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Techniques for managing temporal dependencies between
sets of foreign resources are disclosed, including: allocating,
in a runtime environment, a segment of foreign memory to
a first memory session, the runtime environment being
configured to use a garbage collector to manage memory in
a heap, and the foreign memory including off-heap memory
that is not managed by the garbage collector; opening, in the
runtime environment, a second memory session that
descends from the first memory session; while the second
memory session is open, encountering a request to close the
first memory session; responsive to encountering the request
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Source Code Computing Architsciure.
Files 108
Compiler Runtime
162 Environment
113
Class Files
163
¥ peatonMatorm
112 1
Virtual Machine
Memory Cias§ Fle Class Loader
Manager Verifier io7
165 108 -
interpreter JIT Compiler
108 10
Appglication Programming ,
Operating System f
Interfaces (APls) P 131 4 |
ey T }
|
_ |




Patent Application Publication

Nov. 2,2023 Sheet 1 of 11

US 2023/0350716 Al

Computing Architeciurs.

Source Code
Files
101
§ ‘S\.;\\\:.“
Compiler
102
{(lass Filas
103
B ‘% . pPwwtionB&tform
112
Virtual Maching
104
Momory Cias§ Fie Class Loader
Manager Verifier 107
105 L1
Interpreter T Compilar
108 108
Application Programming .
Interfaces {APs) Operating System
1o 1

Runtims
Environment

113




Patent Application Publication  Nov. 2, 2023 Sheet 2 of 11 US 2023/0350716 A1
Class File 200
\
\\
Constant Table
201
o & 5 N s
Vaiue Structures Class Information !\.amg and Type
207 fructures tnformation Structures

Field Reference
Structures
205

Method Reference
Structures
206

Ciass Meiadata

27

Figld Structures

208

Method Structures
208

FIG. 2




Patent Application Publication

Virtual Machine Memory Layout

Nov. 2,2023 Sheet 3 of 11

FIG. 3

300
\\.\ |
Shared Area
Per-Class Ares
303
neap Run-ti Field
] _t H E‘ i
302 un-time Method Code e ana
Constant Pool 305 fdethod Data
304 - 306
Thread Area
Thread Structures Thread Structures
308 3t
Program Virtual Machine Program Virtual Machine
Counter Stack Counter Stack
308 318 312 313

US 2023/0350716 Al




Patent Application Publication  Nov. 2, 2023 Sheet 4 of 11 US 2023/0350716 A1

Frame
400

t oeal Variables
441

Operand Stack
402

Run-#me Constant Pool Reference Tabie
483

FIG. 4



Patent Application Publication  Nov. 2, 2023 Sheet 5 of 11 US 2023/0350716 A1

Fégg 5 System 500

/

interface
214

Runtime Environment
502

Program Cade Heap
204 206

Garbage Coliector Resource Manager
508 210

Foreign Resources
212




Patent Application Publication  Nov. 2, 2023 Sheet 6 of 11 US 2023/0350716 A1

FIG. 6A

Open a memory session
602

k4

Allocate a segment of foreign memory to the memory session
604

4

Open a descendant memaory session
606

¥
Encounter a reqguest for a descendant memaory session to borrow
a segment of foreign memory
608

4

Provide a view of the requested segment
614




Patent Application Publication  Nov. 2, 2023 Sheet 7 of 11 US 2023/0350716 A1

Close one or more descendant memory sessions
6516

k4

¥

Encounter a reguest to close the parent memaory session
618

" Does the

No parent memaory session
AAAAAAAA : have at least one open

descendant?

¥ ¥

Decline the reguest Grant the reqguest
622 624




Patent Application Publication  Nov. 2, 2023 Sheet 8 of 11

US 2023/0350716 Al

702

1 <lass ReusablePool |

1
2 private MemorySegment segment;
3

lePool (Memory3ession gession) |

5 segment = MemcrySegment.allocateNative {1000, session:
6 1

-

7

@ Function<long, MemorySegment cator{iMemorySessior

ndant of the

5

/7 check if clientSession
{

10 if tclientSession.isAliveln(seg IOBB]
11 throw new Illegallrgument )i

12

1 return . MemorySegment>() |

15
16
17
18 throw
15 I else {

ply{Long size) |
egment.bytesSize()) |

ncryRrror{};

20 start += size ;
21 // Borrow and owned by
22 X o ol segmant.,asSl

704




Patent Application Publication

Nov. 2,2023 Sheet 9 of 11

US 2023/0350716 Al

706

MemorySession
MemorySession

vateSession

By

pri

long
Lailcc

oY U s 0

[ec N |

(N

L)

p g
-

’

... /7 omitted for
MemorySession.openConfin

brevity

o Y
R A8

ateNative {size,

708




Patent Application Publication

Nov. 2,2023 Sheet 10 of 11

US 2023/0350716 Al

710

foi

Z Seq
2 icBoo

G
/ vublic MemorySegment ac
g 1f {acguired.compe

S try

e N o
U N O

-
o =3Oy
0]
et
I e
@

[E
W

22 erivate vold release(}

{}
23 acquired. comparsind

i

27 MemcrySessicn root =

Mutex muts

o0

new Mut

@ oW N
B 0

segment =
egrent

WOrk on

™Y
.
.
m

W& o
hNg
T

Ny

se mutex

(3]
Ut

36 ... // thread B

37 try {(MemcrySession

28 MemorySegment seq =
39 // work on segmen

40 e

41} // release mutex

o

refndSet {(false,

gsessionA =

meant

lean acguired =

3

qtr re 'M@H‘-_Ory Ses

acguired =

prrelease)

ex;) |

ception():;

{
3et (true,

saion.opendhared{};
1

mutex.

= Memoryie ined/{

gession.borrow(se

Fined{root) )y |

——




Patent Application Publication  Nov. 2,2023 Sheet 11 of 11  US 2023/0350716 Al

E:g{g gg INPUT CURSOR
* Dﬁigw DEVICE CONTROL
s 814 816
|
MAIN STORAGE
MEMORY RS%Z"? DEVICE
806 - g10
BUS
802

COMMUNICATION
PRG;;ESOR INTERFACE
T 818
200
NETWORK
. LINK
820
INTERNET
828
SERVER o
NETWORK e

830 e i




US 2023/0350716 Al

MANAGING TEMPORAL DEPENDENCIES
BETWEEN SETS OF FOREIGN RESOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to co-pending U.S. pat-
ent application Ser. No. 17/733,258, titled “Managing Life-
cycles of Sets of Foreign Resources™ and filed on even date
herewith, the entire contents of which are hereby incorpo-
rated by reference.

[0002]
related to subject matter disclosed in co-pending U.S. patent
application Ser. No. 17/038,766 (Attorney Docket No.
RO0O558NP), titled “Techniques for Accessing Off-Heap
Memory” and filed on Sep. 30, 2020, the entire contents of

This application includes subject matter that is

which are hereby incorporated by reference.
[0003]
related to subject matter disclosed in co-pending U.S. patent
application Ser. No. 17/024,209 (Attorney Docket No.
RO0563NP), titled “Transitioning Between Thread-Confined
Memory Segment Views and Shared Memory Segment
Views” and filed on Sep. 17, 2020, the entire contents of
which are hereby incorporated by reference.

This application includes subject matter that is

TECHNICAL FIELD

[0004]
ment in computer systems. In particular, the present disclo-

The present disclosure relates to resource manage-

sure relates to managing temporal dependencies between
sets of foreign resources such as off-heap memory.

BACKGROUND

[0005]
area of memory from which memory is allocated for runtime

A runtime environment uses a heap, which is an

data (e.g., class instances, arrays, etc.). The runtime envi-
ronment includes a garbage collector that monitors the heap
and frees memory that is no longer in use (e.g., memory
allocated to objects to which there are no longer any strong
references). For example, the Java Runtime Environment
(JRE) includes a Java Virtual Machine (JVM) that uses a
garbage collector to manage data stored in the Java heap.

[0006]
environment seeks to use “foreign” resources, i.e., off-heap

In some cases, a program executing in the runtime

memory that the garbage collector does not manage. Foreign
resources may be “native” to the operating environment that
hosts the runtime environment. For example, native memory
buffers, native function pointers, etc. are “foreign” resources
because they occupy off-heap memory that the garbage
collector does not manage.

[0007]
foreign resources, it is important for program code executing

Because the garbage collector does not manage

in the runtime environment to keep track of when foreign
resources are in use. Deallocating foreign resources that are
still in use can result in unpredictable system behavior, such
as data corruption and/or crashes.
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[0008] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009]
example and not by way of limitation in the figures of the

The embodiments are illustrated by way of
accompanying drawings. References to “an” or “one”
embodiment in this disclosure are not necessarily to the
same embodiment and mean at least one. In the drawings:

[0010] FIG. 1 illustrates an example computing architec-
ture in which techniques described herein may be practiced.
[0011] FIG. 2 is a block diagram illustrating one embodi-

ment of a computer system suitable for implementing meth-
ods and features described herein.

[0012]
memory layout in block diagram form according to an

FIG. 3 illustrates an example virtual machine

embodiment.
[0013] FIG. 4 illustrates an example frame in block dia-

gram form according to an embodiment.

[0014]
example of a system in accordance with one or more

FIG. 5 shows a block diagram that illustrates an

embodiments;

[0015]
tions for managing temporal dependencies between sets of

FIG. 6A & 6B illustrate an example set of opera-

foreign resources in accordance with one or more embodi-
ments;

[0016]
poral dependencies between sets of foreign resources in

FIGS. 7A-7C illustrate examples of managing tem-

accordance with one or more embodiments; and

[0017]
computer system in accordance with one or more embodi-

FIG. 8 shows a block diagram that illustrates a
ments.

DETAILED DESCRIPTION

[0018]
explanation and to provide a thorough understanding,

In the following description, for the purposes of

numerous specific details are set forth. One or more embodi-
ments may be practiced without these specific details. Fea-
tures described in one embodiment may be combined with
features described in a different embodiment. In some
examples, well-known structures and devices are described
with reference to a block diagram form, in order to avoid
unnecessarily obscuring the present invention.

[0019]
reference purposes only and should not be construed as

The following table of contents is provided for

limiting the scope of one or more embodiments.
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1. GENERAL OVERVIEW
2. ARCHITECTURAL OVERVIEW
2.1. EXAMPLE ARCHITECTURE
2.2. EXAMPLE CLASS FILE STRUCTURE

2.3. EXAMPLE VIRTUAL MACHINE
ARCHITECTURE

2.4. LOADING, LINKING, AND INITIALIZING
3. EXAMPLE SYSTEM
3.1. SYSTEM COMPONENTS
3.2. USER INTERFACE

4. MANAGING TEMPORAL DEPENDENCIES
BETWEEN SETS OF FOREIGN RESOURCES

5. EXAMPLE EMBODIMENTS

6. COMPUTER NETWORKS AND CLOUD
NETWORKS

7. HARDWARE OVERVIEW
8. MISCELLANEOUS; EXTENSIONS

1. General Overview

[0020] One or more embodiments manage temporal
dependencies between sets of foreign resources. Specifi-
cally, one or more embodiments prevent foreign resources
from being deallocated when one or more memory sessions
still have access to them. A runtime environment allocates a
set of foreign resources to a memory session. Additional
memory sessions may be opened as descendants of that
memory session (the “parent” memory session), and subsets
of the foreign resources can be made available to the
descendants. As long as the parent memory session still has
any open descendants, it cannot be closed. Keeping the
parent memory session open ensures that the descendant(s)
won’t attempt to access foreign resources that have been
deallocated. Thus, one or more embodiments improve sys-
tem stability and reliability.

[0021] One or more embodiments described in this Speci-
fication and/or recited in the claims may not be included in
this General Overview section.

2. Architectural Overview

2.1. Example Architecture

[0022] FIG. 1 illustrates an example architecture in which
techniques described herein may be practiced. Software
and/or hardware components described with relation to the
example architecture may be omitted or associated with a
different set of functionality than described herein. Software
and/or hardware components, not described herein, may be
used within an environment in accordance with one or more
embodiments. Accordingly, the example environment
should not be constructed as limiting the scope of any of the
claims.
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[0023] As illustrated in FIG. 1, a computing architecture
100 includes source code files 101 which are compiled by a
compiler 102 into class files 103 representing the program to
be executed. The class files 103 are then loaded and executed
by an execution platform 112, which includes a runtime
environment 113, an operating system 111, and one or more
application programming interfaces (APIs) 110 that enable
communication between the runtime environment 113 and
the operating system 111. The runtime environment 113
includes a virtual machine 104 comprising various compo-
nents, such as a memory manager 105 (which may include
a garbage collector), a class file verifier 106 to check the
validity of class files 103, a class loader 107 to locate and
build in-memory representations of classes, an interpreter
108 for executing the virtual machine 104 code, and a
just-in-time (JIT) compiler 109 for producing optimized
machine-level code.

[0024] In an embodiment, the computing architecture 100
includes source code files 101 that contain code that has
been written in a particular programming language, such as
Java, C, C++, C#, Ruby, Perl, and so forth. Thus, the source
code files 101 adhere to a particular set of syntactic and/or
semantic rules for the associated language. For example,
code written in Java adheres to the Java Language Specifi-
cation. However, since specifications are updated and
revised over time, the source code files 101 may be associ-
ated with a version number indicating the revision of the
specification to which the source code files 101 adhere. The
exact programming language used to write the source code
files 101 is generally not critical.

[0025] Invarious embodiments, the compiler 102 converts
the source code, which is written according to a specification
directed to the convenience of the programmer, to either
machine or object code, which is executable directly by the
particular machine environment, or an intermediate repre-
sentation (“virtual machine code/instructions™), such as
bytecode, which is executable by a virtual machine 104 that
is capable of running on top of a variety of particular
machine environments. The virtual machine instructions are
executable by the virtual machine 104 in a more direct and
efficient manner than the source code. Converting source
code to virtual machine instructions includes mapping
source code functionality from the language to virtual
machine functionality that utilizes underlying resources,
such as data structures. Often, functionality that is presented
in simple terms via source code by the programmer is
converted into more complex steps that map more directly to
the instruction set supported by the underlying hardware on
which the virtual machine 104 resides.

[0026] In general, programs are executed either as a com-
piled or an interpreted program. When a program is com-
piled, the code is transformed globally from a first language
to a second language before execution. Since the work of
transforming the code is performed ahead of time; compiled
code tends to have excellent run-time performance. In
addition, since the transformation occurs globally before
execution, the code can be analyzed and optimized using
techniques such as constant folding, dead code elimination,
inlining, and so forth. However, depending on the program
being executed, the startup time can be significant. In
addition, inserting new code would require the program to
be taken offline, re-compiled, and re-executed. For many
dynamic languages (such as Java) which are designed to
allow code to be inserted during the program’s execution, a
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purely compiled approach may be inappropriate. When a
program is interpreted, the code of the program is read
line-by-line and converted to machine-level instructions
while the program is executing. As a result, the program has
a short startup time (can begin executing almost immedi-
ately), but the run-time performance is diminished by per-
forming the transformation on the fly. Furthermore, since
each instruction is analyzed individually, many optimiza-
tions that rely on a more global analysis of the program
cannot be performed.

[0027] In some embodiments, the virtual machine 104
includes an interpreter 108 and a JIT compiler 109 (or a
component implementing aspects of both), and executes
programs using a combination of interpreted and compiled
techniques. For example, the virtual machine 104 may
initially begin by interpreting the virtual machine instruc-
tions representing the program via the interpreter 108 while
tracking statistics related to program behavior, such as how
often different sections or blocks of code are executed by the
virtual machine 104. Once a block of code surpasses a
threshold (is “hot”), the virtual machine 104 invokes the JIT
compiler 109 to perform an analysis of the block and
generate optimized machine-level instructions which
replaces the “hot” block of code for future executions. Since
programs tend to spend most time executing a small portion
of overall code, compiling just the “hot” portions of the
program can provide similar performance to fully compiled
code, but without the start-up penalty. Furthermore,
although the optimization analysis is constrained to the
“hot” block being replaced, there still exists far greater
optimization potential than converting each instruction indi-
vidually. There are a number of variations on the above
described example, such as tiered compiling.

[0028] In order to provide clear examples, the source code
files 101 have been illustrated as the “top level” represen-
tation of the program to be executed by the execution
platform 112. Although the computing architecture 100
depicts the source code files 101 as a “top level” program
representation, in other embodiments the source code files
101 may be an intermediate representation received via a
“higher level” compiler that processed code files in a dif-
ferent language into the language of the source code files
101. Some examples in the following disclosure assume that
the source code files 101 adhere to a class-based object-
oriented programming language. However, this is not a
requirement to utilizing the features described herein.
[0029] In an embodiment, compiler 102 receives as input
the source code files 101 and converts the source code files
101 into class files 103 that are in a format expected by the
virtual machine 104. For example, in the context of the
JVM, the Java Virtual Machine Specification defines a
particular class file format to which the class files 103 are
expected to adhere. In some embodiments, the class files 103
contain the virtual machine instructions that have been
converted from the source code files 101. However, in other
embodiments, the class files 103 may contain other struc-
tures as well, such as tables identifying constant values
and/or metadata related to various structures (classes, fields,
methods, and so forth).

[0030] The following discussion assumes that each of the
class files 103 represents a respective “class” defined in the
source code files 101 (or dynamically generated by the
compiler 102/virtual machine 104). However, the aforemen-
tioned assumption is not a strict requirement and will depend
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on the implementation of the virtual machine 104. Thus, the
techniques described herein may still be performed regard-
less of the exact format of the class files 103. In some
embodiments, the class files 103 are divided into one or
more “libraries” or “packages”, each of which includes a
collection of classes that provide related functionality. For
example, a library may contain one or more class files that
implement input/output (I/O) operations, mathematics tools,
cryptographic techniques, graphics utilities, and so forth.
Further, some classes (or fields/methods within those
classes) may include access restrictions that limit their use to
within a particular class/library/package or to classes with
appropriate permissions.

2.2. Example Class File Structure

[0031] FIG. 2 illustrates an example structure for a class
file 200 in block diagram form according to an embodiment.
In order to provide clear examples, the remainder of the
disclosure assumes that the class files 103 of the computing
architecture 100 adhere to the structure of the example class
file 200 described in this section. However, in a practical
environment, the structure of the class file 200 will be
dependent on the implementation of the virtual machine
104. Further, one or more features discussed herein may
modify the structure of the class file 200 to, for example, add
additional structure types. Therefore, the exact structure of
the class file 200 is not critical to the techniques described
herein. For the purposes of Section 2.1, “the class” or “the
present class” refers to the class represented by the class file
200.

[0032] In FIG. 2, the class file 200 includes a constant
table 201, field structures 208, class metadata 207, and
method structures 209. In an embodiment, the constant table
201 is a data structure which, among other functions, acts as
a symbol table for the class. For example, the constant table
201 may store data related to the various identifiers used in
the source code files 101 such as type, scope, contents,
and/or location. The constant table 201 has entries for value
structures 202 (representing constant values of type int,
long, double, float, byte, string, and so forth), class infor-
mation structures 203, name and type information structures
204, field reference structures 205, and method reference
structures 206 derived from the source code files 101 by the
compiler 102. In an embodiment, the constant table 201 is
implemented as an array that maps an index i to structure j.
However, the exact implementation of the constant table 201
is not critical.

[0033] In some embodiments, the entries of the constant
table 201 include structures which index other constant table
201 entries. For example, an entry for one of the value
structures 202 representing a string may hold a tag identi-
fying its “type” as string and an index to one or more other
value structures 202 of the constant table 201 storing char,
byte or int values representing the ASCII characters of the
string.

[0034] In an embodiment, field reference structures 205 of
the constant table 201 hold an index into the constant table
201 to one of the class information structures 203 repre-
senting the class defining the field and an index into the
constant table 201 to one of the name and type information
structures 204 that provides the name and descriptor of the
field. Method reference structures 206 of the constant table
201 hold an index into the constant table 201 to one of the
class information structures 203 representing the class defin-
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ing the method and an index into the constant table 201 to
one of the name and type information structures 204 that
provides the name and descriptor for the method. The class
information structures 203 hold an index into the constant
table 201 to one of the value structures 202 holding the name
of the associated class.

[0035] The name and type information structures 204 hold
an index into the constant table 201 to one of the value
structures 202 storing the name of the field/method and an
index into the constant table 201 to one of the value
structures 202 storing the descriptor.

[0036] In an embodiment, class metadata 207 includes
metadata for the class, such as version number(s), number of
entries in the constant pool, number of fields, number of
methods, access flags (whether the class is public, private,
final, abstract, etc.), an index to one of the class information
structures 203 of the constant table 201 that identifies the
present class, an index to one of the class information
structures 203 of the constant table 201 that identifies the
superclass (if any), and so forth.

[0037] In an embodiment, the field structures 208 repre-
sent a set of structures that identifies the various fields of the
class. The field structures 208 store, for each field of the
class, accessor flags for the field (whether the field is static,
public, private, final, etc.), an index into the constant table
201 to one of the value structures 202 that holds the name
of the field, and an index into the constant table 201 to one
of'the value structures 202 that holds a descriptor of the field.
[0038] In an embodiment, the method structures 209 rep-
resent a set of structures that identifies the various methods
of the class. The method structures 209 store, for each
method of the class, accessor flags for the method (e.g.
whether the method is static, public, private, synchronized,
etc.), an index into the constant table 201 to one of the value
structures 202 that holds the name of the method, an index
into the constant table 201 to one of the value structures 202
that holds the descriptor of the method, and the virtual
machine instructions that correspond to the body of the
method as defined in the source code files 101.

[0039] Inan embodiment, a descriptor represents a type of
a field or method. For example, the descriptor may be
implemented as a string adhering to a particular syntax.
While the exact syntax is not critical, a few examples are
described below.

[0040] In an example where the descriptor represents a
type of the field, the descriptor identifies the type of data
held by the field. In an embodiment, a field can hold a basic
type, an object, or an array. When a field holds a basic type,
the descriptor is a string that identifies the basic type (e.g.,
“B”=byte, “C’=char, “D”=double, “F’=float, “I"=int,
“J”=long int, etc.). When a field holds an object, the descrip-
tor is a string that identifies the class name of the object (e.g.
“L ClassName™). “L.” in this case indicates a reference, thus
“L. ClassName” represents a reference to an object of class
ClassName. When the field is an array, the descriptor
identifies the type held by the array. For example, “[B”
indicates an array of bytes, with “[” indicating an array and
“B” indicating that the array holds the basic type of byte.
However, since arrays can be nested, the descriptor for an
array may also indicate the nesting. For example, “[[L
ClassName” indicates an array where each index holds an
array that holds objects of class ClassName. In some
embodiments, the ClassName is fully qualified and includes
the simple name of the class, as well as the pathname of the
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class. For example, the ClassName may indicate where the
file is stored in the package, library, or file system hosting
the class file 200.

[0041] Inthe case of a method, the descriptor identifies the
parameters of the method and the return type of the method.
For example, a method descriptor may follow the general
form “({ParameterDescriptor}) ReturnDescriptor”, where
the {ParameterDescriptor} is a list of field descriptors rep-
resenting the parameters and the ReturnDescriptor is a field
descriptor identifying the return type. For instance, the string
“V” may be used to represent the void return type. Thus, a
method defined in the source code files 101 as “Object m(int
I, double d, Thread t) { . . . }” matches the descriptor “(1 D
L Thread) L. Object”.

[0042] In an embodiment, the virtual machine instructions
held in the method structures 209 include operations which
reference entries of the constant table 201. Using Java as an
example, consider the following class:

class A

int add12and13() {
return B.addTwo(12, 13);
¥
¥

[0043] In the above example, the Java method
add12and13 is defined in class A, takes no parameters, and
returns an integer. The body of method add12and13 calls
static method addTwo of class B which takes the constant
integer values 12 and 13 as parameters, and returns the
result. Thus, in the constant table 201, the compiler 102
includes, among other entries, a method reference structure
that corresponds to the call to the method B.addTwo. In Java,
a call to a method compiles down to an invoke command in
the bytecode of the JVM (in this case invokestatic as
addTwo is a static method of class B). The invoke command
is provided an index into the constant table 201 correspond-
ing to the method reference structure that identifies the class
defining addTwo “B”, the name of addTwo “addTwo”, and
the descriptor of addTwo “(I DI”. For example, assuming the
aforementioned method reference is stored at index 4, the
bytecode instruction may appear as “invokestatic #4”.
[0044] Since the constant table 201 refers to classes,
methods, and fields symbolically with structures carrying
identifying information, rather than direct references to a
memory location, the entries of the constant table 201 are
referred to as “symbolic references”. One reason that sym-
bolic references are utilized for the class files 103 is because,
in some embodiments, the compiler 102 is unaware of how
and where the classes will be stored once loaded into the
runtime environment 113. As will be described in Section
2.3, eventually the run-time representations of the symbolic
references are resolved into actual memory addresses by the
virtual machine 104 after the referenced classes (and asso-
ciated structures) have been loaded into the runtime envi-
ronment and allocated concrete memory locations.

2.3. Example Virtual Machine Architecture

[0045] FIG. 3 illustrates an example virtual machine
memory layout 300 in block diagram form according to an
embodiment. In order to provide clear examples, the remain-
ing discussion will assume that the virtual machine 104
adheres to the virtual machine memory layout 300 depicted
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in FIG. 3. In addition, although components of the virtual
machine memory layout 300 may be referred to as memory
“areas”, there is no requirement that the memory areas are
contiguous.

[0046] In the example illustrated by FIG. 3, the virtual
machine memory layout 300 is divided into a shared area
301 and a thread area 307. The shared area 301 represents an
area in memory where structures shared among the various
threads executing on the virtual machine 104 are stored. The
shared area 301 includes a heap 302 and a per-class area 303.
In an embodiment, the heap 302 represents the run-time data
area from which memory for class instances and arrays is
allocated. In an embodiment, the per-class area 303 repre-
sents the memory area where the data pertaining to the
individual classes are stored. In an embodiment, the per-
class area 303 includes, for each loaded class, a run-time
constant pool 304 representing data from the constant table
201 of the class, field and method data 306 (for example, to
hold the static fields of the class), and the method code 305
representing the virtual machine instructions for methods of
the class.

[0047] The thread area 307 represents a memory area
where structures specific to individual threads are stored. In
FIG. 3, the thread area 307 includes thread structures 308
and thread structures 311, representing the per-thread struc-
tures utilized by different threads. In order to provide clear
examples, the thread area 307 depicted in FIG. 3 assumes
two threads are executing on the virtual machine 104.
However, in a practical environment, the virtual machine
104 may execute any arbitrary number of threads, with the
number of thread structures scaled accordingly.

[0048] In an embodiment, thread structures 308 includes
program counter 309 and virtual machine stack 310. Simi-
larly, thread structures 311 includes program counter 312
and virtual machine stack 313. In an embodiment, program
counter 309 and program counter 312 store the current
address of the virtual machine instruction being executed by
their respective threads.

[0049] Thus, as a thread steps through the instructions, the
program counters are updated to maintain an index to the
current instruction. In an embodiment, virtual machine stack
310 and virtual machine stack 313 each store frames for their
respective threads that hold local variables and partial
results, and is also used for method invocation and return.
[0050] In an embodiment, a frame is a data structure used
to store data and partial results, return values for methods,
and perform dynamic linking. A new frame is created each
time a method is invoked. A frame is destroyed when the
method that caused the frame to be generated completes.
Thus, when a thread performs a method invocation, the
virtual machine 104 generates a new frame and pushes that
frame onto the virtual machine stack associated with the
thread.

[0051] When the method invocation completes, the virtual
machine 104 passes back the result of the method invocation
to the previous frame and pops the current frame off of the
stack. In an embodiment, for a given thread, one frame is
active at any point. This active frame is referred to as the
current frame, the method that caused generation of the
current frame is referred to as the current method, and the
class to which the current method belongs is referred to as
the current class.

[0052] FIG. 4 illustrates an example frame 400 in block
diagram form according to an embodiment. In order to
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provide clear examples, the remaining discussion will
assume that frames of virtual machine stack 310 and virtual
machine stack 313 adhere to the structure of frame 400.

[0053] In an embodiment, frame 400 includes local vari-
ables 401, operand stack 402, and run-time constant pool
reference table 403. In an embodiment, the local variables
401 are represented as an array of variables that each hold
a value, for example, Boolean, byte, char, short, int, float, or
reference. Further, some value types, such as longs or
doubles, may be represented by more than one entry in the
array. The local variables 401 are used to pass parameters on
method invocations and store partial results. For example,
when generating the frame 400 in response to invoking a
method, the parameters may be stored in predefined posi-
tions within the local variables 401, such as indexes 1-N
corresponding to the first to Nth parameters in the invoca-
tion.

[0054] In an embodiment, the operand stack 402 is empty
by default when the frame 400 is created by the virtual
machine 104. The virtual machine 104 then supplies instruc-
tions from the method code 305 of the current method to
load constants or values from the local variables 401 onto
the operand stack 402. Other instructions take operands
from the operand stack 402, operate on them, and push the
result back onto the operand stack 402. Furthermore, the
operand stack 402 is used to prepare parameters to be passed
to methods and to receive method results. For example, the
parameters of the method being invoked could be pushed
onto the operand stack 402 prior to issuing the invocation to
the method. The virtual machine 104 then generates a new
frame for the method invocation where the operands on the
operand stack 402 of the previous frame are popped and
loaded into the local variables 401 of the new frame. When
the invoked method terminates, the new frame is popped
from the virtual machine stack and the return value is pushed
onto the operand stack 402 of the previous frame.

[0055] In an embodiment, the run-time constant pool
reference table 403 contains a reference to the run-time
constant pool 304 of the current class. The run-time constant
pool reference table 403 is used to support resolution.
Resolution is the process whereby symbolic references in
the constant pool 304 are translated into concrete memory
addresses, loading classes as necessary to resolve as-yet-
undefined symbols and translating variable accesses into
appropriate offsets into storage structures associated with the
run-time location of these variables.

2.4. Loading, Linking, And Initializing

[0056] In an embodiment, the virtual machine 104
dynamically loads, links, and initializes classes. Loading is
the process of finding a class with a particular name and
creating a representation from the associated class file 200 of
that class within the memory of the runtime environment
113. For example, creating the run-time constant pool 304,
method code 305, and field and method data 306 for the class
within the per-class area 303 of the virtual machine memory
layout 300. Linking is the process of taking the in-memory
representation of the class and combining it with the run-
time state of the virtual machine 104 so that the methods of
the class can be executed. Initialization is the process of
executing the class constructors to set the starting state of the
field and method data 306 of the class and/or create class
instances on the heap 302 for the initialized class.



US 2023/0350716 Al

[0057] The following are examples of loading, linking,
and initializing techniques that may be implemented by the
virtual machine 104. However, in many embodiments the
steps may be interleaved, such that an initial class is loaded,
then during linking a second class is loaded to resolve a
symbolic reference found in the first class, which in turn
causes a third class to be loaded, and so forth. Thus, progress
through the stages of loading, linking, and initializing can
differ from class to class. Further, some embodiments may
delay (perform “lazily”) one or more functions of the
loading, linking, and initializing process until the class is
actually required. For example, resolution of a method
reference may be delayed until a virtual machine instruction
invoking the method is executed. Thus, the exact timing of
when the steps are performed for each class can vary greatly
between implementations.

[0058] To begin the loading process, the virtual machine
104 starts up by invoking the class loader 107 which loads
an initial class. The technique by which the initial class is
specified will vary from embodiment to embodiment. For
example, one technique may have the virtual machine 104
accept a command line argument on startup that specifies the
initial class.

[0059] To load a class, the class loader 107 parses the class
file 200 corresponding to the class and determines whether
the class file 200 is well-formed (meets the syntactic expec-
tations of the virtual machine 104). If not, the class loader
107 generates an error. For example, in Java the error might
be generated in the form of an exception which is thrown to
an exception handler for processing. Otherwise, the class
loader 107 generates the in-memory representation of the
class by allocating the run-time constant pool 304, method
code 305, and field and method data 306 for the class within
the per-class area 303.

[0060] In some embodiments, when the class loader 107
loads a class, the class loader 107 also recursively loads the
super-classes of the loaded class. For example, the virtual
machine 104 may ensure that the super-classes of a particu-
lar class are loaded, linked, and/or initialized before pro-
ceeding with the loading, linking and initializing process for
the particular class.

[0061] During linking, the virtual machine 104 verifies the
class, prepares the class, and performs resolution of the
symbolic references defined in the run-time constant pool
304 of the class.

[0062] To verify the class, the virtual machine 104 checks
whether the in-memory representation of the class is struc-
turally correct. For example, the virtual machine 104 may
check that each class except the generic class Object has a
superclass, check that final classes have no sub-classes and
final methods are not overridden, check whether constant
pool entries are consistent with one another, check whether
the current class has correct access permissions for classes/
fields/structures referenced in the constant pool 304, check
that the virtual machine 104 code of methods will not cause
unexpected behavior (e.g. making sure a jump instruction
does not send the virtual machine 104 beyond the end of the
method), and so forth. The exact checks performed during
verification are dependent on the implementation of the
virtual machine 104. In some cases, verification may cause
additional classes to be loaded, but does not necessarily
require those classes to also be linked before proceeding. For
example, assume Class A contains a reference to a static field
of Class B. During verification, the virtual machine 104 may

Nov. 2, 2023

check Class B to ensure that the referenced static field
actually exists, which might cause loading of Class B, but
not necessarily the linking or initializing of Class B. How-
ever, in some embodiments, certain verification checks can
be delayed until a later phase, such as being checked during
resolution of the symbolic references. For example, some
embodiments may delay checking the access permissions for
symbolic references until those references are being
resolved.

[0063] To prepare a class, the virtual machine 104 initial-
izes static fields located within the field and method data 306
for the class to default values. In some cases, setting the
static fields to default values may not be the same as running
a constructor for the class. For example, the verification
process may zero out or set the static fields to values that the
constructor would expect those fields to have during initial-
ization.

[0064] During resolution, the virtual machine 104 dynami-
cally determines concrete memory address from the sym-
bolic references included in the run-time constant pool 304
of the class. To resolve the symbolic references, the virtual
machine 104 utilizes the class loader 107 to load the class
identified in the symbolic reference (if not already loaded).
Once loaded, the virtual machine 104 has knowledge of the
memory location within the per-class area 303 of the refer-
enced class and its fields/methods. The virtual machine 104
then replaces the symbolic references with a reference to the
concrete memory location of the referenced class, field, or
method. In an embodiment, the virtual machine 104 caches
resolutions to be reused in case the same class/name/de-
scriptor is encountered when the virtual machine 104 pro-
cesses another class. For example, in some cases, class Aand
class B may invoke the same method of class C. Thus, when
resolution is performed for class A, that result can be cached
and reused during resolution of the same symbolic reference
in class B to reduce overhead.

[0065] In some embodiments, the step of resolving the
symbolic references during linking is optional. For example,
an embodiment may perform the symbolic resolution in a
“lazy” fashion, delaying the step of resolution until a virtual
machine instruction that requires the referenced class/
method/field is executed.

[0066] During initialization, the virtual machine 104
executes the constructor of the class to set the starting state
of that class. For example, initialization may initialize the
field and method data 306 for the class and generate/
initialize any class instances on the heap 302 created by the
constructor. For example, the class file 200 for a class may
specify that a particular method is a constructor that is used
for setting up the starting state. Thus, during initialization,
the virtual machine 104 executes the instructions of that
constructor.

[0067] In some embodiments, the virtual machine 104
performs resolution on field and method references by
initially checking whether the field/method is defined in the
referenced class. Otherwise, the virtual machine 104 recur-
sively searches through the super-classes of the referenced
class for the referenced field/method until the field/method
is located, or the top-level superclass is reached, in which
case an error is generated.
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3. Example System

3.1. System Components

[0068] FIG. 5 illustrates an example of a system 500 in
accordance with one or more embodiments. As illustrated in
FIG. 5, the system 500 includes a runtime environment 502,
program code 504, a heap 506, a garbage collector 508, a
resource manager 510, foreign resources 512, and an inter-
face 514. In one or more embodiments, the system 500 may
include more or fewer components than the components
illustrated in FIG. 5. The components illustrated in FIG. 5§
may be local to or remote from each other. The components
illustrated in FIG. 5 may be implemented in software and/or
hardware. Each component may be distributed over multiple
applications and/or machines. Multiple components may be
combined into one application and/or machine. Operations
described with respect to one component may instead be
performed by another component.

[0069] Additional embodiments and/or examples relating
to computer networks are described below in the section
titled “Computer Networks and Cloud Networks.”

[0070] In the example illustrated in FIG. 5, a runtime
environment 502 is configured to execute program code 504.
For example, the runtime environment 502 may be a JRE
and the program code 504 may include Java bytecode. The
runtime environment 502 may be configured to execute the
program code 504 using a virtual machine (e.g., a JVM) (not
shown).

[0071] The runtime environment 502 includes compo-
nents that are configured to manage resources generated and
used by the program code 504. Specifically, the runtime
environment 502 includes a heap 506 and a garbage collec-
tor 508. The garbage collector 508 is configured to use
various garbage collection techniques to deallocate memory
in the heap 506 that is no longer being used by the program
code 504. For example, garbage collection techniques per-
formed by the garbage collector 508 may include one or
more of: incremental or “minor” garbage collection; full or
“major” garbage collection; serial garbage collection; par-
allel garbage collection; concurrent mark sweep (CMS);
garbage-first (G1) garbage collection; and/or other garbage
collection techniques.

[0072] Foreign resources 512 are resources that occupy
off-heap memory that the garbage collector 508 does not
manage. Foreign resources 512 may be “native” to the
operating environment that hosts the runtime environment
502. For example, native memory buffers, native function
pointers, handles to open files, sockets, native libraries (e.g.,
using the Linux “dlopen” function to load a native library,
which may be unloaded when no longer needed), etc. are
“foreign” resources because they occupy off-heap memory
that the garbage collector 508 does not manage. Because
foreign resources 512 occupy off-heap memory, examples
described herein with respect to “foreign memory” may
apply to any kind of foreign resources 512.

[0073] In one or more embodiments, a resource manager
510 refers to hardware and/or software configured to per-
form operations described herein for managing temporal
dependencies between sets of foreign resources 512. Some
or all of the functionality of the resource manager 510 may
be implemented in program code 504. Alternatively or
additionally, some or all of the functionality of the resource
manager 510 may be implemented as part of the runtime
environment 502, independent of the program code 504. For
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example, the resource manager 510 may be part of a package
or library that is available to the program code 504.
[0074] In one or more embodiments, one or more com-
ponents of the system 500 are implemented on one or more
digital devices. The term “digital device” generally refers to
any hardware device that includes a processor. A digital
device may refer to a physical device executing an applica-
tion or a virtual machine. Examples of digital devices
include a computer, a tablet, a laptop, a desktop, a netbook,
a server, a web server, a network policy server, a proxy
server, a generic machine, a function-specific hardware
device, a hardware router, a hardware switch, a hardware
firewall, a hardware firewall, a hardware network address
translator (NAT), a hardware load balancer, a mainframe, a
television, a content receiver, a set-top box, a printer, a
mobile handset, a smartphone, a personal digital assistant
(PDA), a wireless receiver and/or transmitter, a base station,
a communication management device, a router, a switch, a
controller, an access point, and/or a client device.

3.2. User Interface

[0075] In one or more embodiments, an interface 514
refers to hardware and/or software configured to facilitate
communications between a user and the runtime environ-
ment 502. For example, the interface 514 may be part of an
integrated development environment (IDE) used to generate
the program code 504.

[0076] The interface 514 renders user interface elements
and receives input via user interface elements. Examples of
interfaces include a graphical user interface (GUI), a com-
mand line interface (CLI), a haptic interface, and a voice
command interface. Examples of user interface elements
include checkboxes, radio buttons, dropdown lists, list
boxes, buttons, toggles, text fields, date and time selectors,
command lines, sliders, pages, and forms. Different compo-
nents of the interface 514 may be specified in different
languages. For example, the behavior of user interface
elements may be specified in a dynamic programming
language, such as JavaScript. The content of user interface
elements may be specified in a markup language, such as
hypertext markup language (HTML) or XML User Interface
Language (XUL). The layout of user interface elements may
be specified in a style sheet language, such as Cascading
Style Sheets (CSS). Alternatively, the interface 514 may be
specified in one or more other languages, such as Java,
Python, C, or C++.

4. Managing Temporal Dependencies Between Sets
of Foreign Resources

[0077] FIG. 6A & 6B illustrate an example set of opera-
tions for managing temporal dependencies between sets of
foreign resources in accordance with one or more embodi-
ments. One or more operations illustrated in FIG. 6A & 6B
may be modified, rearranged, or omitted all together.
Accordingly, the particular sequence of operations illus-
trated in FIG. 6A & 6B should not be construed as limiting
the scope of one or more embodiments.

[0078] Examples are described herein with reference to
the example system illustrated in FIG. 5. In an embodiment,
the runtime environment opens a memory session (Opera-
tion 602). The memory session is an on-heap structure. The
runtime environment may open the memory session respon-
sive to an explicit instruction in code, and/or responsive to
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detecting a predefined runtime condition that indicates a
need for foreign resources (e.g., instantiating a class that
relies on a memory session).

[0079] The runtime environment allocates one or more
segments of foreign memory to the memory session (Opera-
tion 604). For example, in a Java environment, the runtime
environment may instantiate an object of a type correspond-
ing to a memory segment and allocate one or more subsets
of' the foreign memory to that memory segment. The runtime
environment may allocate the segment(s) of foreign memory
to the memory session responsive to an explicit instruction
in code, and/or responsive to detecting a predefined runtime
condition that indicates a need for a memory segment. The
number of memory segments needed at runtime may not be
known at development or compile time. Instantiating a
memory segment and allocating foreign memory to the
memory segment are discussed in further detail in co-
pending U.S. patent application Ser. No. (Attorney
Docket No. ROO693NP), titled “Managing Lifecycles of Sets
of Foreign Resources,” incorporated by reference above.
[0080] Subsequent to opening the memory session, the
runtime environment opens an additional memory session
(Operation 606) that “descends” from the memory session
opened in Operation 602 (now referred to as the “parent”
memory session). The runtime environment may open the
descendant memory session responsive to an explicit
instruction in code, and/or responsive to detecting a pre-
defined runtime condition that indicates a need for another
memory session.

[0081] Over the course of program execution, the runtime
environment may open multiple descendant memory ses-
sions. Alternatively or additionally, a descendant memory
session may itself have one or more descendants. A second-
level descendant (“grandchild”) of the original parent
memory session may have further descendants of its own,
and so on. One or more embodiments support any number
of levels of parent-child relationships between memory
sessions, originating from the original parent memory ses-
sion. Multiple such hierarchies may coexist, each with
different top-level parent memory sessions.

[0082] Logically, the relationship between the parent
memory session and the descendant(s) may be viewed as a
directed acyclic graph in which nodes represent memory
sessions and each edge of the graph represents a respective
parent-child relationship between memory sessions. The
runtime environment may maintain a data structure that
tracks parent-child relationships between memory sessions.
For example, the runtime environment may maintain (e.g.,
on the heap) a data structure corresponding to a directed
acyclic graph as described above. A function that instantiates
the descendant memory session may receive a reference to
the parent memory session as a parameter. Responsive to
receiving the reference, the function may store a parent-child
association between (a) the reference to the parent memory
session and (b) a reference to the newly opened child/
descendant memory session. As output, the function may
return the reference to the child/descendant memory session.
[0083] In an embodiment, each memory session includes
a reference counter that is incremented when a child session
is created and decremented when a child session is closed.
Depending on the kind of session, reference counting may
be simple or atomic. For example, if access occurs within the
same thread, then a simple variable (e.g., an integer) may be
sufficient to implement the reference counter. However,
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because updates could occur from multiple threads, a simple
variable is insufficient if a session is shared. For example, a
memory session may be opened with implicit closure, as
discussed in co-pending U.S. patent application Ser. No.

(Attorney Docket No. RO0693NP), titled “Manag-
ing Lifecycles of Sets of Foreign Resources,” incorporated
by reference above. Cleaner-backed sessions with implicit
closure may be referred to simply as “implicit sessions™ and
can present issues for reference counting. Implicit sessions
can be “confined” (e.g., only usable within a certain owner
thread), in which case a cleaner (e.g., garbage collector)
executing in a different thread is responsible for deallocating
memory associated with sessions that are no longer in use.
Because the cleaner executes in a different thread than the
thread that owns the memory session, the cleaner might
deallocate a descendant’s memory without decrementing the
parent’s reference counter, thereby invalidating the refer-
ence count. To address this situation, two reference counters
may be kept: one counter for references that originate in the
same thread as the parent memory session, and another
counter for the cleaner to track implicitly closable descen-
dant memory sessions. Each counter may be updated atomi-
cally. In an embodiment, to close the parent memory session,
both reference counters must equal zero.

[0084] Returning to the operations of FIG. 6A & 6B, in an
embodiment, a memory segment allocated to the parent
memory session may be used by the parent memory session
or one or more descendant memory sessions. A descendant
memory session may be said to “borrow” a segment of
foreign memory from the parent memory session, and the
parent memory session may be said to provide the descen-
dant memory session with a “view” of the borrowed
memory segment; the “view” makes it appear as though the
segment were owned by the descendant. The runtime envi-
ronment may encounter a request for a descendant memory
session to borrow a segment of foreign memory allocated to
the parent memory session (Operation 608). Responsive to
the request, the parent memory session provides the descen-
dant memory session with a view of the requested segment
(Operation 614).

[0085] Some period of time after opening a descendant
memory session, the runtime environment may close that
memory session (Operation 616). The parent memory ses-
sion may still have one or more other descendants still open.
For example, two child memory sessions may have been
opened and after closing one of them, the other remains
open. Alternatively, closing the descendant memory session
may result in the parent memory session no longer having
any open descendants.

[0086] In an embodiment, the runtime environment
encounters a request to close the parent memory session
(Operation 618). The request may come from a thread that
is independent from the thread that hosts the parent memory
session, or from the same thread. Responsive to the request,
the runtime environment determines whether the parent
memory session has at least one open descendant (Operation
620). If at least one open descendant remains, then the
runtime environment declines the request (Operation 622).
Declining the request helps ensure that the parent memory
session backing the foreign resources is not closed while a
descendant still has access to the foreign resources. Allow-
ing a descendant to continue accessing the foreign resources
when they are no longer backed by an open memory session
could result in unpredictable system behavior, such as data
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corruption and/or crashes. As shown in FIG. 6B, the runtime
environment may continue to decline any requests to close
the parent memory session as long as any descendant(s)
remain(s) open. However, if the runtime environment
encounters a request to close the parent memory session
when the parent memory session no longer has any open
descendants, then the runtime environment grants the
request (Operation 624).

[0087] Operations described above help manage temporal
dependencies between sets of foreign resources. Specifi-
cally, one or more embodiments prevent foreign resources
from being deallocated when one or more memory sessions
still have access to them. Thus, one or more embodiments
improve system stability and reliability.

5. Example Embodiments

[0088] Detailed examples are described below for pur-
poses of clarity. Components and/or operations described
below should be understood as specific examples which may
not be applicable to certain embodiments. Accordingly,
components and/or operations described below should not
be construed as limiting the scope of any of the claims.
Specifically, FIGS. 7A-7C illustrate examples of managing
temporal dependencies between sets of foreign resources in
accordance with one or more embodiments.

[0089] In FIG. 7A, code 702 is an example of a class
declaration for a reusable pool of foreign resources, accord-
ing to one or more embodiments. The reusable pool is
backed by a particular session, referred to here as the parent
session. If the reusable pool is closed, the foreign resources
are released. As indicated on lines 10-11 of the code 702,
another memory session (“clientSession”) can use foreign
resources from the reusable pool only if it is a descendant of
the parent session. If not, then line 11 throws an exception.
This approach helps ensure that while the descendant ses-
sion is alive, the pool memory cannot be released/deallo-
cated. Thus, the descendant session can use the reusable pool
without worrying about whether the underlying resources
will be deallocated unexpectedly. One or more embodiments
may enforce additional restrictions on a reusable pool. For
example, a reusable pool may set limits on where foreign
resources used by a descendant can begin and/or end, how
much of the foreign resources can be used by each descen-
dent, how many descendants are permitted to access the
same pool, etc.

[0090] Code 704 is an example of using the reusable pool
shown in code 702. Line 1 opens the parent memory session
(“poolSession™). Line 2 allocates foreign resources to the
parent memory session, using the “ReusablePool” class;
these resources serve as the reusable pool. In an embodi-
ment, the parent memory session includes a reference coun-
ter. When a new child session is created, the runtime
environment increments the reference counter by one. When
a child session is closed, the runtime environment decre-
ments the reference counter by one. The parent memory
session can be closed only when the counter is zero; other-
wise, the attempt to close the parent memory session is
declined.

[0091] Continuing the example, the try block starting on
line 6 declares a newly opened memory session as a
resource; the new memory session is opened as a child of the
parent memory session. The opening brace (line 6) and
closing brace (line 12) of the try block delineate the child
memory session’s scope, i.e., its lifecycle. Unless the child

Nov. 2, 2023

memory session is explicitly closed first, the parent memory
session cannot be closed within the try block. For example,
the attempt to close the parent memory session at line
11—included here only for illustrative purposes—would
fail. However, when the try block terminates, the child
memory session is closed (a feature of the try-with-resources
structure) and the parent memory session also can be closed.
[0092] Within the try block, line 7 obtains foreign
resources from the reusable pool, backed by the parent
memory session. If the parent memory session were permit-
ted to close while these resources were still in use, unpre-
dictable system behavior could result. In the example illus-
trated in FIG. 7, the parent memory session (“poolSession”)
cannot be closed prematurely; it can only be closed after its
descendant memory session (“clientSession”) is closed.
[0093] Turning to FIG. 7B, code 706 is an example of
configuring a non-closable session. Specifically, the segment
returned in line 5 of code 706 cannot be closed. The
“teardown” method closes both the parent session and the
confined child session. The approach shown in code 706
may be useful, for example, in creating a library that can
return segments attached to sessions that cannot be closed
inadvertently by clients.

[0094] Code 708 is an example of configuring a critical
section of code that can manipulate a memory segment with
the guarantee that another section of code cannot close the
segment. Because the session (“criticalSession”) exists only
within the try block, no code outside of the try block is able
to access the segment allocated to the session.

[0095] Turning to FIG. 7C, code 710 illustrates an
example of “serial confinement,” where multiple threads
access a resource “one thread at a time.” In this example, at
lines 1-25, the Mutex class creates a “private” segment that
cannot be directly accessed by clients (e.g., by descendant
sessions). To obtain access to the private segment, a client
must “acquire” the segment through the Mutex class. The
acquire operation “borrows” the private segment into the
client session; this example assumes that the client session
is a descendant of the mutex session. When the client session
is closed, the mutex is released and becomes available for
another client. Because of scope dependencies, the mutex
session cannot be closed while there is an active client that
has acquired the segment.

[0096] The example of FIG. 7C illustrates how two
threads may safely cooperate using a mutex class. Each
thread obtains a confined view of the segment, so that the
segment is only accessible inside that thread. When a thread
is finished, it closes its respective child session, and another
client in another thread may acquire the segment. In addi-
tion, in this example, the off-heap segment is allocated only
once (by the Mutex class); all of the clients use borrowing,
by creating a new MemorySegment instance that points to
the same off-heap memory—but with a different session
owner.

6. Computer Networks and Cloud Networks

[0097] In one or more embodiments, a computer network
provides connectivity among a set of nodes. The nodes may
be local to and/or remote from each other. The nodes are
connected by a set of links. Examples of links include a
coaxial cable, an unshielded twisted cable, a copper cable,
an optical fiber, and a virtual link.

[0098] A subset of nodes implements the computer net-
work. Examples of such nodes include a switch, a router, a
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firewall, and a network address translator (NAT). Another
subset of nodes uses the computer network. Such nodes (also
referred to as “hosts”) may execute a client process and/or
a server process. A client process makes a request for a
computing service, such as execution of a particular appli-
cation and/or storage of a particular amount of data). A
server process responds by, for example, executing the
requested service and/or returning corresponding data.
[0099] A computer network may be a physical network,
including physical nodes connected by physical links. A
physical node is any digital device. A physical node may be
a function-specific hardware device, such as a hardware
switch, a hardware router, a hardware firewall, or a hardware
NAT. Additionally or alternatively, a physical node may be
a generic machine that is configured to execute various
virtual machines and/or applications performing respective
functions. A physical link is a physical medium connecting
two or more physical nodes. Examples of links include a
coaxial cable, an unshielded twisted cable, a copper cable,
and an optical fiber.

[0100] A computer network may be an overlay network.
An overlay network is a logical network implemented on top
of another network, such as a physical network. Each node
in an overlay network corresponds to a respective node in
the underlying network. Hence, each node in an overlay
network is associated with both an overlay address (to
address to the overlay node) and an underlay address (to
address the underlay node that implements the overlay
node). An overlay node may be a digital device and/or a
software process (such as a virtual machine, an application
instance, or a thread) A link that connects overlay nodes is
implemented as a tunnel through the underlying network.
The overlay nodes at either end of the tunnel treat the
underlying multi-hop path between them as a single logical
link. Tunneling is performed through encapsulation and
decapsulation.

[0101] A client may be local to and/or remote from a
computer network. The client may access the computer
network over other computer networks, such as a private
network or the Internet. The client may communicate
requests to the computer network using a communications
protocol, such as Hypertext Transfer Protocol (HTTP). The
requests are communicated through an interface, such as a
client interface (for example, a web browser), a program
interface, or an application programming interface (API).
[0102] In one or more embodiments, a computer network
provides connectivity between clients and network
resources. Network resources include hardware and/or soft-
ware configured to execute server processes. Examples of
network resources include a processor, a data storage, a
virtual machine, a container, and/or a software application.
Network resources are shared amongst multiple clients.
Clients request computing services from a computer net-
work independently of each other. Network resources are
dynamically assigned to the requests and/or clients on an
on-demand basis. Network resources assigned to each
request and/or client may be scaled up or down based on, for
example, (a) the computing services requested by a particu-
lar client, (b) the aggregated computing services requested
by a particular tenant, and/or (c) the aggregated computing
services requested of the computer network. Such a com-
puter network may be referred to as a “cloud network.”
[0103] In one or more embodiments, a service provider
provides a cloud network to one or more end users. Various
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service models may be implemented by the cloud network,
including but not limited to Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Ser-
vice (IaaS). In SaaS, a service provider provides end users
the capability to use the service provider’s applications,
which are executing on the network resources. In PaaS, the
service provider provides end users the capability to deploy
custom applications onto the network resources. The custom
applications may be created using programming languages,
libraries, services, and tools supported by the service pro-
vider. In IaaS, the service provider provides end users the
capability to provision processing, storage, networks, and
other fundamental computing resources provided by the
network resources. Any arbitrary applications, including an
operating system, may be deployed on the network
resources.

[0104] A computer network may implement various
deployment, including but not limited to a private cloud, a
public cloud, and/or a hybrid cloud. In a private cloud,
network resources are provisioned for exclusive use by a
particular group of one or more entities (the term “entity” as
used herein refers to a corporation, organization, person, or
other entity). The network resources may be local to and/or
remote from the premises of the particular group of entities.
In a public cloud, cloud resources are provisioned for
multiple entities that are independent from each other (also
referred to as “tenants” or “customers”). The computer
network and the network resources thereof may be accessed
by clients corresponding to different tenants. Such a com-
puter network may be referred to as a “multi-tenant com-
puter network.” Several tenants may use a same particular
network resource at different times and/or at the same time.
The network resources may be local to and/or remote from
the premises of the tenants. In a hybrid cloud, a computer
network comprises a private cloud and a public cloud. An
interface between the private cloud and the public cloud
allows for data and application portability. Data stored at the
private cloud and data stored at the public cloud may be
exchanged through the interface. Applications implemented
at the private cloud and applications implemented at the
public cloud may have dependencies on each other. A call
from an application at the private cloud to an application at
the public cloud (and vice versa) may be executed through
the interface.

[0105] In one or more embodiments, tenants of a multi-
tenant computer network are independent of each other. For
example, a business or operation of one tenant may be
separate from a business or operation of another tenant.
Different tenants may demand different network require-
ments for the computer network. Examples of network
requirements include processing speed, amount of data
storage, security requirements, performance requirements,
throughput requirements, latency requirements, resiliency
requirements, Quality of Service (QoS) requirements, tenant
isolation, and/or consistency. The same computer network
may need to implement different network requirements
demanded by different tenants.

[0106] In a multi-tenant computer network, tenant isola-
tion may be implemented to ensure that the applications
and/or data of different tenants are not shared with each
other. Various tenant isolation approaches may be used.
Each tenant may be associated with a tenant identifier (ID).
Each network resource of the multi-tenant computer net-
work may be tagged with a tenant ID. A tenant may be
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permitted access to a particular network resource only if the
tenant and the particular network resources are associated
with the same tenant ID.

[0107] For example, each application implemented by the
computer network may be tagged with a tenant ID, and
tenant may be permitted access to a particular application
only if the tenant and the particular application are associ-
ated with a same tenant ID. Each data structure and/or
dataset stored by the computer network may be tagged with
a tenant 1D, and tenant may be permitted access to a
particular data structure and/or dataset only if the tenant and
the particular data structure and/or dataset are associated
with a same tenant ID. Each database implemented by the
computer network may be tagged with a tenant ID, and
tenant may be permitted access to data of a particular
database only if the tenant and the particular database are
associated with the same tenant ID. Each entry in a database
implemented by a multi-tenant computer network may be
tagged with a tenant ID, and a tenant may be permitted
access to a particular entry only if the tenant and the
particular entry are associated with the same tenant ID.
However, the database may be shared by multiple tenants.
[0108] In one or more embodiments, a subscription list
indicates which tenants have authorization to access which
network resources. For each network resource, a list of
tenant IDs of tenants authorized to access the network
resource may be stored. A tenant may be permitted access to
a particular network resource only if the tenant ID of the
tenant is included in the subscription list corresponding to
the particular network resource.

[0109] In one or more embodiments, network resources
(such as digital devices, virtual machines, application
instances, and threads) corresponding to different tenants are
isolated to tenant-specific overlay networks maintained by
the multi-tenant computer network. As an example, packets
from any source device in a tenant overlay network may be
transmitted only to other devices within the same tenant
overlay network. Encapsulation tunnels may be used to
prohibit any transmissions from a source device on a tenant
overlay network to devices in other tenant overlay networks.
Specifically, packets received from the source device may be
encapsulated within an outer packet. The outer packet is
transmitted from a first encapsulation tunnel endpoint (in
communication with the source device in the tenant overlay
network) to a second encapsulation tunnel endpoint (in
communication with the destination device in the tenant
overlay network). The second encapsulation tunnel endpoint
decapsulates the outer packet to obtain the original packet
transmitted by the source device. The original packet is
transmitted from the second encapsulation tunnel endpoint
to the destination device in the same particular overlay
network.

7. Hardware Overview

[0110] In one or more embodiments, techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing device
(s) may be hard-wired to perform the techniques, and/or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), or network processing
units (NPUs) that are persistently programmed to perform
the techniques, or may include one or more general purpose
hardware processors programmed to perform the techniques
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pursuant to program instructions in firmware, memory, other
storage, or a combination thereof. Such special-purpose
computing devices may also combine custom hard-wired
logic, ASICs, FPGAs, or NPUs with custom programming
to accomplish the techniques. A special-purpose computing
device may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices, or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

[0111] For example, FIG. 8 is a block diagram that illus-
trates a computer system 800 upon which one or more
embodiments of the invention may be implemented. The
computer system 800 includes a bus 802 or other commu-
nication mechanism for communicating information, and a
hardware processor 804 coupled with bus 802 for processing
information. The hardware processor 804 may be, for
example, a general-purpose microprocessor.

[0112] The computer system 800 also includes a main
memory 806, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 802 for storing
information and instructions to be executed by processor
804. The main memory 806 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
804. Such instructions, when stored in non-transitory storage
media accessible to the processor 804, render the computer
system 800 into a special-purpose machine that is custom-
ized to perform the operations specified in the instructions.
[0113] The computer system 800 further includes a read
only memory (ROM) 808 or other static storage device
coupled to the bus 802 for storing static information and
instructions for the processor 804. A storage device 810,
such as a magnetic disk or optical disk, is provided and
coupled to the bus 802 for storing information and instruc-
tions.

[0114] The computer system 800 may be coupled via the
bus 802 to a display 812, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 814, including alphanumeric and other keys, is
coupled to the bus 802 for communicating information and
command selections to the processor 804. Another type of
user input device is cursor control 816, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to the processor
804 and for controlling cursor movement on the display 812.
This input device typically has two degrees of freedom in
two axes, a first axis (e.g., X) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

[0115] The computer system 800 may implement tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware, and/or program
logic which in combination with the computer system 800
causes or programs the computer system 800 to be a
special-purpose machine. In one or more embodiments, the
techniques herein are performed by the computer system
800 in response to the processor 804 executing one or more
sequences of one or more instructions contained in the main
memory 806. Such instructions may be read into the main
memory 806 from another storage medium, such as the
storage device 810. Execution of the sequences of instruc-
tions contained in the main memory 806 causes the proces-
sor 804 to perform the process steps described herein.
Alternatively, hard-wired circuitry may be used in place of
or in combination with software instructions.
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[0116] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may include non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 810. Volatile
media includes dynamic memory, such as the main memory
806. Common forms of storage media include, for example,
a floppy disk, a flexible disk, hard disk, solid state drive,
magnetic tape, or any other magnetic data storage medium,
a read-only compact disc (CD-ROM), any other optical data
storage medium, any physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge, content-
addressable memory (CAM), and ternary content-address-
able memory (TCAM).

[0117] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires of
the bus 802. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio
frequency (RF) and infrared data communications.

[0118] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to the
processor 804 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid-state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line or other communications
medium, using a modem. A modem local to the computer
system 800 can receive the data on the telephone line or
other communications medium and use an infrared trans-
mitter to convert the data to an infrared signal. An infrared
detector can receive the data carried in the infrared signal
and appropriate circuitry can place the data on the bus 802.
The bus 802 carries the data to the main memory 806, from
which the processor 804 retrieves and executes the instruc-
tions. The instructions received by the main memory 806
may optionally be stored on the storage device 810, either
before or after execution by processor 804.

[0119] The computer system 800 also includes a commu-
nication interface 818 coupled to the bus 802. The commu-
nication interface 818 provides a two-way data communi-
cation coupling to a network link 820 that is connected to a
local network 822. For example, the communication inter-
face 818 may be an integrated services digital network
(ISDN) card, cable modem, satellite modem, or a modem to
provide a data communication connection to a correspond-
ing type of telephone line. As another example, the com-
munication interface 818 may be a local area network
(LAN) card configured to provide a data communication
connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, the communica-
tion interface 818 sends and receives electrical, electromag-
netic, or optical signals that carry digital data streams
representing various types of information.

[0120] The network link 820 typically provides data com-
munication through one or more networks to other data
devices. For example, the network link 820 may provide a
connection through a local network 822 to a host computer
824 or to data equipment operated by an Internet Service
Provider (ISP) 826. The ISP 826 in turn provides data
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communication services through the world wide packet data
communication network now commonly referred to as the
“Internet” 828. The local network 822 and Internet 828 both
use electrical, electromagnetic, or optical signals that carry
digital data streams. The signals through the various net-
works and the signals on the network link 820 and through
the communication interface 818, which carry the digital
data to and from the computer system 800, are example
forms of transmission media.

[0121] The computer system 800 can send messages and
receive data, including program code, through the network
(s), network link 820, and communication interface 818. In
the Internet example, a server 830 might transmit a
requested code for an application program through the
Internet 828, ISP 826, local network 822, and communica-
tion interface 818.

[0122] The received code may be executed by processor
804 as it is received, and/or may be stored in the storage
device 810 or other non-volatile storage for later execution.

8. Miscellaneous; Extensions

[0123] Embodiments are directed to a system with one or
more devices that include a hardware processor and that are
configured to perform any of the operations described herein
and/or recited in any of the claims below.

[0124] In one or more embodiments, a non-transitory
computer-readable storage medium stores instructions
which, when executed by one or more hardware processors,
cause performance of any of the operations described herein
and/or recited in any of the claims.

[0125] Any combination of the features and functionalities
described herein may be used in accordance with one or
more embodiments. In the foregoing specification, embodi-
ments have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. One or more non-transitory machine-readable media
storing instructions that, when executed by one or more
processors, cause performance of operations comprising:

allocating, in a runtime environment, a segment of foreign
memory to a first memory session, the runtime envi-
ronment being configured to use a garbage collector to
manage memory in a heap, and the foreign memory
comprising off-heap memory that is not managed by
the garbage collector;

opening, in the runtime environment, a second memory
session that descends from the first memory session;

while the second memory session is open, encountering a
first request to close the first memory session;

responsive to encountering the first request to close the
first memory session, determining that the first memory
session has at least one open descendant memory
session;
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responsive to determining that the first memory session
has at least one open descendant memory session,
declining the first request to close the first memory
session.

2. The one or more non-transitory machine-readable
media of claim 1, wherein opening the second memory
session that descends from the first memory session com-
prises:

receiving a first reference to the first memory session as

a parameter to a function that instantiates the second
memory session;

responsive to receiving the first reference to the first

memory session, storing a parent-child association
between the first memory session and the second
memory session;

returning a second reference to the second memory ses-

sion as an output of the function.

3. The one or more non-transitory machine-readable
media of claim 1, wherein determining that the first memory
session has at least one open descendant memory session
comprises:

searching a directed acyclic graph comprising (a) a plu-

rality of nodes representing respective sessions and (b)
one or more edges representing respective parent-child
relationships between sessions;

determining that the one or more edges comprise(s) an

edge between a first node that represents the first
memory session and a second node that represents the
second memory session.
4. The one or more non-transitory machine-readable
media of claim 1, the operations further comprising:
subsequent to declining the first request to close the first
memory session, closing the second memory session;

subsequent to closing the second memory session,
encountering a second request to close the first memory
session;

responsive to encountering the second request to close the

first memory session, determining that the first memory
session does not have any open descendant memory
sessions;

responsive to determining that the first memory session

does not have any open descendant memory sessions,
closing the first memory session.
5. The one or more non-transitory machine-readable
media of claim 1, the operations further comprising:
subsequent to declining the first request to close the first
memory session, closing the second memory session;

opening, in the runtime environment, a third memory
session that descends from the first memory session;

subsequent to closing the second memory session and
while the third memory session is open, encountering a
second request to close the first memory session;

responsive to encountering the second request to close the
first memory session, determining that the first memory
session has at least one open descendant memory
session;

responsive to determining that the first memory session

has at least one open descendant memory session,
declining the second request to close the first memory
session.

6. The one or more non-transitory machine-readable
media of claim 1, the operations further comprising:

encountering a request for the second memory session to

borrow memory from the segment of foreign memory;
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granting the request for the second memory session to

borrow memory from the segment of foreign memory.

7. The one or more non-transitory machine-readable
media of claim 1, the operations further comprising:

maintaining a plurality of reference counters associated

with the first memory session, the plurality of reference
counters comprising (a) at least one reference counter
for references originating in a first thread that owns the
first memory session and (b) at least one reference
counter for references originating outside the first
thread.

8. A system comprising:

at least one device comprising one or more hardware

processors,

the system being configured to perform operations com-

prising:

allocating, in a runtime environment, a segment of foreign

memory to a first memory session, the runtime envi-
ronment being configured to use a garbage collector to
manage memory in a heap, and the foreign memory
comprising off-heap memory that is not managed by
the garbage collector;

opening, in the runtime environment, a second memory

session that descends from the first memory session;
while the second memory session is open, encountering a
first request to close the first memory session;

responsive to encountering the first request to close the
first memory session, determining that the first memory
session has at least one open descendant memory
session;

responsive to determining that the first memory session

has at least one open descendant memory session,
declining the first request to close the first memory
session.

9. The system of claim 8, wherein opening the second
memory session that descends from the first memory session
comprises:

receiving a first reference to the first memory session as

a parameter to a function that instantiates the second
memory session;

responsive to receiving the first reference to the first

memory session, storing a parent-child association
between the first memory session and the second
memory session;

returning a second reference to the second memory ses-

sion as an output of the function.

10. The system of claim 8, wherein determining that the
first memory session has at least one open descendant
memory session comprises:

searching a directed acyclic graph comprising (a) a plu-

rality of nodes representing respective sessions and (b)
one or more edges representing respective parent-child
relationships between sessions;

determining that the one or more edges comprise(s) an

edge between a first node that represents the first
memory session and a second node that represents the
second memory session.
11. The system of claim 8, the operations further com-
prising:
subsequent to declining the first request to close the first
memory session, closing the second memory session;

subsequent to closing the second memory session,
encountering a second request to close the first memory
session;
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responsive to encountering the second request to close the
first memory session, determining that the first memory
session does not have any open descendant memory
sessions;
responsive to determining that the first memory session
does not have any open descendant memory sessions,
closing the first memory session.
12. The system of claim 8, the operations further com-
prising:
subsequent to declining the first request to close the first
memory session, closing the second memory session;
opening, in the runtime environment, a third memory
session that descends from the first memory session;
subsequent to closing the second memory session and
while the third memory session is open, encountering a
second request to close the first memory session;
responsive to encountering the second request to close the
first memory session, determining that the first memory
session has at least one open descendant memory
session;
responsive to determining that the first memory session
has at least one open descendant memory session,
declining the second request to close the first memory
session.
13. The system of claim 8, the operations further com-
prising:
encountering a request for the second memory session to
borrow memory from the segment of foreign memory;
granting the request for the second memory session to
borrow memory from the segment of foreign memory.
14. The system of claim 8, the operations further com-
prising:
maintaining a plurality of reference counters associated
with the first memory session, the plurality of reference
counters comprising (a) at least one reference counter
for references originating in a first thread that owns the
first memory session and (b) at least one reference
counter for references originating outside the first
thread.
15. A method comprising:
allocating, in a runtime environment, a segment of foreign
memory to a first memory session, the runtime envi-
ronment being configured to use a garbage collector to
manage memory in a heap, and the foreign memory
comprising off-heap memory that is not managed by
the garbage collector;
opening, in the runtime environment, a second memory
session that descends from the first memory session;
while the second memory session is open, encountering a
first request to close the first memory session;
responsive to encountering the first request to close the
first memory session, determining that the first memory
session has at least one open descendant memory
session;
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responsive to determining that the first memory session
has at least one open descendant memory session,
declining the first request to close the first memory
session,

wherein the method is performed by at least device

comprising one or more hardware processors.

16. The method of claim 15, wherein opening the second
memory session that descends from the first memory session
comprises:

receiving a first reference to the first memory session as

a parameter to a function that instantiates the second
memory session;

responsive to receiving the first reference to the first

memory session, storing a parent-child association
between the first memory session and the second
memory session;

returning a second reference to the second memory ses-

sion as an output of the function.

17. The method of claim 15, wherein determining that the
first memory session has at least one open descendant
memory session comprises:

searching a directed acyclic graph comprising (a) a plu-

rality of nodes representing respective sessions and (b)
one or more edges representing respective parent-child
relationships between sessions;

determining that the one or more edges comprise(s) an

edge between a first node that represents the first
memory session and a second node that represents the
second memory session.
18. The method of claim 15, further comprising:
subsequent to declining the first request to close the first
memory session, closing the second memory session;

subsequent to closing the second memory session,
encountering a second request to close the first memory
session;

responsive to encountering the second request to close the

first memory session, determining that the first memory
session does not have any open descendant memory
sessions;

responsive to determining that the first memory session

does not have any open descendant memory sessions,
closing the first memory session.

19. The method of claim 15, further comprising:

encountering a request for the second memory session to

borrow memory from the segment of foreign memory;
granting the request for the second memory session to
borrow memory from the segment of foreign memory.

20. The method of claim 15, further comprising:

maintaining a plurality of reference counters associated

with the first memory session, the plurality of reference
counters comprising (a) at least one reference counter
for references originating in a first thread that owns the
first memory session and (b) at least one reference
counter for references originating outside the first
thread.



