US011797328B2

a2 United States Patent (10) Patent No.: US 11,797,328 B2
Chenchev et al. 45) Date of Patent: Oct. 24, 2023
(54) VIRTUALIZED BACKGROUND (56) References Cited
ACTIVATIONS
U.S. PATENT DOCUMENTS
(71) Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA 7,191,441 B2 3/2007 Abbott et al.
(US) ’ ’ 8,505,014 B2 82013 Kuck et al.
8,972,977 B2 3/2015 Neil
R 9,286,097 B2* 3/2016 Rothman GOGF 9/485
(72) Inventors: Margarit Chenchev, Sammamish, WA 9.736.050 B2 82017 G(;ttam;nal.
(US); Benjamin M. Schultz, Bellevue, 2010/0257524 Al 10/2010 Weissman et al.
WA (US); Gopikrishna Kannan, (Continued)
Redmond, WA (US); Graham Wong,
Kirkland,.WA (US); Harish Srinivasan, FOREIGN PATENT DOCUMENTS
Sammamish, WA (US); Arup Roy,
Seattle, WA (US); Hari Pulapaka, EP 3062225 Al 8/2016
Redmond, WA (US)
(73) Assignee: MICROSOFT TECHNOLOGY OTHER PUBLICATIONS
LICENSING, LLC, Redmond, WA Lattanzi, et al., “VirtualSense: A Java-Based Open Platform for
(Us) Ultra-Low-Power Wireless Sensor Nodes”, In International Journal
(*) Notice: Subiect to anv disclaimer. the term of this of Distributed Sensor Networks, vol. 8, Issue 11, Nov. 8, 2012, pp.
: Ject to any : 1-16.
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 416 days. (Continued)
(21) Appl. No.: 16/601,483 Primary Examiner — Jacob D Dascomb
(22) Filed: Oct. 14, 2019 (57) ABSTRACT
(65) Prior Publication Data A virtualization partition (VP) is executed by a virtualization
US 2021/0109774 A1 Apr. 15, 2021 layer. The VP contains guest software that executes in
isolation within the VP. The guest software has a back-
(51) Int. CL ground task (BT) that needs to be performed in the future.
GO6F 9/455 (2018.01) The BT is virtualized by a BT service that executes outside
GO6F 9/50 (2006.01) of the VP. The guest software registers the BT, through the
(52) U.S.CL virtualization layer, with a BT virtualization service. An
CPC ... GOGF 9/45558 (2013.01); GOGF 9/5077 event occurs outside of the VP that triggers the BT. The BT
(2013.01); GOGF 2009/4557 (2013.01) virtualization service responds to the event by assuring that
(58) Field of Classification Search the VP is available (executing), and optionally triggers
CPC ... GOGF 2009/4557: GOGE 8/45558: GOGF (possibly indirectly) the execution of code in the application.
8/5077
See application file for complete search history. 20 Claims, 8 Drawing Sheets
- 124 gemresiehers
170 /;,;////////:
meerel Lo 777
service, directly or o SOURCE receives event;
drecty ’(identifies associated
ml,“m / ins;ructs virtualization
) [e,
/f" ,’/ notifies app/VP
// :l :g::g:,;t:nushzslmn« \‘
166 y/an i
e A R ‘:
::::\':Z'szr:e);w"n '\,\ET SERVICE : VIRTUALIZATION | |
— i

configures or notifies
event source to
communicate with BT
service;
VIRTUALIZATION
BOUNDAR]

o (ama)

BT registration

instruction from
BT service;

assure
availabilty of VP
(eg., awake,
provision, eto.);

160 -
submits L 184
_task (BT) registration [APP receive notification of

T event;
_y
mﬁ/'/ ~ application logic
VIRTUALIZATION handles event;
g PARTITION

US 11,797,328 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2011/0265077 A1* 10/2011 Collison GOGF 8/60
717/172

2011/0289503 A1 11/2011 Toub et al.
2013/0061249 Al* 3/2013 Schwartz, Jr. GOGF 9/44521
718/100
2013/0227554 Al* 82013 Tsirkin GOGF 9/45558
718/1
2014/0047323 Al* 2/2014 Bourke GOGF 9/542
715/234
2016/0203012 Al* 7/2016 Dongccccceenenn. GOG6F 9/455
718/1
2017/0063722 Al* 3/2017 Cropper GOG6F 9/5061
2017/0286153 Al* 10/2017 Bak ..ccceovvvvveeenenn GOGF 9/542

2018/0232038 Al 82018 Surdu

OTHER PUBLICATIONS

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US20/054460”, dated Feb. 4, 2021, 12 Pages.

* cited by examiner

U.S. Patent Oct. 24, 2023 Sheet 1 of 8 US 11,797,328 B2

106
108
/\
/ N
VIRTUALIZATION VIRTUALIZATION
PARTITION PARTITION
GUEST/APP GUEST/APP
A
104——] | VIRTUALIZATION LAYER
y y
102—— HARDWARE RESOURCES
HOST
100—¢—

FIG. 1

U.S. Patent Oct. 24, 2023 Sheet 2 of 8 US 11,797,328 B2

120
126
128
N
/ / \ N\
CONTAINE?/ &ONTAINER
100—2—
APP APP
A A
IMAGE IMAGE
LAYER(S) LAYER(S)
12—} CONTAINER ENGINE
12— HOST OS/KERNEL
\ 4 ¥
102
o] | HARDWARE RESOURCES
HOST

FIG. 2

US 11,797,328 B2

U.S. Patent Oct. 24, 2023 Sheet 3 of 8
140
108
144
A
/ / \ \
VM / \ VM
100—2—
APP APP
A
A
GUEST OS/ GUEST OS/
KERNEL KERNEL
14—} HYPERVISOR
146—— HOST OS/KERNEL
A Y
102
o] | HARDWARE RESOURCES
HOST

FIG. 3

US 11,797,328 B2

U.S. Patent Oct. 24, 2023 Sheet 4 of 8
17 tes/deli
1/4) generates/delivers
172 event ,
170 .
= |
configures to generate/ = |
deliver event to BT - EVENT 178 \/
service, directly or — SOURCE receives event;
indirectly
+ A identifies associated
VP;
17

instructs virtualization
e manager to assure
availability of VP;

oy
[
<
4]
s
=t

(event configuration

notifies app/VP
through virtualization -

boundary;

N

166

1Q8
stores BT registration \

180

linking virtualization l
partition (VP) with VIRTUALIZATION
— I?T SERVICE —1—m MANAGER

event/source;
I

\
|
|
1
{
{
|
1
1
configures or notifies ! :
event source to A é]
communicate with BT j!
service; \ i
4 / |]
.]
| VIR[TUALIZATJON | / I
164—1 182
! BOUNDARY Y_ =l
| receive |
| instruction from I
I 162 event/ BT service; :
: callback !
! I BT registration } assure {
! availability of VP | |
i (e.g., awake, I
: provision, etc.); "
I !
I !
1.6_0 | /l/ !
submits background L/;// y 184 y
task (BT) registration T APP \J\ receive notification of
d I \;\\\ event;

T o .
1 application logic
handles event;

T VIRTUALIZATION

PARTITION
106"

FIG. 4

U.S. Patent

.Z_QQ

Oct. 24, 2023

i | submits background

| task registration using

; callin API

204

e .

pass BT registration

through virtualization
layer communication
channel to BT server

08 vy

O

receive new BT
registration;

add, to data store,
new BT registration,
which links VP with
event/source;

inform/configure
broker for BT task;

212y

Sheet 5 of 8 US 11,797,328 B2
106
respond to event;
VIRTUALIZATION
PARTITI —
ON B / 1
| — 20 !
I~ GUEST/APP receive event through
virtualization layer
A communication
channel;
™ API based on internal
- data or event signal,
S identify app;
]| BACKGROUND
TASK (BT) AGENT signal identified app
¥ about event;
A
218 |
receive event;
VIRTUALIZATION
lookup event/source
LAYER in stored BT
registrations to find
VP linked to event/
4 SOurce;
BACKGROUND

TASK (BT) SERVER

broker receives
notice of new BT;

broker communicates
with event source to
configure event
source;

L
N

signal virtualization
manager to assure

I
|

A/

event source
configures for new
BT;

- EVENT SOURCE ﬁ
N

.

//

I

FIG. 5

/DATA STORE availability of VP;
D\Z BT REG-1 signal event through
virtualization layer
S communication
_, BT REG-N channel;
yd A
216 |
broker receives
_J event;
/).//
BROKER ¥ 1 broker notifies BT
(EVENT SIGNALLER)] server
' i i
]
|
14 !

event source
generates new event
(e.g., timer, push
notification, system
event)

U.S. Patent Oct. 24, 2023 Sheet 6 of 8 US 11,797,328 B2

106
168 206
246
\ VIRTUALIZATION
PARTITION Y
BT SERVICE BT AGENT
<« | | | PERSISTENT
DATA STORE
VOLATILE
DATA STORE 240—=
|_{ Es < APP;
Ea < Cx /7//
Ec — APP,
Eg < Cy 242
EC «> CY A
I
N 202— 22— API
244 108——=| APP,

FIG. 6

U.S. Patent Oct. 24, 2023 Sheet 7 of 8 US 11,797,328 B2

106
206
168 250 VIRTUALIZATION
‘§ / PARTITION Y
BT SERVICE / BT AGENT
// VOLATILE
PERSISTENT DATA DATA STORE
STORE
250/1// EB > APP1
E, — VPy — APPy o
Ec < APP,
Eg < VPy < APP;
Ec o VPy — APP, \
I
API
P
&/y
289 ¥ APP,
.
&//

FIG. 7

U.S. Patent Oct. 24, 2023 Sheet 8 of 8 US 11,797,328 B2

(o8]
N
N

(o8]
N
N
w
N
(o9}

'?

(o8]
N
ELN
w
N)
(02}

FIG. 8

US 11,797,328 B2

1
VIRTUALIZED BACKGROUND
ACTIVATIONS

BACKGROUND

Virtualization partitions (VPs) have seen increasing use
for reasons such as security, administrative convenience,
portability, and maximizing utilization of hardware
resources, among others. VPs are provided by virtualization
environments or virtualization layers such as type-1 and
type-2 hypervisors, kernel-based virtualization modules, etc.
Two types of VPs are virtual machines (VMs) and contain-
ers. However, the distinction between types of VPs have
blurred and there are many architectures for providing
isolated access to virtualized hardware. For convenience, the
term “virtualization layer” will be used herein to refer to any
architecture or virtualization model] that virtualizes hardware
access for VPs such as VMs, containers, and their relatives.
The term is considered to include virtualization functionality
commonly implemented at least in part in a privileged VP
(e.g. a root partition). Virtual machines (VMs), VM man-
agers (VMMs), container engines, and kernel-based virtu-
alization modules, are some examples of virtualization lay-
ers.

While VPs have many benefits, as only the inventors have
appreciated, in some important instances virtualization may
not be functionally transparent to guest software executing
in a VP. Sometimes virtualization affects the behavior of
guest software. From the perspective of guest software in a
VP, the guest software is generally unaware that it is
executing in the VP. Nonetheless the VP itself is a construct
subject to the control of the virtualization layer; what
happens to the VP can affect the guest software executing
within it.

Guest software is usually designed to function as though
in a physical host environment (i.e., under an operating
system executing on bare metal). The guest software may
assume the continuous availability of the environment it
runs within. For example, if a guest application has armed a
recurring alarm to trigger the application to periodically
perform a maintenance task, then the application will expect
the alarm to be both fired and responded to. Similarly, an
application may assume that it will be able to execute to
honor handling of external events such as push notifications
or network messages. However, as only the inventors have
observed, the virtualization layer can manipulate a VP in
numerous ways that can interfere with these application
expectations. The virtualization layer might pause a VP,
place a VP in a low-power mode, delete a VP, or starve the
VP of processor execution time. In these types of situations,
which will be referred to collectively as an unavailable VP,
the guest application may not perform as intended. If the
application’s VP has been rendered unavailable (e.g.,
paused), then an alarm within the VP will not be able to fire
and the corresponding application task will not be per-
formed. A problem can occur even when a background event
is able to occur. A component outside the VP may generate
a background event for a guest application in the VP, but the
event may go unanswered because the unavailability of the
VP causes unavailability of the guest application.

Techniques for facilitating background tasks in VPs are
discussed below.

SUMMARY

The following summary is included only to introduce
some concepts discussed in the Detailed Description below.

20

35

40

45

55

60

65

2

This summary is not comprehensive and is not intended to
delineate the scope of the claimed subject matter, which is
set forth by the claims presented at the end.

A virtualization partition (VP) is executed by a virtual-
ization layer. The VP contains guest software that executes
in isolation within the VP. The guest software has a back-
ground task (BT) that needs to be performed in the future.
The BT is virtualized by a BT service that executes outside
of the VP. The guest software registers the BT, through the
virtualization layer, with a BT virtualization service. An
event occurs outside of the VP that triggers the BT. The BT
virtualization service responds to the event by assuring that
the VP is available (executing), and optionally triggers
(possibly indirectly) the execution of code in the application.

Many of the attendant features will be explained below
with reference to the following detailed description consid-
ered in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein like reference numerals are used to
designate like parts in the accompanying description.

FIG. 1 shows a virtualization environment on a host
computing device.

FIG. 2 shows virtualization partitions (VPs) implemented
as containers.

FIG. 3 shows a virtualization environment for providing
virtual machines (VMs).

FIG. 4 shows a system that enables reliable background
tasks (BT) for an application in a VP.

FIG. 5 shows details of an embodiment with additional
modules.

FIG. 6 shows an embodiment where only a VP persis-
tently stores information about an application invoking
virtualized BT functionality.

FIG. 7 shows an embodiment where only a BT service (or
other host-side component) persistently stores information
about the application requesting virtualized BT support.

FIG. 8 shows details of a computing device that may serve
as the host.

DETAILED DESCRIPTION

FIG. 1 shows a virtualization environment on a host 100
computing device. The host has hardware resources 102
such as memory, persistent storage, processing hardware, a
network interface, and the like. A virtualization layer 104
virtualizes access to the hardware resources 102 for virtu-
alization partitions (VPs) 106. The virtualization layer 104
may present each VP 106 with its own view of a subset of
the hardware resources and while multiplexing access to
those hardware resources among the VPs 106. Typically, the
virtualization layer 104 will provide each VP 106 with a
private portion of physical memory and may handle address
translation between the VP memory address space and
host-side address space. The virtualization layer 104 may
also divide processor time among the VPs as well as
host-side processes. The VPs 106 may have their own
kernels, may share the host’s kernel, or both. Regardless of
the extent and nature of the resource virtualization, guest
software or guest applications 108 in any given VP 106 are
unable to access the content and resources of other VPs. That
is, the VPs are isolated with respect to each other and are
mostly isolated from the host.

US 11,797,328 B2

3

FIG. 2 shows virtualization partitions implemented as
containers 120. The containers 120, sometimes referred to as
process containers, are examples of VPs. The containers 120
are implemented by a container engine 122. The containers
120, and the container engine 122, comprise processes
executed by a host operating system and kernel 124. As
such, the containers do not have their own kernels but
instead share the host’s kernel. The container engine 122
primarily uses namespace virtualization to provide contain-
ers 120 with isolated access to resources managed by the
shared host operating system. The namespace-isolated
resources may be filesystems, network interfaces or
addresses, user names, and process identifiers, among oth-
ers. In the case of a file namespaces, for example, the
container engine maps between the host’s filesystem
namespace and a container’s private filesystem namespace;
guest software sees private filepaths, for instance, for files
stored with different paths in a host filesystem that may be
shared among containers 120. In short, the container engine
122 provides containers 120 with an abstraction of the
interface between the host operating system and the con-
tainer processes. In addition, the container engine 122
usually restricts certain sensitive system calls from within
containers. The container engine 122 may in practice com-
prise a suite of processes and is usually accompanied by a
container/virtualization manager with an interface to allow
users to configure, provision, execute, and delete containers.
Examples of container engines include Docker, Windows
Containers, Hyper-V Containers, Windows Server Contain-
ers, Rkt, to name a few. Cloud implementations such as the
Google Kubernetes Engine are also well-known and readily
available.

Details for structuring and implementing containers 120
are known and, excepting modifications discussed herein,
explanation of same may be found elsewhere. Generally, a
container 120 is configured to run some specific software. To
that purpose, consistent with the objective of portability, a
container image is usually built to include one or more
applications 126, as well as layers of binary libraries 128,
files, and other data that may be needed to provide the
runtime environment needed by the applications. As such,
containers are well suited to providing necessary compat-
ibility that may be lacking in the host environment.

FIG. 3 shows a virtualization environment for providing
virtual machines (VMs). The environment includes a known
type of hypervisor 142. The host’s hardware resources 102
may include a central processing unit (CPU), memory, a
network interface card (NIC), non-volatile storage, a system
bus, a display and/or display adapter, etc., some or all of
which may be virtualized by the hypervisor 142. The hyper-
visor 142 manages and facilitates execution of the VMs 140.
Each VM 140 typically has virtual devices including a
virtual disk within which a guest kernel and operating
system 144 are stored. In some implementations, machine or
system virtualization is provided by the hypervisor 142
cooperating with a host operating system 146.

In one implementation, the tasks of virtualization may be
distributed between the hypervisor 142 and a privileged VM
in known ways (the privileged VM will be referred to as a
host VM). In some implementations, the host VM might
consist of only minimal virtualization elements such as tools
and user interfaces for managing the hypervisor 142 and
VMs. In other implementations, the host VM might include
one or more of: device virtualization management, facilities
for inter-VM communication, running device drivers, start-
ing, or stopping other VMs, etc. In some embodiments,
virtualization may mostly take place within the hypervisor’s

10

15

20

25

30

35

40

45

50

55

60

65

4

kernel (or a virtualization module that plugs into a stock
kernel) and there is no host VM.

In the machine-virtualization embodiment shown in FIG.
3, the virtualization layer can be any combination of hyper-
visor 142 or virtualization kernel module as discussed
above, and possibly other privileged components such as a
host VM. The virtualization layer might be configured to
support paravirtualization. Some virtualization systems may
provide paravirtualization support that properly configured
guests (e.g., drivers, kernels) can take advantage of for
efficient device access. The paravirtualization approach is
known and details may be found elsewhere. For conve-
nience, any of the known machine-virtualization variations
mentioned above will be generally referred to herein as a
hypervisor.

FIG. 4 shows a system that enables reliable background
tasks for an application 108 in a VP 106. As discussed in the
Background, because the application 108 is wrapped in a VP
106, the application’s behavior is sometimes superseded by
behavior of the VP as controlled by the virtualization layer.
If the VP is unavailable, then the application 108 may not be
able to generate or respond to background tasks. Compo-
nents and steps shown in FIG. 4 may allow the application
108 to avoid the problems that virtualization may present for
the execution of background tasks.

The application 108 executing in the VP 106 is the point
at which a virtualized background task begins. It is the
responsibility of the application, possibly with the assistance
of other modules, to initiate extending background task
information beyond the VP of the application. Before dis-
cussing that extension, some explanation of background
tasks is in order. Background tasks in the context of this
description are not just processes that execute without user
involvement. A background task is a formal construct pro-
vided by many operating systems. An application program-
ming interface (API) can be invoked by a process or
application to inform the operating system (or a service) that
the application may need to do things that suspension might
interfere with, which the operating system might then
attempt to honor for the application. While embodiments
described herein are new in that they implement background
tasks in the face of virtualization problems, from the appli-
cation perspective, the APIs that are used may be similar to
conventional non-virtualized background task APIs (the API
implementations described herein are not conventional) pro-
vided by operating systems such as OSX/IOS (Background-
Tasks Framework), Android (WorkManager), and Windows
(see the Background namespace). Note that some embodi-
ments may use methods other than an API (e.g. a configu-
ration file, a special operating system setting, IPC, etc.) to
inform the operating system about background processing.

With this in mind, at step 160 the application 108 makes
a call to submit a background task (BT) registration 162. The
information in the BT registration 162 can vary, as discussed
further below, but at least allows the BT to be linked to the
application. The registration 162 can be a unique identifier
(ID) and the VP might retain information associating the ID
with the BT. Thus, if the application or an assistant module
VP receives an external message for the application to
execute the BT, the ID can be used to identify the BT.
Alternatively, the BT registration 162 might include infor-
mation identifying the application, so that external BT
infrastructure can call into the VP to invoke the application.

The call for the BT registration 162 is made through a
virtualization boundary 164, which may be part of the
virtualization layer. Preferably, the call uses a communica-
tion channel provided by the virtualization layer with end-

US 11,797,328 B2

5

points in the VP and an external component such as the BT
service 166, which will be described shortly. Examples of
such channels are Windows Hyper-V Sockets, Xen Hyper-
calls, the VMware Virtual Machine Communication Inter-
face, among others. Usually this type of communication
does not pass through any network layers and is a form of
inter-process communication. In the VP, the code to open/
read/write the through-VP endpoints will be in the code that
implements the BT registration steps.

At step 166, the BT registration 162 is received by a BT
service 168 executing under the direct control of the host
operating system or in another VP. The BT service 168
stores the BT registration 162 or information derived there-
from and links the BT registration to the source VP. The BT
service 168 may maintain a table of background tasks and
the respective VPs from which they originated.

At step 170, the BT service 168 also configures an event
source 172 according to the BT registration. The type of the
event source and the configuration thereof will depend on
the BT registration, which can specity a type of background
task and properties thereof. For example, if the BT regis-
tration is for an alarm, the event source 172 may be a system
timer and the configuring might include arming a timer with
recurrence (if any) and times specified by the BT registration
request. Other types of event sources are possible, for
example notification sources (local applications or listeners
for remote notification services), local or remote services,
etc., configuration of which may vary accordingly so that the
event sources can communicate with the BT service, directly
or indirectly.

As will become clear with further discussion, after the
application has issued its BT registration request, and
assuming the related registration steps are successful, the
application’s VP can be rendered unavailable by the virtu-
alization layer without concern for being able to respond to
the registered background task.

At step 174, the event source 172 generates an event 176
corresponding to the BT registration. For instance the event
source 172 generates an alarm, a push notification, or some
other application-level event.

At step 178 the BT service 168 receives the event 176.
Based on the event or possibly the communication means
through which it was received, the BT service 168 consults
its BT registrations to find the identity of the VP associated
with the event 176. At this point, the BT service 168 knows
that there is an event associated with a background task and
also knows the identity of the VP needed to handle the event.
The BT service 168 communicates with the virtualization
layer to assure that the VP is available to handle the event.
This may involve a call identifying the VP and a desired
state or operation for the VP that would assure availability
of'the VP. The virtualization layer may be called into directly
or the BT service 168 may call a virtualization manager 180
which in turn manipulates the virtualization layer. The
virtualization layer manipulation may involve checking the
status of the identified VP. If the VP is unavailable, then
appropriate steps may be taken, for instance waking the VP,
providing the VP (or a corresponding virtual processor) with
unscheduled or high-priority execution time, removing the
VP from a low-power state, or, as discussed further below,
provisioning a new VP.

The BT service may either proceed asynchronously or
wait for an availability confirmation from the virtualization
layer. In the asynchronous case where the BT service is not
aware that the VP was not rendered available, there is no
harm in the BT service attempting and failing to communi-
cate with the VP about the BT event. The mechanism that the

25

30

35

40

45

55

6

BT service uses will usually be the same mechanism that
was used by the VP to submit the BT registration, i.e. a call
conveyed over an inter-process communication channel that
traverses the virtualization boundary and that has endpoints
in the BT service and the VP.

As noted above, at the behest of the BT service a
virtualization manager 180 may perform steps 182 that
assure availability of the relevant VP.

At this stage, in some embodiments no further steps are
taken. The VP is available and executing and the application
that registered the background task might be assumed to also
be executing. Background events that flow to the application
if the application executing will do so. For example, push
notifications or network messages will flow through ordi-
nary paths to the application in the executing VP. Other
embodiments or types of events may involve signaling the
application about the background event. For instance, notice
of a timed alarm event will need to flow through to the
application. In some embodiments, in particular when the
VPis a VM, it might be desirable to pass through notification
to the application regardless of the event type. The applica-
tion might be suspended or asleep or suspended within the
VP and notification may serve to assure action by the
application. If necessary, at step 184 the application receives
a signal or callback, possibly specifying an entry point for
the application, and the application completes the back-
ground task.

FIG. 5 shows details of an embodiment with additional
modules. At step 200 the application 108 calls a function or
method of an API 202. The API can be implemented as a
class interface or contract. The call within the VP can be
through a Remote Procedure Call (RPC). In one embodi-
ment, at step 204 the call is executed by a BT agent 206
executing in the VP. In another embodiment, the call may be
executed by code linked to the application. As discussed
further below, the BT agent might persist active BT regis-
trations and refresh volatile BT registrations in the BT
service each time the VP is activated, thus assuring that
extra-VP BT registrations remain active if the host reboots,
the BT service crashes, etc.

At step 204 the BT agent 206 issues a call out of the VP,
through the virtualization layer, to the BT service 168. In this
embodiment, the call may be implemented as a virtualiza-
tion-safe implementation of RPC, as disclosed in U.S. patent
application Ser. No. 16/439,239, titled “Distribution and
Management of Services in Virtual Environments™, filed
Jun. 12, 2019, (referred to hereafter as v-RPC). The v-RPC
call creates a trigger and callback to the BT agent 206. At
step 208 the BT service 168 works much like step 166
discussed above, with the new BT registration 207 being
stored in a table 209, but in this embodiment the BT service
uses a broker 210 to intermediate events between the BT
service and the event source 172. At step 212 the broker 210
communicates with the event source to configure the new
event trigger.

At step 214 an event associated with the previously
registered virtualized BG task occurs. That is, a timer fires,
a push notification is received, an application-level message
is received by the host’s network stack, an operating system
signal or event is generated, etc. At step 216 the broker
receives the event and notifies the BT service. At step 218
the BT service, which has previously stored an association
between the event and indicia of the corresponding VP, finds
the VP associated with the event, instructs the virtualization
layer to assure availability of the VP, and signals through the

US 11,797,328 B2

7
virtualization layer to the BT agent 206. At step 220 the BT
agent 206 responds to the event by triggering the associated
application.

In addition to the steps above, if RPC is being used, the
BT agent may, during registration, associate an entry point
in the application (specified by the application’s original
registration call) with the BT registration or other indicia of
the event such as an RPC activation ID or a work item of the
BT agent. In response the BT service associates the event/
trigger with the background task in the VP, e.g. a work item
in the VP. When the broker 210 receives an event such as a
timer alarm, the broker may use an asynchronous RPC call
to the BT service. The BT service dereferences an ID of the
event/call from the broker to identify the work item or call
target in the VP. The BT service then makes a v-RPC call to
activate the work item or call target. The BT agent, which
has previously associated an entry point (e.g., an activation
ID), activates the entry point associated with the activated
work item. The activation then flows through to the appli-
cation, possibly through an intermediary such as distributed
common object model (DCOM) module. The application
may respond by beginning execution at the entry point.

As noted earlier, some embodiments described herein are
practical for assuring that a VP associated with a background
event is available to respond to a BG event, even if handling
the BG event does not include triggering execution of the
associated application in the corresponding VP. However, as
shown above, in other embodiments the notion of VP
availability can be extended to activation of guest software
in association with a BG event outside the VP. In some
embodiments discussed below, the VP being rendered avail-
able need not be the same VP that registered the virtualized
background task.

As discussed next with reference to FIGS. 6 and 7, the
same activation model can be implemented in different ways
for different balances between security and performance.
FIG. 6 shows an embodiment where only the VP persistently
stores information about the application invoking virtualized
BT functionality. FIG. 7 shows an embodiment where only
the BT service (or other host-side component) persistently
stores information about the application requesting virtual-
ized BT support.

Referring to FIG. 6, the BT agent 206, or another VP-side
component in the chain of BT registration/handling,
includes a VP-side persistent data store 240. Each time a
virtualized background task is registered from within the VP,
the BT agent adds an association 242 between the event and
the application. The VP-side persistent data store 240 stores
all of the BT registrations for the VP. In addition, each time
the VP is started, booted, activated, etc., the BT agent
informs the BT service about its registered BT events, and
the BT service then stores associations 244 with the VP in
its host-side volatile data store 246. If application activation
is needed, the BT agent has all of the information necessary
to complete that aspect of virtualized background tasks.

In this embodiment, the only information leaked out of the
VP is the existence of a BT event in association with the VP.
The identifiers of the VP and the identifiers of the events
need not reveal information about how the background tasks
are handled within the VP. And even that information is not
persisted outside the VP. The non-persistence of the host-
side information can improve security and reduce stale
entries. In addition, with this embodiment, if application
activation is desired, it may be more difficult to allow the VP
to become unavailable, because the host side does not have
sufficient information to activate the application in the VP.

10

15

20

25

30

35

40

45

50

55

60

65

8

Referring to FIG. 7, the BT service 168 includes a
host-side persistent data store 250. Each time a virtualized
background task is registered from within the VP, the BT
service 168 adds an association 252 between the event and
the application. Background task registration information
may also be stored in a VP-side volatile data store 254 stores
BT registrations for the VP. Because the host-side back-
ground task information is persistently stored, the VP-side
volatile data store 254 can be omitted and the BT service is
presumed to consistently have the information needed for
handling VP availability and activating applications.

In this embodiment, the VP leaks out the existence of a BT
event, its association with the VP, and possibly details about
the application to be activated in the associated VP. The
persistence of the host-side information may have a minor
security implication but also improves power and compu-
tation efficiency by making it more practical to render the
relevant VP unavailable, e.g. put in a low-power state.

As can be seen from FIGS. 5-7, if application activation
is to be implemented, an RPC call to activate an application
can be initiated either outside the VP (e.g.,, by the BT
service) or within the VP (e.g. by the BT agent), depending
on where application activation information is stored.

Although the embodiments above have been described as
being implemented on a single host computing device, the
VPs and the extra-VP infrastructure can reside on different
devices. In one embodiment, the VPs are provided by a
cloud service and the VP manipulations discussed above are
implemented by an API of the cloud service. References
herein to host-side components also refer to components
executed in a cloud or on different hosts.

As noted above, in some embodiments a VP associated
with a registered background task will be unavailable
because it has been removed from the host or because a task
has been registered without a VP. In this case, with some
additional host-side information, a VP and application can
nonetheless handle the events of the background task. One
approach is to maintain a catalog or history of which VPs
have been associated with which registrations or events/
activations. If the BT service handles an event and instructs
the virtualization layer to assure availability of the corre-
sponding VP, and if the virtualization layer finds that the VP
does not exist, then the virtualization layer provisions a new
VP on-the-fly to handle the task. If the new VP has a
different identifier than the identifier currently registered
with the BT service, then the identifier can be updated. A
dummy VP identifier in the BT registration can point into an
index of a VP library.

Virtualized background task registrations may include
more than just information to link events with VPs and
containers. Virtualized background task registrations may
also include a user identity to activate, which class to
activate, information about the application, and other infor-
mation.

In some embodiments, BT registrations are removed
when their corresponding VPs are deleted or decommis-
sioned. In another embodiment a BT registration can be
flagged as persistent and will outlive its VP. Events can be
handled by on-the-fly provisioning, as discussed above.

In some embodiments, BT registrations have additional
metadata such as priorities or weights. If the hardware
hosting the VP becomes power constrained (e.g. it only has
battery power available, and the battery falls below a certain
threshold), only higher priority BT will be allowed to run.
Some embodiments implement this through scheduling of
tasks and jobs. Other embodiments implement this through
limiting, postponing and/or dropping lower priority events.

US 11,797,328 B2

9

FIG. 8 shows details of a computing device 300 that may
serve as the host 100. The technical disclosures herein will
suffice for programmers to write software, and/or configure
reconfigurable processing hardware (e.g., field-program-
mable gate arrays (FPGAs)), and/or design application-
specific integrated circuits (ASICs), etc., to run on the
computing device 300 to implement any of the features or
embodiments described herein.

The computing device 300 may have one or more displays
322, a network interface 324 (or several), as well as storage
hardware 326 and processing hardware 328, which may be
a combination of any one or more: central processing units,
graphics processing units, analog-to-digital converters, bus
chips, FPGAs, ASICs, Application-specific Standard Prod-
ucts (ASSPs), or Complex Programmable Logic Devices
(CPLDs), etc. The storage hardware 326, which may be
local and/or remote, may be any combination of magnetic
storage, static memory, volatile memory, non-volatile
memory, optically or magnetically readable matter, etc. The
meaning of the term “storage”, as used herein does not refer
to signals or energy per se, but rather refers to physical
apparatuses and states of matter. The hardware elements of
the computing device 300 may cooperate in ways well
understood in the art of machine computing. In addition,
input devices may be integrated with or in communication
with the computing device 300. The computing device 300
may have any form-factor or may be used in any type of
encompassing device. The computing device 300 may be in
the form of a handheld device such as a smartphone, a tablet
computer, a gaming device, a server, a rack-mounted or
backplaned computer-on-a-board, a system-on-a-chip, or
others.

Embodiments and features discussed above can be real-
ized in the form of information stored in volatile or non-
volatile computer or device readable storage hardware. This
is deemed to include at least hardware such as optical
storage (e.g., compact-disk read-only memory (CD-ROM)),
magnetic media, flash read-only memory (ROM), or any
means of storing digital information in to be readily avail-
able for the processing hardware 328. The stored informa-
tion can be in the form of machine executable instructions
(e.g., compiled executable binary code), source code, byte-
code, or any other information that can be used to enable or
configure computing devices to perform the various embodi-
ments discussed above. This is also considered to include at
least volatile memory such as random-access memory
(RAM) and/or virtual memory storing information such as
central processing unit (CPU) instructions during execution
of a program carrying out an embodiment, as well as
non-volatile media storing information that allows a pro-
gram or executable to be loaded and executed. The embodi-
ments and features can be performed on any type of com-
puting device, including portable devices, workstations,
servers, mobile wireless devices, and so on.

The invention claimed is:

1. A method performed by a computing device comprising
processing hardware and storage hardware, the method
comprising:

executing a virtualization partition (VP) by a virtualiza-

tion layer, the virtualization layer providing the VP
with isolated virtualized access to operating system
and/or hardware resources of the computing device, the
VP comprising an application configured to execute a
background task within the VP;

receiving, by a service external to the virtualization layer,

a registration request from the application through a

10

15

20

25

30

35

40

45

50

55

60

65

10

virtualization boundary that is part of the virtualization
layer, the virtualization boundary separating the appli-
cation from the service;

registering the background task with the service based on

the registration request, wherein registering the back-
ground task with the service comprises storing an
association between the VP and the background task at
the service;

receiving, at the service, an event corresponding to the

background task;

determining, by the service, an identity of the VP asso-

ciated with the event based on the association between
the VP and the background task;

determining, by the service, that the VP is unavailable to

execute the background task; and

instructing, by the service, the virtualization layer to make

the VP available to execute the background task.

2. A method according to claim 1, wherein the VP
comprises a container and the virtualization layer comprises
a container engine that manages execution of the container.

3. A method according to claim 1, wherein the VP
comprises a virtual machine, and wherein the virtualization
layer comprises a hypervisor that manages execution of the
virtual machine.

4. A method according to claim 1, further comprising:

calling, by the application, a procedure to register the

background task; and

responding, by the service, to registering the background

task by forming the association between the VP and the
background task.

5. A method according to claim 4, wherein instructing the
virtualization layer to make the VP available comprises
triggering activation of the application.

6. A method according to claim 5, wherein activation
information for activating the application is persistently
stored in the VP, and the activation is triggered within the VP
according to the activation information.

7. A method according to claim 5, wherein activation
information for activating the application is persistently
stored by the service, and the activation is triggered by the
service according to the activation information.

8. A method according to claim 1, wherein the virtual-
ization layer provides VP communication channels for inter-
process communication, each VP communication channel
having an endpoint in a given VP and an endpoint in a
process outside of the given VP, and wherein a VP commu-
nication channel is used to either (i) convey registration of
the background task from the VP to the service, or (ii)
activate the application based on the background task.

9. A computing device comprising:

processing hardware;

storage hardware storing information configured to cause

the processing hardware to perform a process compris-

ing:

receiving, by a service, a registration request from a
guest application in a virtualization partition (VP)
being executed by a virtualization layer that virtual-
izes access to resources of the computing device for
the VP, the registration request being received
through a virtualization boundary of the virtualiza-
tion layer, the virtualization boundary separating the
guest application from the service, the service being
external to the virtualization layer;

registering, by the service, a background task to be
executed by the guest application based on the
registration request, wherein registering the back-
ground task comprises storing an association

US 11,797,328 B2

11

between an identifier of the VP and an identifier of an
event corresponding to the background task;

receiving, by the service, an indication of occurrence of
the event; and

providing, by the service, the indication to the VP,
wherein providing the indication to the VP causes the
VP to enter a state of executing during which the VP
takes an action that corresponds to the background
task.

10. A computing device according to claim 9, wherein the
computing device comprises a host and a cloud service, and
wherein the cloud service executes the VP.

11. A computing device according to claim 9, wherein
providing the indication to the VP triggers an activation of
the guest application.

12. A computing device according to claim 11, wherein
the guest application is triggered with a Remote Procedure
Call (RPC) invocation.

13. A computing device according to claim 9, wherein
causing the VP to enter a state of executing comprises
waking the VP, removing the VP from a low-power state, or
scheduling execution time for the VP.

14. A computing device according to claim 9, the process
further comprising:

storing indicia of the background task in the VP; and

when the VP begins executing, based on the indicia of the

background task, configuring a service outside of the
VP with a new association between an identifier of the
VP and an identifier of the event corresponding to the
background task.

15. A computing device according to claim 9, wherein the
registration request for the background task comprises alarm
configuration, wherein the process further comprises arming
a timer alarm outside of the VP based on the alarm con-
figuration, wherein the event comprises firing of the timer
alarm.

16. A computing device according to claim 15, wherein
the action taken by the VP occurs at an entry point in the
guest application that the guest application specified in
association with requesting the background task.

15

25

12

17. Computer storage hardware storing information con-
figured to cause one or more computers to perform a
process, the process comprising:

receiving, by a background task virtualization module, a

signal of an event associated with a background task to
be executed by an application in a virtualization parti-
tion (VP), the application being configured to execute
the background task and being separated from the
background task virtualization module by a virtualiza-
tion layer, wherein the background task virtualization
module is external to the virtualization layer;

in response to the signal of the event, identifying, by the

background task virtualization module, an identifier of
the VP based on a previous registration of the back-
ground task with the background task virtualization
module through a virtualization boundary of the virtu-
alization layer; and

communicating, by the background task virtualization

module, the identifier of the VP to a virtualization
module, wherein communicating the identifier of the
VP causes the VP to transition from a first state to a
second state, the first state comprising a low-power
state, a paused state, or a suspended state.

18. Computer storage hardware according to claim 17, the
process further comprising: further based on the signal,
triggering a response to the event by an application in the
VP.

19. Computer storage hardware according to claim 17, the
process further comprising receiving a request from the
application to register the background task, and based
thereon storing, by the background task virtualization mod-
ule, an indication of the background task, wherein the
identifier of the VP is found from the indication of the
background task.

20. Computer storage hardware according to claim 17,
wherein the process further comprises accessing background
task registrations, wherein the background task registrations
comprise respective priorities or weights, and wherein deci-
sions to execute VPs are based on the respective priorities or
weights.

