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1
AUTOMATED SENSITIVE DATA
CLASSIFICATION IN COMPUTERIZED
DATABASES

BACKGROUND

The invention relates to the field of automatic data clas-
sification.

The recent increase in information privacy regulation
worldwide has given rise to various technologies that evalu-
ate computerized databases for compliance with such regu-
lation. In addition, the growth in security attacks on sensitive
databases also drives the development of these technologies,
s0 organizations can better secure certain databases.

Such technologies provide risk assessments tools regard-
ing compliance with GDPR, PCI, HIPAA, CCPA, LGPD,
and other regulations by using sophisticated data classifica-
tion techniques, vulnerability scanning, and risk scoring.

These tools help highlight databases containing sensitive
data, so organizations gain insights into where they need to
focus and prioritize their data security and risk remediation
efforts.

One such tool is the Security Guardium Analyzer by IBM
Corp., designed to help identity regulated data risks by
analyzing on-premises and cloud databases to find and
present users with prioritized risk information. It includes a
classification engine which searches data inside database
tables, performs vulnerability scanning, and uncovers cur-
rent threats.

The foregoing examples of the related art and limitations
related therewith are intended to be illustrative and not
exclusive. Other limitations of the related art will become
apparent to those of skill in the art upon a reading of the
specification and a study of the figures.

SUMMARY

The following embodiments and aspects thereof are
described and illustrated in conjunction with systems, tools
and methods which are meant to be exemplary and illustra-
tive, not limiting in scope.

One embodiment relates to a method which comprises:
retrieving a catalog of a database, wherein the catalog
comprises metadata defining objects of the database,
wherein the objects are selected from the group consisting
of: tables, columns, synonyms, and views; sampling record
values from at least some of the columns; generating a map
of probable associations between different columns of the
tables of the database, based on: (a) the metadata, and (b) the
sampled record values; applying a machine learning classi-
fier to the sampled record values, to classify the columns of
the sampled records into multiple data classes, wherein at
least some of the data classes are sensitive data classes;
classifying columns of non-sampled record values according
to the classification of the sampled record values, based on
the map of probable associations between the different
columns; searching all objects of the database for existence
of record values of the classified columns, to output value
and field name pairs; scoring the pairs according to a
measure of their repetitiveness in the output, wherein a
higher repetitiveness produces a higher score and a lower
repetitiveness produces a lower score; increasing the score
of the pairs whose field names are similar; and based on the
scores, indicating which fields of the database are likely to
include sensitive data.

Another embodiment relates to a system which com-
prises: (a) at least one hardware processor; and (a) a non-
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2

transitory computer-readable storage medium having pro-
gram code embodied therewith, the program code
executable by said at least one hardware processor to
perform the steps of the method.

A further embodiment relates to a computer program
product for automated sensitive data classification, the com-
puter program product comprising a non-transitory com-
puter-readable storage medium having program code
embodied therewith, the program code executable by at least
one hardware processor to perform the steps of the method.

In some embodiments, the sampling is of 2-10 record
values from each of the columns.

In some embodiments, the sampling comprises ignoring
record values that are at least one of: null, blank, zero,
Boolean, and strings shorter than a predefined length.

In some embodiments, the sampling comprises removing
at least one of a prefix and a suffix from the sampled record
values.

In some embodiments, the machine learning classifier is
trained on a dataset that comprises values that are manually
labeled as sensitive or non-sensitive.

In some embodiments, the repetitiveness is measured by
applying at least one of a Shell sort algorithm and a Bloom
filter to the pairs.

In some embodiments, the field names are determined to
be similar using at least one of: a stemming algorithm, and
a natural-language understanding (NLU) algorithm.

In addition to the exemplary aspects and embodiments
described above, further aspects and embodiments will
become apparent by reference to the figures and by study of
the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

Exemplary embodiments are illustrated in referenced fig-
ures. Dimensions of components and features shown in the
figures are generally chosen for convenience and clarity of
presentation and are not necessarily shown to scale. The
figures are listed below:

FIG. 1 is a block diagram of an exemplary system for
automated classification of sensitive data types, according to
an embodiment;

FIG. 2 is a flowchart of a method for automated classi-
fication of sensitive data types, according to an embodiment;

FIG. 3 is a block diagram of a system in accordance with
example implementations of the present disclosure;

FIG. 4 illustrates a cloud computing environment, in
accordance with an embodiment of the invention; and

FIG. 5 illustrates a set of functional abstraction layers
provided by the cloud computing environment of FIG. 4, in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

Disclosed herein is a method, system, and computer
program product for automated classification of sensitive
data types in databases. The disclosed classification tech-
nique is designed to quickly and accurately locate sensitive
data types in extremely large databases, based on locating
repetitive (also “duplicate”) data and data types in the
database; this redundancy serves as a hint for the correctness
of the classification, and is also an efficient manner of
traversing those extremely large databases.

The term “sensitive data” or “sensitive data type,” as used
herein, may refer to information that can be used to distin-
guish or trace a person’s identity, such as, but not limited to:
name, social security number, government ID number, driv-
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er’s license number, date and place of birth, mother’s
maiden name, telephone number, email address, IP (Internet
Protocol) address, residential address, and biometric record.
The term may also refer to other information that is linked
or linkable to a person, such as this person’s medical,
educational, financial, and employment information.

Since sensitive data obtained via a database breach may
be used for criminal acts such as identity theft, it is of utmost
importance to an organization to be able to identify where
such data is stored, so that greater security resources can be
allocated to protect it from breaches. In some cases, regu-
lation even prescribes that such sensitive data can only be
physically stored in some locations but not in others—and
the organization needs to know if the introduction of new
sensitive data into its databases suddenly triggers the need to
physically relocate a database (or to delete the data).

Reference is now made to FIG. 1, which shows a block
diagram of an exemplary system 100 for automated classi-
fication of sensitive data types, according to an embodiment.
System 100 may comprise one or more hardware
processor(s) 102, random-access memory (RAM) 104, and
one or more non-transitory computer-readable storage
device(s) 106.

Storage device(s) 106 may have stored thereon software
instructions or components configured to operate a process-
ing unit (also “hardware processor,” “CPU,” or simply
“processor”), such as hardware processor(s) 102. In some
embodiments, the software components may include an
operating system, having various software components and/
or drivers for controlling and managing general system tasks
(e.g., memory management, storage device control, power
management, etc.), and facilitating communication between
various hardware and software components. In some
embodiments, the program instructions are segmented into
one or more software modules, which may include, e.g., a
classification module 108.

System 100 may operate by loading instructions of clas-
sification module 108 into RAM 104 as they are being
executed by processor(s) 102. The instruction of classifica-
tion module 108 cause system 100 to: interface with one or
more databases, such as database(s) 110, for which classi-
fication of sensitive data types is required; classify data
types existing in database(s) 110; and output an indication
112 of sensitive data fields existing in database(s) 110.

System 100 as described herein is only an exemplary
embodiment of the present invention, and in practice may be
implemented in hardware only, software only, or a combi-
nation of both hardware and software. System 100 may have
more or fewer components and modules than shown, may
combine two or more of the components, or may have a
different configuration or arrangement of the components.
System 100 may include any additional component enabling
it to function as an operable computer system, such as a
motherboard, data busses, power supply, etc. (not shown).
An example computer system is illustrated in FIG. 3.
Components of system 100 may be co-located or be distrib-
uted (i.e., in a distributed computing architecture).

The instructions of classification module 108 are now
discussed with reference to the flowchart of FIG. 2, which
illustrates a method 200 for automated classification of
sensitive data types. For simplicity of discussion, method
200 is explained with a reference to a single database whose
data types are being classified. However, those of skill in the
art will recognize that method 200 may similarly be applied
to multiple databases, either sequentially or at the same time
(i.e., each step may involve data obtained from multiple
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databases), such as to multiple different databases main-
tained by a certain organization and containing either over-
lapping or distinct data.

Steps of method 200 may either be performed in the order
they are presented or in a different order (or even in parallel),
as long as the order allows for a necessary input to a certain
step to be obtained from an output of an earlier step.

In a step 202, a catalog of a database is retrieved. The
catalog, sometimes referred to in the art as an “information
schema”, includes metadata defining objects of the database,
such as tables (and their columns), synonyms, views, indi-
ces, and users. The catalog may be retrieved by manually, or
more advantageously—automatically, connecting to the
database over a computer network, and executing one or
more commands such as the “SELECT . FROM
information_schema.<object>" command of SQL databases,
the “SHOW” command of MySQL databases, the
“DESCRIBE” command of Oracle SQL Plus databases, or
the “\d” command of PostgreSQL databases, to name a few
examples.

The metadata included in the retrieved catalog may
define, for example, a data type of each column, such as
numeric (e.g., bit, tinyint, smallint, int, bigint, decimal,
numeric, float, real), date/time (e.g., Data, Time, Datetime,
Timestamp, Year), character/string (e.g., Char, Varchar,
Text), unicode character/string (e.g., NChar, NVarchar,
NText), binary or Boolean (e.g., Binary, Varbinary, image),
and/or miscellaneous (e.g., Clob, Blob, XML, JSON), as
known in the art. The metadata may also define an allowed
length of values stored in each column, which length is
given either as a number of characters or as a number of
memory units (e.g., bits or bytes).

In a step 204, a map of probable associations between
different columns of the tables of the database may be
automatically generated, based on: (a) the metadata from the
catalogue, retrieved in the preceding step 202, and/or (b)
sampled values of records from the different columns of the
tables of the database; this sampling may be performed in a
similar manner to the sampling discussed in the next step,
206. Optionally, the sampling of step 206 is performed prior
to step 204, so that its sampled record values can be used
both in step 204 and in step 208.

The generation of the map is based on the notion that
certain types of columns could, theoretically, store the same
type of sensitive information even if they have somewhat
different names, different data types, and/or different lengths
of'the values they store. Accordingly, in the generation of the
mayp, similarity of names, data types, and lengths of columns
(whether in their metadata or real, stored values) is checked.
For example, a “Phone” column may be determined to be
associated with a “Cell” column even though their names are
different; as a further example, these two columns be asso-
ciated even if one is of the type “number” and the other is
a “string”, if the real, stored values of the string turn out to
be numbers (or numbers with punctuation marks such as
hyphens, dots, or parentheses).

The sampled record values may be used in cases where
the metadata, such as column names, fail to reliably identify
the data type in the column. For example, a column named
“Started_at” may store times, even though its name does not
include the word “time”, and its data type (obtained from the
catalog) may not be date/time but rather “string.” Optionally,
step 204 automatically checks, for each column, which of
the metadata and sampled record values yields the most
associations with other columns, and generates the map
based on that one.
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In order to expedite the map generation, the following rule
set, or a similar rule set, may be used to quickly rule out
improbable associations between the different columns:

1. Date/time-type columns will not be associated with

Boolean-type columns.

2. Date/time-type columns will not be associated with
number-type columns (although a check of the real
stored data may be made to verify, for example, that it
does not reflect a Unix data or time).

3. Columns of vastly different lengths will not be asso-
ciated with each other. For example, columns whose
relative lengths are beyond a ratio of 1:1.5, 1:2, or
more—will not be associated.

In a step 206, values of records (also “rows”) from at least
some of the columns of the database (up to all the columns)
may be automatically sampled. Optionally, the sampling is
of a relatively small number of record values per column,
such as only 2-10 or more narrowly only 2-5 record values,
in order to save time. Such small number may still allow for
reliable classification of sensitive data.

Optionally, in the sampling, record values that are merely
noise and do not represent data useful for classification may
be automatically ignored. For example, record values that
are at least one of: mull, blank, zero, Boolean, and strings
shorter than a predefined length, may be discarded if inci-
dentally sampled, and substitute record values are sampled
instead.

Optionally, the sampling also involves removal of a prefix
and/or a suffix from each of the sampled record values,
because they similarly introduce unnecessary noise. Prefixes
and/or suffixes, as least when they appear in sensitive data,
typically represent some redundant information that is
attached to various record values but is not sensitive data by
itself. For example, some databases (or application servers
that connect with databases) automatically add an ID of the
computer which added/updated a record to that record, for
auditing purposes. As another example, some databases or
application servers automatically add a process ID (a unique
ID of the database-internal process that was employed to
create or update a record) as a prefix to data it stores.

To remove a suffix, one or more of the following auto-
matic approaches may be taken: One is to apply a stemming
algorithm or a spelling suggestion algorithm to each record
value, to identify the suffix. Another is to check a certain
predefined number of the last characters in each record
value, and determine if they include a repeating string; this
may be reiterated a number of times, every time with a larger
number of last characters checked, until a repeating pattern
is no longer found, meaning—the beginning of the suffix has
been reached.

To remove a prefix, one or more of the following auto-
matically approaches may be taken: One is to apply a
stemming algorithm or a spelling suggestion algorithm to
each record value, to identify the prefix. Another is to check
a certain predefined number of the first characters in each
record value, and determine if they include a repeating
string; this may be reiterated a number of times, every time
with a larger number of first characters checked, until a
repeating pattern is no longer found, meaning—the end of
the prefix has been reached.

Optionally, the sampled record values are automatically
hashed, as known in the art, in order to enhance security
and/or ensure compliance with regulation as these values,
which are potentially sensitive, are handled by method 200.
If such hashing is performed, then the next steps of method
200 are performed on the hash values and not on the sampled
values themselves.

20

30

40

45

50

55

60

6

Optionally, in order to ensure that the sampled record
values are unique, a token-based similarity algorithm may
be applied to them (or to their prefix-less/suffix-less ver-
sions) to detect duplicates and remove the redundancy. For
example, the token-based similarity algorithm may be the
“atomic strings” algorithm of Monge, Alvaro E.; Charles P.
Elkan (1996). “The Field Matching Problem: Algorithms
and Applications”. Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining
(KDD-96). pp. 267-270, or the “WHIRL” algorithm by
Cohen, William Weston (1998). “Integration of heteroge-
neous databases without common domains using queries
based on textual similarity”. Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data
(SIGMOD’98). pp. 201-212.

As mentioned above, step 206 may alternatively be per-
formed prior to step 204, so that the sampled record values
can also participate in the generation of the map.

In a step 208, columns of the sampled records may be
automatically classified into multiple data classes by apply-
ing a machine learning classifier to the sampled record
values. At least some of these data classes are sensitive data
classes, such as, but not limited to, name, social security
number, government ID number, driver’s license number,
date/place of birth, mother’s maiden name, telephone num-
ber, email address, IP (Internet Protocol) address, residential
address, biometric record, medical information, educational
information, financial information, employment informa-
tion, etc.

The machine learning classifier may be a supervised
classifier trained on a dataset that includes values which are
manually labeled as sensitive or non-sensitive, as the case
may be.

At this point in time, the classification is preliminary and
not yet accurate. For example, it may include columns that
are false-positively classified as sensitive despite not being
such. The next steps of method 200 aim to improve the
classification.

Optionally, before progressing the next step, manual input
from the user may be received with respect to the accuracy
of the classification of step 208. The user may choose, for
example, to reassign sampled record values to different
classes than what was proposed by the machine learning
classifier.

In a step 210, the map of probable associations between
the different columns may be used to automatically propa-
gate the classification of columns done in step 208 to
columns of other, non-sampled record values. Namely, other
columns in the database, which have been determined in step
204 to be associated with the columns classified in step 208,
are classified the same as their associated counterparts.

In a step 212, some or all objects (e.g., tables, synonyms,
views) of the database may be automatically searched for the
existence therein of the same record values of the columns
classified in steps 208 and 210. This step aims to locate fields
(such as column names, synonyms of column names, view
column names, etc.) in optionally the entire database, whose
stored data contains the same values as the previously-
classified record values. To make this step efficient, the
pertinent objects of the database may be retrieved to a
computer running method 200 in one (or a few) bulk SQL
query, and the search may be performed locally on that
computer. This spares the need to run numerous SQL queries
for every searched record value.

The output of step 212 may be in the form of value and
field name pairs. For example, a pair may be {IBM, Com-
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pany_Name}, denoting that the value “IBM” was found in
a “Company_Name” field in either a table, a synonym, or a
view of the database.

Optionally, the pairs are automatically hashed, as known
in the art, in order to enhance security and/or ensure com-
pliance with regulation as these pairs, which are potentially
sensitive, are handled by method 200. If such hashing is
performed, then the next steps of method 200 are performed
on the hash values and not on the value and field name pairs
themselves.

Optionally, to enhance efficiency, the pairs may be auto-
matically cached in memory (such as in a RAM) using a tool
such as Memcached, an open source project originally by
Brad Fitzpatrick, or Redis, another open source tool by
Redis Labs, Inc.

In a step 214, the pairs may be automatically scored
according to a measure of their repetitiveness in the output
of the search of step 212. Higher repetitiveness produces a
higher score whereas lower repetitiveness produces a lower
score. The scores can be on any scale.

The repetitiveness is optionally measured by applying a
suitable algorithm to the pairs, such as a Shell sort algorithm
and a Bloom filter. Such algorithms, as known in the art, are
capable of grouping together identical pieces of data, such
that these identical pieces of data can later be easily counted.
The count, or a normalized form thereof, may serve as the
repetitiveness measure.

Optionally, a lower threshold is used to assign a zero
repetitiveness measure to those pairs who repeat only mini-
mally. For example, if each one of a few similar fields
includes one million records in the database, then we would
expect for some records in these fields to be identical by
chance, and not because the fields really store data of the
same type. Accordingly, the lower threshold may be set as a
percentage of the number of records in the similar field, for
example 1%, 5%, 10%, 20% or any value therebetween.

In a step 216, the score of those of the pairs whose field
names are similar may be automatically increased. To check
for such similarity, a stemming algorithm and/or a natural-
language understanding (NLU) algorithm may be applied to
the field names, to detect those which share the same stem
or the same meaning, respectively.

Following step 216, there exist a large number of value
and field name pairs and their scores. In a step 218, the
scores may be used for automatically indicating to a user
(such as an administrator of the database, a compliance
officer, or the like) which specific fields of the database are
likely to include sensitive data. The higher the score of a
pair—the higher the confidence that the field name in it
relates to a column in the database which stores sensitive
data (either in some or all of its records).

Optionally, a predetermined threshold is used to deter-
mine how many field names are indicated to likely include
sensitive data. For example, the threshold may be a fixed
score value, a percentile score value, a percentile of all
database fields, and/or the like.

Optionally, manual input from the use may be received
with respect to the accuracy of the indication given in step
218. The user may choose, for example, to reassign field
names to different classes, such as move certain field names
from a non-sensitive class to a sensitive class, or vice versa.
This manual input may be used to improve the accuracy of
consecutive runs of method 200.

Notably, for consecutive executions of method 200 on the
same database, not all steps must be repeated. Namely, the
database may be periodically queried (or be programmed to
actively send out information periodically) to check if it
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includes any new fields that did not exist at the time of the
previous execution; then, those relevant steps of method 200
may be carried out only for those new fields and the records
stored in association with them.

Referring to FIG. 3, a system 1000 includes a computer
system or computer 1010 shown in the form of a generic
computing device. The method 200, for example, may be
embodied in a program(s) 1060 (FIG. 3) embodied on a
computer readable storage device, for example, generally
referred to as memory 1030 and more specifically, computer
readable storage medium 1050 as shown in FIG. 3. For
example, memory 1030 can include storage media 1034
such as RAM (Random Access Memory) or ROM (Read
Only Memory), and cache memory 1038. The program 1060
is executable by the processing unit or processor 1020 of the
computer system 1010 (to execute program steps, code, or
program code). Additional data storage may also be embod-
ied as a database 1110 which can include data 1114. The
computer system 1010 and the program 1060 shown in FIG.
3 are generic representations of a computer and program that
may be local to a user, or provided as a remote service (for
example, as a cloud based service), and may be provided in
further examples, using a website accessible using the
communications network 1200 (e.g., interacting with a
network, the Internet, or cloud services). It is understood that
the computer system 1010 also generically represents herein
a computer device or a computer included in a device, such
as a laptop or desktop computer, etc., or one or more servers,
alone or as part of a datacenter. The computer system can
include a network adapter/interface 1026, and an input/
output (I/O) interface(s) 1022. The 1/O interface 1022 allows
for input and output of data with an external device 1074 that
may be connected to the computer system. The network
adapter/interface 1026 may provide communications
between the computer system a network generically shown
as the communications network 1200.

The computer 1010 may be described in the general
context of computer system-executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, pro-
grams, objects, components, logic, data structures, and so on
that perform particular tasks or implement particular abstract
data types. The method steps and system components and
techniques may be embodied in modules of the program
1060 for performing the tasks of each of the steps of the
method and system. The modules are generically repre-
sented in FIG. 3 as program modules 1064. The program
1060 and program modules 1064 can execute specific steps,
routines, sub-routines, instructions or code, of the program.

The method of the present disclosure can be run locally on
a device such as a mobile device, or can be run a service, for
instance, on the server 1100 which may be remote and can
be accessed using the communications network 1200. The
program or executable instructions may also be offered as a
service by a provider. The computer 1010 may be practiced
in a distributed cloud computing environment where tasks
are performed by remote processing devices that are linked
through a communications network 1200. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

More specifically, as shown in FIG. 3, the system 1000
includes the computer system 1010 shown in the form of a
general-purpose computing device with illustrative periph-
ery devices. The components of the computer system 1010
may include, but are not limited to, one or more processors
or processing units 1020, a system memory 1030, and a bus
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1014 that couples various system components including
system memory 1030 to processor 1020.

The bus 1014 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

The computer 1010 can include a variety of computer
readable media. Such media may be any available media that
is accessible by the computer 1010 (e.g., computer system,
or server), and can include both volatile and non-volatile
media, as well as, removable and non-removable media.
Computer memory 1030 can include additional computer
readable media 1034 in the form of volatile memory, such as
random access memory (RAM), and/or cache memory 1038.
The computer 1010 may further include other removable/
non-removable, volatile/non-volatile computer storage
media, in one example, portable computer readable storage
media 1072. In one embodiment, the computer readable
storage medium 1050 can be provided for reading from and
writing to a non-removable, non-volatile magnetic media.
The computer readable storage medium 1050 can be embod-
ied, for example, as a hard drive. Additional memory and
data storage can be provided, for example, as the storage
system 1110 (e.g., a database) for storing data 1114 and
communicating with the processing unit 1020. The database
can be stored on or be part of a server 1100. Although not
shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 1014 by one
or more data media interfaces. As will be further depicted
and described below, memory 1030 may include at least one
program product which can include one or more program
modules that are configured to carry out the functions of
embodiments of the present invention.

The method 200 (FIGS. 2a-2b), for example, may be
embodied in one or more computer programs, generically
referred to as a program(s) 1060 and can be stored in
memory 1030 in the computer readable storage medium
1050. For example, the program 1060 can include the
classification module 108 described above with reference to
FIG. 1. The program modules 1064 can generally carry out
functions and/or methodologies of embodiments of the
invention as described herein. The one or more programs
1060 are stored in memory 1030 and are executable by the
processing unit 1020. By way of example, the memory 1030
may store an operating system 1052, one or more application
programs 1054, other program modules, and program data
on the computer readable storage medium 1050. It is under-
stood that the program 1060, and the operating system 1052
and the application program(s) 1054 stored on the computer
readable storage medium 1050 are similarly executable by
the processing unit 1020.

The computer 1010 may also communicate with one or
more external devices 1074 such as a keyboard, a pointing
device, a display 1080, etc.; one or more devices that enable
auser to interact with the computer 1010; and/or any devices
(e.g., network card, modem, etc.) that enables the computer
1010 to communicate with one or more other computing
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devices. Such communication can occur via the Input/
Output (I/O) interfaces 1022. Still yet, the computer 1010
can communicate with one or more networks 1200 such as
a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via
network adapter/interface 1026. As depicted, network
adapter 1026 communicates with the other components of
the computer 1010 via bus 1014. It should be understood
that although not shown, other hardware and/or software
components could be used in conjunction with the computer
1010. Examples, include, but are not limited to: microcode,
device drivers 1024, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data
archival storage systems, etc.

It is understood that a computer or a program running on
the computer 1010 may communicate with a server, embod-
ied as the server 1100, via one or more communications
networks, embodied as the communications network 1200.
The communications network 1200 may include transmis-
sion media and network links which include, for example,
wireless, wired, or optical fiber, and routers, firewalls,
switches, and gateway computers. The communications
network may include connections, such as wire, wireless
communication links, or fiber optic cables. A communica-
tions network may represent a worldwide collection of
networks and gateways, such as the Internet, that use various
protocols to communicate with one another, such as Light-
weight Directory Access Protocol (LDAP), Transport Con-
trol Protocol/Internet Protocol (TCP/IP), Hypertext Trans-
port Protocol (HTTP), Wireless Application Protocol
(WAP), etc. A network may also include a number of
different types of networks, such as, for example, an intranet,
a local area network (LAN), or a wide area network (WAN).

In one example, a computer can use a network which may
access a website on the Web (World Wide Web) using the
Internet. In one embodiment, a computer 1010, including a
mobile device, can use a communications system or network
1200 which can include the Internet, or a public switched
telephone network (PSTN) for example, a cellular network.
The PSTN may include telephone lines, fiber optic cables,
microwave transmission links, cellular networks, and com-
munications satellites. The Internet may facilitate numerous
searching and texting techniques, for example, using a cell
phone or laptop computer to send queries to search engines
via text messages (SMS), Multimedia Messaging Service
(MMS) (related to SMS), email, or a web browser. The
search engine can retrieve search results, that is, links to
websites, documents, or other downloadable data that cor-
respond to the query, and similarly, provide the search
results to the user via the device as, for example, a web page
of search results.

It is to be understood that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
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Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
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policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 4, illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 4 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 5, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
4) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 5§ are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
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resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and data classification 96.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device having instruc-
tions recorded thereon, and any suitable combination of the
foregoing. A computer readable storage medium, as used
herein, is not to be construed as being transitory signals per
se, such as radio waves or other freely propagating electro-
magnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light
pulses passing through a fiber-optic cable), or electrical
signals transmitted through a wire. Rather, the computer
readable storage medium is a non-transient (i.e., not-vola-
tile) medium.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
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receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.
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The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The description of a numerical range should be consid-
ered to have specifically disclosed all the possible subranges
as well as individual numerical values within that range. For
example, description of a range from 1 to 6 should be
considered to have specifically disclosed subranges such as
from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to
6, from 3 to 6 etc., as well as individual numbers within that
range, for example, 1, 2, 3, 4, 5, and 6. This applies
regardless of the breadth of the range.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A method for automated sensitive data classification,
the method comprising:

retrieving a catalog of a database, wherein the catalog
comprises metadata defining objects of the database,
wherein the objects include tables and columns;

sampling record values from at least some of the columns,
wherein the sampling comprises ignoring record values
selected from a group consisting of: null, blank, zero,
Boolean, and strings shorter than a predefined length,
and further comprises removing at least one of a prefix
and a suffix from the sampled record values through use
of a spelling suggestion algorithm;

generating a map of probable associations between dif-
ferent columns of the tables of the database, based on:
(a) the metadata, and (b) the sampled record values;

applying a machine learning classifier to the sampled
record values, to classify the columns of the sampled
records into multiple data classes, wherein at least
some of the data classes are sensitive data classes;

classifying columns of non-sampled record values
according to the classification of the sampled record
values, based on the map of probable associations
between the different columns;
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searching all objects of the database for existence of
record values of the classified columns, to output value
and field name pairs;

scoring the pairs according to a measure of their repeti-

tiveness in the output, wherein the score corresponds to
a count of pieces of data, and wherein a higher repeti-
tiveness produces a higher score and a lower repeti-
tiveness produces a lower score;

increasing the scores of the pairs whose field names are

similar, wherein the field names are determined to be
similar using at least one of: a stemming algorithm and
a natural-language understanding (NLU) algorithm;
and

based on the scores of the pairs, indicating which fields of

the database are likely to include sensitive data.
2. The method according to claim 1, wherein the sampling
is of 2-10 record values from each of the columns.
3. The method according to claim 1, wherein the machine
learning classifier is trained on a dataset that comprises
values that are manually labeled as sensitive or non-sensi-
tive.
4. The method according to claim 1, wherein the repeti-
tiveness is measured by applying at least one of a Shell sort
algorithm and a Bloom filter to the pairs.
5. A system for automated sensitive data classification a
computer system comprising, a processor, a computer read-
able storage medium, and program instructions stored on the
computer readable storage medium being executable by the
processor to cause the computer system to:
retrieve a catalog of a database, wherein the catalog
comprises metadata defining objects of the database,
wherein the objects include tables and columns;

sampling record values from at least some of the columns,
wherein the sampling comprises ignoring record values
selected from a group consisting of: null, blank, zero,
Boolean, and strings shorter than a predefined length,
and further comprises removing at least one of a prefix
and a suffix from the sampled record values through use
of a spelling suggestion algorithm;

generate a map of probable associations between different

columns of the tables of the database, based on: (i) the
metadata, and (ii) the sampled record values;

apply a machine learning classifier to the sampled record

values, to classify the columns of the sampled records
into multiple data classes, wherein at least some of the
data classes are sensitive data classes;

classify columns of non-sampled record values according

to the classification of the sampled record values, based
on the map of probable associations between the dif-
ferent columns;

search all objects of the database for existence of record

values of the classified columns, to output value and
field name pairs,

score the pairs according to a measure of their repetitive-

ness in the output, wherein the score corresponds to a
count of pieces of data, and wherein a higher repeti-
tiveness produces a higher score and a lower repeti-
tiveness produces a lower score;

increasing the scores of the pairs whose field names are

similar, wherein the field names are determined to be
similar using at least one of: a stemming algorithm and
a natural-language understanding (NLU) algorithm;
and

based on the scores of the pairs, indicating which fields of

the database are likely to include sensitive data.

6. The system according to claim 5, wherein the sampling
is of 2-10 record values from each of the columns.
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7. The system according to claim 5, wherein the machine
learning classifier is trained on a dataset that comprises
values that are manually labeled as sensitive or non-sensi-
tive.

8. The system according to claim 5, wherein the repeti-
tiveness is measured by applying at least one of a Shell sort
algorithm and a Bloom filter to the pairs.

9. A computer program product for automated sensitive
data classification, the computer program product compris-
ing:

a computer-readable storage medium having program
code embodied therewith, the program code executable
by at least one hardware processor to:

retrieve a catalog of a database, wherein the catalog
comprises metadata defining objects of the database,
wherein the objects include tables and columns;

sampling record values from at least some of the columns,
wherein the sampling comprises ignoring record values
selected from a group consisting of: null, blank, zero,
Boolean, and strings shorter than a predefined length,
and further comprises removing at least one of a prefix
and a suffix from the sampled record values through use
of a spelling suggestion algorithm;

generate a map of probable associations between different
columns of the tables of the database, based on: (a) the
metadata, and (b) the sampled record values;

apply a machine learning classifier to the sampled record
values, to classify the columns of the sampled records
into multiple data classes, wherein at least some of the
data classes are sensitive data classes;
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classify columns of non-sampled record values according
to the classification of the sampled record values, based
on the map of probable associations between the dif-
ferent columns;

search all objects of the database for existence of record

values of the classified columns, to output value and
field name pairs;

score the pairs according to a measure of their repetitive-

ness in the output, wherein the score corresponds to a
count of pieces of data, and wherein a higher repeti-
tiveness produces a higher score and a lower repeti-
tiveness produces a lower score;

increasing the scores of the pairs whose field names are

similar, wherein the field names are determined to be
similar using at least one of: a stemming algorithm and
a natural-language understanding (NLU) algorithm;
and

based on the scores of the pairs, indicating which fields of

the database are likely to include sensitive data.

10. The computer program product according to claim 9,
wherein the sampling is of 2-10 record values from each of
the columns.

11. The computer program product according to claim 9,
wherein the machine learning classifier is trained on a
dataset that comprises values that are manually labeled as
sensitive or non-sensitive.

12. The computer program product according to claim 9,
wherein the repetitiveness is measured by applying at least
one of a Shell sort algorithm and a Bloom filter to the pairs.
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