US 20200188699A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0188699 A1

Kabrams et al.

(43) Pub. Date:

Jun. 18, 2020

(54)

(71)
(72)

(73)
@
(22)

(60)

SYSTEMS AND METHODS FOR A
WEARABLE DEVICE FOR ACOUSTIC
STIMULATION

Applicant: EpilepsyCo Inc., Guilford, CT (US)

Inventors: Eric Kabrams, Redwood City, CA
(US); Kamyar Firouzi, Palo Alto, CA
us)

Assignee: EpilepsyCo Inc., Guilford, CT (US)

Appl. No.: 16/714,585

Filed: Dec. 13, 2019

Related U.S. Application Data

Provisional application No. 62/822,709, filed on Mar.
22, 2019, provisional application No. 62/822,697,
filed on Mar. 22, 2019, provisional application No.

D

(52)

&7

62/822,684, filed on Mar. 22, 2019, provisional ap-
plication No. 62/822,679, filed on Mar. 22, 2019,
provisional application No. 62/822,675, filed on Mar.
22, 2019, provisional application No. 62/822,668,
filed on Mar. 22, 2019, provisional application No.
62/822,657, filed on Mar. 22, 2019, provisional ap-
plication No. 62/779,188, filed on Dec. 13, 2018.

Publication Classification

Int. Cl1.

AG6IN 7/00 (2006.01)

U.S. CL

CPC ............ AGIN 7/00 (2013.01); A61B 5/0476

(2013.01); A6IN 2007/0026 (2013.01)

ABSTRACT

In some aspects, a device wearable by a person includes a
transducer configured to apply to the brain of the person
ic signals.
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SYSTEMS AND METHODS FOR A
WEARABLE DEVICE FOR ACOUSTIC
STIMULATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority under 35 U.S.C. §
119(e) to U.S. Provisional Application Ser. No. 62/779,188,
titled “NONINVASIVE NEUROLOGICAL DISORDER
TREATMENT MODALITY,” filed Dec. 13, 2018, U.S.
Provisional Application Ser. No. 62/822,709, titled “SYS-
TEMS AND METHODS FOR A WEARABLE DEVICE
INCLUDING STIMULATION AND MONITORING
COMPONENTS,” filed Mar. 22, 2019, U.S. Provisional
Application Ser. No. 62/822,697, titled “SYSTEMS AND
METHODS FOR A WEARABLE DEVICE FOR SUB-
STANTIALLY  NON-DESTRUCTIVE  ACOUSTIC
STIMULATION,” filed Mar. 22, 2019, U.S. Provisional
Application Ser. No. 62/822,684, titled “SYSTEMS AND
METHODS FOR A WEARABLE DEVICE FOR RAN-
DOMIZED ACOUSTIC STIMULATION,” filed Mar. 22,
2019, U.S. Provisional Application Ser. No. 62/822,679,
titled “SYSTEMS AND METHODS FOR A WEARABLE
DEVICE FOR TREATING A NEUROLOGICAL DISOR-
DER USING ULTRASOUND STIMULATION,” filed Mar.
22,2019, U.S. Provisional Application Ser. No. 62/822,675,
titled “SYSTEMS AND METHODS FOR A DEVICE FOR
STEERING ACOUSTIC STIMULATION  USING
MACHINE LEARNING,” filed Mar. 22, 2019, U.S. Provi-
sional Application Ser. No. 62/822,668, titled “SYSTEMS
AND METHODS FOR A DEVICE USING A STATISTI-
CAL MODEL TRAINED ON ANNOTATED SIGNAL
DATA,” filed Mar. 22, 2019, and U.S. Provisional Applica-
tion Ser. No. 62/822,657, titled “SYSTEMS AND METH-
ODS FOR A DEVICE FOR ENERGY EFFICIENT MONI-
TORING OF THE BRAIN,” filed Mar. 22, 2019, all of
which are hereby incorporated herein by reference in their
entireties.

BACKGROUND

[0002] Recent estimates by the World Health Organization
(WHO) have placed neurological disorders as constituting
more than 6% of the global burden of disease. Such neuro-
logical disorders can include epilepsy, Alzheimer’s disease,
and Parkinson’s disease.

[0003] For example, about 65 million people worldwide
suffer from epilepsy. The United States itself has about 3.4
million people suffering from epilepsy with an estimated
$15 billion economic impact. These patients suffer from
symptoms such as recurrent seizures, which are episodes of
excessive and synchronized neural activity in the brain.
Because more than 70% of epilepsy patients live with
suboptimal control of their seizures, such symptoms can be
challenging for patients in school, in social and employment
situations, in everyday activities like driving, and even in
independent living.

SUMMARY

[0004] In some aspects, a device wearable by or attached
to or implanted within a person includes a sensor configured
to detect a signal from the brain of the person and a
transducer configured to apply to the brain an acoustic
signal.
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[0005] In some embodiments, the sensor includes an elec-
troencephalogram (EEG) sensor, and the signal includes an
EEG signal.

[0006] In some embodiments, the transducer includes an
ultrasound transducer, and the acoustic signal includes an
ultrasound signal.

[0007] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm?, and/or a power density
between 1 and 100 watts/cm? as measured by spatial-peak
pulse-average intensity.

[0008] In some embodiments, the ultrasound signal has a
low power density, e.g., between 1 and 100 watts/cm?, and
is substantially non-destructive with respect to tissue when
applied to the brain.

[0009] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner.

[0010] In some embodiments, the device includes a pro-
cessor in communication with the sensor and the transducer.
The processor is programmed to receive, from the sensor,
the signal detected from the brain and transmit an instruction
to the transducer to apply to the brain the acoustic signal.
[0011] In some embodiments, the processor is pro-
grammed to transmit the instruction to the transducer to
apply to the brain the acoustic signal at one or more random
intervals.

[0012] In some embodiments, the device includes at least
one other transducer configured to apply to the brain an
acoustic signal, and the processor is programmed to select
one of the transducers to transmit the instruction to apply to
the brain the acoustic signal at the one or more random
intervals.

[0013] In some embodiments, the processor is pro-
grammed to analyze the signal to determine whether the
brain is exhibiting a symptom of a neurological disorder and
transmit the instruction to the transducer to apply to the brain
the acoustic signal in response to determining that the brain
is exhibiting the symptom of the neurological disorder.
[0014] In some embodiments, the acoustic signal sup-
presses a symptom of a neurological disorder.

[0015] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0016] In some embodiments, the symptom includes a
seizure.
[0017] In some embodiments, the signal includes an elec-

trical signal, a mechanical signal, an optical signal, and/or an
infrared signal.

[0018] In some aspects, a method for operating a device
wearable by or attached to or implanted within a person, the
device including a sensor configured to detect a signal from
the brain of the person and a transducer configured to apply
to the brain an acoustic signal, includes receiving, from the
sensor, the signal detected from the brain and applying to the
brain, with the transducer, the acoustic signal.

[0019] In some aspects, an apparatus includes a device
worn by or attached to or implanted within a person. The
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device includes a sensor configured to detect a signal from
the brain of the person and a transducer configured to apply
to the brain an acoustic signal.

[0020] In some aspects, a device wearable by a person
includes a sensor configured to detect a signal from the brain
of the person and a transducer configured to apply to the
brain an ultrasound signal. The ultrasound signal has a low
power density, e.g., between 1 and 100 watts/cm?, and is
substantially non-destructive with respect to tissue when
applied to the brain.

[0021] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner.

[0022] In some embodiments, the sensor includes an elec-
troencephalogram (EEG) sensor, and the signal includes an
EEG signal.

[0023] In some embodiments, the transducer includes an
ultrasound transducer.

[0024] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm®, and/or the low power
density between 1 and 100 watts/cm?® as measured by spa-
tial-peak pulse-average intensity.

[0025] In some embodiments, the ultrasound signal sup-
presses a symptom of a neurological disorder.

[0026] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0027] In some embodiments, the symptom includes a
seizure.
[0028] In some embodiments, the signal includes an elec-

trical signal, a mechanical signal, an optical signal, and/or an
infrared signal.

[0029] In some aspects, a method for operating a device
wearable by a person, the device including a sensor config-
ured to detect a signal from the brain of the person and a
transducer configured to apply to the brain an ultrasound
signal, includes applying to the brain the ultrasound signal.
The ultrasound signal has a low power density, e.g., between
1 and 100 watts/cm?, and is substantially non-destructive
with respect to tissue when applied to the brain.

[0030] In some aspects, a method includes applying to the
brain of a person, by a device worn by or attached to the
person, an ultrasound signal.

[0031] In some aspects, an apparatus includes a device
worn by or attached to a person. The device includes a
sensor configured to detect a signal from the brain of the
person and a transducer configured to apply to the brain an
ultrasound signal. The ultrasound signal has a low power
density, e.g., between 1 and 100 watts/cm?, and is substan-
tially non-destructive with respect to tissue when applied to
the brain.

[0032] In some aspects, a device wearable by a person
includes a transducer configured to apply to the brain of the
person acoustic signals.

[0033] Insome embodiments, the transducer is configured
to apply to the brain of the person acoustic signals randomly.
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[0034] In some embodiments, the transducer includes an
ultrasound transducer, and the acoustic signals include an
ultrasound signal.

[0035] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm?, and/or a power density
between 1 and 100 watts/cm® as measured by spatial-peak
pulse-average intensity.

[0036] In some embodiments, the ultrasound signal has a
low power density, e.g., between 1 and 100 watts/cm>, and
is substantially non-destructive with respect to tissue when
applied to the brain.

[0037] In some embodiments, the transducer is disposed
on the head of the person in a non-invasive manner.
[0038] In some embodiments, the acoustic signal sup-
presses a symptom of a neurological disorder.

[0039] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0040] In some embodiments, the symptom includes a
seizure.
[0041] In some aspects, a method for operating a device

wearable by a person, the device including a transducer,
includes applying to the brain of the person acoustic signals.
[0042] In some aspects, an apparatus includes a device
worn by or attached to a person. The device includes a
transducer configured to apply to the brain of the person
acoustic signals.

[0043] In some aspects, a device wearable by or attached
to or implanted within a person includes a sensor configured
to detect an electroencephalogram (EEG) signal from the
brain of the person and a transducer configured to apply to
the brain a low power, substantially non-destructive ultra-
sound signal.

[0044] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm?, and/or a power density
between 1 and 100 watts/cm? as measured by spatial-peak
pulse-average intensity.

[0045] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner.

[0046] In some embodiments, the ultrasound signal sup-
presses an epileptic seizure.

[0047] In some embodiments, the device includes a pro-
cessor in communication with the sensor and the transducer.
The processor is programmed to receive, from the sensor,
the EEG signal detected from the brain and transmit an
instruction to the transducer to apply to the brain the
ultrasound signal.

[0048] In some embodiments, the processor is pro-
grammed to transmit the instruction to the transducer to
apply to the brain the ultrasound signal at one or more
random intervals.

[0049] In some embodiments, the device includes at least
one other transducer configured to apply to the brain an
ultrasound signal, and the processor is programmed to select
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one of the transducers to transmit the instruction to apply to
the brain the ultrasound signal at the one or more random
intervals.

[0050] In some embodiments, the processor is pro-
grammed to analyze the EEG signal to determine whether
the brain is exhibiting the epileptic seizure and transmit the
instruction to the transducer to apply to the brain the
ultrasound signal in response to determining that the brain is
exhibiting the epileptic seizure.

[0051] In some aspects, a method for operating a device
wearable by or attached to or implanted within a person, the
device including a sensor configured to detect an electroen-
cephalogram (EEG) signal from the brain of the person and
a transducer configured to apply to the brain a low power,
substantially non-destructive ultrasound signal, includes
receiving, by the sensor, the EEG signal and applying to the
brain, with the transducer, the ultrasound signal.

[0052] In some aspects, an apparatus includes a device
worn by or attached to or implanted within a person. The
device includes a sensor configured to detect an electroen-
cephalogram (EEG) signal from the brain of the person and
a transducer configured to apply to the brain a low power,
substantially non-destructive ultrasound signal.

[0053] In some aspects, a device includes a sensor con-
figured to detect a signal from the brain of the person and a
plurality of transducers, each configured to apply to the brain
an acoustic signal. One of the plurality of transducers is
selected using a statistical model trained on data from prior
signals detected from the brain.

[0054] In some embodiments, the device includes a pro-
cessor in communication with the sensor and the plurality of
transducers. The processor is programmed to provide data
from a first signal detected from the brain as input to the
trained statistical model to obtain an output indicating a first
predicted strength of a symptom of a neurological disorder
and, based on the first predicted strength of the symptom,
select one of the plurality of transducers in a first direction
to transmit a first instruction to apply a first acoustic signal.
[0055] In some embodiments, the processor is pro-
grammed to provide data from a second signal detected from
the brain as input to the trained statistical model to obtain an
output indicating a second predicted strength of the symp-
tom of the neurological disorder, in response to the second
predicted strength being less than the first predicted strength,
select one of the plurality of transducers in the first direction
to transmit a second instruction to apply a second acoustic
signal, and, in response to the second predicted strength
being greater than the first predicted strength, select one of
the plurality of transducers in a direction opposite to or
different from the first direction to transmit the second
instruction to apply the second acoustic signal.

[0056] In some embodiments, the s -al model comprises a
deep learning network.

[0057] In some embodiments, the deep learning network
comprises a Deep Convolutional Neural Network (DCNN)
for encoding the data onto an n-dimensional representation
space and a Recurrent Neural Network (RNN) for comput-
ing a detection score by observing changes in the represen-
tation space through time. The detection score indicates a
predicted strength of the symptom of the neurological dis-
order.

[0058] In some embodiments, data from the prior signals
detected from the brain is accessed from an electronic health
record of the person.
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[0059] In some embodiments, the sensor includes an elec-
troencephalogram (EEG) sensor, and the signal includes an
EEG signal.

[0060] In some embodiments, the transducer includes an
ultrasound transducer, and the acoustic signal includes an
ultrasound signal.

[0061] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm?, and/or a power density
between 1 and 100 watts/cm® as measured by spatial-peak
pulse-average intensity.

[0062] In some embodiments, the ultrasound signal has a
low power density, e.g., between 1 and 100 watts/cm?, and
is substantially non-destructive with respect to tissue when
applied to the brain.

[0063] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner.

[0064] In some embodiments, the acoustic signal sup-
presses a symptom of a neurological disorder.

[0065] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0066] In some embodiments, the symptom includes a
seizure.
[0067] In some embodiments, the signal includes an elec-

trical signal, a mechanical signal, an optical signal, and/or an
infrared signal.

[0068] In some aspects, a method for operating a device,
the device including a sensor configured to detect a signal
from the brain of the person and a plurality of transducers,
each configured to apply to the brain an acoustic signal,
includes selecting one of the plurality of transducers using a
statistical model trained on data from prior signals detected
from the brain.

[0069] In some aspects, an apparatus includes a device
that includes a sensor configured to detect a signal from the
brain of the person and a plurality of transducers, each
configured to apply to the brain an acoustic signal. The
device is configured to select one of the plurality of trans-
ducers using a statistical model trained on data from prior
signals detected from the brain.

[0070] In some aspects, a device includes a sensor con-
figured to detect a signal from the brain of the person and a
plurality of transducers, each configured to apply to the brain
an acoustic signal. One of the plurality of transducers is
selected using a statistical model trained on signal data
annotated with one or more values relating to identifying a
health condition.

[0071] In some embodiments, the signal data annotated
with the one or more values relating to identifying the health
condition comprises the signal data annotated with respec-
tive values relating to increasing strength of a symptom of
a neurological disorder.

[0072] In some embodiments, the statistical model was
trained on data from prior signals detected from the brain
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annotated with the respective values between 0 and 1
relating to increasing strength of the symptom of the neu-
rological disorder.

[0073] In some embodiments, the statistical model
includes a loss function having a regularization term that is
proportional to a variation of outputs of the statistical model,
an [L1/L.2 norm of a derivative of the outputs, or an L.1/[.2
norm of a second derivative of the outputs.

[0074] In some embodiments, the device includes a pro-
cessor in communication with the sensor and the plurality of
transducers. The processor is programmed to provide data
from a first signal detected from the brain as input to the
trained statistical model to obtain an output indicating a first
predicted strength of the symptom of the neurological dis-
order and, based on the first predicted strength of the
symptom, select one of the plurality of transducers in a first
direction to transmit a first instruction to apply a first
acoustic signal.

[0075] In some embodiments, the processor is pro-
grammed to provide data from a second signal detected from
the brain as input to the trained statistical model to obtain an
output indicating a second predicted strength of the symp-
tom of the neurological disorder, in response to the second
predicted strength being less than the first predicted strength,
select one of the plurality of transducers in the first direction
to transmit a second instruction to apply a second acoustic
signal, and, in response to the second predicted strength
being greater than the first predicted strength, select one of
the plurality of transducers in a direction opposite to or
different from the first direction to transmit the second
instruction to apply the second acoustic signal.

[0076] In some embodiments, the trained statistical model
comprises a deep learning network.

[0077] In some embodiments, the deep learning network
comprises a Deep Convolutional Neural Network (DCNN)
for encoding the data onto an n-dimensional representation
space and a Recurrent Neural Network (RNN) for comput-
ing a detection score by observing changes in the represen-
tation space through time. The detection score indicates a
predicted strength of the symptom of the neurological dis-
order.

[0078] Insome embodiments, the signal data includes data
from prior signals detected from the brain that is accessed
from an electronic health record of the person.

[0079] In some embodiments, the sensor includes an elec-
troencephalogram (EEG) sensor, and the signal includes an
EEG signal.

[0080] In some embodiments, the transducer includes an
ultrasound transducer, and the acoustic signal includes an
ultrasound signal.

[0081] In some embodiments, the ultrasound signal has a
frequency between 100 kHz and 1 MHz, a spatial resolution
between 0.001 cm® and 0.1 cm?, and/or a power density
between 1 and 100 watts/cm? as measured by spatial-peak
pulse-average intensity.

[0082] In some embodiments, the ultrasound signal has a
low power density, e.g., between 1 and 100 watts/cm?, and
is substantially non-destructive with respect to tissue when
applied to the brain.

[0083] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner.

[0084] In some embodiments, the acoustic signal sup-
presses the symptom of the neurological disorder.
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[0085] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0086] In some embodiments, the symptom includes a
seizure. In some embodiments, the signal includes an elec-
trical signal, a mechanical signal, an optical signal, and/or an
infrared signal.

[0087] In some aspects, a method for operating a device,
the device including a sensor configured to detect a signal
from the brain of the person and a plurality of transducers,
each configured to apply to the brain an acoustic signal,
includes selecting one of the plurality of transducers using a
statistical model trained on signal data annotated with one or
more values relating to identifying a health condition.
[0088] In some aspects, an apparatus includes a device
that includes a sensor configured to detect a signal from the
brain of the person and a plurality of transducers, each
configured to apply to the brain an acoustic signal. The
device is configured to select one of the plurality of trans-
ducers using a statistical model trained on signal data
annotated with one or more values relating to identifying a
health condition.

[0089] In some aspects, a device includes a sensor con-
figured to detect a signal from the brain of the person and a
first processor in communication with the sensor. The first
processor is programmed to identify a health condition and,
based on the identified health condition, provide data from
the signal to a second processor outside the device to
corroborate or contradict the identified health condition.

[0090] In some embodiments, identifying the health con-
dition comprises predicting a strength of a symptom of a
neurological disorder.

[0091] In some embodiments, the processor is pro-
grammed to provide data from the signal detected from the
brain as input to a first trained statistical model to obtain an
output indicating the predicted strength, determine whether
the predicted strength exceeds a threshold indicating pres-
ence of the symptom, and, in response to the predicted
strength exceeding the threshold, transmit data from the
signal to a second processor outside the device.

[0092] In some embodiments, the first statistical model
was trained on data from prior signals detected from the
brain.

[0093] In some embodiments, the first trained statistical
model is trained to have high sensitivity and low specificity,
and the first processor using the first trained statistical model
uses a smaller amount of power than the first processor using
the second trained statistical model.

[0094] In some embodiments, the second processor is
programmed to provide data from the signal to a second
trained statistical model to obtain an output to corroborate or
contradict the predicted strength.

[0095] Insome embodiments, the second trained statistical
model is trained to have high sensitivity and high specificity.
[0096] In some embodiments, the first trained statistical
model and/or the second trained statistical model comprise
a deep learning network.
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[0097] In some embodiments, the deep learning network
comprises a Deep Convolutional Neural Network (DCNN)
for encoding the data onto an n-dimensional representation
space and a Recurrent Neural Network (RNN) for comput-
ing a detection score by observing changes in the represen-
tation space through time. The detection score indicates a
predicted strength of the symptom of the neurological dis-
order.

[0098] In some embodiments, the sensor includes an elec-
troencephalogram (EEG) sensor, and the signal includes an
EEG signal.

[0099] In some embodiments, the sensor is disposed on
the head of the person in a non-invasive manner.

[0100] In some embodiments, the neurological disorder
includes one or more of stroke, Parkinson’s disease,
migraine, tremors, frontotemporal dementia, traumatic brain
injury, depression, anxiety, Alzheimer’s disease, dementia,
multiple sclerosis, schizophrenia, brain damage, neurode-
generation, central nervous system (CNS) disease, encepha-
lopathy, Huntington’s disease, autism, attention deficit
hyperactivity disorder (ADHD), amyotrophic lateral sclero-
sis (ALS), and concussion.

[0101] In some embodiments, the symptom includes a
seizure.
[0102] In some embodiments, the signal includes an elec-

trical signal, a mechanical signal, an optical signal, and/or an
infrared signal.

[0103] In some aspects, a method for operating a device,
the device including a sensor configured to detect a signal
from the brain of the person and a transducer configured to
apply to the brain an acoustic signal, includes identifying a
health condition and, based on the identified health condi-
tion, providing data from the signal to a second processor
outside the device to corroborate or contradict the identified
health condition.

[0104] In some aspects, an apparatus includes a device
that includes a sensor configured to detect a signal from the
brain of the person and a transducer configured to apply to
the brain an acoustic signal. The device is configured to
identify a health condition and, based on the identified health
condition, provide data from the signal to a second processor
outside the device to corroborate or contradict the identified
health condition.

[0105] It should be appreciated that all combinations of
the foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutu-
ally inconsistent) are contemplated as being part of the
inventive subject matter disclosed herein. In particular, all
combinations of claimed subject matter appearing at the end
of this disclosure are contemplated as being part of the
inventive subject matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0106] Various aspects and embodiments will be described
with reference to the following figures. The figures are not
necessarily drawn to scale.

[0107] FIG. 1 shows a device wearable by a person, e.g.,
for treating a symptom of a neurological disorder, in accor-
dance with some embodiments of the technology described
herein.

[0108] FIGS. 2A-2B show illustrative examples of a
device wearable by a person for treating a symptom of a
neurological disorder and mobile device(s) executing an
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application in communication with the device, in accordance
with some embodiments of the technology described herein.
[0109] FIG. 3A shows an illustrative example of a mobile
device and/or a cloud server in communication with a device
wearable by a person for treating a symptom of a neuro-
logical disorder, in accordance with some embodiments of
the technology described herein.

[0110] FIG. 3B shows a block diagram of a mobile device
and/or a cloud server in communication with a device
wearable by a person for treating a symptom of a neuro-
logical disorder, in accordance with some embodiments of
the technology described herein.

[0111] FIG. 4 shows a block diagram for a wearable device
including stimulation and monitoring components, in accor-
dance with some embodiments of the technology described
herein.

[0112] FIG. 5 shows a block diagram for a wearable
device for substantially non-destructive acoustic stimula-
tion, in accordance with some embodiments of the technol-
ogy described herein.

[0113] FIG. 6 shows a block diagram for a wearable
device for acoustic stimulation, e.g., randomized acoustic
stimulation, in accordance with some embodiments of the
technology described herein.

[0114] FIG. 7 shows a block diagram for a wearable
device for treating a neurological disorder using ultrasound
stimulation, in accordance with some embodiments of the
technology described herein.

[0115] FIG. 8 shows a block diagram for a device to steer
acoustic stimulation, in accordance with some embodiments
of the technology described herein.

[0116] FIG. 9 shows a flow diagram for a device to steer
acoustic stimulation, in accordance with some embodiments
of the technology described herein.

[0117] FIG. 10 shows a block diagram for a device using
a statistical model trained on annotated signal data, in
accordance with some embodiments of the technology
described herein.

[0118] FIG. 11A shows a flow diagram for a device using
a statistical model trained on annotated signal data, in
accordance with some embodiments of the technology
described herein.

[0119] FIG. 11B shows a convolutional neural network
that may be used to detect one or more symptoms of a
neurological disorder, in accordance with some embodi-
ments of the technology described herein.

[0120] FIG. 11C shows an exemplary interface including
predictions from a deep learning network, in accordance
with some embodiments of the technology described herein.
[0121] FIG. 12 shows a block diagram for a device for
energy efficient monitoring of the brain, in accordance with
some embodiments of the technology described herein.
[0122] FIG. 13 shows a flow diagram for a device for
energy efficient monitoring of the brain, in accordance with
some embodiments of the technology described herein.
[0123] FIG. 14 shows a block diagram of an illustrative
computer system that may be used in implementing some
embodiments of the technology described herein.

DETAILED DESCRIPTION

[0124] Conventional treatment options for neurological
disorders, such as epilepsy, present a tradeoff between
invasiveness and effectiveness. For example, surgery may be
effective in treating epileptic seizures for some patients, but
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the procedure is invasive. In another example, while anti-
epileptic drugs are non-invasive, they may not be effective
for some patients. Some conventional approaches have used
implanted brain simulation devices to provide electrical
stimulation in an attempt to prevent and treat symptoms of
neurological disorders, such as seizures. Other conventional
approaches have used high-intensity lasers and high-inten-
sity ultrasound (HIFU) to ablate brain tissue. These
approaches can be highly invasive and often are only
implemented following successtul seizure focus localiza-
tion, i.e., locating the focus of the seizure in the brain in
order to perform ablation of the brain tissue or target
electrical stimulation at that location. However, these
approaches are based on the assumption that destruction or
electrical stimulation of the brain tissue at the focus will stop
the seizures. While this may be the case for some patients,
it is not the case for other patients suffering from the same
or similar neurological disorders. While some patients see a
reduction in seizures after resection or ablation, there are
many patients who see no benefit or exhibit even worse
symptoms than prior to the treatment. For example, some
patients having moderately severe seizures develop very
severe seizures after surgery, while some patients develop
entirely different types of seizures. Therefore conventional
approaches can be highly invasive, difficult to implement
correctly, and still only beneficial to some patients.

[0125] The inventors have discovered an effective treat-
ment option for neurological disorders that also is non-
invasive or minimally-invasive and/or substantially non-
destructive. The inventors have proposed the described
systems and methods where, instead of trying to kill brain
tissue in a one-time operation, the brain tissue is activated
using acoustic signals, e.g., low-intensity ultrasound, deliv-
ered transcranially to stimulate neurons in certain brain
regions in a substantially non-destructive manner. In some
embodiments, the brain tissue may be activated at random
intervals, e.g., sporadically throughout the day and/or night,
thereby preventing the brain from settling into a seizure
state. In some embodiments, the brain tissue may be acti-
vated in response to detecting that the patient’s brain is
exhibiting signs of a seizure, e.g., by monitoring electroen-
cephalogram (EEG) measurements from the brain. Accord-
ingly, some embodiments of the described systems and
methods provide for non-invasive and/or substantially non-
destructive treatment of symptoms of neurological disor-
ders, such as stroke, Parkinson’s, migraine, tremors, fron-
totemporal dementia, traumatic brain injury, depression,
anxiety, Alzheimer’s, dementia, multiple sclerosis, schizo-
phrenia, brain damage, neurodegeneration, central nervous
system (CNS) disease, encephalopathy, Huntington’s,
autism, ADHD, ALS, concussion, and/or other suitable
neurological disorders.

[0126] For example, some embodiments of the described
systems and methods may provide for treatment that allows
one or more sensors to be placed on the scalp of the person.
Therefore the treatment may be non-invasive because no
surgery is required to dispose the sensors on the scalp for
monitoring the brain of the person. In another example,
some embodiments of the described systems and methods
may provide for treatment that allows one or more sensors
to be placed just below the scalp of the person. Therefore the
treatment may be minimally-invasive because a subcutane-
ous surgery, or a similar procedure requiring small or no
incisions, may be used to dispose the sensors just below the
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scalp for monitoring the brain of the person. In another
example, some embodiments of the described systems and
methods may provide for treatment that applies to the brain,
with one or more transducers, a low-intensity ultrasound
signal. Therefore the treatment may be substantially non-
destructive because no brain tissue is ablated or resected
during application of the treatment to the brain.

[0127] In some embodiments, the described systems and
methods provide for a device wearable by a person in order
to treat a symptom of a neurological disorder. The device
may include a transducer that is configured to apply to the
brain an acoustic signal. In some embodiments, the acoustic
signal may be an ultrasound signal that is applied using a
low spatial resolution, e.g., on the order of hundreds of cubic
millimeters. Unlike conventional ultrasound treatment (e.g.,
HIFU) which is used for tissue ablation, some embodiments
of the described systems and methods use lower spatial
resolution for the ultrasound stimulation. The low spatial
resolution requirements may reduce the stimulation fre-
quency (e.g., on the order of 100 kHz-1 MHz), thereby
allowing the system to operate at low energy levels as these
lower frequency signals experience significantly lower
attenuation when passing through the person’s skull. This
decrease in power usage may be suitable for substantially
non-destructive use and/or for use in a wearable device.
Accordingly, the low energy usage may enable some
embodiments of the described systems and methods to be
implemented in a device that is low power, always-on,
and/or wearable by a person.

[0128] In some embodiments, the described systems and
methods provide for a device wearable by a person that
includes monitoring and stimulation components. The
device may include a sensor that is configured to detect a
signal, e.g., an electrical signal, a mechanical signal, an
optical signal, an infrared signal, or another suitable type of
signal, from the brain of the person. For example, the device
may include an EEG sensor, or another suitable sensor, that
is configured to detect an electrical signal such as an EEG
signal, or another suitable signal, from the brain of the
person. The device may include a transducer that is config-
ured to apply to the brain an acoustic signal. For example,
the device may include an ultrasound transducer that is
configured to apply to the brain an ultrasound signal. In
another example, the device may include a wedge transducer
to apply to the brain an ultrasound signal. U.S. Patent.
Application Publication No. 2018/0280735 provides further
information on exemplary embodiments of wedge transduc-
ers. the entirety of which is incorporated by reference herein.

[0129] In some embodiments, the wearable device may
include a processor in communication with the sensor and/or
the transducer. The processor may receive, from the sensor,
a signal detected from the brain. The processor may transmit
an instruction to the transducer to apply to the brain the
acoustic signal. In some embodiments, the processor may be
programmed to analyze the signal to determine whether the
brain is exhibiting a symptom of a neurological disorder,
e.g., a seizure. The processor may be programmed to trans-
mit the instruction to the transducer to apply to the brain the
acoustic signal, e.g., in response to determining that the
brain is exhibiting the symptom of the neurological disorder.
The acoustic signal may suppress the symptom of the
neurological disorder, e.g., a seizure.
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[0130] In some embodiments, the ultrasound signal may
have a low power density and be substantially non-destruc-
tive with respect to tissue when applied to the brain.
[0131] In some embodiments, the ultrasound transducer
may be driven by a voltage waveform such that the power
density, as measured by spatial-peak pulse-average intensity,
of the acoustic focus of the ultrasound signal, characterized
in water, is in the range of 1 to 100 watts/cm®. When in use,
the power density reaching the focus in the patient’s brain
may be attenuated by the patient’s skull from the range
described above by 1-20 dB. In some embodiments, the
power density may be measured by the spatial-peak tempo-
ral average (Ispta) or another suitable metric. In some
embodiments, a mechanical index, which measures at least
a portion of the ultrasound signal’s bioeffects, at the acoustic
focus of the ultrasound signal may be determined. The
mechanical index may be less than 1.9 to avoid cavitation at
or near the acoustic focus.

[0132] In some embodiments, the ultrasound signal may
have a frequency between 100 kHz and 1 MHz, or another
suitable range. In some embodiments, the ultrasound signal
may have a spatial resolution between 0.001 cm® and 0.1
cm’, or another suitable range.

[0133] In some embodiments, the device may apply to the
brain with the transducer an acoustic signal at one or more
random intervals. For example, the device may apply to a
patient’s brain the acoustic signal at random times through-
out the day and/or night, e.g., around every 10 minutes. In
another example, for patients with generalized epilepsy, the
device may stimulate the thalamus at random times through-
out the day and/or night, e.g., around every 10 minutes. In
some embodiments, the device may include another trans-
ducer. The device may select one of the transducers to apply
to the brain the acoustic signal at one or more random
intervals. In some embodiments, the device may include an
array of transducers that can be programmed to aim an
ultrasonic beam at any location within the skull or to create
a pattern of ultrasonic radiation within the skull with mul-
tiple foci.

[0134] In some embodiments, the sensor and the trans-
ducer are disposed on the head of the person in a non-
invasive manner. For example, the device may be disposed
on the head of the person in a non-invasive manner, such as
placed on the scalp of the person or in another suitable
manner. An illustrative example of the device is described
with respect to FIG. 1 below. In some embodiments, the
sensor and the transducer are disposed on the head of the
person in a minimally-invasive manner. For example, the
device may be disposed on the head of the person through
a subcutaneous surgery, or a similar procedure requiring
small or no incisions, such as placed just below the scalp of
the person or in another suitable manner.

[0135] Insomeembodiments, a seizure may be considered
to occur when a large number of neurons fire synchronously
with structured phase relationships. The collective activity
of a population of neurons may be mathematically repre-
sented as a point evolving in a high-dimensional space, with
each dimension corresponding to the membrane voltage of
a single neuron. In this space, a seizure may be represented
by a stable limit cycle, an isolated, periodic attractor. As the
brain performs its daily tasks, its state, represented by a point
in the high-dimensional space, may move around the space,
tracing complicated trajectories. However, if this point gets
too close to a certain dangerous region of space, e.g., the
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basin of attraction of the seizure, the point may get pulled
into the seizure state. Depending on the patient, certain
activities, such as sleep deprivation, alcohol consumption,
and eating certain foods may have a propensity to push the
brain state closer to the danger zone of the seizure’s basin of
attraction. Conventional treatment involving resecting/ab-
lating the estimated source brain tissue of the seizure
attempts to change the landscape in this space. While for
some patients the seizure limit cycle may be removed, for
others the old limit cycle may be become more strongly
attracting or perhaps a new one may appear. Moreover, any
type of surgery to brain tissue, including surgical placement
of electrodes, is highly invasive, and because the brain is an
incredibly large, complicated network, it may be non-trivial
to predict the network-level effects of removing or otherwise
impairing a spatially localized piece of brain tissue.

[0136] Some embodiments of the described systems and
methods, rather than localizing the seizure and removing the
estimated source brain tissue, monitor the brain using, e.g.,
EEG signals, to determine when the brain state is getting
close to the basin of attraction for a seizure. Whenever it is
detected that the brain state is getting close to this danger
zone, the brain is perturbed using, e.g., an acoustic signal, to
push the brain state out of the danger zone. In other words,
rather than trying to change the landscape in this space,
some embodiments of the described systems and methods
learn what the landscape of the brain, monitor the brain state,
and ping the brain when needed, thereby removing it from
the danger zone. Some embodiments of the described sys-
tems and methods provide for non-invasive, substantially
non-destructive neural stimulation, lower power dissipation
(e.g., than other transcranial ultrasound therapies), and/or a
suppression strategy coupled with a non-invasive electrical
recording device.

[0137] For example, for patients with generalized epi-
lepsy, some embodiments of the described systems and
methods may stimulate the thalamus or another suitable
region of the brain at random times throughout the day
and/or night, e.g., around every 10 minutes. The device may
use an ultrasound frequency of around 100 kHz-1 MHz at a
power usage of around 1-100 watts/cm® as measured by
spatial-peak pulse-average intensity. In another example, for
patients with left temporal lobe epilepsy, some embodiments
of'the described systems and methods may stimulate the left
temporal lobe or another suitable region of the brain in
response to detecting an increased seizure risk level based
on EEG signals (e.g., above some predetermined threshold).
The left temporal lobe may be stimulated until the EEG
signals indicate that the seizure risk level has decreased
and/or until some maximum stimulation time threshold (e.g.,
several minutes) has been reached. The predetermined
threshold may be determined using machine learning train-
ing algorithms trained on the patient’s EEG recordings and
a monitoring algorithm may measure the seizure risk level
using the EEG signals.

[0138] In some embodiments, seizure suppression strate-
gies can be categorized by their spatial and temporal reso-
Iution and can vary per patient. Spatial resolution refers to
the size of the brain structures that are being activated/
inhibited. In some embodiments, low spatial resolution may
be a few hundred cubic millimeters, e.g., on the order of 0.1
cubic centimeters. In some embodiments, medium spatial
resolution may be on the order of 0.01 cubic centimeters. In
some embodiments, high spatial resolution may be a few
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cubic millimeters, e.g., on the order of 0.001 cubic centi-
meters. Temporal resolution generally refers to responsive-
ness of the stimulation. In some embodiments, low temporal
resolution may include random stimulation with no regard
for when seizures are likely to occur. In some embodiments,
medium temporal resolution may include stimulation in
response to a small increase in seizure probability. In some
embodiments, high temporal resolution may include stimu-
lation in response to detecting a high seizure probability,
e.g., right after a seizure started. In some embodiments,
using strategies with medium and high temporal resolution
may require using a brain-activity recording device and
running machine learning algorithms to detect the likelihood
of a seizure occurring in the near future.

[0139] In some embodiments, the device may use a strat-
egy with low-medium spatial resolution and low temporal
resolution. The device may coarsely stimulate centrally
connected brain structures to prevent seizures from occur-
ring, using low power transcranial ultrasound. For example,
the device may stimulate one or more regions of the brain
with ultrasound stimulation of a low spatial resolution (e.g.,
on the order of hundreds of cubic millimeters) at random
times throughout the day and/or night. The effect of such
random stimulation may be to prevent the brain from settling
into its familiar patterns that often lead to seizures. The
device may target individual subthalamic nuclei and other
suitable brain regions with high connectivity to prevent
seizures from occurring.

[0140] In some embodiments, the device may employ a
strategy with low-medium spatial resolution and medium-
high temporal resolution. The device may include one or
more sensors to non-invasively monitor the brain and detect
a high level of seizure risk (e.g., higher probability that a
seizure will occur within the hour). In response to detecting
a high seizure risk level, the device may apply low power
ultrasound stimulation that is transmitted through the skull,
to the brain, activating and/or inhibiting brain structures to
prevent/stop seizures from occurring. For example, the
ultrasound stimulation may include frequencies from 100
kHz to 1 MHz and/or power density from 1 to 100 watts/cm?®
as measured by spatial-peak pulse-average intensity. The
device may target brain structures such as the thalamus,
piriform cortex, coarse-scale structures in the same hemi-
sphere as seizure foci (e.g., for patients with localized
epilepsy), and other suitable brain structures to prevent
seizures from occurring.

[0141] FIG. 1 shows different aspects 100, 110, and 120 of
a device wearable by a person for treating a symptom of a
neurological disorder, in accordance with some embodi-
ments of the technology described herein. The device may
be a non-invasive seizure prediction and/or detection device.
In some embodiments, in aspect 100, the device may include
a local processing device 102 and one or more electrodes
104. The local processing device 102 may include a wrist-
watch, an arm band, a necklace, a wireless earbud, or
another suitable device. The local processing device 102
may include a radio and/or a physical connector for trans-
mitting data to a cloud server, a mobile phone, or another
suitable device. The local processing device 102 may
receive, from a sensor, a signal detected from the brain and
transmit an instruction to a transducer to apply to the brain
an acoustic signal. The electrodes 104 may include one or
more sensors configured to detect a signal from the brain of
the person, e.g., an EEG signal, and/or one or more trans-

Jun. 18, 2020

ducers configured to apply to the brain an acoustic signal,
e.g., an ultrasound signal. The acoustic signal may have a
low power density and be substantially non-destructive with
respect to tissue when applied to the brain. In some embodi-
ments, one electrode may include either a sensor or a
transducer. In some embodiments, one electrode may
include both a sensor and a transducer. In some embodi-
ments, one, 10, 20, or another suitable number of electrodes
may be available. The electrodes may be removably attached
to the device.

[0142] In some embodiments, in aspect 110, the device
may include a local processing device 112, a sensor 114, and
a transducer 116. The device may be disposed on the head
of the person in a non-invasive manner, such as placed on
the scalp of the person or in another suitable manner. The
local processing device 112 may include a wristwatch, an
arm band, a necklace, a wireless earbud, or another suitable
device. The local processing device 112 may include a radio
and/or a physical connector for transmitting data to a cloud
server, a mobile phone, or another suitable device. The local
processing device 112 may receive, from the sensor 114, a
signal detected from the brain and transmit an instruction to
the transducer 116 to apply to the brain an acoustic signal.
The sensor 114 may be configured to detect a signal from the
brain of the person, e.g., an EEG signal. The transducer 116
may be configured to apply to the brain an acoustic signal,
e.g., an ultrasound signal. The acoustic signal may have a
low power density and be substantially non-destructive with
respect to tissue when applied to the brain. In some embodi-
ments, one electrode may include either a sensor or a
transducer. In some embodiments, one electrode may
include both a sensor and a transducer. In some embodi-
ments, one, 10, 20, or another suitable number of electrodes
may be available. The electrodes may be removably attached
to the device.

[0143] In some embodiments, in aspect 120, the device
may include a local processing device 122 and an electrode
124. The device may be disposed on the head of the person
in a non-invasive manner, such as placed over the ear of the
person or in another suitable manner. The local processing
device 122 may include a wristwatch, an arm band, a
necklace, a wireless earbud, or another suitable device. The
local processing device 122 may include a radio and/or a
physical connector for transmitting data to a cloud server, a
mobile phone, or another suitable device. The local process-
ing device 122 may receive, from the electrode 124, a signal
detected from the brain and/or transmit an instruction to the
electrode 124 to apply to the brain an acoustic signal. The
electrode 124 may include a sensor configured to detect a
signal from the brain of the person, e.g., an EEG signal,
and/or a transducer configured to apply to the brain an
acoustic signal, e.g., an ultrasound signal. The acoustic
signal may have a low power density and be substantially
non-destructive with respect to tissue when applied to the
brain. In some embodiments, the electrode 124 may include
either a sensor or a transducer. In some embodiments, the
electrode 124 may include both a sensor and a transducer. In
some embodiments, one, 10, 20, or another suitable number
of electrodes may be available. The electrodes may be
removably attached to the device.

[0144] In some embodiments, the device may include one
or more sensors for detecting sound, motion, optical signals,
heart rate, and other suitable sensing modalities. For
example, the sensor may detect an electrical signal, a
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mechanical signal, an optical signal, an infrared signal, or
another suitable type of signal. In some embodiments, the
device may include a wireless earbud, a sensor embedded in
the wireless earbud, and a transducer. The sensor may detect
a signal, e.g., an EEG signal, from the brain of the person
while the wireless earbud is present in the person’s ear. The
wireless earbud may have an associated case or enclosure
that includes a local processing device for receiving and
processing the signal from the sensor and/or transmitting an
instruction to the transducer to apply to the brain an acoustic
signal.

[0145] In some embodiments, the device may include a
sensor for detecting a mechanical signal, such as a signal
with a frequency in the audible range. For example, the
sensor may be used to detect an audible signal from the brain
indicating a seizure. The sensor may be an acoustic receiver
disposed on the scalp of the person to detect an audible
signal from the brain indicating a seizure. In another
example, the sensor may be an accelerometer disposed on
the scalp of the person to detect an audible signal from the
brain indicating a seizure. In this manner, the device may be
used to “hear” the seizure around the time it occurs.

[0146] FIGS. 2A-2B show illustrative examples of a
device wearable by a person for treating a symptom of a
neurological disorder and mobile device(s) executing an
application in communication with the device, in accordance
with some embodiments of the technology described herein.
FIG. 2A shows an illustrative example of a device 200
wearable by a person for treating a symptom of a neuro-
logical disorder and a mobile device 210 executing an
application in communication with the device 200. In some
embodiments, the device 200 may be capable of predicting
seizures, detecting seizures and alerting users or caretakers,
tracking and managing the condition, and/or suppressing
symptoms of neurological disorders, such as seizures. The
device 200 may connect to the mobile device 210, such as
a mobile phone, watch, or another suitable device via
BLUETOOTH, WIFI, or another suitable connection. The
device 200 may monitor neuronal activity with one or more
sensors 202 and share data with a user, a caretaker, or
another suitable entity using processor 204. The device 200
may learn about individual patient patterns. The device 200
may access data from prior signals detected from the brain
from an electronic health record of the person wearing the
device 200.

[0147] FIG. 2B shows illustrative examples of mobile
devices 250 and 252 executing an application in communi-
cation with a device wearable by a person for treating a
symptom of a neurological disorder, e.g., device 200. For
example, the mobile device 250 or 252 may display real-
time seizure risk for the person suffering from the neuro-
logical disorder. In the event of a seizure, the mobile device
250 or 252 may alert the person, a caregiver, or another
suitable entity. For example, the mobile device 250 or 252
may inform a caretaker that a seizure is predicted in the next
30 minutes, next hour, or another suitable time period. In
another example, the mobile device 250 or 252 may send
alerts to the caretaker when a seizure does occur and/or
record seizure activity, such as signals from the brain, for the
caretaker to refine treatment of the person’s neurological
disorder. In some embodiments, the wearable device 200
and/or the mobile device 250 or 252 may analyze a signal,
such as an EEG signal, detected from the brain to determine
whether the brain is exhibiting a symptom of a neurological
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disorder. The wearable device 200 may apply to the brain an
acoustic signal, such as an ultrasound signal, in response to
determining that the brain is exhibiting the symptom of the
neurological disorder.

[0148] In some embodiments, the wearable device 200,
the mobile device 250 or 252, and/or another suitable
computing device may provide one or more signals, e.g., an
EEG signal or another suitable signal, detected from the
brain to a deep learning network to determine whether the
brain is exhibiting a symptom of a neurological disorder,
e.g., a seizure or another suitable symptom. The deep
learning network may be trained on data gathered from a
population of patients and/or the person wearing the wear-
able device 200. The mobile device 250 or 252 may generate
an interface to warn the person and/or a caretaker when the
person is likely to have a seizure and/or when the person will
be seizure-free. In some embodiments, the wearable device
200 and/or the mobile device 250 or 252 may allow for
two-way communication to and from the person suffering
from the neurological disorder. For example, the person may
inform the wearable device 200 via text, speech, or another
suitable input mode that “I just had a beer, and I’'m worried
I may be more likely to have a seizure.” The wearable device
200 may respond using a suitable output mode that “Okay,
the device will be on high alert.” The deep learning network
may use this information to assist in future predictions for
the person. For example, the deep learning network may add
this information to data used for updating/training the deep
learning network. In another example, the deep learning
network may use this information as input to help predict the
next symptom for the person. Additionally or alternatively,
the wearable device 200 may assist the person and/or the
caretaker in tracking sleep and/or diet patterns of the person
suffering from the neurological disorder and provide this
information when requested. The deep learning network
may add this information to data used for updating/training
the deep learning network and/or use this information as
input to help predict the next symptom for the person.
Further information regarding the deep learning network is
provided with respect to FIGS. 11B and 11C.

[0149] FIG. 3A shows an illustrative example 300 of a
mobile device and/or a cloud server in communication with
a device wearable by a person for treating a symptom of a
neurological disorder, in accordance with some embodi-
ments of the technology described herein. In this example,
the wearable device 302 may monitor brain activity with one
or more sensors and send the data to the person’s mobile
device 304, e.g., a mobile phone, a wristwatch, or another
suitable mobile device. The mobile device 304 may analyze
the data and/or send the data to a server 306, e.g., a cloud
server. The server 306 may execute one or more machine
learning algorithms to analyze the data. For example, the
server 306 may use a deep learning network that takes the
data or a portion of the data as input and generates output
with information about one or more predicted symptoms,
e.g., a predicted strength of a seizure. The analyzed data may
be displayed on the mobile device 304 and/or an application
on a computing device 308. For example, the mobile device
304 and/or computing device 308 may display real-time
seizure risk for the person suffering from the neurological
disorder. In the event of a seizure, the mobile device 304
and/or computing device 308 may alert the person, a care-
giver, or another suitable entity. For example, the mobile
device 304 and/or computing device 308 may inform a
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caretaker that a seizure is predicted in the next 30 minutes,
next hour, or another suitable time period. In another
example, the mobile device 304 and/or computing device
308 may send alerts to the caretaker when a seizure does
occur and/or record seizure activity, such as signals from the
brain, for the caretaker to refine treatment of the person’s
neurological disorder.

[0150] In some embodiments, one or more alerts may be
generated by a machine learning algorithm trained to detect
and/or predict seizures. For example, the machine learning
algorithm may include a deep learning network, e.g., as
described with respect to FIGS. 11B and 11C. When the
algorithm detects that a seizure is present, or predicts that a
seizure is likely to develop in the near future (e.g., within an
hour), an alert may be sent to a mobile application. The
interface of the mobile application may include bi-direc-
tional communication, e.g., in addition to the mobile appli-
cation sending notifications to the patient, the patient may
have the ability to enter information into the mobile appli-
cation to improve the performance of the algorithm. For
example, if the machine learning algorithm is not certain
within a confidence threshold that the patient is having a
seizure, it may send a question to the patient through the
mobile application, asking the patient whether or not he/she
recently had a seizure. If the patient answers no, the algo-
rithm may take this into account and train or re-train
accordingly.

[0151] FIG. 3B shows a block diagram 350 of a mobile
device and/or a cloud server in communication with a device
wearable by a person for treating a symptom of a neuro-
logical disorder, in accordance with some embodiments of
the technology described herein. Device 360 may include a
wristwatch, an arm band, a necklace, a wireless earbud, or
another suitable device. The device 360 may include one or
more sensors (block 362) to acquire signals from the brain
(e.g., from EEG sensors, accelerometers, electrocardiogram
(EKG) sensors, and/or other suitable sensors). The device
360 may include an analog front-end (block 364) for con-
ditioning, amplifying, and/or digitizing the signals acquired
by the sensors (block 362). The device 360 may include a
digital back-end (block 366) for buffering, pre-processing,
and/or packetizing the output signals from the analog front-
end (block 364). The device 360 may include data trans-
mission circuitry (block 368) for transmitting the data from
the digital back-end (block 366) to a mobile application 370,
e.g., via BLUETOOTH. Additionally or alternatively, the
data transmission circuitry (block 368) may send debugging
information to a computer, e.g., via USB, and/or send
backup information to local storage, e.g., a microSD card.

[0152] The mobile application 370 may execute on a
mobile phone or another suitable device. The mobile appli-
cation 370 may receive data from the device 370 (block 372)
and send the data to a cloud server 380 (block 374). The
cloud server 380 may receive data from the mobile appli-
cation 370 (block 382) and store the data in a database
(block 383). The cloud server 380 may extract detection
features (block 384), run a detection algorithm (block 386),
and send results back to the mobile application 370 (block
388). Further details regarding the detection algorithm are
described later in this disclosure, including with respect to
FIGS. 11B and 11C. The mobile application 370 may receive
the results from the cloud server 380 (block 376) and display
the results to the user (block 378).
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[0153] Insome embodiments, the device 360 may transmit
the data directly to the cloud server 380, e.g., via the
Internet. The cloud server 380 may send the results to the
mobile application 370 for display to the user. In some
embodiments, the device 360 may transmit the data directly
to the cloud server 380, e.g., via the Internet. The cloud
server 380 may send the results back to the device 360 for
display to the user. For example, the device 360 may be a
wristwatch with a screen for displaying the results. In some
embodiments, the device 360 may transmit the data to the
mobile application 370, and the mobile application 370 may
extract detection features, run a detection algorithm, and/or
display the results to the user on the mobile application 370
and/or the device 360. Other suitable variations of interac-
tions between the device 360, the mobile application 370,
and/or the cloud server 380 may be possible and are within
the scope of this disclosure.

[0154] FIG. 4 shows a block diagram for a wearable
device 400 including stimulation and monitoring compo-
nents, in accordance with some embodiments of the tech-
nology described herein. The device 400 is wearable by (or
attached to or implanted within) a person and includes a
monitoring component 402, a stimulation component 404,
and a processor 406. The monitoring component 402 may
include a sensor that is configured to detect a signal, e.g., an
electrical signal, a mechanical signal, an optical signal, an
infrared signal, or another suitable type of signal, from the
brain of the person. For example, the sensor may be an
electroencephalogram (EEG) sensor, and the signal may be
an electrical signal, such as an EEG signal. The stimulation
component 404 may include a transducer configured to
apply to the brain an acoustic signal. For example, the
transducer may be an ultrasound transducer, and the acoustic
signal may be an ultrasound signal. In some embodiments,
the ultrasound signal may have a low power density and be
substantially non-destructive with respect to tissue when
applied to the brain. In some embodiments, the sensor and
the transducer may be disposed on the head of the person in
a non-invasive manner.

[0155] The processor 406 may be in communication with
the monitoring component 402 and the stimulation compo-
nent 404. The processor 406 may be programmed to receive,
from the monitoring component 402, the signal detected
from the brain and transmit an instruction to the stimulation
component 404 to apply to the brain the acoustic signal. In
some embodiments, the processor 406 may be programmed
to transmit the instruction to the stimulation component 404
to apply to the brain the acoustic signal at one or more
random intervals. In some embodiments, the stimulation
component 404 may include two or more transducers, and
the processor 406 may be programmed to select one of the
transducers to transmit the instruction to apply to the brain
the acoustic signal at one or more random intervals.

[0156] In some embodiments, the processor 406 may be
programmed to analyze the signal from the monitoring
component 402 to determine whether the brain is exhibiting
a symptom of a neurological disorder. The processor 406
may transmit the instruction to the stimulation component
404 to apply to the brain the acoustic signal in response to
determining that the brain is exhibiting the symptom of the
neurological disorder. The acoustic signal may suppress the
symptom of the neurological disorder. For example, the
symptom may be a seizure, and the neurological disorder
may be one or more of stroke, Parkinson’s disease, migraine,
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tremors, frontotemporal dementia, traumatic brain injury,
depression, anxiety, Alzheimer’s disease, dementia, multiple
sclerosis, schizophrenia, brain damage, neurodegeneration,
central nervous system (CNS) disease, encephalopathy,
Huntington’s disease, autism, attention deficit hyperactivity
disorder (ADHD), amyotrophic lateral sclerosis (ALS), and
concussion.

[0157] In some embodiments, the software to program the
ultrasound transducers may send real-time sensor readings
(e.g., from EEG sensors, accelerometers, EKG sensors,
and/or other suitable sensors) to a processor running
machine learning algorithms continuously, e.g., a deep
learning network as described with respect to FIGS. 11B and
11C. For example, this processor may be local, on the device
itself, or in the cloud. These machine learning algorithms
executing on the processor may perform three tasks: 1)
detect when a seizure is present, 2) predict when a seizure
is likely to occur within the near future (e.g., within one
hour), and 3) output a location to aim the stimulating
ultrasound beam. Immediately after the processor detects
that a seizure has begun, the stimulating ultrasound beam
may be turned on and aimed at the location determined by
the output of the algorithm(s). For patients with seizures that
always have the same characteristics/focus, it is likely that
once a good beam location is found, it may not change.
Another example for how the beam may be activated is
when the processor predicts that a seizure is likely to occur
in the near future, the beam may be turned on at a relatively
low intensity (e.g., relative to the intensity used when a
seizure is detected). In some embodiments, the target for the
stimulating ultrasound beam may not be the seizure focus
itself. For example, the target may be a seizure “choke
point,” i.e., a location outside of the seizure focus that when
stimulated can shut down seizure activity.

[0158] FIG. 5 shows a block diagram for a wearable
device 500 for substantially non-destructive acoustic stimu-
lation, in accordance with some embodiments of the tech-
nology described herein. The device 500 is wearable by a
person and includes a monitoring component 502 and a
stimulation component 504. The monitoring component 502
and/or the stimulation component 504 may be disposed on
the head of the person in a non-invasive manner.

[0159] The monitoring component 502 may include a
sensor that is configured to detect a signal, e.g., an electrical
signal, a mechanical signal, an optical signal, an infrared
signal, or another suitable type of signal, from the brain of
the person. For example, the sensor may be an electroen-
cephalogram (EEG) sensor, and the signal may be an EEG
signal. The stimulation component 504 may include an
ultrasound transducer configured to apply to the brain an
ultrasound signal that has a low power density, e.g., between
1 and 100 watts/cm?, and is substantially non-destructive
with respect to tissue when applied to the brain. For
example, the ultrasound signal may have a frequency
between 100 kHz and 1 MHz, a spatial resolution between
0.001 cm’ and 0.1 cm?®, and/or the low power density
between 1 and 100 watts/cm® as measured by spatial-peak
pulse-average intensity. The ultrasound signal may suppress
the symptom of the neurological disorder. For example, the
symptom may be a seizure, and the neurological disorder
may be epilepsy or another suitable neurological disorder.

[0160] FIG. 6 shows a block diagram for a wearable
device 600 for acoustic stimulation, e.g., randomized acous-
tic stimulation, in accordance with some embodiments of the
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technology described herein. The device 600 is wearable by
a person and includes a stimulation component 604 and a
processor 606. The stimulation component 604 may include
a transducer that is configured to apply to the brain of the
person acoustic signals. For example, the transducer may be
an ultrasound transducer, and the acoustic signal may be an
ultrasound signal. In some embodiments, the ultrasound
signal may have a low power density and be substantially
non-destructive with respect to tissue when applied to the
brain. In some embodiments, the transducer may be dis-
posed on the head of the person in a non-invasive manner.

[0161] In some embodiments, the processor 606 may
transmit an instruction to the stimulation component 604 to
activate the brain tissue at random intervals, e.g., sporadi-
cally throughout the day and/or night, thereby preventing the
brain from settling into a seizure state. For example, for
patients with generalized epilepsy, the device 600 may
stimulate the thalamus or another suitable region of the brain
at random times throughout the day and/or night, e.g.,
around every 10 minutes. In some embodiments, the stimu-
lation component 604 may include another transducer. The
device 600 and/or the processor 606 may select one of the
transducers to apply to the brain the acoustic signal at one or
more random intervals.

[0162] FIG. 7 shows a block diagram for a wearable
device 700 for treating a neurological disorder using ultra-
sound stimulation, in accordance with some embodiments of
the technology described herein. The device 700 is wearable
by (or attached to or implanted within) a person and can be
used to treat epileptic seizures. The device 700 includes a
sensor 702, a transducer 704, and a processor 706. The
sensor 702 may be configured to detect an EEG signal from
the brain of the person. The transducer 704 may be config-
ured to apply to the brain a low power, substantially non-
destructive ultrasound signal. The ultrasound signal may
suppress one or more epileptic seizures. For example, the
ultrasound signal may have a frequency between 100 kHz
and 1 MHz, a spatial resolution between 0.001 cm® and 0.1
cm’, and/or a power density between 1 and 100 watts/cm>
as measured by spatial-peak pulse-average intensity. In
some embodiments, the sensor and the transducer may be
disposed on the head of the person in a non-invasive manner.

[0163] The processor 706 may be in communication with
the sensor 702 and the transducer 704. The processor 706
may be programmed to receive, from the sensor 702, the
EEG signal detected from the brain and transmit an instruc-
tion to the transducer 704 to apply to the brain the ultrasound
signal. In some embodiments, the processor 706 may be
programmed to analyze the EEG signal to determine
whether the brain is exhibiting an epileptic seizure and, in
response to determining that the brain is exhibiting the
epileptic seizure, transmit the instruction to the transducer
704 to apply to the brain the ultrasound signal.

[0164] In some embodiments, the processor 706 may be
programmed to transmit an instruction to the transducer 704
to apply to the brain the ultrasound signal at one or more
random intervals. In some embodiments, the transducer 704
may include two or more transducers, and the processor 706
may be programmed to select one of the transducers to
transmit an instruction to apply to the brain the ultrasound
signal at one or more random intervals.
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Closed-Loop System using Machine [earning to Steer
Focus of Ultrasound Beam within Human Brain

[0165] Conventional brain-machine interfaces are limited
in that the brain regions that receive stimulation may not be
changed in real time. This may be problematic because it is
often difficult to locate an appropriate brain region to stimu-
late in order to treat symptoms of neurological disorders. For
example, in epilepsy, it may not be clear which region within
the brain should be stimulated to suppress or stop a seizure.
The appropriate brain region may be the seizure focus
(which can be difficult to localize), a region that may serve
to suppress the seizure, or another suitable brain region.
Conventional solutions, such as implantable electronic
responsive neural stimulators and deep brain stimulators,
can only be positioned once by doctors taking their best
guess or choosing some pre-determined region of the brain.
Therefore, brain regions that can receive stimulation cannot
be changed in real time in conventional systems.

[0166] The inventors have appreciated that treatment for
neurological disorders may be more effective when the brain
region of the stimulation may be changed in real time, and
in particular, when the brain region may be changed
remotely. Because the brain region may be changed in real
time and/or remotely, tens (or more) of locations per second
may be tried, thereby closing in on the appropriate brain
region for stimulation quickly with respect to the duration of
an average seizure. Such a treatment may be achievable
using ultrasound to stimulate the brain. In some embodi-
ments, the patient may wear an array of ultrasound trans-
ducers (e.g., such an array is placed on the scalp of the
person), and an ultrasound beam may be steered using
beamforming methods such as phased arrays. In some
embodiments, with wedge transducers, fewer number of
transducers may be used. In some embodiments, with wedge
transducers, the device may be more energy efficient due to
lower power requirements of the wedge transducers. U.S.
Patent Application Publication No. 2018/0280735 provides
further information on exemplary embodiments of the
wedge transducers, the entirety of which incorporated by
reference herein. The target of the beam may be changed by
programming the array. If stimulation in a certain brain
region is not working, the beam may be moved to another
region of the brain to try again, at no harm to the patient.

[0167] In some embodiments, a machine learning algo-
rithm that senses the brain state may be connected to the
beam steering algorithm to make a closed-loop system, e.g.,
including a deep learning network. The machine learning
algorithm that senses the brain state may take as input
recordings from EEG sensors, EKG sensors, accelerometers,
and/or other suitable sensors. Various filters may be applied
to these combined inputs, and the outputs of these filters may
be combined in a generally nonlinear fashion, to extract a
useful representation of the data. Then, a classifier may be
trained on this high-level representation. This may be
accomplished using deep learning and/or by pre-specifying
the filters and training a classifier, such as a Support Vector
Machine (SVM). In some embodiments, the machine learn-
ing algorithm may include training a recurrent neural net-
work (RNN), such as a long short-term memory (LSTM)
unit based RNN, to map the high-dimensional input data into
a smoothly-varying trajectory through a latent space repre-
sentative of a higher-level brain state. These machine learn-
ing algorithms executing on the processor may perform
three tasks: 1) detect when a symptom of a neurological
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disorder is present, e.g., a seizure, 2) predict when a symp-
tom is likely to occur within the near future (e.g., within one
hour), and 3) output a location to aim the stimulating
acoustic signal, e.g., an ultrasound beam. Any or all of these
tasks may be performed using a deep learning network or
another suitable network. More details regarding this tech-
nique are described later in this disclosure, including with
respect to FIGS. 11B and 11C.

[0168] Taking the example of epilepsy, the goal may be to
suppress or stop a seizure that has already started. In this
example, the closed-loop system may work as follows. First,
the system may execute a measurement algorithm that
measures the “strength” of seizure activity, with the beam
positioned in some preset initial location (for example, the
hippocampus for patients with temporal lobe epilepsy). The
beam location may then be slightly changed and the result-
ing change in seizure strength may be measured using the
measurement algorithm. If the seizure activity has reduced,
the system may continue moving the beam in this direction.
If the seizure activity has increased, the system may move
the beam in the opposite or a different direction. Because the
beam location may be programmed electronically, tens of
beam locations per second may be tried, thereby closing in
on the appropriate stimulation location quickly with respect
to the duration of an average seizure.

[0169] In some embodiments, some brain regions may be
inappropriate for stimulation. For example, stimulating parts
of the brain stem may lead to irreversible damage or
discomfort. In this case, the closed-loop system may follow
a “constrained” gradient descent solution where the appro-
priate stimulation location is taken from a set of feasible
points. This may ensure that the off-limit brain regions are
never stimulated.

[0170] FIG. 8 shows a block diagram for a device 800 to
steer acoustic stimulation, in accordance with some embodi-
ments of the technology described herein. The device 800,
e.g., a wearable device, may be part of a closed-loop system
that uses machine learning to steer focus of an ultrasound
beam within the brain. The device 800 may include a
monitoring component 802, e.g., a sensor, that is configured
to detect a signal, e.g., an electrical signal, a mechanical
signal, an optical signal, an infrared signal, or another
suitable type of signal, from the brain of the person. For
example, the sensor may be an EEG sensor, and the signal
may be an electrical signal, such as an EEG signal. The
device 800 may include a stimulation component 804, e.g.,
a set of transducers, each configured to apply to the brain an
acoustic signal. For example, one or more of the transducers
may be an ultrasound transducer, and the acoustic signal
may be an ultrasound signal. The sensor and/or the set of
transducers may be disposed on the head of the person in a
non-invasive manner. In some embodiments, the device 800
may include a processor 806 in communication with the
sensor and the set of transducers. The processor 806 may
select one of the transducers using a statistical model trained
on data from prior signals detected from the brain. For
example, data from prior signals detected from the brain
may be accessed from an electronic health record of the
person.

[0171] FIG. 9 shows a flow diagram 900 for a device to
steer acoustic stimulation, in accordance with some embodi-
ments of the technology described herein.
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[0172] At 902, the processor, e.g., processor 806, may
receive, from the sensor, data from a first signal detected
from the brain.

[0173] At 904, the processor may access a trained statis-
tical model. The statistical model may be trained using data
from prior signals detected from the brain. For example, the
statistical model may include a deep learning network
trained using data from the prior signals detected from the
brain.

[0174] At 906, the processor may provide data from the
first signal detected from the brain as input to the trained
statistical model, e.g., a deep learning network, to obtain an
output indicating a first predicted strength of a symptom of
a neurological disorder, e.g., an epileptic seizure.

[0175] At 908, based on the first predicted strength of the
symptom, the processor may select one of the transducers in
a first direction to transmit a first instruction to apply a first
acoustic signal. For example, the first acoustic signal may be
an ultrasound signal that has a low power density, e.g.,
between 1 and 100 watts/cm?, and is substantially non-
destructive with respect to tissue when applied to the brain.
The acoustic signal may suppress the symptom of the
neurological disorder.

[0176] At 910, the processor may transmit the instruction
to the selected transducer to apply the first acoustic signal to
the brain.

[0177] In some embodiments, the processor may be pro-
grammed to provide data from a second signal detected from
the brain as input to the trained statistical model to obtain an
output indicating a second predicted strength of the symp-
tom of the neurological disorder. If it is determined that the
second predicted strength is less than the first predicted
strength, the processor may select one of the transducers in
the first direction to transmit a second instruction to apply a
second acoustic signal. If it is determined that the second
predicted strength is greater than the first predicted strength,
the processor may select one of the transducers in a direction
opposite to or different from the first direction to transmit the
second instruction to apply the second acoustic signal.

Novel Detection Algorithms

[0178] Conventional approaches consider seizure detec-
tion to be a classification problem. For example, a window
of EEG data (e.g., 5 seconds long) may be fed into a
classifier which outputs a binary label representing whether
or not the input is from a seizure. Running the algorithm in
real time may entail running the algorithm on consecutive
windows of EEG data. However, the inventors have discov-
ered that there is nothing in such an algorithm structure, or
in the training of the algorithm, to accommodate that the
brain does not quickly switch back and forth between
seizure and non-seizure. If the current window is a seizure,
there is a high probability that the next window will be a
seizure t00. This reasoning will only fail for the very end of
the seizure. Similarly, if the current window is not a seizure,
there is a high probability that the next window will also not
be a seizure. This reasoning will only fail for the very
beginning of the seizure. The inventors have appreciated that
it would be preferable to reflect the “smoothness” of seizure
state in the structure of the algorithm or in the training by
penalizing network outputs that oscillate on short time
scales. The inventors have accomplished this by, for
example, adding a regularization term to the loss function
that is proportional to the total variation of the outputs, or the
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L1/L.2 norm of the derivative (computed via finite differ-
ence) of the outputs, or the L.1/L.2 norm of the second
derivative of the outputs. In some embodiments, RNNs with
LSTM units may automatically give smooth output. In some
embodiments, a way to achieve smoothness of the detection
outputs may be to train a conventional, non-smooth detec-
tion algorithm, and feed its results into a causal low-pass
filter, and using this low-pass filtered output as the final
result. This may ensure that the final result is smooth. For
example, the non-smooth detection algorithm may use one
or both of the following equations to generate the final
result:

" M
Loy = 37 Iyl = 3, 017 + A3, L2l

i=1
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[0179] In equations (1) and (2), y[i] is the ground-truth
label of seizure, or no seizure, for sample i, ¥, [i] is the
output of the algorithm for sample i. [.(w) is the machine
learning loss function evaluated at the model parameterized
by w (meant to represent the weights in a network). The first
term in [(w) may measure how accurately the algorithm
classifies seizures. The second term in L(w) (multiplied by
M) is a regularization term that may encourage the algorithm
to learn solutions that change smoothly over time. Equations
(1) and (2) are two examples for regularization as shown.
Equation (1) is the total variation (TV) norm, and equation
(2) is the absolute value of the first derivative. Both equa-
tions may try to enforce smoothness. In equation (1), the TV
norm may be small for a smooth output and large for an
output that is not smooth. In equation (2), the absolute value
of the first derivative is penalized to try to enforce smooth-
ness. In certain cases, equation (1) may work better than
equation (2), or vice versa, the results of which may be
determined empirically by training a conventional, non-
smooth detection algorithm using equation (1) and compar-
ing the final result to a similar algorithm trained using
equation (2).

[0180] Conventionally, EEG data is annotated in a binary
fashion, so that one moment is classified as not a seizure and
the next is classified as a seizure. The exact seizure start and
end times are relatively arbitrary because there may not be
an objective way to locate the beginning and end of a
seizure. However, using conventional algorithms, the detec-
tion algorithm may be penalized for not perfectly agreeing
with the annotation. The inventors have appreciated that it
may be better to “smoothly” annotate the data, e.g., using
smooth window labels that rise from O to 1 and fall smoothly
from 1 back to 0, with O representing a non-seizure and 1
representing a seizure. This annotation scheme may better
reflect that seizures evolve over time and that there may be
ambiguity involved in the precise demarcation. Accordingly,
the inventors have applied this annotation scheme to recast
seizure detection from a detection problem to a regression
machine learning problem.

[0181] FIG. 10 shows a block diagram for a device using
a statistical model trained on annotated signal data, in
accordance with some embodiments of the technology
described herein. The statistical model may include a deep



US 2020/0188699 Al

learning network or another suitable model. The device
1000, e.g., a wearable device, may include a monitoring
component 1002, e.g., a sensor, that is configured to detect
a signal, e.g., an electrical signal, a mechanical signal, an
optical signal, an infrared signal, or another suitable type of
signal, from the brain of the person. For example, the sensor
may be an EEG sensor, and the signal may be an EEG signal.
The device 1000 may include a stimulation component
1004, e.g., a set of transducers, each configured to apply to
the brain an acoustic signal. For example, one or more of the
transducers may be an ultrasound transducer, and the acous-
tic signal may be an ultrasound signal. The sensor and/or the
set of transducers may be disposed on the head of the person
in a non-invasive manner.

[0182] In some embodiments, the device 1000 may
include a processor 1006 in communication with the sensor
and the set of transducers. The processor 1006 may select
one of the transducers using a statistical model trained on
signal data annotated with one or more values relating to
identifying a health condition. e.g., respective values relat-
ing to increasing strength of a symptom of a neurological
disorder. For example, the signal data may include data from
prior signals detected from the brain and may be accessed
from an electronic health record of the person. In some
embodiments, the statistical model may be trained on data
from prior signals detected from the brain annotated with the
respective values, e.g., between 0 and 1, relating to increas-
ing strength of the symptom of the neurological disorder. In
some embodiments, the statistical model may include a loss
function having a regularization term that is proportional to
a variation of outputs of the statistical model, an [.1/L.2 norm
of a derivative of the outputs, or an [.1/L.2 norm of a second
derivative of the outputs.

[0183] FIG. 11A shows a flow diagram 1100 for a device
using a statistical model trained on annotated signal data, in
accordance with some embodiments of the technology
described herein.

[0184] At 1102, the processor, e.g., processor 1006, may
receive, from the sensor, data from a first signal detected
from the brain.

[0185] At 1104, the processor may access a trained statis-
tical model, wherein the statistical model was trained using
data from prior signals detected from the brain annotated
with one or more values relating to identifying a health
condition, e.g., respective values (e.g., between O and 1)
relating to increasing strength of a symptom of a neurologi-
cal disorder.

[0186] At 1106, the processor may provide data from the
first signal detected from the brain as input to the trained
statistical model to obtain an output indicating a first pre-
dicted strength of the symptom of the neurological disorder,
e.g., an epileptic seizure.

[0187] At 1108, based on the first predicted strength of the
symptom, the processor may select one of the plurality of
transducers in a first direction to transmit a first instruction
to apply a first acoustic signal.

[0188] At 1110, the processor may transmit the instruction
to the selected transducer to apply the first acoustic signal to
the brain. For example, the first acoustic signal may be an
ultrasound signal that has a low power density, e.g., between
1 and 100 watts/cm?, and is substantially non-destructive
with respect to tissue when applied to the brain. The acoustic
signal may suppress the symptom of the neurological dis-
order.
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[0189] In some embodiments, the processor may be pro-
grammed to provide data from a second signal detected from
the brain as input to the trained statistical model to obtain an
output indicating a second predicted strength of the symp-
tom of the neurological disorder. If it is determined that the
second predicted strength is less than the first predicted
strength, the processor may select one of the transducers in
the first direction to transmit a second instruction to apply a
second acoustic signal. If it is determined that the second
predicted strength is greater than the first predicted strength,
the processor may select one of the transducers in a direction
opposite to or different from the first direction to transmit the
second instruction to apply the second acoustic signal.

[0190] In some embodiments, the inventors have devel-
oped a deep learning network to detect one or more other
symptoms of a neurological disorder. For example, the deep
learning network may be used to predict seizures. The deep
learning network includes a Deep Convolutional Neural
Network (DCNN), which embeds or encodes the data onto
a n-dimensional representation space (e.g., 16-dimensional)
and a Recurrent Neural Network (RNN), which computes
detection scores by observing changes in the representation
space through time. However, the deep learning network is
not so limited and may include alternative or additional
architectural components suitable for predicting one or more
symptoms of a neurological disorder.

[0191] In some embodiments, the features that are pro-
vided as input to the deep learning network may be received
and/or transformed in the time domain or the frequency
domain. Some embodiments, a network trained using fre-
quency domain-based features may output more accurate
predictions compared to another network trained using time
domain-based features. For example, a network trained
using frequency domain-based features may output more
accurate predictions because the wave shape induced in
EEG signal data captured during a seizure may have tem-
porally limited exposure. Accordingly, a discrete wavelet
transform (DWT), e.g., with the Daubechies 4-tab (db-4)
mother wavelet or another suitable wavelet, may be used to
transform the EEG signal data into the frequency domain.
Other suitable wavelet transforms may be used additionally
or alternatively in order to transform the EEG signal data
into a form suitable for input to the deep learning network.
In some embodiments, one-second windows of EEG signal
data at each channel may be chosen and the DWT may be
applied up to 5 levels, or another suitable number of levels.
In this case, each batch input to the deep learning network
may be a tensor with dimensions equal to (batch size x
sampling frequency x number of EEG channels x DWT
levels+1). This tensor may be provided to the DCNN
encoder of the deep learning network.

[0192] In some embodiments, signal statistics may he
different for different people and may change over time even
for a particular person. Hence, the network may be highly
susceptible to overfitting especially when the provided train-
ing data is not large enough. This information may be
utilized in developing the training framework for the net-
work such that the DCNN encoder can embed the signal
onto a space in which at least temporal drifts convey
information about seizure. During the training, one or more
objective functions may be used to fit the DCNN encoder,
including a Siamese loss and a classification loss, which are
further described below.
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[0193] 1. Siamese loss: In one-shot or few-shot learning
frameworks, i.e., frameworks with small training data sets,
a Siamese loss based network may be designed to indicate
a pair of input instances are from the same category or not.
The setup in the network may be aimed to detect if two
temporally close samples are both from the same category or
not in the same patient.

[0194] Classification loss: Binary-cross entropy is a
widely used objective function for supervised learning. This
objective function may be used to decrease the distance
among embeddings from the same category while increasing
the distance between classes as much as possible, regardless
of piece-wise behavior and subjectivity of EEG signal
statistics. The paired data segments mat help to increase
sample comparisons quadratically and hence mitigate the
overfitting caused by lack of data.

[0195] In some embodiments, each time a batch of train-
ing data is formed, the onset of one-second windows may be
selected randomly to help with data augmentation, thereby
increasing the size of the training data.

[0196] In some embodiments, the DCNN encoder may
include a 13-layer 2-D convolutional neural network with
fractional max-pooling (FMP). After training the DCNN
encoder, the weights of this network may be fixed. The
output from the DCNN encoder may then be used as an input
layer to an RNN for final detection. In some embodiments,
the RNN may include a bidirectional-LSTM followed by
two fully connected neural network layers. In one example,
the RNN may be trained by feeding 30 one-second fre-
quency domain EEG signal samples to the DCNN encoder
and then the resulting output to the RNN at each trial.
[0197] In some embodiments, data augmentation and/or
statistical inference may help to reduce estimation error for
the deep learning network. In one example, for the setup
proposed for this deep learning network, each 30-second
time window may be evaluated multiple times by adding
jitter to the onset of one-second time windows. The number
of sampling may depend on computational capacity. For
example, for the described setup, real time capability may be
maintained with up to 30 times of Monte-Carlo simulations.
[0198] It should be appreciated that the described deep
learning network is only one example implementation and
that other implementations may be employed. For example,
in some embodiments, one or more other types of neural
network layers may be included in the deep learning net-
work instead of or in addition to one or more of the layers
in the described architecture. For example, in some embodi-
ments, one or more convolutional, transpose convolutional,
pooling, unpooling layers, and/or batch normalization may
be included in the deep learning network. As another
example, the architecture may include one or more layers to
perform a nonlinear transformation between pairs of adja-
cent layers. The non-linear transformation may be a rectified
linear unit (Rel.U) transformation, a sigmoid, and/or any
other suitable type of non-linear transformation, as aspects
of the technology described herein are not limited in this
respect.

[0199] As another example of a variation, in some
embodiments, any other suitable type of recurrent neural
network architecture may be used instead of or in addition
to an LSTM architecture.

[0200] It should also be appreciated that although in the
described architecture illustrative dimensions are provided
for the inputs and outputs for the various layers, these
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dimensions are for illustrative purposes only and other
dimensions may be used in other embodiments.

[0201] Any suitable optimization technique may be used
for estimating neural network parameters from training data.
For example, one or more of the following optimization
techniques may be used: stochastic gradient descent (SGD),
mini-batch gradient descent, momentum SGD, Nesterov
accelerated gradient, Adagrad, Adadelta, RMSprop, Adap-
tive Moment Estimation (Adam), AdaMax, Nesterov-accel-
erated Adaptive Moment Estimation (Nadam), AMSGrad.

[0202] FIG. 11B shows a convolutional neural network
1150 that may be used to detect one or more symptoms of
a neurological disorder, in accordance with some embodi-
ments of the technology described herein. The deep learning
network described herein may include the convolutional
neural network 1150, and additionally or alternatively
another type of network, suitable for detecting whether the
brain is exhibiting a symptom of a neurological disorder
and/or for guiding transmission of an acoustic signal to a
region of the brain. For example, convolutional neural
network 1150 may be used to detect a seizure and/or predict
a location of the brain to transmit an ultrasound signal. As
shown, the convolutional neural network comprises an input
layer 1154 configured to receive information about the input
1152 (e.g., a tensor), an output layer 1158 configured to
provide the output (e.g., classifications in an n-dimensional
representation space), and a plurality of hidden layers 1156
connected between the input layer 1154 and the output layer
1158. The plurality of hidden layers 1156 include convolu-
tion and pooling layers 1160 and fully connected layers
1162.

[0203] The input layer 1154 may be followed by one or
more convolution and pooling layers 1160. A convolutional
layer may comprise a set of filters that are spatially smaller
(e.g., have a smaller width and/or height) than the input to
the convolutional layer (e.g., the input 1152). Each of the
filters may be convolved with the input to the convolutional
layer to produce an activation map (e.g., a 2-dimensional
activation map) indicative of the responses of that filter at
every spatial position. The convolutional layer may be
followed by a pooling layer that down-samples the output of
a convolutional layer to reduce its dimensions. The pooling
layer may use any of a variety of pooling techniques such as
max pooling and/or global average pooling. In some
embodiments, the down-sampling may be performed by the
convolution layer itself (e.g., without a pooling layer) using
striding.

[0204] The convolution and pooling layers 1160 may be
followed by fully connected layers 1162. The fully con-
nected layers 1162 may comprise one or more layers each
with one or more neurons that receives an input from a
previous layer (e.g., a convolutional or pooling layer) and
provides an output to a subsequent layer (e.g., the output
layer 1158). The fully connected layers 1162 may be
described as “dense” because each of the neurons in a given
layer may receive an input from each neuron in a previous
layer and provide an output to each neuron in a subsequent
layer. The fully connected layers 1162 may be followed by
an output layer 1158 that provides the output of the convo-
Iutional neural network. The output may be, for example, an
indication of which class, from a set of classes, the input
1152 (or any portion of the input 1152) belongs to. The
convolutional neural network may be trained using a sto-
chastic gradient descent type algorithm or another suitable
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algorithm. The convolutional neural network may continue
to be trained until the accuracy on a validation set (e.g., a
held out portion from the training data) saturates or using
any other suitable criterion or criteria.

[0205] It should be appreciated that the convolutional
neural network shown in FIG. 11B is only one example
implementation and that other implementations may be
employed. For example, one or more layers may be added to
or removed from the convolutional neural network shown in
FIG. 11B. Additional example layers that may be added to
the convolutional neural network include: a pad layer, a
concatenate layer, and an upscale layer. An upscale layer
may be configured to upsample the input to the layer. An
ReLU layer may be configured to apply a rectifier (some-
times referred to as a ramp function) as a transfer function
to the input. A pad layer may be configured to change the
size of the input to the layer by padding one or more
dimensions of the input. A concatenate layer may be con-
figured to combine multiple inputs (e.g., combine inputs
from multiple layers) into a single output.

[0206] Convolutional neural networks may be employed
to perform any of a variety of functions described herein. It
should be appreciated that more than one convolutional
neural network may be employed to make predictions in
some embodiments. The first and second neural networks
may comprise a different arrangement of layers and/or be
trained using different training data.

[0207] FIG. 11C shows an exemplary interface 1170
including predictions from a deep learning network, in
accordance with some embodiments of the technology
described herein. The interface 1170 may be generated for
display on a computing device, e.g., computing device 308
or another suitable device. A wearable device, a mobile
device, and/or another suitable device may provide one or
more signals detected from the brain, e.g., an EEG signal or
another suitable signal, to the computing device. For
example, the interface 1170 shows signal data 1172 includ-
ing EEG signal data. This signal data may be used to train
a deep learning network to determine whether the brain is
exhibiting a symptom of a neurological disorder, e.g., a
seizure or another suitable symptom. The interface 1170
further shows EEG signal data 1174 with predicted seizures
and doctor annotations indicating a seizure. The predicted
seizures may be determined based on an output from the
deep learning network. The inventors have developed such
deep learning networks for detecting seizures and have
found the predictions to closely correspond to annotations
from a neurologist. For example, as indicated in FIG. 11C,
the spikes 1178, which indicate predicted seizures, are found
to be overlapping or nearly overlapping with doctor anno-
tations 1176 indicating a seizure.

[0208] The computing device, the mobile device, or
another suitable device may generate a portion of the
interface 1170 to warn the person and/or a caretaker when
the person is likely to have a seizure and/or when the person
will be seizure-free. The interface 1170 generated on a
mobile device, e.g., mobile device 304, and/or a computing
device, computing device 308, may display an indication
1180 or 1182 for whether a seizure is detected or not. For
example, the mobile device may display real-time seizure
risk for a person suffering from a neurological disorder. In
the event of a seizure, the mobile device may alert the
person, a caregiver, or another suitable entity. For example,
the mobile device may inform a caretaker that a seizure is
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predicted in the next 30 minutes, next hour, or another
suitable time period. In another example, the mobile device
may send alerts to the caretaker when a seizure does occur
and/or record seizure activity, such as signals from the brain,
for the caretaker to refine treatment of the person’s neuro-
logical disorder.

Tiered algorithms to optimize power consumption and per-
formance

[0209] The inventors have appreciated that, to enable a
device to be functional with long durations in between
battery charges, it may be necessary to reduce power con-
sumption as much as possible. There may be at least two
activities that dominate power consumption:

[0210] 1. Running machine learning algorithms, e.g., a
deep learning network, to classify brain state based on
physiological measurements (e.g., seizure vs. not sei-
zure, or measure risk of having seizure in near future,
etc.); and/or

[0211] 2. Transmitting data from the device to a mobile
phone or to a server for further processing and/or
executing machine learning algorithms on the data.

[0212] In some embodiments, less computationally inten-
sive algorithms may be run on the device, e.g., a wearable
device, and when the output of the algorithms) exceeds a
specified threshold, the device may, e.g., turn on the radio,
and transmit the relevant data to a mobile phone or a server,
e.g., a cloud server, for further processing via more com-
putationally intensive algorithms. Taking the example of
seizure detection, a more computationally intensive or
heavyweight algorithm may have a low false-positive rate
and a low false-negative rate. To obtain a less computation-
ally intensive or lightweight algorithm, one rate or the other
may be sacrificed. The inventors have appreciated that the
key is to allow for more false positives, i.e., a detection
algorithm with high sensitivity (e.g., never misses a true
seizure) and low specificity e.g., many false-positives, often
labels data as a seizure when there is no seizure). Whenever
the device’s lightweight algorithm labels data as a seizure,
the device may transmit the data to the mobile device or the
cloud server to execute the heavyweight algorithm. The
device may receive the results of the heavyweight algorithm,
and display these results to the user. In this way, the
lightweight algorithm on the device may act as a filter that
drastically reduces the amount of power consumed, e.g., by
reducing computation power and/or the amount of data
transmitted, while maintaining the predictive performance
of the whole system including the device, the mobile phone,
and/or the cloud server.

[0213] FIG. 12 shows a block diagram for a device for
energy efficient monitoring of the brain, in accordance with
some embodiments of the technology described herein. The
device 1200, e.g., a wearable device, may include a moni-
toring component 1202, e.g., a sensor, that is configured to
detect an signal, e.g., an electrical signal, a mechanical
signal, an optical signal, an infrared signal, or another
suitable type of signal, from the brain of the person. For
example, the sensor may be an EEG sensor, and the signal
may be an electrical signal, such as an EEG signal. The
sensor may be disposed on the head of the person in a
non-invasive manner.

[0214] The device 1200 may include a processor 1206 in
communication with the sensor. The processor 1206 may be
programmed to identify a health condition, e.g., predict a
strength of a symptom of a neurological disorder, and, based
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on the identified health condition, e.g., predicted strength,
provide data from the signal to a processor 1256 outside the
device 1200 to corroborate or contradict the identified health
condition, e.g., predicted strength.

[0215] FIG. 13 shows a flow diagram 1300 for a device for
energy efficient monitoring of the brain, in accordance with
some embodiments of the technology described herein.
[0216] At 1302, the processor, e.g., processor 1206, may
receive, from the sensor, data from the signal detected from
the brain.

[0217] At 1304, the processor may access a first trained
statistical model. The first statistical model may be trained
using data from prior signals detected from the brain.
[0218] At 1306, the processor may provide data from the
signal detected from the brain as input to the first trained
statistical model to obtain an output identifying a health
condition, e.g., indicating a predicted strength of a symptom
of a neurological disorder.

[0219] At 1308, the processor may determine whether the
predicted strength exceeds a threshold indicating presence of
the symptom.

[0220] At 1310, in response to the predicted strength
exceeding the threshold, the processor may transmit data
from the signal to a second processor outside the device. In
some embodiments, the second processor, e.g., processor
1256, may be programmed to provide data from the signal
to a second trained statistical model to obtain an output to
corroborate or contradict the identified health condition, e.g.,
the predicted strength of the symptom.

[0221] In some embodiments, the first trained statistical
model be trained to have high sensitivity and low specificity.
In some embodiments, the second trained statistical model
may be trained to have high sensitivity and high specificity.
Therefore the first processor using the first trained statistical
model may use a smaller amount of power than the first
processor using the second trained statistical model.

Example Computer Architecture

[0222] An illustrative implementation of a computer sys-
tem 1400 that may be used in connection with any of the
embodiments of the technology described herein is shown in
FIG. 14. The computer system 1400 includes one or more
processors 1410 and one or more articles of manufacture
that comprise non-transitory computer-readable storage
media (e.g., memory 1420 and one or more non-volatile
storage media 1430). The processor 1410 may control
writing data to and reading data from the memory 1420 and
the non-volatile storage device 1430 in any suitable manner,
as the aspects of the technology described herein are not
limited in this respect. To perform any of the functionality
described herein, the processor 1410 may execute one or
more processor-executable instructions stored in one or
more non-transitory computer-readable storage media (e.g.,
the memory 1420), which may serve as non-transitory
computer-readable storage media storing processor-execut-
able instructions for execution by the processor 1410.

[0223] Computing device 1400 may also include a net-
work input/output (I/O) interface 1440 via which the com-
puting device may communicate with other computing
devices (e.g., over a network), and may also include one or
more user 1/O interfaces 1450, via which the computing
device may provide output to and receive input from a user.
The user I/O interfaces may include devices such as a
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keyboard, a mouse, a microphone, a display device (e.g., a
monitor or touch screen), speakers, a camera, and/or various
other types of I/O devices.

[0224] The above-described embodiments can be imple-
mented in any of numerous ways. For example, the embodi-
ments may be implemented using hardware, software or a
combination thereof. When implemented in software, the
software code can be executed on any suitable processor
(e.g., a microprocessor) or collection of processors, whether
provided in a single computing device or distributed among
multiple computing devices. It should be appreciated that
any component or collection of components that perform the
functions described above can be generically considered as
one or more controllers that control the above-discussed
functions. The one or more controllers can be implemented
in numerous ways, such as with dedicated hardware, or with
general purpose hardware (e.g., one or more processors) that
is programmed using microcode or software to perform the
functions recited above.

[0225] In this respect, it should be appreciated that one
implementation of the embodiments described herein com-
prises at least one computer-readable storage medium (e.g.,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other tangible, non-transitory computer-readable storage
medium) encoded with a computer program (i.e., a plurality
of executable instructions) that, when executed on one or
more processors, performs the above-discussed functions of
one or more embodiments. The computer-readable medium
may be transportable such that the program stored thereon
can be loaded onto any computing device to implement
aspects of the techniques discussed herein. In addition, it
should be appreciated that the reference to a computer
program which, when executed, performs any of the above-
discussed functions, is not limited to an application program
running on a host computer. Rather, the terms computer
program and software are used herein in a generic sense to
reference any type of computer code (e.g., application
software, firmware, microcode, or any other form of com-
puter instruction) that can be employed to program one or
more processors to implement aspects of the techniques
discussed herein.

[0226] The terms “program” or “software” are used herein
in a generic sense to refer to any type of computer code or
set of processor-executable instructions that can be
employed to program a computer or other processor to
implement various aspects of embodiments as discussed
above. Additionally, it should be appreciated that according
to one aspect, one or more computer programs that when
executed perform methods of the disclosure provided herein
need not reside on a single computer or processor, but may
be distributed in a modular fashion among different com-
puters or processors to implement various aspects of the
disclosure provided herein.

[0227] Processor-executable instructions may be in many
forms, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. Typically, the functionality of the
program modules may be combined or distributed as desired
in various embodiments.
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[0228] Also, data structures may be stored in one or more
non-transitory computer-readable storage media in any suit-
able form. For simplicity of illustration, data structures may
be shown to have fields that are related through location in
the data structure. Such relationships may likewise be
achieved by assigning storage for the fields with locations in
a non-transitory computer-readable medium that convey
relationship between the fields. However, any suitable
mechanism may be used to establish relationships among
information in fields of a data structure, including through
the use of pointers, tags or other mechanisms that establish
relationships among data elements.

[0229] Also, various inventive concepts may be embodied
as one or more processes, of which examples have been
provided. The acts performed as part of each process may be
ordered in any suitable way. Accordingly, embodiments may
be constructed in which acts are performed in an order
different than illustrated, which may include performing
some acts simultaneously, even though shown as sequential
acts in illustrative embodiments.

[0230] All definitions, as defined and used herein, should
be understood to control over dictionary definitions, and/or
ordinary meanings of the defined terms.

[0231] As used herein in the specification and in the
claims, the phrase “at least one,” in reference to a list of one
or more elements, should be understood to mean at least one
element selected from any one or more of the elements in the
list of elements, but not necessarily including at least one of
each and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.

[0232] The phrase “and/or,” as used herein in the speci-
fication and in the claims, should be understood to mean
“either or both” of the elements so conjoined, i.e., elements
that are conjunctively present in some cases and disjunc-
tively present in other cases. Multiple elements listed with
“and/or”should be construed in the same fashion, i.e., “one
or more” of the elements so conjoined. Other elements may
optionally be present other than the elements specifically
identified by the “and/or” clause, whether related or unre-
lated to those elements specifically identified. Thus, as a
non-limiting example, a reference to “A and/or B”, when
used in conjunction with open-ended language such as
“comprising” can refer, in one embodiment, to A only
(optionally including elements other than B); in another
embodiment, to B only (optionally including elements other
than A); in yet another embodiment, to both A and B
(optionally including other elements); etc.
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[0233] Use of ordinal terms such as “first,” “second,”
“third,” etc., in the claims to modify a claim element does
not by itself connote any priority, precedence, or order of
one claim element over another or the temporal order in
which acts of a method are performed. Such terms are used
merely as labels to distinguish one claim element having a
certain name from another element having a same name (but
for use of the ordinal term).

[0234] The phraseology and terminology used herein is for
the purpose of description and should not be regarded as
limiting. The use of “including,” “comprising,” “having,”
“containing”, “involving”, and variations thereof, is meant
to encompass the items listed thereafter and additional
items.

[0235] Having described several embodiments of the tech-
niques described herein in detail, various modifications, and
improvements will readily occur to those skilled in the art.
Such modifications and improvements are intended to be
within the spirit and scope of the disclosure. Accordingly,
the foregoing description is by way of example only, and is
not intended as limiting. The techniques are limited only as
defined by the following claims and the equivalents thereto.
[0236] Some aspects of the technology described herein
may be understood further based on the non-limiting illus-
trative embodiments described below in the Appendix.
While some aspects in the Appendix, as well as other
embodiments described herein, are described with respect to
treating seizures for epilepsy, these aspects and/or embodi-
ments may be equally applicable to treating symptoms for
any suitable neurological disorder. Any limitations of the
embodiments described below in the Appendix are limita-
tions only of the embodiments described in the Appendix,
and are not limitations of any other embodiments described
herein.

What is claimed is:

1. A device wearable by a person, comprising:

a transducer configured to apply to the brain of the person

acoustic signals.

2. The device as claimed in claim 1, wherein the trans-
ducer is configured to apply to the brain of the person
acoustic signals randomly.

3. The device as claimed in claim 1, wherein the trans-
ducer includes an ultrasound transducer, and wherein the
acoustic signals include an ultrasound signal.

4. The device as claimed in claim 3, wherein the ultra-
sound signal has a frequency between 100 kHz and 1 MHz,
a spatial resolution between 0.001 cm® and 0.1 cm?, and/or
a power density between 1 and 100 watts/cm” as measured
by spatial-peak pulse-average intensity.

5. The device as claimed in claim 3, wherein the ultra-
sound signal has a low power density and is substantially
non-destructive with respect to tissue when applied to the
brain.

6. The device as claimed in claim 1, wherein the trans-
ducer is disposed on the head of the person in a non-invasive
manner.

7. The device as claimed in claim 1, wherein the acoustic
signal suppresses a symptom of a neurological disorder.

8. The device as claimed in claim 7, wherein the neuro-
logical disorder includes one or more of stroke, Parkinson’s
disease, migraine, tremors, frontotemporal dementia, trau-
matic brain injury, depression, anxiety, Alzheimer’s disease,
dementia, multiple sclerosis, schizophrenia, brain damage,
neurodegeneration, central nervous system (CNS) disease,
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encephalopathy, Huntington’s disease, autism, attention
deficit hyperactivity disorder (AMID), amyotrophic lateral
sclerosis (ALS), and concussion.
9. The device as claimed in claim 7, wherein the symptom
includes a seizure.
10. A method for operating a device wearable by a person,
the device including a transducer, comprising:
applying to the brain of the person acoustic signals.
11. An apparatus comprising:
a device worn by or attached to a person including a
transducer configured to apply to the brain of the
person acoustic signals.
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