
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization11111111111111111111111I1111111111111ii111liiili

International Bureau (10) International Publication Number

(43) International Publication Date W O 2021/178719 Al
10 September 2021 (10.09.2021) W IP0I PCT

(51) International Patent Classification: (74) Agent: FOWLER, Colin M. et al.; P.O. Box 1247, Seattle,
G06F21/72 (2013.01) G06F15/16 (2006.01) Washington 98111-1247 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2021/020947 kind ofnational protection available): AE, AG, AL, AM,

(22)InternationalFilingDate: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
04 March 2021 (04.03.2021) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,

KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,
(26)PublicationLanguage: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
(30) Priority Data: NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

62/985,129 04 March 2020 (04.03.2020) US SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicant: RUBIDEX, LLC [US/US]; 18978 Roseate Dr., TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

Lutz, FL 33558 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(72)Inventors: TEEL, Steven; c/o Rubidex,LLC, 18978 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
Roseate Dr.,Lutz, Florida 33558 (US) FELKER, Michael; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
/oRubidex,LLC,18978RoseateDr.,Lutz,Florida33558 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: CRYPTOGRAPHIC DATA ENTRY BLOCKCHAIN DATA STRUCTURE

!N ME RY LD/OR DISK IN MEMORY IN DISK AND/OR CLOUD

New block 46 20

Frontend Ul 40

1 1

Plaintext new data da Le
New data 42 1I encrypted into new block - 1

I 44I

I Encrypted ___
- Edit block 54

data block

Previousdata fields 48 Pan text data in memory
50

- I Encrypted

- ____________________datablock

- 30

1 Changes to plaintext in
memory 52 datablock

FIG. 4

(57) Abstract: A method for securely storing and transmitting data using a blockchain structure. The blockchain structure is operated
on the local node and through SSH transmission with an arbiter server and cloud infrastructure. The local application coordinates the
order of appended blocks, where each block is a flat file that uses a respective filename to indicate block order. Data entry and retrieval
is performed where plaintext data is available only in local memory as decrypted through an authorized client. Data written to disk
only as encrypted.

WO 2021/1878719A1||

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
- with international search report (Art. 21(3))

WO 2021/178719 PCT/US2021/020947

CRYPTOGRAPHIC DATA ENTRY BLOCKCHAIN DATA STRUCTURE

CROSS-REFERENCE TO RELATED APPLICATIONS

[001] This application claims priority to U.S. Provisional Patent Application No. 62/985,129

filed on March 4, 2020, which is incorporated by reference herein in its entity.

TECHNICAL FIELD

[002] The disclosure relates to identifying cryptographic data structures involved in storing

data in distributed networks.

BACKGROUND

[003] Conventional databases include a number of flaws. For example, many databases

suffer from security issues. Data is stored or transmitted unencrypted and presents a target that

can be compromised by malicious actors. Every day corporate databases are breached, and

records are stolen. A second issue results from corruption - a total loss of database data due to

outside factors, such as lightning strikes, power outages, human error, bad timing, etc.

[004] Cryptocurrency blockchain data storage includes difficulty of modifying data based on

the inherent immutability and overall data structure of known blockchain systems. Specifically,

stored data is tied to a financial system rather than a true data storage system. Stored data in

cryptocurrency systems is tied to coins and if one wants to change stored data, they must

navigate a largely unorganized blockchain. Cryptocurrency is ultimately an inefficient an

ineffective data storage system.

[005] Known data encryption schemes tend to have inherent vulnerabilities that create targets

for attackers.

WO 2021/178719 PCT/US2021/020947

BRIEF DESCRIPTION OF THE DRAWINGS

[006] FIG. 1 is a block diagram of a known blockchain data structure. Cryptocurrency

networks operate on a distributed network architecture (Prior Art).

[007] FIG. 2 is a block diagram illustrating a known data structure of a smart contract

(Prior Art).

[008] FIG. 3 is a block diagram of various cryptographic addresses and entities included

within the data structure of the custom token.

[009] FIG. 4 is a block diagram illustrating a relationship between a client front end and

accessibility to the blockchain.

[0010] FIG. 5 is a flowchart illustrating a method of appending data to the blockchain.

[0011] FIG. 6 is a block diagram of an arbiter server in a peer network.

[0012] FIG. 7 is a flowchart illustrating a method of legitimate data retrieval from the

blockchain.

[0013] FIG. 8 is a screen shot of a data entry interface and an associated blockchain.

[0014] FIG. 9 is a screen shot of a blockchain viewer application that draws from a blockchain.

[0015] FIG. 10 is a block diagram of an exemplary computing system.

DETAILED DESCRIPTION

[0016] Typical blockchains are cryptographic data structures wherein a distributed network

contributes to an immutable ledger of data. Blockchain systems are often associated with a base

of users that are identified via cryptographic key pairs including a public key (used to refer to

the user, acts as an address) and a private key (used to sign actions taken by the user, related to

the public key by a one-way function). New data is submitted to the network and nodes within

the network append the data to the end of the blockchain. Blockchain systems have many

advantages over conventional databases. That is, there is no data loss because the structure will

merely continue to grow. There is no data loss due to corruption because the network is

WO 2021/178719 PCT/US2021/020947

distributed and synchronization between nodes means that damaged nodes can be repaired with

data stored by peers. Blockchains are also significantly harder to attack than databases because

the data is distributed and, for the most part, immutable.

[0017] The blockchain data structure is perhaps most well-known as associated with

cryptocurrency. Fundamentally, a blockchain is a distributed linked list. Many systems have

been built on top of cryptocurrency networks, but those systems are inherently based on the

existence of some underlying currency and the use thereof. Cryptocurrency applications of

blockchains are thus not the most effective structure for effectively managing a single entity

data entry system.

[0018] Herein, is described a system whereby users of a given entity are each nodes on a

distributed network. Each node does not have to be a full node (e.g., store the full blockchain)

to participate. When nodes sync after logging in from a period of inactivity, those nodes first

obtain the most recent block in the chain before working backwards toward the genesis block.

Data in blocks is stored in small, flat files that include the simplest expression of the

information. Stored data is encrypted into ciphertext. Viewing plaintext data is performed in

memory to reduce an attack window for malicious users. For the purposes of this disclosure,

"plaintext" is the complement of "ciphertext" and means data that is not encrypted or is pre

encryption (in the case of multiple cycles of encryption). Plaintext is the input of one or more

functions that generate ciphertext.

[0019] Blockchains are immutable; that is, once appended, the data of the block is difficult, if

not impossible, to change. However, data entry often includes modifications or edits to data.

Where data in a given block needs to be changed, the system spawns a new, branch blockchain

structure using the block containing the relevant data as a genesis block. As that data is edited

new blocks are appended to the branch blockchain. Where cryptocurrency systems cannot

handle branch blockchains because they refer to currency assets that require freedom of

WO 2021/178719 PCT/US2021/020947

movement, stored data is a different construct that does not need the same flexibility. While

the present system includes structural variations from cryptocurrency blockchains, some

fundamental architecture is retained.

[0020] FIG. 1 is a block diagram of a known cryptocurrency based blockchain data structure.

Cryptocurrency networks operate on a distributed network architecture. Key to

understanding cryptocurrency is the data structure upon which the network operates. For

example, the Bitcoin and Ethereum networks use a data structure referred to as a

blockchain.

[0021] The blockchain includes a history of all transactions that have ever occurred on the

network. Each full node in the distributed network holds a full copy of the blockchain. To

participate in the network at all, the blockchain history on a given node must be consistent with

the history of at least a majority of other nodes. This consistency rule has an important effect

of causing the blockchain to be immutable. In order to effectively attack a blockchain such as

Bitcoin or Ethereum (current version) one must control 51%+ of the processing power of the

entire network. Where the network is comprised of thousands of nodes, assembling the

requisite 51% is exceedingly difficult.

[0022] When a given node intends to generate a transaction, the transaction is propagated

throughout the nodes until it reaches a node or group of nodes that can assemble that

transaction and other transactions generated during a contemporaneous period of time

into a block. Until a transaction appears in a block it is not published or public. Often a

transaction isn't considered confirmed until a requisite number of additional blocks have

been added.

[0023] At the time of this filing, Bitcoin blocks are limited to the size of 4 MB and are

generated approximately every 5 to 15 minutes. This illustrates an important limitation

of the Bitcoin network, that it only processes approximately 7 transactions per second.

WO 2021/178719 PCT/US2021/020947

Conversely, Ethereum limits block size based on the amount of processing the contracts

in the given block call for and are appended every 5 to 20 seconds. While cryptocurrency

networks technically begin processing transactions in real-time, and the existence of a

block including a given transaction verifies that transaction's authenticity, until that block

is published to the blockchain, the transaction is not verified.

[0024] Gaps in verification time introduces the issue within the Bitcoin network at a given

moment of "who has the money." During the 10 to 15-minute span between block

generation transactions that have been submitted may not actually process. This would

occur when a user spends money they didn't have, or double spends. This is not to say

the network has no verification mechanism between blocks. For example, when a given

user attempts to pay another user, the system may easily query older blocks to inspect the

given user's balance as of at least the most recently published block. If the given user has

sufficient funds, it is moderately safe to trust the transaction.

[0025] However, if the given user is attempting to double spend all their money, only one

of those transactions will publish in the next block. The other will be rejected (the

transaction that is rejected, and that transaction that processes are subject to a race

condition and not necessarily dependent on time of generation). When discussing trivial

amounts of money (e.g., paying for coffee), this is not really a big concern. However,

when handling larger purchases that occur quickly (e.g. stock in a company), the amounts

can become significantly greater, and a clearance time of 10-15 minutes is not ideal.

[0026] Thus far, Bitcoin has been discussed as a network for trading Bitcoins. However,

Bitcoin transactions have additional utility in that they can embed additional data. As

contemplated above, Bitcoin can be used to purchase and record the existence of data at

a given point in time. Recording data is performed by including hashed data within an

output field of a given transaction. In this manner, the proof of existence for any

WO 2021/178719 PCT/US2021/020947

document or recorded data may be embedded into the immutable history of the

blockchain.

[0027] Systems that utilize the Bitcoin blockchain to transfer the ownership of non-coin

assets require software that is separate from and merely relies upon the immutability of

the blockchain. The separate software is not necessarily secure or immutable itself. Extra

blockchain software is thus an inherent weak point in a system that relies upon the

immutability of the blockchain to ensure security. Ethereum takes the ability to buy and

sell non-coin assets a step further.

[0028]Ethereum smart contracts are in effect event driven software that runs on the

blockchain. That software is open source and subject to inputs that are related to the

blockchain itself. Of course, one can still write code including vulnerabilities, but the

platform enables greater security and fewer weak links in the chain.

[0029] FIG. 2 is a block diagram illustrating a known data structure of a smart contract.

Smart contracts and decentralized applications ("dApps") execute on an Ethereum virtual

machine ("EVM"). The EVM is instantiated on available network nodes. Smart contracts

and dApps are applications that execute; thus, the processing power to do so must come

from hardware somewhere. Nodes must volunteer their processors to execute these

operations based on the premise of being paid for the work in Ethereum coins, referred to

as Ether, measured in "gas." Gas is the name for a unit of work in the EVM. The price

of gas can vary, often because the price of Ether varies, and is specified within the smart

contract/dApp.

[0030] Every operation that can be performed by a transaction or contract on the Ethereum

platform costs a certain number of gas, with operations that require more computational

resources costing more gas than operations that require fewer computational resources.

For example, a multiplication instruction may require 5 gas, whereas an addition

WO 2021/178719 PCT/US2021/020947

instruction may require 3 gas. Conversely, more complex instructions, such as a

Keccak256 cryptographic hash requires 30 initial gas and 6 additional gas for every 256

bits of data hashed.

[0031] The purpose of gas is to pay for the processing power of the network on execution

of smart contracts at a reasonably steady rate. That there is a cost at all ensures that the

work/processing being performed is useful and valuable to someone. Thus, the Ethereum

strategy differs from the Bitcoin transaction fee, which is only dependent on the size in

kilobytes of a transaction. Because Ethereum's gas costs are rooted in computations, even

a short segment of code can result in a significant amount of processing performed. The

use of gas further incentivizes coders to generate efficient smart contracts/algorithms.

Otherwise the cost of execution may spiral out of control. Unrestricted, an exponential

function may bankrupt a given user.

[0032] While operations in the Ethereum virtual machine (EVM) have a gas cost, gas has

a "gas price" measured in ether. Transactions specify a given gas price in ether for each

unit of gas. The fixing of price by transaction enables the market to decide the relationship

between the price of ether and the cost of computing operations (as measured in gas). The

total fee paid by a transaction is the gas used multiplied by gas price.

[0033] If a given transaction offers very little in terms of a gas price, that transaction will

have low priority on the network. In some cases, the network miners may place a threshold

on the gas price each is willing to execute/process for. If a given transaction is below that

threshold for all miners, the process will never execute. Where a transaction does not

include enough ether attached (e.g., because the transaction results in so much

computational work that the gas costs exceed the attached ether) the used gas is still

provided to the miners. When the gas runs out, the miner will stop processing the

transaction, revert changes made, and append to the blockchain with a "failed

WO 2021/178719 PCT/US2021/020947

transaction." Failed transactions may occur because the miners do not directly evaluate

smart contracts for efficiency. Miners will merely execute code with an appropriate gas

price attached. Whether the code executes to completion or stalls out due to excessive

computational complexity is of no matter to the miner.

[0034] Where a high gas price is attached to a transaction, the transaction will be given

priority. Miners will process transactions in order of economic value. Priority on the

Ethereum blockchain works similarly as with the Bitcoin blockchain. Where a user

attaches more ether to a given transaction than necessary, the excess amount is refunded

back to that user after the transaction is executed/processed. Miners only charge for the

work that is performed. A useful analogy regarding gas costs and price is that the gas

price is similar to an hourly wage for the miner, whereas the gas cost is like a timesheet

of work performed.

[0035] A type of smart contract that exists on the Ethereum blockchain is ERC-20 token

(Ethereum Request for Comment-20). ERC-20 is a technical specification for fungible utility

tokens. ERC-20 defines a common list of rules for Ethereum tokens to follow within the

larger Ethereum ecosystem, allowing developers to accurately predict interaction between

tokens. These rules include how the tokens are transferred between addresses and how

data within each token is accessed. ERC-20 provides a framework for a means to build a

token on top of a base cryptocurrency. In some embodiments herein, enhancements are

built on top of the ERC-20 framework, though use of the ERC-20 technical specification

is not inherently necessary and is applicable to circumstances where Ethereum is used as

the base cryptocurrency.

[0036] Thus far discussion has been focused around Bitcoin and Ethereum. As applicable

in this disclosure, these are base cryptocurrencies. Other base cryptocurrencies exist now

WO 2021/178719 PCT/US2021/020947

and in the future. This disclosure is not limited to application on specifically the Bitcoin

or Ethereum blockchains.

[0037] The concept of utility tokens is understood in the blockchain space today. Utility tokens

represent access to a network, and a give utility token purchase represents the ability to buy

goods or services from that network--for example, an arcade token allows users to play an

arcade game machine. Utility tokens give users that same type of access to a product or service.

On the other hand, custom tokens represent complete or fractional ownership in an asset (such

as shares in a company, a real-estate asset, artwork, etc). Owning a stake in a company, real

estate, or intellectual property can all be represented by custom tokens. Custom tokens offer

the benefit of bringing significant transparency over traditional paper shares through the use of

the blockchain and its associated public ledger. Custom token structure, distribution, or changes

that could affect investors are now accessible to all via the blockchain.

[0038] FIG. 3 illustrates a blockchain data structure implementing branch blockchains. A main

blockchain 20, begins from a first block 22 and includes a second block, 24 a third block 26

and a fourth block 28. The main blockchain 20 may be referred to as a first blockchain, or a

primary blockchain. The number of blocks exists merely for illustration. In a real use case, the

main blockchain 20 would include many, many more blocks over time. Each block is data

storage. In some embodiments, while each block is appended to a chain data structure like a

cryptocurrency blockchain, there is no associated cryptocurrency. That is, the node that is

submitting new data, and thereby a new blocktotheblockchain, performs processing

operations in order to reconcile the new block with a previous or last block.

[0039] The blocks are not mined, but rather are created each time a user transacts data. In an

example, a user may save a two-page word document, and that may become a block, then a

one-page document and save it as another block. Blocks are created instantly and hashed like

WO 2021/178719 PCT/US2021/020947

a blockchain. This process occurs the same way with creating data. For example, a user may

open a blank word document, type and save, and that document becomes a block.

[0040] Each block preferably contains some payload data along with a block ID, Last Hash,

New Hash, User Hash, Time/Date, and Username of the data entry user. The data is encrypted

ciphertext while stored in the blockchain 20, 30. The blocks are additionally hashed using a

respective key pair associated with the user generating the block, or a user whom supervises

the block generating user.

[0041] The payload or data may be of any suitable size. The block may store a single bit, or

whole documents. The range of data includes fields on a form and/or whole forms of data. In

some embodiments, blocks in the chain are each files (e.g., flat files) stored in disk. Where the

Bitcoin blockchain is often stored as a single flat file that is continually modified, embodiments

of the present system generate additional flat files for new blocks. The linked list aspects of the

blockchain are supported by a file naming scheme whereby filenames are dynamically created

to include a reference to the preceding block. The payload, or data for the block is stored within

the flat file.

[0042] The blockchain 20 is immutable. Should a change be made at one node, forced

synchronization causes that node to conform with other nodes where the block remained

unchanged. Data in a database is often changed for numerous legitimate reasons. In some

embodiments, new data or edits to old data are appended to the top of the blockchain 20 in a

future block 32. In some embodiments, legitimate data edits are appended to a branch

blockchain 30 from the block that contains the data to be edited. The branch blockchain 30 may

be referred to as a second, third, or Nth blockchain, or as a sub-chain. The branch blockchain

30 has a genesis block that is on the main blockchain 20. In some embodiments, where a given

block on the main blockchain 20 is not the genesis block of a branch blockchain 30, there has

WO 2021/178719 PCT/US2021/020947

therefore been no edits to the relevant data stored in the given block. The existence of a branch

blockchain for that block indicates modifications to the data.

[0043] Pictured in the figure the second block 26 includes data the user wants to edit. Instead

of generating a new block on the main blockchain 20, in the future block 32 space, the edit to

the data is represented in block two-prime 34. Block two-prime 34 is the second block in a

branch blockchain 30 that uses the second block 26 of the main blockchain 20 as a new genesis

block. As the data related to the second block 26 is further edited, those edits result in blocks

added to the branch blockchain 30 in the future edit to block two data space 36.

[0044] When the data associated with the second block 26 is read, the system need only check

the relevant branch blockchain 30, if it exists, rather than the entire main blockchain 20 for any

reference to that data. The main blockchain 20 is used to represent all instances of data, whereas

the branch blockchains 30 represent the changelog and current state of a given instance of data.

[0045] In some embodiments, the data in blocks is encrypted. The key to decrypt the data

within a given block is stored according to the user's copy of their node client. In these

embodiments, not all instances of the node client are enabled to read/write all blocks. For

example, in some embodiments, Client A can read/write Client A blocks, and Client B can

read/write Client B blocks, but Client A cannot read/write Client B blocks and vice versa.

[0046] FIG. 4 is a block diagram illustrating a relationship between a client front end and

accessibility to the blockchain. A given user operates a node of a data manipulation system 38.

The data manipulation system 38 includes a user's frontend UI 40 that references a blockchain

20, 30 stored on a disk, a cloud server, a hard disk of a blockchain network peer-node, or other

suitable storage medium or storage location. The data within the blockchain 20, 30 is encrypted

and is decrypted in local system memory for use in the frontend UI 40. "Memory" in this

context refers to random-access memory ("RAM") or other volatile storage structures. Memory

is distinct from "disk" or "hard disk" storage, which refers to non-volatile storage.

WO 2021/178719 PCT/US2021/020947

[0047] Use of the frontend UI 40 obfuscates the existence of the blockchain 20, 30 and the user

of the frontend UI 40 is not necessarily aware of the blockchain's existence. The blockchain

20, 30 is a data structure that securely stores the user's data. The blockchain 20, 30 exists in

the backend of data manipulation system 38 and the user does not directly interact with the

blockchain. A human user would be unable to make sense of the block files because each

contains encrypted and hashed data. Thus, a malicious actor must have access to the frontend

UI 40, or local system memory while the frontend UI 40 is in use to access decipherable data.

[0048] The frontend UI 40 is customizable to a given user or organization's purpose. Whatever

data needs that user/organization has, the frontend UI 40 is built accordingly. While using the

frontend UI 40 a user enters new data 42 via whatever fields or input interface is present in the

frontend UI 40. While that entered new data 42 is still in local system memory, the data

manipulation system 38 converts that data 44 into a new block 46 on the blockchain 20. The

new block 46 is appended to the end of the blockchain 20. The new data 42 is encrypted in

real-time, in memory, after being entered by the user. The encrypted data is then stored in the

new block 46. In some embodiments, blocks are written to the node, the server and sent to the

cloud/backup drive at the same time. Blocks sent to the server and backup drive are done so

using SSH transmission allowing an end-to-end encrypted tunnel.

[0049] Where a user seeks previously entered data 46, the data manipulation system 38 triggers

a process whereby data is retrieved from the blockchain 20,30, the data is decrypted and

presented to the user on the frontend UI 38. Data is retrieved via use of an unencrypted userID

portion of each block. Based on the userID, the system identifies the blocks that will have

decryptable data. The data retrieval process is transparent to the user based on operations of

the frontend UI 40. The source of the data is not expressly revealed to the user. Data is retrieved

from the blockchain 20, 30, and decrypted in memory 50. Once decrypted in memory 50, the

plaintext data is represented to the user on the frontend UI 40.

WO 2021/178719 PCT/US2021/020947

[0050] Where the user makes changes to previously entered data 48, the changes are made in

memory 52, encrypted and put into either a new block 46 or an edit block 54 on a branch

blockchain 30 based on embodiment implemented and/or the type of data being modified. In

some embodiments without branch blockchains 30, edited data goes in new block 46 and is

appended to the main blockchain 20.

[0051] Data security is maintained through keeping unencrypted data off hard disks. The

window for an attacker to consume the data is significantly narrower than systems that transmit

unencrypted data or store unencrypted data.

[0052] FIG. 5 is a flowchart illustrating a method of appending data to the blockchain. Users

append data to the blockchain via frontend UI. Legitimate appending can be initiated only

through the frontend UI, by a logged in user, whom has entered log in credentials. In some

embodiments, Cryptographic keypairs enforce the ability to append to the blockchain. The

program code that accesses the keypairs in the frontend UI cannot be executed without being

logged in. Thus, in step 502 the system ascertains the current user's credentials. The credentials

can be inspected through a number of means including multi-factor authentication (MFA). A

non-exhaustive list of factors may include geolocation locked (e.g., the location of the device

using the frontend UI), second device locked, external time-to-live codes, biometric key, and

login credentials.

[0053] In step 504, the local node establishes a secure tunnel (e.g., SSH and/or SCP encrypted

tunnel formats) with a first server via login information. In some embodiments, the first server

may be referred to as an arbiter server . The arbiter server is configured to coordinate block

ordering across multiple simultaneous attempts at appending to the blockchain by a number of

nodes. In step 506, the local node, via the frontend UI, receives input data and stores the data

as a variable in local system memory. Display of the new data on the frontend UI is performed

via access to the memory. The new data, in plaintext form, is not stored on the local disk drive

WO 2021/178719 PCT/US2021/020947

of the local node. Whether the input data is appended to the main blockchain or a branch

blockchain is a function of the data retrieval process (discussed in further detail below).

[0054] Based on an appending request by a local node, in step 508, an arbiter server generates

a new block file or folder and synchronizes file or folder names with the local node. The arbiter

server maintains the linear ordering of the blocks on the blockchain. Where the arbiter server

generates a new block file, the arbiter server has established the local node's request into a

given position on the blockchain. At this stage, the new block file or folder does not include

any payload data. In an alternate embodiment, the local node first creates the new block

file/folder and obtains a naming component from the arbiter server that establishes the linked

list reference to the last block. During generation of the new block, the last block may change

based on other nodes submitting blocks. The name of the new block is dynamically modified

throughout generation to update reference to the last block.

[0055] This process does not change regardless of which portion of the blockchain is being

appended to. Regardless of where the new block goes, there is still a new block on some chain.

The naming convention of the new block indicates the order of the block in the blockchain.

The names of the blocks are generated dynamically in order to accommodate multiple nodes

simultaneously attempting to append data. In some embodiments, the block file/folder naming

convention includes adding the "_x" to the end of the name, where x is the last block + ".bl"

(e.g., a file type designation). The file type designation ".bl" is an arbitrary choice, and any file

name extension could be used. The system is configured to recognize particular file type

designations based on system design. The new block is named using the last block number.

[0056] In step 510, the local node synchronizes the last block with the arbiter server to ensure

the node has the most recent copy by comparing latest hash. In step 512, identifying data is

inserted into the file/folder for the new block. Identifying data includes: a hash of the last block

is inserted into the new block file, the userD of the logged in user, a new block hash, and a

WO 2021/178719 PCT/US2021/020947

time/date stamp. The identifying data may be indicated in a header portion of the new block

file or via use of delimiters. The synchronizer is enabled to re-order blocks when necessary

(e.g., due to simultaneous submission) and ensures last hash integrity. The use of a last block

integer counter updates file names during the appending process (in some embodiments, the

update further includes the last hash). This file is also locked to a permission of 000 to ensure

it cannot be altered by outside sources. In some embodiments, the local node reorders blocks

locally based on time stamps of each received block.

[0057] In some embodiments, all portions of a block are encrypted in the block except the ID,

last hash and hash. In the new block system, logging information will also be included in the

block itself The block includes an ID (last block #), last hash from the previous block, new

hash, time/date stamp, logged username who created the block, the group affiliation and all

new data to be encrypted.

[0058] Synchronization is a background process initiated by a separate software utility (per

node) and is automatic. No user input is required. Synchronization loads at startup when a

computer is rebooted/turned on and runs silently in the background, synchronization necessary

missing or new blocks. The synchronization enables allows new blocks created during periods

where no internet is available to be uploaded to the server, cloud and thereby available to other

nodes. Renaming/re-ordering by block number in the file name is done automatically if needed

and sorted by time/date stamp. Where the timestamps are encrypted, the blocks are decrypted

top evaluate the timestamps and then re-encrypted and renamed using the new blocker ordering

number.

[0059] In step 514, the local node encrypts (in memory) and writes the plaintext new data into

ciphertext in the payload of the new block file/folder. The system does not encrypt the

identifying data such as the last/new hash, user identification. In some embodiments, and the

time/date is similarly not encrypted. In some embodiments, the new data may be written to the

WO 2021/178719 PCT/US2021/020947

local copy of the new block file/folder prior to encryption, or vice-versa. In this manner, the

plaintext of the new data does not exist outside of local system memory for more time than

required to encrypt the plaintext.

[0060] The encryption is performed using a user associated key. In some embodiments, the

user associated key is the private key or the user associated cryptographic keypair. In some

embodiments, the key used to encrypt the new data is a separate unrelated key that indicates a

permission level (e.g., all users within a given sub-class of users share a cipher key). Users in

various levels of a hierarchy of users may have multiple cipher keys based on the level of

permissions required to access the data. Examples of suitable encryption methods include

SHA3-512 bit and AES-128 or 256 bit level encryption. In some embodiments, the system uses

random strong passwords and hardware key lookup in a triple nested array. In some

embodiments, the same, single cipher key is used across all permission levels and a given user's

"key" instead refers to an association to block numbers that the system will implement the

single cipher key upon to decrypt for that user. In those embodiments, the user's key is a matter

of protocol permissions as opposed to cryptographic relationships.

[0061] In step 516, the last block is again synchronized between the local node and the arbiter

server to determine that the local node still has the most recent version. In step 518, the new

block is saved to disk on the local node. In step 520, the local node uploads the new block as

saved to the arbiter server via the secure communication tunnel. Integrity is constantly checked

to ensure the last block is truly the last block (e.g., if during the save process the last block

changes from 60 to 61, then the node will write the block as 62, upload it and then upload the

new last block file with the number 62). The synchronizer is there just in case two identically

numbered blocks are attempted to be written at the same time.

WO 2021/178719 PCT/US2021/020947

[0062] In step 522, the new block is synchronized with other nodes and a second server. In

some embodiments, the second server may be referred to as a cloud server. In step 524, a

success or failure message is issued to the participant devices.

[0063] Blocks are transmitted to the server and cloud drive in near real time on all nodes, the

block exists on the server and backup drive. The node downloads the block back and then reads

the encrypted data into an array (in memory). The data is then decrypted in the array. The last

block is appended twice - once before the block data is written (in step 512) in and again (step

516) after the block data is written to ensure the given block is truly the last block. If the new

last block is not on the server/backup drive yet, the arbiter server generates an error and a small

wait time is in place to then try again. The synchronizer ensures no duplicate blocks exist and

performs re-ordering if any two nodes just happen to write the same block at the same time

(down to the millisecond) - if so, the time/date stamp is used to ensure order (again, down to

the millisecond). The earliest time is given preference.

[0064] FIG. 6 is a block diagram of an arbiter server 56 in a peer network 58. The peer network

56 includes a number of distributed nodes, or peer nodes 60. The peer nodes 60 synchronize

with copies of the blockchains 20 stored on both the arbiter server 58 and the cloud server 62.

For a local node to operate on the peer network 58, the peer nodes 60 do not necessarily each

have to store the entire, or most up to date versions of the blockchain 20.

[0065] Synchronization of the peer nodes 60 occurs at regular intervals while the peer nodes

60 are communicating with the network; however, a given node 60 that has been offline for

some time will not necessarily have the most, up to date version of the blockchain 20. Where

a node is rejoining the network after a period of inactivity, synchronization causes the node to

receive all missing blocks. In some embodiments, the peer nodes 60 communicate directly

between one another while executing a periodic synchronization process on the blockchain data

and obtain updated synchronization data from amongst one another.

WO 2021/178719 PCT/US2021/020947

[0066] Synchronization is an analog process to consensus conducted in traditional

cryptocurrency based blockchains. Through synchronization, the immutability of the

blockchain 20, 30 is enforced.

[0067] FIG. 7 is a flowchart illustrating a method of legitimate data retrieval from the

blockchain. A user of the frontend UI is not made expressly aware of the presence of the

blockchain. Data requests of data on the blockchain can be made in a number of ways based

on the configuration of the frontend UI. However, ultimately, the frontend UI operates using a

search function. The search query used may be user generated or interface generated based on

configuration and each given use case.

[0068] Similarly to appending data, users must be logged in to the frontend UI in order to

retrieve data as plaintext. Anyone with access to the blockchain may view the data therein, but

the data is stored as ciphertext and is incomprehensible to those without an associated cipher

key that is accessed (indirectly) via the frontend UI. Thus, in step 702, the local node verifies

user credentials in the same manner as in step 502 of Fig. 5.

[0069] Users have varying levels of permissions. In some embodiments, users are only able to

make requests of data they appended to the blockchain. In some embodiments, users are only

able to make requests of data within their user class (or of lower tier user classes). User class

tiers may be sideways -- that is, even a highest tier user in one branch may not have access to

data appended by users of a sideways (but lower) user class (e.g., a CEO is prevented from

accessing data entered by HR regarding confidential personnel complaints).

[0070] In step 704, the system defines the search query. If the frontend UI is looking to fill a

particular field, then the search query may be defined by the frontend UI. Specifically, when

data is entered in the related field, a unique code may be appended to the data that corresponds

directly to a search query. Thus, the search query will only be satisfied by data including the

unique code. Search results for the query will have a single result and the UI element retrieves

WO 2021/178719 PCT/US2021/020947

the proper data. In some embodiments, the search query is less particular, and a given user may

be searching the blockchain for desired data using other techniques.

[0071] In step 706, the local node loads portions of the blockchain that may be decrypted by

that user and stores the plaintext in local memory. The blocks that are loaded into node local

memory may be either a local copy stored on the local disk or from either the arbiter server or

the cloud server. The portions of the blockchain that may be decrypted by the given user are

indicated based on the unencrypted userTD recorded in each block.

[0072] In step 708, the local node decrypts the blocks stored in memory. The decryption makes

use of an appropriate cipher key held by the local node and authorized by the active user.

Decryption of the blockchain may occur in parallel because there is a separate file for each

block. The encryption is not blockchain wide (e.g., every character of the blockchain) but rather

performed on a per block basis.

[0073] In step 710, the search query is applied to the plaintext of the decrypted blocks. Where

the blockchain has become too large for the user to store entirely in memory, the search query

may be applied to the blocks as each is decrypted. The searching node discards blocks from

memory where a search engine operating with the search query is below a threshold confidence

or relevance score on the plaintext of the given block. In contrast to the described techniques,

databases are generally encrypted or decrypted in their entirety as opposed to on an entry-by

entry basis as described herein. Encryption/encryption on the block level is more discrete and

enables more efficient data processing. Additionally, each data element in a database tends to

have a larger data size and is therefore more cumbersome both algorithmically and individually.

[0074] The threshold confidence is based on an applied search algorithm. Where the search

engine makes use of exact matches (e.g., seeking specific pointer codes) plaintext blocks that

are below exact matches may be discarded. The search engine may make use of a keyword

search or a knowledge graph wherein results are given confidence or relevance ratings

WO 2021/178719 PCT/US2021/020947

connected to how connected a given result is the initial keyword search or how related the

given result is based on the knowledge graph. Regardless of the search engine style used, a

threshold filter is applied to results in each block. Where a given block does not include any

plaintext content that is above the threshold confidence or relevance score, there is little reason

to retain that data in limited memory space. Accordingly, the low confidence/relevance score

plaintext data is discarded.

[0075] As one block is discarded, a new block may be read into memory, decrypted and

searched (the results of the search are discarded or kept in memory as applicable). "Discarding"

refers to clearing relevant space in the volatile memory. When a decrypted block is discarded,

the original block remains stored in non-volatile storage in encrypted form. However, the

plaintext version is gone. In step 712, the search results are presented via the frontend UI.

[0076] FIG. 8 is a screen shot of a data entry interface and an associated blockchain. In some

embodiments, the blockchain data structure is largely invisible to average users. That is that

the connection of the data represented in the fields and the encrypted data in the blockchain

data structure does not need to be displayed to the user via a user interface for function of the

user interface. For example, depicted in the figure is a data entry interface 800 for a credit card

application. As a user enters data into the fields 802 of the credit card application form 804,

this data is converted into an encrypted block 806. In some embodiments, a new block is

generated for each field 802 and generated each time the user navigates away from that field

(e.g., clicks on another field).

[0077] New blocks are generated in response to a change in the field 802. The change in the

field 802 may be detected via the user interface application. Specifically, the input interface

identifies that changes had been made based on data changed in memory (e.g., keystroke

detection or as part of the process of changing data in memory). Alternatively, changes may be

detected based on encrypting the current data in memory and comparing to data in the

WO 2021/178719 PCT/US2021/020947

encrypted blocks in non-volatile storage. Where there is are discrepancies, the data had been

changed and the node generates a new block.

[0078] In some embodiments, rather than generate a single block per field 802, a single block

is used for the entire form 804. In addition to the data entered by the user, the viewer application

may automatically include pointer data that is used to indicate which fields the user entered

data is connected with.

[0079] On the right side of the figure, a portion of the blockchain data structure is depicted

808. The blocks 806 shown update as a user completes the credit card intake form on the user

interface of the application. Notably, the user ID column 810 on the left side of the depiction

of the blockchain data structure indicates that numerous users are adding to the blockchain

contemporaneously. Each are performing independent data entry tasks.

[0080] FIG. 9 is a screen shot of a blockchain viewer application 900 that draws from a

blockchain. Depicted in the screenshot is a viewing page for an embodiment of the blockchain

viewer application 900. The pie charts and tables depicted illustrate an example of structured

data from the blockchain data structure that indicates distribution of credit card accounts

nationwide and over a time-series.

[0081] The example specifically calls credit card data for a large number of customer accounts

and displays the data in a single location. The depicted data is automatically retrieved when the

page is accessed. Each representation of data is a graphical conversion of source data extracted

from relevant portions of the blockchain data structure. Where a given user of the application

has permissions necessary to decrypt the relevant portions of the blockchain, those portions are

drawn into memory, decrypted, then applied to the viewer application as input for functions

that display the recorded data in a particular manner.

[0082] The data called upon from the blockchain data structure is a set of flat files that are

comparatively small and thus calling up this data is quick. The function and manner of

WO 2021/178719 PCT/US2021/020947

representation of the data is bound in the viewer application itself Unlike many applications

of database software, where stored data includes cumbersome data handling code (e.g., how

data should be keyed, how the data may be presented, etc.), the handling of the data in the flat

files is performed by the viewer application itself The shift of the handling to the viewer

application from the data itself makes each data element more lightweight and reduces overall

processing time/load to call and present data.

[0083] FIG. 10 is a high-level block diagram showing an example of a processing device 1000

that can represent a system to run any of the methods/algorithms described above. A system

may include two or more processing devices such as represented in Fig. 10, which may be

coupled to each other via a network or multiple networks. A network can be referred to as a

communication network.

[0084] In the illustrated embodiment, the processing device 1000 includes one or more

processors 810, digital storage 1011, a communication device 1012, and one or more

input/output (1/0) devices 1013, all coupled to each other through an interconnect 1014. The

interconnect 1014 may be or include one or more conductive traces, buses, point-to-point

connections, controllers, scanners, adapters and/or other conventional connection devices.

Each processor 1010 may be or include, for example, one or more general-purpose

programmable microprocessors or microprocessor cores, microcontrollers, application specific

integrated circuits (ASICs), programmable gate arrays, or the like, or a combination of such

devices. The processor(s) 1010 control the overall operation of the processing device 1000.

Digital Storage 1011 may be or include one or more physical storage devices, which may be in

the form of random access memory (RAM), read-only memory (ROM) (which may be erasable

and programmable), flash memory, miniature hard disk drive, or other suitable type of storage

device, or a combination of such devices. Digital storage 1011 may store data and instructions

that configure the processor(s) 1010 to execute operations in accordance with the techniques

WO 2021/178719 PCT/US2021/020947

described above. The communication device 1012 may be or include, for example, an Ethernet

adapter, cable modem, Wi-Fi adapter, cellular transceiver, Bluetooth transceiver, or the like, or

a combination thereof. Depending on the specific nature and purpose of the processing device

1000, the 1/0 devices 1013 can include devices such as a display (which may be a touch screen

display), audio speaker, keyboard, mouse or other pointing device, microphone, camera, etc.

[0085] Unless contrary to physical possibility, it is envisioned that (i) the methods/steps

described above may be performed in any sequence and/or in any combination, and that (ii) the

components of respective embodiments may be combined in any manner.

[0086] The techniques introduced above can be implemented by programmable circuitry

programmed/configured by software and/or firmware, or entirely by special-purpose circuitry,

or by a combination of such forms. Such special-purpose circuitry (if any) can be in the form

of, for example, one or more application-specific integrated circuits (ASICs), programmable

logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.

[0087] Software or firmware to implement the techniques introduced here may be stored on a

machine-readable storage medium and may be executed by one or more general-purpose or

special-purpose programmable microprocessors. A "machine-readable medium", as the term

is used herein, includes any mechanism that can store information in a form accessible by a

machine (a machine may be, for example, a computer, network device, cellular phone, personal

digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.). For

example, a machine-accessible medium includes recordable/non-recordable media (e.g., read

only memory (ROM); random access memory (RAM); magnetic disk storage media; optical

storage media; flash memory devices; etc.), etc.

[0088] Physical and functional components (e.g., devices, engines, modules, and data

repositories, etc.) associated with processing device 1000 can be implemented as circuitry,

firmware, software, other executable instructions, or any combination thereof. For example,

WO 2021/178719 PCT/US2021/020947

the functional components can be implemented in the form of special-purpose circuitry, in the

form of one or more appropriately programmed processors, a single board chip, a field

programmable gate array, a general-purpose computing device configured by executable

instructions, a virtual machine configured by executable instructions, a cloud computing

environment configured by executable instructions, or any combination thereof. For example,

the functional components described can be implemented as instructions on a tangible storage

memory capable of being executed by a processor or other integrated circuit chip (e.g.,

software, software libraries, application program interfaces, etc.). The tangible storage

memory can be computer readable data storage. The tangible storage memory may be volatile

or non-volatile memory. In some embodiments, the volatile memory may be considered "non

transitory" in the sense that it is not a transitory signal. Memory space and storages described

in the figures can be implemented with the tangible storage memory as well, including volatile

or non-volatile memory.

[0089] Note that any and all of the embodiments described above can be combined with each

other, except to the extent that it may be stated otherwise above or to the extent that any such

embodiments might be mutually exclusive in function and/or structure.

[0090] Although the present invention has been described with reference to specific exemplary

embodiments, it will be recognized that the invention is not limited to the embodiments

described, but can be practiced with modification and alteration within the spirit and scope of

the appended claims. Accordingly, the specification and drawings are to be regarded in an

illustrative sense rather than a restrictive sense.

WO 2021/178719 PCT/US2021/020947

CLAIMS

1. A data storage method comprising:

receiving new data via an input interface on a local blockchain node;

storing the new data as plaintext in local memory while displaying on a user interface;

writing the new data as encrypted ciphertext on local non-volatile storage as a new

block on a local copy of a blockchain data structure; and

transmitting the new block to a peer network to be appended to respective blockchain

data structures throughout the peer network.

2. The method of claim 1, wherein each block on the local blockchain node comprises a flat

file including a naming convention that designates block order in the local blockchain node,

the method further comprising:

receiving, at the local blockchain node through the peer network, a second new block;

and

ordering the second new block on the local blockchain node based on the naming

convention.

3. The method of claim 2, wherein each block on the local blockchain node further includes a

timestamp, the method further comprising:

in response to the new block and the second new block having a matching block order

as designated by the naming convention, disambiguating, by the local blockchain node, the

new block and the second new block by creation order using the timestamp; and

renaming either of the new block or the second new block based on the naming

convention signifying which block was created subsequent to the other.

4. The method of claim 1, wherein each block on the local blockchain node comprises a flat

file including a naming convention that designates block order in the local blockchain node,

the method further comprising:

connecting, by the local blockchain node, to the peer network after an offline period;

and

in response to said connecting, syncing, by the local blockchain node, copies of the

blockchain data structure with the peer network beginning with the most recent blocks.

WO 2021/178719 PCT/US2021/020947

5. The method of claim 4, wherein said writing and transmitting steps are performed prior to

completion of said syncing.

6. The method of claim 1, further comprising:

executing a blockchain viewing application on the local blockchain node, the

blockchain viewing application configured to verify a set of user login credentials for a first

user, the first user having a first user key;

identifying a subset of the blockchain data structure that is decryptable by the first

user key;

loading the subset of the blockchain data structure into local memory on the local

blockchain node; and

decrypting the subset of the blockchain in local memory into plaintext.

7. The method of claim 6, further comprising:

identifying, by the blockchain viewing application, a physical location of the local

blockchain node, and whereby the subset of the blockchain data structure that is decryptable

by the first user key is subject to whether the physical location of the local blockchain node

falls within a predetermined geofence.

8. The method of claim 6, further comprising:

receiving a search query from the first user via a graphic user interface of a

blockchain viewing application;

applying the search query to the plaintext; and

displaying, by blockchain viewing application, search results in memory to the first

user.

9. The method of claim 6, further comprising:

displaying, via the blockchain viewing application, a graphic user interface including

data field pointers; and

populating the data field pointers from the decrypted subset of the blockchain data

structure in local memory.

WO 2021/178719 PCT/US2021/020947

10. A secure data retrieval method comprising:

maintaining a copy of a blockchain data structure on a local blockchain node, wherein

the blockchain data structure includes a set of encrypted blocks of data that are linked to one

another in order;

executing a blockchain viewing application on a local blockchain node, the

blockchain viewing application configured to verify a set of user login credentials for a first

user, the first user having a first user key;

identifying a subset of the blockchain data structure that is decryptable by the first

user key;

loading the subset of the blockchain into local memory on the local blockchain node;

and

decrypting the subset of the blockchain in local memory into plaintext.

11. The method of claim 10, further comprising:

identifying, by the blockchain viewing application, a physical location of the local

blockchain node wherein the subset of the blockchain data structure that is decryptable by the

first user key is subject to whether the physical location of the local blockchain node falls

within a predetermined geofence.

12. The method of claim 10, further comprising:

receiving a search query from the first user via a graphic user interface of a

blockchain viewing application;

applying the search query to the plaintext; and

displaying, by blockchain viewing application, search results in memory to the first

user.

13. The method of claim 10, further comprising:

displaying, via the blockchain viewing application, a graphic user interface including

data field pointers; and

populating the data field pointers from the decrypted subset of the blockchain data

structure in local memory.

14. A system of data storage comprising:

a processor implemented on a local blockchain node;

WO 2021/178719 PCT/US2021/020947

a non-volatile data store including a copy of a blockchain data structure, wherein data

elements of the blockchain data structure are encrypted; and

a memory including instructions that when executed cause the processor to:

receive new data on the local blockchain node;

store the new data as plaintext in the memory while displaying on a user

interface;

write the new data as encrypted ciphertext the non-volatile data store as a new

block on to the copy of the blockchain data structure; and

transmit the new block to a peer network to be appended to respective

blockchain data structures throughout the peer network.

15. The system of claim 14, wherein each block on the blockchain data structure comprises a

flat file including a naming convention that designates block order in the local blockchain

node, the method further comprising:

receive, at the local blockchain node through the peer network, a second new block;

and

order the second new block in the non-volatile data store based on the naming

convention.

16. The system of claim 15, wherein each block on the local blockchain node further includes

a timestamp, the memory further including instructions that when executed cause the

processorto:

in response to the new block and the second new block having a matching block order

as designating by the naming convention, disambiguate, by the local blockchain node, the

new block and the second new block by creation order using the timestamp; and

rename either of the new block or the second new block based on the naming

convention signifying which block was created subsequent the other.

17. The system of claim 14, wherein each block on the local blockchain node comprises a flat

file including a naming convention that designates block order in the local blockchain node,

the memory further including instructions that when executed cause the processor to:

connect, by the local blockchain node, to the peer network after an offline period; and

in response to the connection, syncing, by the local blockchain node, copies of the

blockchain data structure with the peer network beginning with the most recent blocks.

WO 2021/178719 PCT/US2021/020947

18. The system of claim 14, the memory further including instructions that when executed

cause the processor to:

executing a blockchain viewing application on the local blockchain node, the

blockchain viewing application configured to verify a set of user login credentials for a first

user, the first user having a first user key;

identifying a subset of the blockchain data structure that is decryptable by the first

user key;

loading the subset of the blockchain data structure into the memory on the local

blockchain node; and

decrypting the subset of the blockchain data structure in the memory into plaintext.

19. The system of claim 18, further including:

a location sensor configured to identify a physical location of the local blockchain

node via GPS or IP tracing, and whereby the subset of the blockchain data structure that is

decryptable by the first user key is subject to whether the physical location of the local

blockchain node falls within a predetermined geofence.

20. The system of claim 18, the memory further including instructions that when executed

cause the processor to:

receive a search query from the first user via a graphic user interface of a blockchain

viewing application;

apply the search query to the plaintext; and

display, by blockchain viewing application, search results in the memory to the first

user.

21. The system of claim 18, the memory further including instructions that when executed

cause the processor to:

display, via the blockchain viewing application, a graphic user interface including

data field pointers; and

populate the data field pointers from the decrypted subset of the blockchain data

structure in the memory.

	Abstract
	Description
	Claims
	Drawings

