDTH bits in memory. In the
DEPTHxWIDTH implementation of the cFIFO, a data word
w may be internally treated as two words, a high-order word
whi and a low-order word wlo. A third parameter of the
cFIFO, DEPTHHI, may define how an input word w is split
into whi and wlo. In particular,

w[WIDTH-1:0]=whi-wlo,
whi=w[WIDTH-1:WIDTH-WIDTHHI], and

wlo=w[WIDTH-WIDTHHI-1:0].

[0037] As noted previously, in many applications the
difference of the values of subsequent data words is likely to
be small. Therefore, the high-order portions of many sub-
sequent words may be equal (and, thus, assume values that
exhibit redundancy in the high-order bits). Based on this, the
idea of the cFIFO is to virtually partition the data word
sequence S in the FIFO queue into subsequences, so that all
data words in a subsequence have the same high-order word.
In particular,

S=8,"Sy .. . S,

S;=Wi1s + « « Wi genqy, Where 1 is between 1 and #, and

Va=w,,b=w,;,1sjskslen(i):a-hi=b-hi.

Having this partition, it may not be necessary to store the
high-order word of all data words in a subsequence. Instead,
the cFIFO may store only one high-order word for an entire
subsequence. Consequently, the total memory consumption
of a DEPTHxWIDTH cFIFO can be significantly less than
DEPTHxWIDTH bits. Thus, when using the cFIFO, the
sliding window history in the above-mentioned rate-limiter
implementation may be larger given a fixed amount of
memory.

[0038] Note that the partial words whi and wlo may be
stored in two internal FIFOs, Hi and Lo (which may be
implemented as memories with head and tail pointers, such
as memory queues 210 and 212 in FIG. 2). Every enqueue
operation in the cFIFO may write the respective low-order
word wlo into memory Lo. Consequently, the depth of the
internal FIFO Lo may be the same as the depth of the cFIFO,
i.e., DEPTH. The width of memory Lo may equal the width
of the low-order words, i.e., WIDTH-WIDTHHI. However,
the high-order word whi may only be stored if it is different
from the previously stored high-order word. Thus, the depth
DEPTHHI of memory Hi may be the maximum number of

Jul. 13,2017

pairs of subsequent timestamps in the sliding window that
differ in their high-order words. In many applications,
DEPTHHI is significantly smaller than DEPTH. Note that
the width of memory Hi is WIDTHHI.

[0039] In addition to Hi and Lo, the cFIFO may use an
optional third FIFO Idx (which also may be implemented as
memory with head/tail pointers), which is used to store the
partition map of the data sequence, i.e., start and end indices
of all subsequences. (However, in other embodiments a
portion of Hi and/or Lo may be used to store the partition
map.) Therefore, the enqueue operation may store the cur-
rent head-pointer for Lo in Idx whenever a new high-order
word is added to Hi. Note that the depth of memory Idx may
be the same as that of memory Hi, i.e., DEPTHHI. Because
the values in Idx are indices in the L.o memory, the width of
the values in Idx may depend logarithmically on DEPTH. As
described further below, the information in Idx may be used
later in the dequeue operation to do the decompression, i.e.,
to return the correct high-order word for a specific low-order
word.

[0040] Table 1 provides pseudocode that is used to
enqueue data to the cFIFO queue. Moreover, Table 2 pro-
vides pseudocode that is used to dequeue data from the
cFIFO queue. In order to simplify the pseudocode, we do not
consider that pointers can wrap around, and we do not show
the implementation of the empty and full signals. In both the
enqueue and the dequeue operations, note that reads and
writes to the internal memories Lo, Hi and Idx (the index
memory) may be executed unconditionally. Therefore, the
cFIFO may not add delay to the memory fetch operation.
Consequently, the cFIFO may have the same latency char-
acteristics for both enqueue and dequeue as an uncom-
pressed FIFO.

TABLE 1

enqueue (value x):
Lo[Lo.head] = x.lo
Hi[Hi.head] = x.hi
Idx[Idx.head] = Lo.head

// x.lo, x.hi and Lo.head are always written

// to memory; however, the values are not valid
// unless the respective head-pointers are
incremented

if (Lo.head == Lo.tail) // queue is empty, start a new subsequence

begin
Hi.tail = Hi.head // restore initial state
Hi.head ++ // store x.hi in Hi[Hi.head]
Hi.last = x.hi //... and in Hi.last
end else // queue is not empty
begin
if x.hi != Hi.last // did the high-order word change (i.e., begin of
next subsequence)?
begin
Idx.head ++ // store Lo.head in Idx[Idx.head]
Hi.head ++ // store x.hi in Hi[Hi.head]
Hi.last = x.hi // store x.hi in Hi.last
end
end
Lo.head ++ // Always store x.lo in Lo[Lo.head]
TABLE 2
dequeue ( ):
result = concat (Hi[Hi.tail ], // always return Hi[Hi.tail], Lo[Lo.tail]
Lo[Lo.tail ])
Lo. tail ++ // always remove the recently returned

/I value
if (Idx.tail != Idx.head) // valid value in Idx?
begin
if (Lo.tail >= Idx [Idx.tail ]) // start of next subsequence ?



US 2017/0199722 Al

Jul. 13,2017

TABLE 2-continued TABLE 3
begin WIDTHHI Mg My M /M
Hi.tail = Hitail + 1 // go to next high-order word

Idx.tail = Idx.tail + 1  // go to next subsequence 1 19922986 20971520 0.95

end 2 18874456 20971520 0.9

end 3 17825976 20971520 0.85

return result 4 16777600 20971520 0.8

5 15729440 20971520 0.75

6 14681728 20971520 0.7

[0041] FIG. 3 presents a drawing illustrating an initial ; ggggﬁgﬁ égg;igg 8'25

state of cFIFO 200. Moreover, an example of enqueue and 9 11549184 20971520 0.55
dequeue operations is presented in FIG. 4, which presents a 10 10516480 20971520 0.501
drawing illustrating an enqueue operation in cFIFO 200, and g 59;2(1)8223 égg;igg g-igz
FIG. 5, Whlch presents a drawing 11.1ustrat1ng a.dequeu.e 5 7610368 20971520 0.362
operation in cFIFO 200. As shown in FIG. 4, if Lo.tail 14 6848512 20971520 0.326
pointer is equal to index, index is unchanged. In this way, 15 6389760 20971520 0.304
index may point to a location in Lo and may indicate when 16 6553600 20971520 0.312
: - : - 17 7995392 20971520 0.381
the next instance of the higher word is used from Hi (i.e., 18 12058624 20971320 0.575
when the higher word changes value) 19 21495808 20971520 1.025

[0042] Note that the memory capacity needed to imple-
ment an uncompressed WIDTHxDEPTH FIFO is
M ~=WIDTH-DEPTH. In contrast, the memory capacity
needed to implement a WIDTHXDEPTH cFIFO is the sizes
of the three memories, Hi, Lo and Idx, i.e., M =M + M+
M, or

Ix

(WIDTH-WIDTHHI)-DEPTH+
WIDTHHI DEPTHHI+(log,(DEPTH))
“DEPTHHL

[0043] As noted previously, in some embodiments the data
words written into the cFIFO are timestamps, i.e., the values
are monotonically increasing and unique. Therefore, the size
DEPTHHI of memory Hi, i.e., the maximum number of
pairs of subsequent timestamps that differ in the high-order
word, may equal the total number of different high-order
words

DEPTHHI=2"PTHHL

[0044] In a first example, consider a comparison of the
memory consumption of a WIDTHxDEPTH FIFO and a
WIDTHxDEPTH cFIFO. In a simple case, the size of the
sliding window DEPTH exactly matches the width of the
timestamps

DEPTH=2"PTH

In this case, the memory capacity M needed for an uncom-
pressed FIFO is

WIDTH-2"7PTH,

and the memory capacity M, needed for the cFIFO is

(WIDTH-WIDTHHI)-DEPTH+
WIDTHHI DEPTHHI+(log,(DEPTH))
“DEPTHHI,

which equals

(WIDTH-WIDTHHI)- 2" (WIDTH+WIDTHHI)
DWIDTH,

As shown in Table 3, which provides the memory consump-
tion based on the preceding equations for both an uncom-
pressed FIFO (M) and the cFIFO (M) with WIDTH
equal to 20 and WIDTHHI between 1 and 19, for WIDTHHI
equal to 15 the cFIFO only consumes about 30% of the
memory of an uncompressed FIFO.

[0045] In a second example, which may be a more real-
world case, the actual depth of a FIFO may be constrained
by the amount of available memory. In the following dis-
cussion, the available memory capacity is taken to be 1000
Kbit and the WIDTH is 20. Given these values, the depth of
an uncompressed FIFO is at most 1000 Kbit divided by 20
bits or 50,000.

[0046] As in the previous example, all data words in the

sliding window may be unique and the sequence of data

words may be monotonically increasing. However, because

DEPTH may be smaller than 27P7## DEPTHHI may be

the minimum of DEPTH and 27"P™# In this case, the

memory capacity M needed for the cFIFO may be
(WIDTH-WIDTHHI)-DEPTH+

WIDTHHI'min{DEPTH,2"PTHHL 4 (log,
(DEPTH))min{DEPTH,2#PTHHL)

For DEPTH ranging from 90,000 to 120,000 and WIDTHHI
ranging from 9 to 14, this equation indicates that M . ranges
from 840 to 1330 Kbits. For example, for WIDTHHI equal
to 12 and DEPTH equal to 110,000, the cFIFO fits into the
1000 Kbit memory. This means that the DEPTH of the
cFIFO can be more than twice the depth of an uncompressed
FIFO.

[0047] In the cFIFO, the high-order words may represent
larger numerical values. However, that is not a requirement
for the cFIFO to work. Note that the cFIFO does not perform
any arithmetic operation on the data word. Instead, the only
operation is a ‘compare for equality’. Thus, the so-called
‘high-order word’” may, in fact, be any subset of bits of the
original data word rather than the high-order bits.

[0048] Furthermore, because Hi, Lo and Idx may be
implemented as FIFOs, the cFIFO may be further optimized
by recursively applying the concept to Hi, Lo and 1dx, i.e.,
by implementing Hi, Lo and Idx as cFIFOs as well.

[0049] In the history-based rate-limiter application, the
cFIFO may be used to store a history of timestamps. As
discussed in the aforementioned first example, the cFIFO
may consume up to 70% less memory than an uncompressed
FIFO. However, in practice there may only be a few different
memory depths and widths from which to choose. In the
second example described previously, the optimal value for
WIDTHHI may be 11, i.e., the width of the Hi memory may
be 11 and the width of the Lo memory may be 9. If these



US 2017/0199722 Al

memory sizes are unavailable, a WIDTHHI of 10 may be
used, i.e., both the width of the Lo and Hi memories may be
10.

[0050] Note that the compression ratio of the cFIFO may
depend on the data characteristics of the application.
Embodiments in which the cFIFO holds piecewise mono-
tonic data sequences with unique data items (such as time-
stamps, counters, sequence numbers, etc.) may be optimal
for the cFIFO. However, as noted previously, the monoto-
nicity of the data sequence is not a requirement. In the case
of data entries that include timestamps, monotonicity allows
DEPTHHI, the maximum number of subsequent pairs of
timestamps with different high-order words, to be deter-
mined. More generally, the cFIFO can be used effectively in
use cases in which DEPTHHI can be determined, based on
theoretical analysis and/or based on empirical data. Thus,
other use cases for the cFIFO may involve data entries that
include sensor data, such as: velocity, altitude, temperature,
etc.

[0051] Additionally, while memory Idx was used to store
the start and end indices in the preceding discussion, in other
embodiments the start and end indices of subsequences may
be stored in memory Lo. Alternatively, the cFIFO may add
a 1-bit flag to every data word in memory Lo in order to
indicate where one subsequence ends and the next subse-
quence begins.

[0052] Referring back to Table 2, in the dequeue operation
a concatenation of the values at the tail positions in the
upper-word memory and the lower-word memory is
returned. Moreover, the tail pointer of the lower-word
memory may always be incremented. Then, the dequeue
operations may check if the next subsequence has started. If
yes, both the upper-word memory tail pointer and the
index-memory tail pointer may also be incremented.
[0053] We now describe embodiments of the method. FIG.
6 presents a method 600 for compressing data entries that
may be performed by a data buffer, such as cFIFO 200 in
FIG. 2. During operation, the data buffer receives data
entries (operation 610), where a given data entry includes an
instance of an higher word and an instance of a lower word
as specified by a word length. Then, the data buffer stores the
instance of the lower word in a first memory queue (such as
a first FIFO) (operation 612) in the data buffer at a location
specified by a first memory pointer. Moreover, the data
buffer stores the instance of the higher word in a second
memory queue (such as a second FIFO) (operation 614) in
the data buffer at a location specified by a second memory
pointer. Furthermore, the data buffer stores an instance of the
first memory pointer in a third memory queue (operation
616) at a location specified by a third memory pointer. Next,
the data buffer determines if the instance of the higher word
includes a different value (operation 618) than an immedi-
ately preceding stored instance of the higher word associated
with at least an immediately preceding data entry, which is
stored in the second memory queue. When the instance of
the higher word includes the different value (operation 618),
the data buffer increments the second memory pointer and
the third memory pointer (operation 620) so that a subse-
quent instance of the higher word will be stored in the
second memory queue without overwriting the instance of
the higher word and the first memory pointer will be stored
in the third memory queue without overwriting the instance
of the first memory pointer. Otherwise (operation 618), the
data buffer leaves the second memory pointer and the third

Jul. 13,2017

memory pointer unchanged (operation 622), which associ-
ates the instance of the lower word with the immediately
preceding stored instance of the upper word.

[0054] In some embodiments of method 600, there are
additional or fewer operations. Moreover, the order of the
operations may be changed and/or two or more operations
may be combined into a single operation.

[0055] We now describe embodiments of the system. FIG.
7 presents a block diagram of a system 700 that includes
cFIFO 710, which may be one of the preceding embodi-
ments of the cFIFO (such as cFIFO 200 in FIG. 2). Fur-
thermore, system 700 may include one or more program
modules or sets of instructions stored in an optional memory
subsystem 714 (such as DRAM, another type of volatile or
non-volatile computer-readable memory, and more gener-
ally a memory), which may be executed by an optional
processing subsystem 712 (which may include one or more
processors). Note that the one or more computer programs
may constitute a computer-program mechanism. Further-
more, instructions in the various modules in optional
memory subsystem 714 may be implemented in: a high-
level procedural language, an object-oriented programming
language, and/or in an assembly or machine language. Note
that the programming language may be compiled or inter-
preted, e.g., configurable or configured, to be executed by
optional processing subsystem 712.

[0056] More generally, embodiments of the cFIFO may be
used in a variety of applications, including communications,
high-performance computing, etc. As a consequence, the
system may include: VLSI circuits, communication systems,
storage area networks, data centers, networks (such as local
area networks), and/or computer systems (such as multiple-
core processor computer systems). Note that system 700
may include, but is not limited to: a server (such as a
multi-socket, multi-rack server), a laptop computer, a com-
munication device or system, a tablet computer, a personal
computer, a work station, a mainframe computer, a blade, an
enterprise computer, a data center, a portable-computing
device, a supercomputer, a network-attached-storage (NAS)
system, a storage-area-network (SAN) system, and/or
another electronic computing device. Moreover, note that a
given computer system may be at one location or may be
distributed over multiple, geographically dispersed loca-
tions.

[0057] The preceding embodiments may include fewer
components or additional components. Although these
embodiments are illustrated as having a number of discrete
items, these circuits and devices are intended to be func-
tional descriptions of the various features that may be
present rather than structural schematics of the embodiments
described herein. Consequently, in these embodiments two
or more components may be combined into a single com-
ponent, and/or a position of one or more components may be
changed.

[0058] Furthermore, functionality in these circuits, com-
ponents and devices is implemented in hardware and/or in
software as is known in the art. For example, some or all of
the functionality of these embodiments may be implemented
in one or more: application-specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs), and/or
one or more digital signal processors (DSPs). Additionally,
note that circuits in these embodiments may be implemented
using PMOS and/or NMOS, and signals may include digital
signals that have approximately discrete values and/or ana-



US 2017/0199722 Al

log signals that have continuous values. Note that compo-
nents and circuits may be single-ended or differential, and
power supplies may be unipolar or bipolar.
[0059] In the preceding embodiments, some components
are shown directly connected to one another, while others
are shown connected via intermediate components. In each
instance the method of interconnection, or ‘coupling,’ estab-
lishes some desired electrical communication between two
or more circuit nodes, or terminals. Such coupling may often
be accomplished using a number of circuit configurations, as
will be understood by those of skill in the art (for example,
AC coupling and/or DC coupling may be used).
[0060] An output of a process for designing an integrated
circuit, or a portion of an integrated circuit, comprising one
or more of the circuits described herein may be a computer-
readable medium such as, for example, a magnetic tape or an
optical or magnetic disk. The computer-readable medium
may be encoded with data structures or other information
describing circuitry that may be physically instantiated as an
integrated circuit or portion of an integrated circuit.
Although various formats may be used for such encoding,
these data structures are commonly written in: Caltech
Intermediate Format (CIF), Calma GDSII Stream Format
(GDSII) or Electronic Design Interchange Format (EDIF).
Those of skill in the art of integrated circuit design can
develop such data structures from schematics of the type
detailed above and the corresponding descriptions and
encode the data structures on a computer-readable medium.
Those of skill in the art of integrated circuit fabrication can
use such encoded data to fabricate integrated circuits com-
prising one or more of the circuits described herein.
[0061] In the preceding description, we refer to ‘some
embodiments.” Note that ‘some embodiments’ describes a
subset of all of the possible embodiments, but does not
always specify the same subset of embodiments.
[0062] The foregoing description is intended to enable any
person skilled in the art to make and use the disclosure, and
is provided in the context of a particular application and its
requirements. Moreover, the foregoing descriptions of
embodiments of the present disclosure have been presented
for purposes of illustration and description only. They are
not intended to be exhaustive or to limit the present disclo-
sure to the forms disclosed. Accordingly, many modifica-
tions and variations will be apparent to practitioners skilled
in the art, and the general principles defined herein may be
applied to other embodiments and applications without
departing from the spirit and scope of the present disclosure.
Additionally, the discussion of the preceding embodiments
is not intended to limit the present disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown, but is to be accorded the widest scope
consistent with the principles and features disclosed herein.
What is claimed is:
1. A data buffer, comprising:
a first memory queue;
a second memory queue;
a third memory queue; and
control logic configured to:
receive data entries, wherein a given data entry includes
an instance of an higher word and an instance of a
lower word as specified by a word length;
store the instance of the lower word in the first memory
queue at a location specified by a first memory
pointer;

Jul. 13,2017

store the instance of the higher word at in the second
memory queue at a location specified by a second
memory pointer;
store an instance of the first memory pointer in the third
memory queue at a location specified by a third
memory pointer;
determine if the instance of the higher word includes a
different value than an immediately preceding stored
instance of the higher word associated with at least
an immediately preceding data entry, which is stored
in the second memory queue;
when the instance of the higher word includes the
different value, increment the second memory
pointer and the third memory pointer so that a
subsequent instance of the higher word will be
stored in the second memory queue without over-
writing the instance of the higher word and the
first memory pointer will be stored in the third
memory queue without overwriting the instance of
the first memory pointer; and
otherwise, leave the second memory pointer and the
third memory pointer unchanged, which associates
the instance of the lower word with the immediately
preceding stored instance of the upper word.

2. The data buffer of claim 1, wherein the data buffer
includes a first-in, first-out (FIFO) data buffer.

3. The data buffer of claim 1, wherein the first memory
queue includes a first FIFO;

wherein the second memory queue includes a second

FIFO; and

wherein the third memory queue includes a third FIFO.

4. The data buffer of claim 1, wherein the word length is
predefined.

5. The data buffer of claim 4, wherein the word length
maximizes compression of the data entries.

6. The data buffer of claim 1, wherein instances of the
higher word and the lower word are stored in the data buffer
for each clock cycle.

7. The data buffer of claim 1, wherein the data entries
include timestamps.

8. The data buffer of claim 1, wherein the control logic is
further configured to parse the data entries into instances of
higher words and instances of lower words based on the
word length.

9. A system, comprising:

a processor; and

a data buffer coupled to the processor, wherein the data

buffer includes:
a first memory queue;
a second memory queue;
a third memory queue; and
control logic configured to:
receive data entries, wherein a given data entry
includes an instance of an higher word and an
instance of a lower word as specified by a word
length;
store the instance of the lower word in the first
memory queue at a location specified by a first
memory pointer;
store the instance of the higher word at in the second
memory queue at a location specified by a second
memory pointer;



US 2017/0199722 Al

store an instance of the first memory pointer in the
third memory queue at a location specified by a
third memory pointer;
determine if the instance of the higher word includes
a different value than an immediately preceding
stored instance of the higher word associated with
at least an immediately preceding data entry,
which is stored in the second memory queue;
when the instance of the higher word includes the
different value, increment the second memory
pointer and the third memory pointer so that a
subsequent instance of the higher word will be
stored in the second memory queue without over-
writing the instance of the higher word and the
first memory pointer will be stored in the third
memory queue without overwriting the instance of
the first memory pointer; and
otherwise, leave the second memory pointer and
the third memory pointer unchanged, which
associates the instance of the lower word with
the immediately preceding stored instance of
the upper word.

10. The system of claim 9, wherein the data buffer
includes a first-in, first-out (FIFO) data buffer.

11. The system of claim 9, wherein the first memory
queue includes a first FIFO;

wherein the second memory queue includes a second

FIFO; and

wherein the third memory queue includes a third FIFO.

12. The system of claim 9, wherein the word length is
predefined.

13. The system of claim 12, wherein the word length
maximizes compression of the data entries.

14. The system of claim 9, wherein instances of the higher
word and the lower word are stored in the data buffer for
each clock cycle.

15. The system of claim 9, wherein the data entries
include timestamps.

16. A method for compressing data entries, wherein the
method comprises:

receiving the data entries, wherein a given data entry

includes an instance of an higher word and an instance
of a lower word as specified by a word length;

Jul. 13,2017

storing the instance of the lower word in a first memory
queue at a location specified by a first memory pointer;

storing the instance of the higher word at in a second
memory queue at a location specified by a second
memory pointer;

storing an instance of the first memory pointer in a third
memory queue at a location specified by a third
memory pointer;

determining if the instance of the higher word includes a
different value than an immediately preceding stored
instance of the higher word associated with at least an
immediately preceding data entry, which is stored in the
second memory queue;

when the instance of the higher word includes the differ-
ent value, incrementing the second memory pointer and
the third memory pointer so that a subsequent instance
of the higher word will be stored in the second memory
queue without overwriting the instance of the higher
word and the first memory pointer will be stored in the
third memory queue without overwriting the instance
of the first memory pointer; and

otherwise, leaving the second memory pointer and the

third memory pointer unchanged, which associates the
instance of the lower word with the immediately pre-
ceding stored instance of the upper word.

17. The method of claim 16, wherein the method further
comprises parsing the data entries into instances of higher
words and instances of lower words based on the word
length.

18. The method of claim 16, wherein the first memory
queue includes a first FIFO;

wherein the second memory queue includes a second

FIFO; and

wherein the third memory queue includes a third FIFO.

19. The method of claim 16, wherein the word length
maximizes compression of the data entries.

20. The method of claim 16, wherein instances of the
higher word and the lower word are stored in the data buffer
for each clock cycle.

#* #* #* #* #*



