

US 20210338776A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2021/0338776 A1

Nov. 4, 2021 (43) **Pub. Date:**

FIKRIG et al.

Related U.S. Application Data

(60) Provisional application No. 62/735,597, filed on Sep. 24, 2018, provisional application No. 62/727,906, filed on Sep. 6, 2018.

Publication Classification

- (51) Int. Cl. A61K 38/17 (2006.01)
- (52) U.S. Cl. CPC A61K 38/1767 (2013.01)

(57)ABSTRACT

The invention is directed to compositions comprising mosquito (e.g., Aedes aegypti) salivary polypeptides and related methods for preventing and/or treating mosquito-borne viral infections such as infections caused by flaviviruses and alphaviruses. The flavivirus that is prevented or treated includes Zika virus, West Nile virus, Dengue virus, tickborne encephalitis virus, and yellow fever virus.

Specification includes a Sequence Listing.

(54) TREATMENTS AGAINST **MOSQUITO-BORNE VIRUSES BASED ON** MOSQUITO SALIVARY GLAND PROTEINS

- (71) Applicant: YALE UNIVERSITY, New Haven, CT (US)
- (72) Inventors: Erol FIKRIG, Guilford, CT (US); Ryuta URAKI, New Haven, CT (US); Andrew HASTINGS, Hamden, CT (US)
- (73) Assignee: YALE UNIVERSITY, New Haven, CT (US)
- (21) Appl. No.: 17/274,086
- (22) PCT Filed: Sep. 5, 2019
- (86) PCT No.: PCT/US19/49713
 - § 371 (c)(1), Mar. 5, 2021 (2) Date:

FIG. 2B

ĨG. 3	V.			FC. 3B			
				Serun from mice	Naive mou	use serum	
	pre-sort	4	th-sort				57.6%
D. S.	serum from mice tten by A.aegypti	Serun bitten	n from mice by A.aegypti	cells S			48.2%
4-01 Builter		4-01 50000000		Veast	20.7%		
10 ³		10 ³		C gui			
10 ² =	0.07%	10 ²	48.2%	bind 2.0 0.36	1%6 		
یں ;		 		1 0.03% 00.7%			
		2] C		0%			
10 , 10 0	2 1 Boots Boots 1 Boots	111111 10 [°] - 1 5°111111	1.1. Buda 1.1.				
10	10 ⁻ A1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10	▲			Ì
	11.7	1000 ±000					
				FIG. 3C			
Clone	Serum used in screen	Number of times identified in the screen	Gene Identity	Protein name	Abbreviation in this study	Sinal peptide	MW (KDa) (including signal peptode)
	1 mouse	19	LOC5578630	Putative 34 kDa family secreted salivary protem	SP	Xœ	36
(q	2 mouse	12	LOC5578631	Putative 34 kDa secreted protein	Nest1	Yes	36
	3 mouse	11	LOC5567956	I ong form D7Bchul salivary protem	D7Bclu	Yæ	39
7	4 mouse	£	LOC5580038	Putative 30 kDa allergen-like protein	AILP	Yes	24
	5 mouse	1	LOC5573204	Bacteria responsive protein 1	AgBRI	Yæ	49

Patent Application Publication

Patent Application Publication

12

8 7

AnLP

LOC110675548 Angiopoietin-like protein

human

Эγ

FIG. 6A anti-SP serum

FIG. 6B anti-Nest1 serum

FIG. 6C anti-D7Bclu serum

FIG. 6E anti-AgBR1 serum

FIG. 6G anti-Aada2 serum

FIG. 6I anti-AnLP serum

Nov. 4, 2021 Sheet 14 of 58

FIG. 10A

FIG. 10B

FIG. C

FIG. 14G

HC. 14

FIG. 15D

FIG. 15E

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17E

FIC. 17F

FIG. 18A

FIG. 18D

FIG. 19

FIG. 20

FIG. 22

FIG. 23

FIG. 25

740-09A - 110HM

0

740-39 - 21100

1000

818 C

٢

MHCII - APC-CV7

 \sim

Langerhans

Neutrophils

Macrophages

DCs

TREATMENTS AGAINST MOSQUITO-BORNE VIRUSES BASED ON MOSQUITO SALIVARY GLAND PROTEINS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/727,906, filed Sep. 6, 2018, which application is herein incorporated by reference in its entirety, and U.S. Provisional Application No. 62/735,597, filed Sep. 24, 2018, which application is herein incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under AI089992, AI127865, and AI145779 awarded by National Institutes of Health. The government has certain rights in the invention.

TECHNICAL FIELD OF THE INVENTION

[0003] The present invention is directed to compositions comprising mosquito (e.g., *Aedes aegypti*) salivary polypeptides and related methods for preventing and/or treating mosquito-borne viral infections such as infections caused by flaviviruses and alphaviruses.

BACKGROUND

[0004] Zika virus (ZIKV) is a member of the flavivirus family along with West Nile virus and Dengue virus. ZIKV was first isolated in 1947 from a sentinel monkey in the Zika forest of Uganda (1, 2). The first case of ZIKV infection in humans was reported in Nigeria in 1954 (3). For half a century, serologic evidence suggests that the virus circulated in Africa and Southeast Asia (4-11). Most recently, a large epidemic in the Americas, affecting well over a million people, has caused significant concern over this virus's potential to spread worldwide (12-14). Historically, Zika virus has manifested as a relatively mild self-limiting illness like dengue virus, with fever, rash and headache, and up to 80% of infected individuals remaining asymptomatic (9, 15, 16). However, these new epidemics have come with significantly more severe symptoms including Guillain-Barre syndrome (GBS) and birth defects (17-19). Zika virus can infect testes and is detected in semen, leading to sexual transmission (20-23). This has led to warnings to pregnant women to be mindful of insect repellant use and to limit travel to epidemic areas. Overall, this seeming increase in disease severity and rapid spread has led to increasing alarm across the globe.

[0005] The major mosquito vector for Zika virus is the *Aedes* species (*Ae. aegypti* and *Ae. albopictus*), which most likely originated in Africa and is now endemic in tropical and subtropical locations (31). This presents a significant public health risk that should be addressed. Although there are many efforts to develop Zika virus specific vaccines, there is currently no available commercial vaccine.

[0006] West Nile virus (WNV) is a single-stranded positive-sense RNA virus in the genus Flavivirus, which normally circulates in a bird-mosquito transmission cycle and is a common human mosquito-borne flaviviral infection in North America and other regions in the world (53-55). WNV can also infect horses, and other non-avian vertebrate hosts (56). Despite substantial efforts, effective FDA-approved preventive or therapeutic measures are not yet available (53,56,57).

[0007] Culex mosquito spp., now endemic in tropical and subtropical regions as well as more temperate areas, are the major vectors for WNV worldwide (57). However, the virus also has been isolated from *Aedes aegypti* mosquitoes, which is present in tropical and subtropical locations as well (58,59) and are a potential threat for transmission of WNV to humans (60). Although the vector competence of WNV in *Ae. aegypti* is lower than that of *Culex* spp., multiple factors can affect vector distribution, including climate change, and this may influence the vectorial capacity of *Aedes* mosquitoes for WNV in the future (61,62). Moreover, in laboratory studies, *Ae. aegypti* readily feed on mice and a well-annotated whole genome sequence is available (63).

[0008] When mosquitoes take a blood meal, they inoculate saliva into the skin (64). Mosquito saliva contains molecules which modulate various host responses, including coagulation, platelet aggregation, thrombin activation, vasodilation, and other mammalian host pathways (65,66).

[0009] Mosquitoes inject numerous salivary proteins into the skin of a host during blood feeding, and these molecules are capable of modulating various host responses (65,66). Indeed, mosquito saliva enhances transmission and pathogenicity of specific arboviruses (31,75). Although mosquito saliva can increase arboviral infectivity, only a limited number of specific salivary proteins have been characterized that influence these processes. The biogenic amine-binding D7 protein partially inhibits dengue infection, while saliva serine protease CLIPA3 enhances dissemination of dengue virus into the mammalian host (25,67). In addition, salivary factor LTRIN from A. aegypti facilitates the transmission of Zika virus by inhibiting NFkB signaling during infection (68). Despite these efforts, much remains to be discovered about how specific salivary factors facilitate mosquito-borne virus infection, and whether targeting these proteins can prevent or delay infection.

[0010] Components of saliva enhance the pathogenicity and transmission of arboviruses including WNV, dengue, Zika, and Semliki Forest viruses, suggesting that certain salivary proteins are important for influencing flavivirus infectivity during transmission from vector to host (25,31, 32,67,68). The expression of AgBR1 in the salivary glands is up-regulated after blood feeding and AgBR1 belongs to a family of proteins that have lost chitinolytic activity (41,70), however the function of this protein in the vertebrate host remains unclear. To determine whether this effect extends beyond Zika virus to another flavivirus, the influence of AgBR1 antibodies against *Ae. aegypti*-borne WNV infection in mice was examined.

[0011] Saliva from arthropod vectors, such as ticks, sand flies and mosquitoes, is capable of enhancing transmission and pathogenicity of important human pathogens such as arboviruses and *Leishmania* (24-31). A variety of salivary proteins have been discovered. See, e.g., Int. Pat. Appl. Pub. WO 2011/1104684 and (24-26), incorporated by reference herein in its entirety.

SUMMARY OF THE INVENTION

[0012] As specified in the Background Section, there is a great need in the art to develop effective vaccines and treatments for mosquito-borne viruses such as, e.g., flavivi-

ruses and alphaviruses. The present invention addresses this and other needs by providing compositions and methods disclosed herein.

[0013] In one aspect, the invention provides a composition comprising one or more polypeptides, wherein said one or more polypeptides are selected from the group consisting of LOC5573204 bacteria-responsive protein 1 (AgBR1), LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

[0014] In another aspect, the invention provides a composition comprising a nucleic acid molecule encoding one or more polypeptides, wherein said one or more polypeptides are selected from the group consisting of LOC5573204 (AgBR1), LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

[0015] In a further aspect, the invention provides a composition comprising an antibody which recognizes a polypeptide, wherein said polypeptide is selected from the group consisting of LOC5573204 (AgBR1), LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

[0016] In yet another aspect, the invention provides a composition comprising a molecule which inhibits a function of a mosquito salivary polypeptide or inhibits the interaction between a mosquito salivary polypeptide and a host cell or inhibits the interaction between a mosquito salivary polypeptide and a mosquito-borne infectious agent, wherein said mosquito salivary polypeptide is selected from the group consisting of LOC5573204 (AgBR1), LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287. LOC5567958. LOC5568702, LOC110675548, and fragments, derivatives or variants thereof. In one embodiment, the mosquito-borne infectious agent is a mosquito-borne virus (e.g., a flavivirus [such as, e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, or yellow fever virus], or an alphavirus [such as, e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus]).

[0017] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5573204 bacteria-responsive protein 1 (AgBR1) or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide comprises the sequence SEQ ID NO: 1. In one specific embodiment, the polypeptide is a fragment of LOC5573204 (e.g., the polypeptide fragment of LOC5573204 comprising the sequence selected from SEQ ID NOS: 6-13).

[0018] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5578630 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5578630 comprises the sequence SEQ ID NO: 2. In one specific embodiment, the polypeptide LOC5578630 consists of the sequence SEQ ID NO: 2. In one specific embodiment, the polypeptide LOC5578630 consists of the sequence SEQ ID NO: 2. In one specific embodiment, the polypeptide LOC5578630 consists of the sequence SEQ ID NO: 2. In one specific embodiment, the polypeptide is a fragment of LOC5578630 (e.g., the polypeptide fragment of LOC5578630 comprising the sequence selected from SEQ ID NOS: 14-21).

[0019] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5578631 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5578631 comprises the sequence SEQ ID NO: 3. In one specific embodiment, the polypeptide LOC5578631 consists of the sequence SEQ ID NO: 3. In one specific embodiment, the polypeptide LOC5578631 consists of the sequence SEQ ID NO: 3. In one specific embodiment, the polypeptide LOC5578631 consists of the sequence SEQ ID NO: 3. In one specific embodiment, the polypeptide is a fragment of LOC5578631 (e.g., the polypeptide fragment of LOC5578631 comprising the sequence selected from SEQ ID NOS: 22-29).

[0020] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5567956 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5567956 comprises the sequence SEQ ID NO: 4. In one specific embodiment, the polypeptide LOC5567956 consists of the sequence SEQ ID NO: 4. In one specific embodiment, the polypeptide LOC5567956 (e.g., the polypeptide fragment of LOC5567956 comprising the sequence selected from SEQ ID NOS: 30-36).

[0021] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5580038 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5580038 comprises the sequence SEQ ID NO: 5. In one specific embodiment, the polypeptide LOC5580038 consists of the sequence SEQ ID NO: 5. In one specific embodiment, the polypeptide LOC5580038 (e.g., the polypeptide fragment of LOC5580038 comprising the sequence selected from SEQ ID NOS: 37-42).

[0022] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5566287 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5566287 comprises the sequence SEQ ID NO: 43. In one specific embodiment, the polypeptide LOC5566287 consists of the sequence SEQ ID NO: 43. In one specific embodiment, the polypeptide LOC5566287 consists of the sequence SEQ ID NO: 43. In one specific embodiment, the polypeptide LOC5566287 consists of the sequence SEQ ID NO: 43. In one specific embodiment, the polypeptide is a fragment of LOC5566287 (e.g., the polypeptide fragment of LOC5566287 comprising the sequence selected from SEQ ID NOS: 47-59).

[0023] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5567958 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC5567958 comprises the sequence SEQ ID NO: 44. In one specific embodiment, the polypeptide LOC5567958 consists of the sequence SEQ ID NO: 44. In one specific embodiment, the polypeptide LOC5567958 (e.g., the polypeptide fragment of LOC5567958 comprising the sequence selected from SEQ ID NOS: 60-70).

[0024] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC5568702 or a fragment, derivatives or variant thereof. In one specific embodiment, the polypeptide LOC5568702 comprises the sequence SEQ ID NO: 45. In one specific embodiment, the polypeptide LOC5568702 consists of the sequence SEQ ID NO: 45. In one specific embodiment, the polypeptide LOC5568702 (e.g., the polypeptide fragment of LOC5568702 comprising the sequence selected from SEQ ID NOS: 71-85).

[0025] In one embodiment of any of the above compositions of the invention, the polypeptide is LOC110675548 or a fragment, derivative or variant thereof. In one specific embodiment, the polypeptide LOC110675548 comprises the

sequence SEQ ID NO: 46. In one specific embodiment, the polypeptide LOC110675548 consists of the sequence SEQ ID NO: 44. In one specific embodiment, the polypeptide is a fragment of LOC110675548 (e.g., the polypeptide fragment of LOC110675548 comprising the sequence selected from SEQ ID NOS: 86-99).

[0026] In one embodiment of any of the above compositions of the invention, the composition further comprises a carrier or excipient.

[0027] In one embodiment of any of the above compositions of the invention, the composition further comprises an adjuvant.

[0028] In one embodiment of any of the above compositions of the invention, the composition comprises at least two different polypeptides.

[0029] In another aspect, the invention provides a method of preventing or treating a disease in a subject in need thereof, wherein the disease is associated with a mosquitoborne infectious agent, said method comprising administering to said subject an effective amount of any of the compositions of the invention. In one embodiment, the mosquito is *Aedes aegypti*. In one embodiment, the mosquito-borne infectious agent is a mosquito-borne virus (e.g., a flavivirus [such as, e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, or yellow fever virus], or an alphavirus [such as, e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus]). In one embodiment, the subject is human.

[0030] These and other aspects of the present invention will be apparent to those of ordinary skill in the art in the following description, drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIGS. **1**A-**1**B show the reactivity if serum of mice bitten by *A. aegypti* mosquitoes against mosquito salivary gland extract (SGE). FIG. **1**A and FIG. **1**B show that ELISA (A) and Western blot (B) analysis of SGE were performed by probing with naïve mouse serum and serum from mice bitten by mosquitoes.

[0032] FIGS. **2A-2**B show the reactivity if serum of human bitten by *A. aegypti* mosquitoes against mosquito salivary gland extract (SGE). FIGS. **2**A and **2**B show that ELISA (A) and Western blot (B) analysis of SGE were performed by probing with naïve human serum and serum from human bitten by mosquitoes.

[0033] FIGS. 3A-3C show a yeast surface display (YSD) approach to identify mosquito antigenic proteins in mice bitten by *Aedes aegypti*. EBY-100 yeast cells, transformed with an *Ae. aegypti* salivary gland cDNA library, were induced overnight before magnetic sorting. In FIG. 3A, after each magnetic sort, binding of transformed yeast cells using IgG from mice bitten by mosquitoes (red) and IgG derived from normal mouse serum (blue) was analyzed using flow cytometry (FACS). In FIG. 3B, the percentages of IgG-binding yeast cells were determined by FACS analysis as shown. In FIG. 3C, antigenic *A. aegypti* salivary proteins were identified by a YSD library using serum from mice bitten by *A. aegypti*.

[0034] FIGS. **4**A-**4**C show a yeast surface display (YSD) approach to identify mosquito antigenic proteins in humans bitten by *Aedes aegypti*. EBY-100 yeast cells, transformed with an *Ae. aegypti* salivary gland cDNA library, were induced overnight before magnetic sorting. In FIG. **4**A, after each magnetic sort, binding of transformed yeast cells using

IgG from humans bitten by mosquitoes (red) and IgG derived from normal human serum (blue) was analyzed using flow cytometry (FACS). In FIG. 4B, the percentages of IgG-binding yeast cells were determined by FACS analysis as shown. In FIG. 4C, antigenic *A. aegypti* salivary proteins were identified by a YSD library using serum from human bitten by *A. aegypti*.

[0035] FIGS. 5A-5D show purification of nine identified proteins and specificity of rabbit serum against them. Identified proteins produced in Drosophila S2 cells and purified using the TALON resin. FIG. 5A is an SDS-PAGE gel stained with Coomassie Brilliant Blue, of recombinant proteins SP (LOC5578630), NeSt1 (LOC5578631), D7Bclu (LOC5567956), AILP (LOC5580038), AgBR1 FibRP (LOC5573204), (LOC5566287), AnLP (LOC110675548), Aada2 (LOC5567958) and Lipase (LOC5568702) (0.25 µg protein). FIG. 5B is an immunoblot showing that anti-His antibody is able to recognize proteins. In FIG. 5C, recombinant AgBR1 (0.25 µg protein) was run on SDS-PAGE and stained with Coomassie Brilliant Blue. FIG. 5D shows detection of AgBR1 protein using an anti-His antibody. Data are representative of two independent experiments.

[0036] FIGS. **6**A-**6**I show titration curves for the sera of mice exposed to each of the antigenic proteins listed in FIGS. **2** and **3**, i.e. SP, SSP, D7Bclu, AILP, AgBR1, FibRP, Aada2, Lipase, and AnLP by using ELISA. As a control, a titration curve for naïve serum is also shown in FIG. **6**J.

[0037] FIGS. 7A-7E show that a mixture of antiserum against each antigenic protein protects mice from mosquitoborne Zika virus infection. FIG. 7A shows an experimental murine model of Zika virus transmission. A mouse is treated with an antibody (e.g., to a mosquito salivary protein) the day before exposure to the Zika virus by a bite from an infected Ae. aegypti mosquito. Viremia and survival are checked at days 1, 3, 5, 7, and 9. FIG. 7B shows that the Zika virus level in salivary glands was the same in the CTL and Ab-mix groups by using real-time PCR (RT-PCR). Control group of mice (CTL) were treated with naïve rabbit serum, and the Ab-mix groups of mice (Ab-mix) were treated with the mixture of antiserum against SP, SSP, D7Bclu, AILP, AgBR1, FibRP, Aada2, Lipase, and AnLP. Error bars represent mean±SEM. Each data point represents one aliquot of tested salivary gland extract. FIGS. 7C-7E show that antibody treatment suppressed Zika virus replication in mouse blood. Viremia and survival were checked on days 1, 3, 5, 7, and 9. Viremia was lower, and survival was greater, in mice treated with the antibody mixture. Antibody treatment suppressed Zika virus replication in the blood.

[0038] FIGS. **8**A-**8**B show no effect of the mixture of antisera against needle-injected Zika virus infection. Mice were administrated with the mixture of antisera one day before subcutaneous Zika virus injection. In FIG. **8**A, blood from mice was collected every other day for 9 days, and analyzed for Zika virus infection by qRT-PCR. Zika virus RNA levels were normalized to mouse β actin RNA levels. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using Wilcoxon-Mann-Whitney test. In FIG. **8**B, mice were monitored daily for survival after Zika virus infection. Survival was assessed using a Gehan-Wilcoxon test.

[0039] FIG. 9 shows the effect of AgBR1 in vitro, and that recombinant AgBR1 stimulates IL-6 but not TNF- α or IL-1 β expression levels in vitro. Splenocytes were isolated from

mice and treated with AgBR1 (5 μ g/ml), D7Bclu (5 μ g/ml) or BSA (5 μ g/ml). Cells were harvested 6 hours or 24 hours after treatment, and the expression levels of 116, Tnfa and II1b were examined by qRT-PCR. Data were derived from two independent experiments and were analyzed by two-way ANOVA. n=5 or 6 biologically independent samples pooled from two separate experiments. Data are presented as mean±s.e.m.

[0040] FIGS. 10A-10C show the effect of AgBR1 in vivo, with AgBR1 enhancing Zika virus replication and diseases. In FIG. 10A, AgBR1 protein (5.1 µM, 10 µg in 40 µl) was co-inoculated with Zika virus, and blood was collected every other day for 9 days from mice. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using the Wilcoxon-Mann-Whitney test. (Zika virus: n=12, Zika virus+ AgBR1: n=11 pooled from two separate experiments.) In FIG. 10B, injected mice were monitored for survival after infection. Survival and median survival time (MST) was assessed using the Gehan-Wilcoxon test. Survival data shown are pooled from two independent experiments (Zika virus: n=12, Zika virus+AgBR1: n=11). FIG. 10C is shows that the concentration of AgBR1 in mosquito saliva can be estimated to be between 1.6-8.2 µM.

[0041] FIGS. 11A-11D show that AgBR1 antiserum protects mice from mosquito-borne Zika virus infection. FIG. 11A shows workflow of passive immunization and mosquito-borne Zika virus infection. FIG. 11B shows Zika virus RNA levels in the salivary glands at 10 days after intrathoracic injection. n=34 (Control) or 38 (AgBR1 antiserum) biologically independent samples pooled from five separate experiments. Data represent mean±s.e.m. FIG. 11C shows Zika virus RNA levels in blood in mice. Data represent mean±s.e.m. Each data point represents one mouse. Normalized viral RNA levels were analyzed using two-sided Wilcoxon-Mann-Whitney test. n=17 (Control) or 19 (AgBR1 antiserum) biologically independent samples pooled from five separate experiments. In FIG. 11D, survival and median survival time (MST) were assessed using the Gehan-Wilcoxon test. n=17 (Control) or 19 (AgBR1 antiserum) biologically independent samples pooled from five separate experiments. FIG. 11E shows that the partial protective effect of AgBR1 antibodies was specific for mosquito-borne, and not needle-injected, Zika virus infection in mice.

[0042] FIGS. **12**A-**12**B show no effect of AgBR1 antiserum against needle-injected Zika virus infection. Mice were administrated with AgBR1 antiserum one day before subcutaneous Zika virus injection. In FIG. **12**A, blood from mice was collected every other day for 9 days and analyzed for Zika virus infection by qRT-PCR. Zika virus RNA levels were normalized to mouse β actin RNA levels. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using Wilcoxon-Mann-Whitney test. In FIG. **12**B, mice were monitored daily for survival after Zika virus infection. Survival was assessed using a Gehan-Wilcoxon test.

[0043] FIGS. **13**A-**13**D show the protective effects of different antibodies on mice infected with Zika virus. Mice were administrated with antiserum against SP or D7Bclu one day before Zika virus-infected mosquito feeding. Immunized mice were monitored for survival for 35 days after infected mosquito-feeding. Blood was collected every other day for 9 days from mice fed on by Zika virus-infected

mosquitoes and analyzed for Zika virus infection by qRT-PCR. Zika virus RNA levels were normalized to mouse β -actin RNA levels. Mice immunized with naïve serum served as controls. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using Wilcoxon-Mann-Whitney test. In FIGS. **13**B and **13**D, mice were monitored for survival for 35 days after infected mosquito-feeding. Data shown are pooled from at least two independent experiments. Survival was assessed by a Gehan-Wilcoxon test. The results show that antisera against abundant proteins recognized in the yeast display assay were not protective against mosquitoborne Zika virus infection.

[0044] FIGS. 14A-14H show the suppression of neutrophil recruitment at the mosquito bite site in mice administered AgBR1 antiserum. Mice were inoculated with AgBR1 antiserum or control serum prior to Zika virus-infected mosquito feeding. Twenty-four hours post feeding, the bitten ears together with control contralateral non-bitten ears were harvested for tissue sectioning. FIG. 14A shows hematoxylin and eosin staining of the ears of mice 24 hours postfeeding. Scale bar, 200 µm (left panels) and 50 µm (right panels). Data are representative of two independent experiments with similar results. FIG. 14B shows the histological findings were scored in terms of inflammation, neutrophil infiltration, mononuclear cell infiltration and edema. In FIG. 14C, the total histology scores of the bite sites were compared between the AgBR1 antiserum and control group. Data are presented as means±SEM. Statistical analysis was performed using two-sided Wilcoxon-Mann-Whitney test. n=5 (Control) or 6 (AgBR1 antiserum) biologically independent samples pooled from two separate experiments. FIG. 14D shows Imaging Mass Cytometry (IMC) labeling of ears of mice 24 hours post Zika virus-infected mosquito feeding. Sections of the ear skins were labeled with antibodies against CD3 (170Er), CD11b (149Sm), MHCII (174Yb), Ly6G (141Pr) or DNA (193Ir). Scale bar, 100 µm. In FIGS. 14E and 14F, both bitten and resting ears were harvested and enzymatically digested to obtain a single-cell suspension. The population of CD45⁺CD11b⁺Ly6G⁺ (neutrophils) was analyzed using flow cytometry. Data are representative of two independent experiments with similar results. FIG. 14F shows the percent of CD45+CD11b+Ly6G+ (neutrophils) cells in CD45⁺ leukocyte cells at 24 h after Zika virus-infected mosquito feeding. Each dot represents one mouse. Significance was calculated using a two-way ANOVA test for multiple comparisons. Data are presented as mean±s.e.m. Each dot represents one mouse (n=7; resting skin of mice treated with control serum, n=9; bitten skin of mice treated with control serum n=11; resting skin of mice treated with AgBR1 antiserum, n=11 biologically independent samples pooled from two separate experiments; bitten skin of mice treated with AgBR1 antiserum). The data in FIGS. 14G-14I show that neither the D7Bclu nor SP antisera altered the viremia or protected mice from lethal mosquitoborne Zika virus infection.

[0045] FIGS. 15A-15D show the host responses in mice treated with AgBR1 antiserum at the mosquito bite site. At 24 hours post feeding, the sites bitten by Zika virus-infected mosquitoes were collected, and total RNA was extracted for RNA-seq. In FIG. 15A, the top panel shows 536 genes (54.4%) within 986 differentially expressed genes (P<0.05) were upregulated at the bitten sites of mice administered control serum. The bottom left panel shows that among these

536 genes, 78 genes were significantly upregulated at the bitten site of mice administered control serum compared with mice injected with AgBR1 antiserum. The bottom right panel shows that among the 536 genes, 272 genes were differentially upregulated in bitten sites of mice administered AgBR1 antiserum compared with the resting sites of mice inoculated with control serum. In FIG. 15B, GSEA of inflammatory responses (Hallmark) and cytokine-cytokine receptor interaction (KEGG) pathway enriched at bite sites of mice compared with resting sites in control mice. In FIG. 15C, the top panel is a Venn diagram depicting the overlap of genes differentially expressed across the conditions. The bottom panel is a heat map of hierarchical clustering performed on 18 upregulated genes across the conditions (Fold change >1.5, P<0.05). In FIGS. 15A-15C, the parameters are as follows: Control-resting skin: n=2, Control-bitten skin: n=2, AgBR1 antiserum-bitten skin: n=2 biologically independent samples. Normalized read counts were statistically modeled using Partek Flow's Gene Specific Analysis (GSA) approach. FIG. 15D shows a QRT-PCR based analysis of Illb and Il6 expression, which is normalized to mouse β actin RNA levels. Each dot represents one bitten or control site. Data are presented as mean±s.e.m. Significance was determined by two-way ANOVA test. (Control-resting skin: n=13, Control-bitten skin: n=13, AgBR1 antiserum-resting skin: n=13, AgBR1 antiserum-bitten skin: n=13 biologically independent samples pooled from two separate experiments.)

[0046] FIG. **15**E shows that the direct inoculation of AgBR1 into the skin significantly induces II1b and II6 expression.

[0047] FIGS. 16A-16C show the effect of active immunization with AgBR1 on mosquito-borne Zika infection in mice. Active immunization with AgBR1 reduces mosquitoborne Zika infection in mice. In FIG. 16A, AG129 mice were immunized with AgBR1 or OVA in Freund's adjuvant. Two weeks after final boost, the sera from immunized mice were examined for specific antibodies with ELISA. Sera from AgBR1-immunized mice recognized AgBR1 (right panel), but not ovalbumin, OVA (left panel). In FIG. 16B, blood was collected every other day for 9 days from immunized mice fed on by Zika virus-infected mosquitoes and analyzed for Zika virus infection by qRT-PCR. Zika virus RNA levels in mice were normalized to mouse β actin RNA levels. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were compared using Wilcoxon-Mann-Whitney test. In FIG. 16C, mice were monitored for survival for 30 days after infected mosquito feeding. (Left panel) Survival and median survival time (MST) were assessed by a Gehan-Wilcoxon test (n=18/ group).

[0048] FIGS. **17**A-**17**D show the protective effects of antibodies against mosquito salivary proteins on mice infected with West Nile virus. Anti-AgBR1 antiserum protected mice against West Nile virus transmission. Mice were administrated with anti-AgBR1 serum one day before WNV-infected mosquito feeding. Immunized mice were monitored for survival.

[0049] FIG. **17**A shows a schematic of the experiment, whose results are shown in FIGS. **17**B-**17**D. In these experiments, mice were administrated AgBR1 antiserum one day before WNV-infected mosquito feeding, and immunized mice were monitored for survival for 10 days after infected mosquito-feeding. FIG. **17**B shows the results of an experi-

ment in which the virus levels in blood of mice fed by an infected mosquito was assayed. In this experiment, blood was collected every other day for 7 days from mice fed on by WNV-infected mosquitoes and analyzed by qRT-PCR. WNV RNA levels were normalized to mouse β actin RNA levels. Mice immunized with naïve serum served as controls. In FIG. 17B, the error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using one-tailed Wilcoxon-Mann-Whitney test (n=13/each group biologically independent samples pooled from three separate experiments). FIG. 17C shows the weight of mice fed by an infected mosquito in an experiment in which mice were monitored daily after WNV infection. Error bars represent mean±SEM. Weight at each time point were compared using one-tailed Wilcoxon-Mann-Whitney test (n=13/each group biologically independent samples pooled from three separate experiments). FIG. 17D shows the results of an experiment in which survival was assessed by a Gehan-Wilcoxon test (n=13/each group biologically independent samples pooled from three separate experiments).

[0050] FIGS. 17E and 17F show that AgBR1 antiserum modulates host responses at the WNV-infected mosquito bite site. The expression levels of several cytokines were analyzed by qRT-PCR at (a) 6 hours (FIG. 17E) or 24 hours (FIG. 17F) after bites of infected mosquitoes, which is normalized to mouse β actin RNA levels. Error bars represent mean±SEM. Each dot represents one bitten or control site. Significance was determined by two-way ANOVA test (6 hours; n=19/control group, n=15/AgBR1 antiserum group, 24 hours; n=15/control group, n=17/AgBR1 antiserum group biologically independent samples pooled from two separate experiments). FIGS. 17G-17I show the results of identical passive immunization experiments using SP antiserum. SP antiserum did not alter viremia, weight loss or survival time after lethal mosquito-borne WNV infection. FIG. 17J is an immunoblot of Ae. aegypti and Culex pipiens salivary glands probed with rabbit AgBR1 antiserum, the immunoblot showing that AgBR1 antiserum also specifically recognizes a protein in *Culex pipiens* salivary glands. [0051] FIGS. 18A-18C show the effects of doublestranded RNAs (dsRNA) against AgBR1 on the levels of AgBR1 and Zika virus in mice. Mosquitoes treated with 200 ng AgBR1- or GFP-dsRNA were used to isolate total RNA at day 13 post dsRNA injection. In FIG. 18A, mRNA levels were determined by qRT-PCR and normalized to mosquito Rp49 RNA levels. In FIG. 18B, AgBR1-dsRNA- or GFPdsRNA-treated mosquitoes were collected 13 days after gene silencing. The SGE was run by SDS-PAGE and probed with rabbit AgBR1 antisera. In FIG. 18C, silencing AgBR1 does not alter ZIKV infection at day 10 after virus injection. Viral burden was examined at day 10 after infection by qRT-PCR and normalized to mosquito Rp49 RNA. The results shown are pooled from three independent experiments. Significance was calculated using the non-parametric Mann-Whitney test.

The primer sequences of dsRNA against AgBR1 are:

(SEQ ID NO: 126) F-taatacgactcactatagggGATGGACAGATGTCTCTTCGTG;

(SEQ ID NO: 127)

R-taatacgactcactatagggCCAAATCCAATCCATCGAAA.

The primer sequences of dsRNA against GFP are:

(SEQ ID NO: 128) F-TAATACGACTCACTATAGGGGTGAGCAAGGGCGAGGAG;

(SEQ ID NO: 129)

R-TAATACGACTCACTATAGGGCATGATATAGACGTTGTGGCTGTT.

In FIG. **18**D, a partial knock-down of AgBR1 impacts neutrophil recruitment in the skin. The percent of CD45⁺ CD11b⁺Ly6G⁺ (neutrophils) cells in CD45⁺ leukocyte cells at 24 h after dsRNA-treated and Zika virus-infected mosquito feeding. Each dot represents one mouse. Significance was calculated using a two-way ANOVA test for multiple comparisons.

[0052] FIG. **19** shows IL1 β ex vivo expression in purified neutrophils from bone marrow of naïve mice after treatment with antigenic proteins. NeSt1 protein activates neutrophils to express IL1 β ex vivo. N=8-16 technical replicates from 4 mice for each protein.

[0053] FIG. 20 shows CXCL2 ex vivo expression in purified neutrophils from bone marrow of naïve mice after treatment with antigenic proteins. NeSt1 protein activates neutrophils to express CXCL2 ex vivo. N=8-16 technical replicates from 4 mice for each protein.

[0054] FIG. 21 shows CCL2 ex vivo expression in purified neutrophils from bone marrow of naïve mice after treatment with antigenic proteins. NeSt1 protein activates neutrophils to express CCL2 ex vivo. N=8-16 technical replicates from 4 mice for each protein.

[0055] FIG. 22 shows in vitro expression of IL1 β in RAW macrophage cells after treatment with antigenic proteins. NeSt1 protein does not activate RAW macrophage cells to express IL1 β . N=8 technical replicates and 2 biological replicates.

[0056] FIG. **23** shows in vitro expression of CXCL2 in RAW macrophage cells after treatment with antigenic proteins. NeSt1 protein does not activate RAW macrophage cells to express CXCL2. N=8 technical replicates and 2 biological replicates.

[0057] FIG. **24** shows similar Zika virus levels by qRT-PCR in mosquitoes fed on naïve AG129 mice and similar numbers (~4) of infected mosquitoes fed on each mouse. Mosquito ZIKV burden is similar in insects fed on mice passively immunized with pre-immune sera and NeSt1 antisera.

[0058] FIG. **25** shows lower Zika virus level by qRT-PCR in AG129 treated with rabbit sera against mosquito protein NeSt1 (LOC5578631) at day 1 after feeding by ZIKV infected mosquitoes. Zika virus infected mosquitoes were allowed to feed on naïve AG129 mice and mice were bled every other day for 9 days. Viremia was measured by isolating RNA from serum and analyzing by qRT-PCR. N=12 mice/group in 3 independent experiments. Significance calculated by one-way ANOVA with post hoc Tukey test for multiple comparisons. Passive immunization against NeSt1 protein protects against early replication of ZIKV.

[0059] FIG. **26** shows serum against NeSt1 (LOC5578631) protects mice from severe Zika virus pathogenesis. Mice treated with NeSt1 antiserum and naïve rabbit serum were fed on by Zika virus infected mosquito and tracked for severe morbidity daily. N=12 mice/group in 3 independent experiments. Significance was calculated using log-rank test. Passive immunization against NeSt1 protein protects against pathogenesis of ZIKV.

[0060] FIG. **27** shows flow gating for experiments in FIGS. **28-31** in which mice treated with naïve rabbit serum or NeSt1 antiserum before feeding uninfected mosquitoes on ears and then isolating cells and analyzing by flow cytometry. MHCII⁺CD45⁺ cells were gated, Ly6G⁺ (neutrophils) were gated from this population. From MHCII⁺CD45⁺ Ly6G⁻ cells, CD207⁺ (langerhan cells) were gated. From MHCII⁺CD45⁺Ly6G⁻ CD207⁻ cells, CD11c⁺ (dendritic cells) and CD11c⁻ (macrophages) were gated.

[0061] FIG. **28** shows similar numbers of MHCII⁺CD45⁺ Ly6G⁻ CD207⁺ Langerhan cells in naïve and bitten ears in mice treated with naïve or NeSt1 antiserum. No significant differences between groups. N=8/group in two independent experiments. Passive immunization against NeSt1 does not affect the percentage of Langerhan cells at the bite site.

[0062] FIG. **29** shows more MHCII⁺CD45⁺Ly6G⁺ neutrophils in bitten compared to naïve ears in mice treated with naïve or NeSt1 antiserum. No significant differences between groups. N=8/group in two independent experiments. Passive immunization against NeSt1 does not affect the infiltration or expansion of neutrophils at the local bite site.

[0063] FIG. **30** shows higher percentage of MHCII⁺ CD45⁺Ly6G⁻CD207⁻CD11c⁻ macrophages in bitten compared to naïve ears in mice treated with naïve but not NeSt1 antiserum. Significance calculated with one-way ANOVA with post hoc Tukey test for multiple comparisons. N=8/ group in two independent experiments. Passive immunization against NeSt1 prevents the infiltration or expansion of macrophages at the local bite site.

[0064] FIG. **31** shows lower percentage of MHCII⁺CD45⁺ Ly6G⁻ CD207⁻CD11c⁺ dendritic cells in bitten compared to naïve ears in mice treated with naïve but not NeSt1 antiserum. Significance calculated with one-way ANOVA with post hoc Tukey test for multiple comparisons. N=8/group in two independent experiments. Passive immunization against NeSt1 decreases the percentage of dendritic cells at the local bite site.

[0065] FIGS. 32A-32C show that blocking NeSt1 reduces induction of IL-1ß and CXCL2 expression in vivo. Fiveweek-old C57BL/6 mice were passively immunized with preimmune rabbit sera or rabbit sera against NeSt1 protein. After 24 h, mosquitoes were allowed to bite the right ear (bitten), and the left ear was left alone (naive). cDNA was generated, and qPCR was used to measure IL-1ß (FIG. 32A), CXCL2 (FIG. 32B), or CCL2 (FIG. 32C) expression. The data were normalized to mouse β -actin with the $\Delta\Delta C_{\tau}$ method and are presented as percentages of the average $\Delta\Delta C_T$ value of naive ear tissue (n=8 to 16 technical replicates from four mice in at least two independent biological replicates for each protein). Error bars represent the SEM. Significance was calculated by two-way ANOVA with a post hoc Tukey test for multiple comparisons. FIG. 32A shows serum against NeSt1 (LOC5578631) significantly reduces IL1β expression at site of blood feeding by Aedes aegypti mosquito. FIG. 32B shows serum against NeSt1 (LOC5578631) significantly reduces CXCL2 expression at site of blood feeding by Aedes aegypti mosquito. FIG. 32C shows serum against NeSt1 (LOC5578631) does not significantly reduce CCL2 expression at site of blood feeding by Aedes aegypti mosquito.

DETAILED DESCRIPTION OF THE INVENTION

[0066] The present invention is based on an unexpected discovery by the present inventors that passive or active immunization against certain *Aedes aegypti* mosquito salivary gland proteins prevents and/or treats infection by flaviviruses such as Zika virus and West Nile virus.

[0067] As the global disease burden attributable to Zika virus continues to increase, new and creative strategies for vaccine design against this and other mosquito-borne viruses are needed. Although there are many efforts to develop Zika virus specific vaccines, there is currently no available commercial vaccine. The compositions and methods described herein utilize a new paradigm to develop a next-generation vaccine against Zika virus and other mosquito-borne viruses so as to address this important public health need. Human vaccines against infectious diseases are currently based upon components of specific pathogens, but the approach described herein targets arthropod vector proteins that affect pathogen transmission. The benefits of this novel approach include the possibility of developing vaccines that are effective for multiple viruses carried by the same arthropod vector and the shifting of selective evolutionary pressure away from the virus.

[0068] Without wishing to be bound by theory, it is hypothesized that salivary gland proteins from the mosquito vector, *Ae. aegypti*, are capable of enhancing virus infection of the mammalian host, and that viral transmission can be interrupted by mounting a robust immune response toward one or more of these proteins. The salivary gland is the last organ in the mosquito vector that viruses are in contact with before being inoculated into a host. Mosquito saliva is important for successful blood feeding.

[0069] The passive and active immunization approaches based on mosquito salivary gland proteins disclosed herein can be used alone or in conjunction with more conventional vaccines targeting viral components to increase their efficacy.

[0070] As disclosed in the Examples section, below, a yeast display screening conducted by the present inventors identified several Ae. aegypti antigenic salivary proteins, LOC5573204. LOC5578630. LOC5578631. i.e.. LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, and LOC110675548 (numbering according to the LOC nomenclature used in vectorbase and the NCBI database for the Aedes aegypti Liverpool strain reference genome sequence from the Aedes aegypti Genome Working Group, see https://www.vectorbase.org/). One of these antigenic proteins, LOC5573204 bacteria-responsive protein 1 (AgBR1), shows particular promise as a candidate for a vaccine development. Described herein is a study of the protective effects of blocking the mosquito AgBR1 protein or the mosquito NeSt1 protein in preventing severe mosquito-borne Zika virus infection in mice. Mammals such as mice and humans may be actively immunized against the AgBR1 and/or NeSt1 protein.

Definitions

[0071] It must also be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the context clearly dictates otherwise. For example, reference to a component is intended also to include composition of a plurality of

components. References to a composition containing "a" constituent is intended to include other constituents in addition to the one named. In other words, the terms "a," "an," and "the" do not denote a limitation of quantity, but rather denote the presence of "at least one" of the referenced item.

[0072] Ranges may be expressed herein as from "about" or "approximately" or "substantially" one particular value and/or to "about" or "approximately" or "substantially" another particular value. When such a range is expressed, other exemplary embodiments include from the one particular value and/or to the other particular value. Further, the term "about" means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within an acceptable standard deviation, per the practice in the art. Alternatively, "about" can mean a range of up to ±20%, preferably up to $\pm 10\%$, more preferably up to $\pm 5\%$, and more preferably still up to ±1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term "about" is implicit and in this context means within an acceptable error range for the particular value.

[0073] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "50 mm" is intended to mean "about 50 mm."

[0074] It is also to be understood that the mention of one or more method steps does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, it is also to be understood that the mention of one or more components in a composition does not preclude the presence of additional components than those expressly identified.

[0075] The materials described hereinafter as making up the various elements of the present invention are intended to be illustrative and not restrictive. Many suitable materials that would perform the same or a similar function as the materials described herein are intended to be embraced within the scope of the invention. Such other materials not described herein can include, but are not limited to, materials that are developed after the time of the development of the invention, for example. Any dimensions listed in the various drawings are for illustrative purposes only and are not intended to be limiting. Other dimensions and proportions are contemplated and intended to be included within the scope of the invention.

[0076] As used herein, the term "subject" or "patient" refers to mammals and includes, without limitation, human and veterinary animals as well as experimental animal models. In a preferred embodiment, the subject is human. [0077] The terms "treat" or "treatment" of a state, disorder or condition include: (1) preventing or delaying the appearance of at least one clinical or sub-clinical symptom of the state, disorder or condition developing in a subject that may be afflicted with or predisposed to the state, disorder or condition but does not yet experience or display clinical or

subclinical symptoms of the state, disorder or condition; or (2) inhibiting the state, disorder or condition, i.e., arresting, reducing or delaying the development of the disease or a relapse thereof (in case of maintenance treatment) or at least one clinical or sub-clinical symptom thereof; or (3) relieving the disease, i.e., causing regression of the state, disorder or condition or at least one of its clinical or sub-clinical symptoms. The benefit to a subject to be treated is either statistically significant or at least perceptible to the patient or to the physician.

[0078] As used herein, the term "prevent" encompasses any activity which reduces the burden of mortality or morbidity from disease. Prevention can occur at primary, secondary and tertiary prevention levels. While primary prevention avoids the development of a disease, secondary and tertiary levels of prevention encompass activities aimed at preventing the progression of a disease and the emergence of symptoms as well as reducing the negative impact of an already established disease by restoring function and reducing disease-related complications.

[0079] The term "therapeutic" as used herein means a treatment and/or prophylaxis. A therapeutic effect is obtained by suppression, diminution, remission, or eradication of a disease state.

[0080] As used herein the term "therapeutically effective" applied to dose or amount refers to that quantity of a compound or pharmaceutical composition that when administered to a subject for treating (e.g., preventing or ameliorating) a state, disorder or condition, is sufficient to effect such treatment. The "therapeutically effective amount" will vary depending on the compound administered as well as the disease and its severity and the age, weight, physical condition and responsiveness of the mammal to be treated.

[0081] The phrase "pharmaceutically acceptable", as used in connection with compositions of the invention, refers to molecular entities and other ingredients of such compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a mammal (e.g., a human). Preferably, as used herein, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in mammals, and more particularly in humans.

[0082] The terms "pharmaceutical carrier" or "pharmaceutically acceptable carrier" refer to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Alternatively, the pharmaceutical carrier can be a solid dosage form carrier, including but not limited to one or more of a binder (for compressed pills), a glidant, an encapsulating agent, a flavorant, and a colorant. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin.

[0083] The terms "derivative" and "analog" are used interchangeably and refer to a related modified form of a polypeptide, wherein at least one amino acid substitution, deletion, addition, or chemical modification has been made. The terms "functional derivative" and "functional analog" mean that such derivative/analog/variant retains substantially the same biological activity as the unmodified form, in vivo and/or in vitro. A term "variant" refers to polypeptide derivatives/analogs, wherein (i) one or more of the amino acid residues are substituted with a conserved or nonconserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, (ii) one in which there are one or more modified amino acid residues, e.g., residues that are modified by the attachment of substituent groups, (iii) one in which the polypeptide is an alternative splice variant of the polypeptide of the present invention, (iv) fragments of the polypeptides and/or (v) one in which the polypeptide is fused with another polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification (for example, His-tag) or for detection (for example, Sv5 epitope tag). The fragments include polypeptides generated via proteolytic cleavage (including multi-site proteolysis) of an original sequence. Variants may be post-translationally, or chemically modified. Such variants are deemed to be within the scope of those skilled in the art from the teaching herein.

[0084] The term "antibody," as used herein, refers to an immunoglobulin molecule which specifically binds with an antigen. An antibody can be an intact immunoglobulin derived from a natural source or from a recombinant source. Such antibody can comprise an immunoreactive portion of an intact immunoglobulin. The antibody may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab)2, as well as single chain antibodies and humanized antibodies (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, N.Y.; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).

[0085] The term "antigen" or "Ag" as used herein is defined as a molecule that provokes an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both. Any macromolecule, including virtually all proteins or peptides, can serve as an antigen. Furthermore, antigens can be derived from recombinant or genomic DNA. Any DNA which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an "antigen" as that term is used herein. Furthermore, an antigen need not be encoded solely by a full-length nucleotide sequence of a gene. Partial nucleotide sequences of more than one gene may be used, for example these nucleotide sequences may be arranged in various combinations to elicit a desired immune response. Moreover, an antigen need not be encoded by a "gene" at all. An antigen can be generated synthesized or can be derived from a biological sample.

[0086] "Expression vector" refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cisacting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, ret-

roviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.

[0087] The terms "sequence identity" and "percent identity" are used interchangeably herein. For the purpose of this invention, it is defined here that in order to determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid for optimal alignment with a second amino or nucleic acid sequence). The amino acid or nucleotide residues at corresponding amino acid or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid or nucleotide residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=number of identical positions/total number of positions (i.e., overlapping positions)×100). Preferably, the two sequences are the same length.

[0088] Several different computer programs are available to determine the degree of identity between two sequences. For instance, a comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid or nucleic acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48): 444-453 (1970)) algorithm which has been incorporated into the GAP program in the Accelrys GCG software package (available at www.accelrys.com/products/gcg), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. These different parameters will yield slightly different results but the overall percentage identity of two sequences is not significantly altered when using different algorithms.

[0089] A sequence comparison may be carried out over the entire lengths of the two sequences being compared or over fragments of the two sequences. Typically, the comparison will be carried out over the full length of the two sequences being compared. However, sequence identity may be carried out over a region of, for example, twenty, fifty, one hundred or more contiguous amino acid residues.

[0090] Sequence identity can be readily calculated by known methods, including but not limited to, those described in Computational Molecular Biology, Lesk, A. N., ed., Oxford University Press, New York (1988), Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York (1991); and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988), the teachings of which are incorporated herein by reference. Preferred methods to determine the sequence identity are designed to give the largest match between the sequences tested. Methods to determine sequence identity are codified in publicly available computer programs which determine sequence identity between given sequences. Examples of such programs include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research, 12(1):387 (1984)), BLASTP, BLASTN and FASTA (Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S. et al., NCVI NLM NIH Bethesda, Md. 20894, Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990), the teachings of which are incorporated herein by reference). These programs optimally align sequences using default gap weights in order to produce the highest level of sequence identity between the given and reference sequences.

[0091] As used herein, the term "immune response" includes T-cell mediated and/or B-cell mediated immune responses. Exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity, and B cell responses, e.g., antibody production. In addition, the term "immune response" includes immune responses that are indirectly affected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages. Immune cells involved in the immune response include lymphocytes, such as B cells and T cells (CD4+, CD8+, Th1 and Th2 cells); antigen presenting cells (e.g., professional antigen presenting cells such as dendritic cells, macrophages, B lymphocytes, Langerhans cells, and non-professional antigen presenting cells such as keratinocytes, endothelial cells, astrocytes, fibroblasts, oligodendrocytes); natural killer cells; myeloid cells, such as macrophages, eosinophils, mast cells, basophils, and granulocytes.

[0092] "Isolated" means altered or removed from the natural state. For example, a nucleic acid or a peptide naturally present in a living animal is not "isolated," but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is "isolated." An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.

[0093] Throughout this disclosure, various aspects of the invention can be presented in a range format. The description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. This applies regardless of the breadth of the range.

[0094] In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, *Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (herein "Sambrook et al., 1989"); *DNA Cloning: A Practical Approach*, Volumes I and II (D. N. Glover ed. 1985); *Oligonucleotide Synthesis* (M. J. Gait ed. 1984); *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. (1985); *Transcription and Translation* (B. D. Hames & S. J. Higgins, eds. (1984); *Animal Cell Culture* (R. I. Freshney, ed. (1986); *Immobilized Cells and Enzymes* (IRL Press, (1986); B. Perbal, *A Practical Guide To Molecular Cloning* (1984); F. M. Ausubel et al. (eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc. (1994); among others.

[0095] The invention provides an immunological composition comprising a polypeptide or combination of polypeptides derived from at least one mosquito salivary protein associated with a mosquito-borne virus such as, e.g., a flavivirus (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) or an alphavirus (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus), useful in eliciting an immune response. The compositions comprising one or more polypeptide of the invention not only are useful as agents for immunoprotection but are also useful as agents for treatment of an ongoing disease or disorder associated with infection by mosquito-borne viruses such as, e.g., flaviviruses (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) and alphaviruses (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus) in a subject.

Compositions of the Invention

[0096] In one aspect, the present invention provides a polypeptide or a combination of polypeptides, or a polynucleotide or a combination of polynucleotides encoding such polypeptides, wherein such polypeptides comprise or are derived from a mosquito salivary protein and are useful in inducing an immune response which prevents and/or treats an infection by a mosquito-borne virus such as, e.g., a flavivirus (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) or an alphavirus (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong 'nyong virus, Semliki Forest virus).

[0097] In one embodiment, the invention provides a vaccine composition comprising at least one polypeptide selected from the group consisting of LOC5573204 (AgBR1), LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof. In some embodiments, such fragments, derivatives or variants are capable of inducing an immune response which prevents and/or treats an infection by a mosquitoborne virus such as, e.g., a flavivirus (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) or an alphavirus (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus). In some embodiments, polypeptide comprises a sequence of any one of SEQ ID NOS: 100-125, or a sequence of a contiguous 10 amino acid portion of any one of SEQ ID NOS: 100-125. In some embodiments, the polypeptide LOC5573204 comprises the sequence SEQ ID NO: 1. In some embodiments, the polypeptide LOC5578630 comprises the sequence SEQ ID NO: 2. In some embodiments, the polypeptide LOC5578631 comprises the sequence SEQ ID NO: 3. In some embodiments, the polypeptide LOC5567956 comprises the sequence SEQ ID NO: 4. In some embodiments, the polypeptide LOC5580038 comprises the sequence SEQ ID NO: 5. In some embodiments, the polypeptide LOC5566287 comprises the sequence SEQ ID NO: 43. In some embodiments, the polypeptide LOC5567958 comprises the sequence SEQ ID NO: 44. In some embodiments, the polypeptide LOC5568702 comprises the sequence SEQ ID NO: 45. In some embodiments, the polypeptide LOC110675548 comprises the sequence SEQ ID NO: 46. In some embodiments, the polypeptide LOC5573204 consists of the sequence SEQ ID NO: 1. In some embodiments, the polypeptide LOC5578630 consists of the sequence SEQ ID NO: 2. In some embodiments, the polypeptide LOC5578631 consists of the sequence SEQ ID NO: 3. In some embodiments, the polypeptide LOC5567956 consists of the sequence SEQ ID NO: 4. In some embodiments, the polypeptide LOC5580038 consists of the sequence SEQ ID NO: 5. In some embodiments, the polypeptide LOC5566287 consists of the sequence SEQ ID NO: 43. In some embodiments, the polypeptide LOC5567958 consists of the sequence SEQ ID NO: 44. In some embodiments, the polypeptide LOC5568702 consists of the sequence SEQ ID NO: 45. In some embodiments, the polypeptide LOC110675548 consists of the sequence SEQ ID NO: 46. In some embodiments, the fragments of LOC5573204 comprise the sequence of any one of SEQ ID NOS: 6-13. In some embodiments, the fragments of LOC5578630 comprise the sequence of any one of SEQ ID NOS: 14-21. In some embodiments, the fragments of LOC5578631 comprise the sequence of any one of SEQ ID NOS: 22-29. In some embodiments, the fragments of LOC5567956 comprise the sequence of any one of SEQ ID NOS: 30-36. In some embodiments, the fragments of LOC5580038 comprise the sequence of any one of SEQ ID NOS: 37-42. In some embodiments, the fragments of LOC5566287 comprise the sequence of any one of SEQ ID NOS: 47-59. In some embodiments, the fragments of LOC5567958 comprise the sequence of any one of SEQ ID NOS: 60-70. In some embodiments, the fragments of LOC5568702 comprise the sequence of any one of SEQ ID NOS: 71-85. In some embodiments, the fragments of LOC110675548 comprise the sequence of any one of SEQ ID NOS: 86-99. In some embodiments, the polypeptides of the invention have at least 90% amino acid sequence identity to any of the above sequences, e.g., at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity.

[0098] In one embodiment, the vaccine compositions of the invention also comprise one or more carriers and/or excipients. In one embodiment, the vaccine compositions of the invention also comprise one or more adjuvant. In one embodiment, the vaccine compositions of the invention also comprise one or more additional immunogenic polypeptides (e.g., an immunogenic polypeptide derived from the target virus such as, e.g., antigens from viral envelope or capsid).

[0099] Polypeptides of the present invention can be prepared using well known techniques. For example, the polypeptides can be prepared synthetically, using either recombinant DNA technology or chemical synthesis. Polypeptides of the present invention may be synthesized individually, or as longer polypeptides composed of two or more polypeptides. The polypeptides of the present invention can be isolated, i.e., substantially free of other naturally occurring host cell proteins and fragments thereof.

[0100] The polypeptides of the present invention may contain modifications, such as glycosylation, aglycosylation, side chain oxidation, or phosphorylation; so long as the modifications do not destroy the immunologic activity of the polypeptides. Other modifications include incorporation of D-amino acids or other amino acid mimetics that can be used, for example, to increase the serum half-life of the polypeptides.

[0101] The polypeptides of the invention can be modified whereby the amino acid is substituted for a different amino acid in which the properties of the amino acid side-chain are conserved (a process known as conservative amino acid substitution). Examples of properties of amino acid side chains are hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), and side chains having the following functional groups or characteristics in common: an aliphatic side-chain (G, A, V, L, I, P); a hydroxyl group containing side-chain (S, T, Y); a sulfur atom containing side-chain (C, M); a carboxylic acid and amide containing side-chain (D, N, E, Q); a base containing side-chain (R, K, H); and an aromatic containing side-chain (H, F, Y, W). Note that the parenthetic letters indicate the one-letter codes of amino acids. As used herein, X stands for any amino acid.

[0102] The polypeptides of the invention can be prepared as a combination, which includes two or more of polypeptides of the invention, for use as a vaccine for the reduction, prevention, or treatment of a mosquito-borne virus infection (e.g., an infection by a flavivirus [such as, e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus] or an infection by an alphavirus [e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus]). The polypeptides may be in a cocktail or may be conjugated to each other using standard techniques. For example, the polypeptides can be expressed as a single polypeptide sequence. The polypeptides in the combination may be the same or different.

[0103] The present invention should also be construed to encompass "analogs," "mutants," "derivatives," and "variants" of the polypeptides of the invention (or of the DNA encoding the same) which analogs, mutants, derivatives and variants are polypeptides which are altered in one or more amino acids (or, when referring to the nucleotide sequence encoding the same, are altered in one or more base pairs) such that the resulting polypeptide (or DNA) is not identical to the sequences recited herein, but has the same biological property as the polypeptides disclosed herein.

[0104] The nucleic acid sequences include both the DNA sequence that is transcribed into RNA and the RNA sequence that is translated into a polypeptide. According to other embodiments, the polynucleotides of the invention are inferred from the amino acid sequence of the polypeptides of the invention. As is known in the art several alternative polynucleotides are possible due to redundant codons, while retaining the biological activity of the translated polypeptides.

[0105] It is to be understood explicitly that the scope of the present invention encompasses homologs, analogs, variants, fragments, derivatives and salts, including shorter and longer polypeptides and polynucleotides, as well as polypeptide and polynucleotide analogs with one or more amino acid or nucleic acid substitutions, as well as amino acid or nucleic acid derivatives, non-natural amino or nucleic acids and synthetic amino or nucleic acids as are known in the art, with the stipulation that these modifications must preserve the immunologic activity of the original molecule. Specifically, any active fragments of the active polypeptides as well as extensions, conjugates and mixtures are included and are disclosed herein according to the principles of the present invention.

[0106] In one embodiment, the compositions of the invention comprise a nucleic acid sequence encoding one or more of the above polypeptides, derivatives, variants or fragments. Such nucleic acid sequence can be included in a vector, e.g., an expression vector.

[0107] The nucleic acids of the invention may encompass an RNA or a DNA sequence encoding a polypeptide of the invention, and any modified forms thereof, including chemical modifications of the DNA or RNA which render the nucleotide sequence more stable when it is cell free or when it is associated with a cell. Chemical modifications of nucleotides may also be used to enhance the efficiency with which a nucleotide sequence is taken up by a cell or the efficiency with which it is expressed in a cell. Any and all combinations of modifications of the nucleotide sequences are contemplated in the present invention.

[0108] Further, any number of procedures may be used for the generation of mutant, derivative or variant forms of a protein of the invention using recombinant DNA methodology well known in the art such as, for example, that described in Sambrook et al. (2012, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York). Procedures for the introduction of amino acid changes in a polypeptide or polypeptide by altering the DNA sequence encoding the polypeptide are well known in the art and are also described in these, and other, treatises.

[0109] The nucleic acids encoding the polypeptide or combinations of polypeptides of the invention of the invention can be incorporated into suitable vectors, including but not limited to, plasmids and recombinant viral vectors (e.g., retroviral vectors, lentiviral vectors, adenoviral vectors, adenovated virus (AAV) vectors, herpes virus vectors). Such vectors are well known in the art and are therefore not described in detail herein.

[0110] In one embodiment, the invention includes a nucleic acid sequence encoding one or more polypeptides of the invention operably linked to a nucleic acid comprising a promoter/regulatory sequence such that the nucleic acid is preferably capable of directing expression of the protein encoded by the nucleic acid. Thus, the invention encompasses expression vectors and methods for the introduction of exogenous DNA into cells with concomitant expression of the exogenous DNA in the cells such as those described, for example, in Sambrook et al. (2012, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York). The incorporation of a desired polynucleotide into a vector and the choice of vectors is well-known in the art as described in, for example, Sambrook et al. (2012), and in Ausubel et al. (1997).

[0111] Numerous expression vector systems exist that comprise at least a part or all of the compositions discussed above. Prokaryote- and/or eukaryote-vector based systems can be employed for use with the present invention to produce polynucleotides, or their cognate polypeptides. Many such systems are commercially and widely available. **[0112]** Further, the expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Sambrook et al. (2012), and in Ausubel et al. (1997), and in other virology and molecular biology manuals. Viruses,

which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses. In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endo-nuclease sites, and one or more selectable markers. (See, e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193.)

[0113] For expression of the desired nucleotide sequences of the invention, at least one module in each promoter functions to position the start site for RNA synthesis. The best-known example of this is the TATA box, but in some promoters lacking a TATA box, such as the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 genes, a discrete element overlying the start site itself helps to fix the place of initiation. [0114] Additional promoter elements, i.e., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either co-operatively or independently to activate transcription.

[0115] A promoter may be one naturally associated with a gene or polynucleotide sequence, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as "endogenous." Similarly, an enhancer may be one naturally associated with a polynucleotide sequence, located either downstream or upstream of that sequence. Alternatively, certain advantages will be gained by positioning the coding polynucleotide segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a polynucleotide sequence in its natural environment. A recombinant or heterologous enhancer refers also to an enhancer not normally associated with a polynucleotide sequence in its natural environment. Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other prokaryotic, viral, or eukaryotic cell, and promoters or enhancers not "naturally occurring," i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCR, in connection with the compositions disclosed herein (U.S. Pat. Nos. 4,683,202, 5,928,906). Furthermore, it is contemplated the control sequences that direct transcription and/or expression of sequences within non-nuclear organelles such as mitochondria, chloroplasts, and the like, can be employed as well.

[0116] A promoter and/or enhancer may be employed that effectively directs the expression of the DNA segment in the cell type, organelle, and organism chosen for expression. The promoters employed may be constitutive, tissue-spe-

cific, inducible, and/or useful under the appropriate conditions to direct high-level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins and/or polypeptides. The promoter may be heterologous or endogenous.

[0117] One example of a constitutive promoter sequence is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, Moloney virus promoter, the avian leukemia virus promoter, Epstein-Barr virus immediate early promoter, Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the muscle creatine promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention. The use of an inducible promoter in the invention provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter. Further, the invention includes the use of a tissue-specific promoter, where the promoter is active only in a desired tissue. Tissue-specific promoters are well known in the art and include, but are not limited to, the HER-2 promoter and the PSA associated promoter sequences.

[0118] The expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. Such introduction of the expression vector may facilitate assessing the expression of the nucleotide sequences encoding the polypeptide or combinations of polypeptides of the invention. In other embodiments, the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers are known in the art and include, for example, antibioticresistance genes, such as neo and the like.

[0119] Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. Reporter genes that encode for easily assayable proteins are well known in the art. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a protein whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells.

[0120] Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (see, e.g., Ui-Tei et al., 2000 FEBS Lett. 479:79-82). Suitable expression systems are well known and may be prepared using well known techniques or obtained commercially. Internal deletion constructs may be generated using unique internal restriction sites or by partial digestion of non-unique restriction sites. Constructs may then be transfected into cells that display high levels of siRNA polynucleotide and/or polypeptide expression. In general, the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.

[0121] In some embodiments, the expression vector is modified to increase the expression of the desired polypeptide. For example, the vector can undergo codon optimization to improve expression in a given mammal. For example, the vector can be codon-optimized for human expression. In another embodiment, the expression vector comprises an effective secretory leader. An exemplary leader is an IgE leader sequence. In another embodiment, the expression vector comprises a Kozak element to initiate translation. In another embodiment, the nucleic acid is removed of cisacting sequence motifs/RNA secondary structures that would impede translation. Such modifications, and others, are known in the art for use in DNA vaccines (Kutzler et al, 2008, Nat. Rev. Gen. 9: 776-788; PCT App. No. PCT/US2007/000886; PCT App. No.; PCT/US2004/018962).

[0122] In various embodiments, the vaccine compositions of the invention are effective to induce an immune response to the antigen in a subject (e.g., a human). In some embodiments, said immune response is effective to prevent and/or treat mosquito-borne viral infections such as infections caused by flaviviruses (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, and yellow fever virus) and alphaviruses (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, and Semliki Forest virus).

[0123] In some embodiments, the vaccine composition comprises an additional immunostimulatory agent or nucleic acids encoding such an agent. Immunostimulatory agents include but are not limited to an additional antigen, an immunomodulator, an antigen presenting cell or an adjuvant. Non-limiting examples of suitable adjuvants include alum and such, cholera toxin, salmonella toxin, but are not limited thereto. In other embodiments, one or more of the additional agent(s) is covalently bonded to the antigen or an immunostimulatory agent, in any combination. In certain embodiments, the vaccine composition is conjugated to or comprises HLA anchor motif amino acids.

[0124] In one embodiment, the vaccine composition is administered in combination with an adjuvant. Non-limiting examples of suitable adjuvants include cholera toxin, salmonella toxin, alum and such, but are not limited thereto. In another embodiment, the vaccine is administered in the absence of an adjuvant.

[0125] In a non-limiting example, a nucleic encoding an antigen can also be formulated with an adjuvant. The various compositions described herein may further comprise additional components. For example, one or more vaccine components may be comprised in a lipid or liposome or nanoparticle.

[0126] Vaccine compositions of the present invention, and its various components, may be prepared and/or adminis-

tered by any method disclosed herein or as would be known to one of ordinary skill in the art, in light of the present disclosure.

[0127] In one embodiment, the polypeptide vaccine of the invention includes, but is not limited to at least one polypeptide, or a fragment thereof, optionally mixed with adjuvant substances. In some embodiments, the polypeptide is introduced together with an antigen presenting cell (APC). The most common cells used for the latter type of vaccine are bone marrow and peripheral blood derived dendritic cells, as these cells express costimulatory molecules that help activation of T cells. WO 00/06723 discloses a cellular vaccine composition which includes an APC presenting tumor associated antigen polypeptides. Presenting the polypeptide can be effected by loading the APC with a polynucleotide (e.g., DNA, RNA) encoding the polypeptide or loading the APC with the polypeptide itself.

[0128] Vaccine compositions may further comprise a pharmaceutically acceptable carrier, diluent or excipient to form a pharmaceutical formulation, or unit dosage form. The total active ingredients (e.g., polypeptides and inhibitors) in such formulations include from 0.1 to 99.9% by weight of the formulation. The active ingredients (e.g., polypeptides and inhibitors) for administration may be present as a powder or as granules; as a solution, a suspension or an emulsion.

[0129] Pharmaceutical formulations containing the compositions of the invention can be prepared by procedures known in the art using well known and readily available ingredients. The compositions of the invention can also be formulated as solutions appropriate for parenteral administration, for instance by intramuscular, subcutaneous or intravenous routes.

[0130] Thus, the composition may be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and may be presented in unit dose form in ampules, pre-filled syringes, small volume infusion containers or in multi-dose containers with an added preservative. The active ingredients may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredients may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.

[0131] In general, water, suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration contain the active ingredient, suitable stabilizing agents and, if necessary, buffer substances. Antioxidizing agents such as sodium bisulfate, sodium sulfite or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium ethylenediaminetetraacetic acid (EDTA). In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, a standard reference text in this field.

[0132] Passive Immunization Compositions of the Invention

[0133] The present invention also encompasses various compositions comprising antibodies which interact with the
polypeptides of the invention (preferably specifically and selectively). Such antibody-containing compositions can be used for passive immunization against mosquito-borne viral infections such as infections caused by flaviviruses (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) and alphaviruses (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus). An antibody can be an intact immunoglobulin derived from a natural source or from a recombinant source. Such antibody can comprise an immunoreactive portion of an intact immunoglobulin. The antibody may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab)2, as well as single chain antibodies and humanized antibodies (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, N.Y.; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).

[0134] Inhibitor Compositions of the Invention

The invention also includes inhibitor compositions [0135] and methods for inhibiting a function of one or more of the mosquito salivary polypeptides disclosed herein or an interaction between the mosquito salivary polypeptides disclosed herein and host cells or proteins or between the mosquito salivary polypeptides disclosed herein and a mosquito-borne virus. The inhibitor compositions of the invention include, but are not limited to, a chemical compound, a protein, a peptide, a peptidomimetic, an antibody, a ribozyme, a small molecule chemical compound, a glycan, an antisense nucleic acid molecule (e.g., siRNA, miRNA, etc.), or combinations thereof. In some embodiments, the inhibitor compositions bind to the mosquito salivary polypeptide. In other embodiments, the inhibitor compositions bind to the host cell or virus.

[0136] Genetically Modified Mosquitos of the Invention **[0137]** The invention also includes mosquitoes that have been genetically modified (e.g., using CRISPR-Cas9 technology) to alter or eliminate one or more of the mosquito salivary polypeptides disclosed herein.

[0138] Methods of the Invention

[0139] The compositions of the invention comprising mosquito salivary polypeptides of the invention or nucleotides encoding such polypeptides can be used as immunostimulatory agents to prevent and/or treat a mosquito-borne viral infection such as, e.g., an infection by a flavivirus (e.g., Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, yellow fever virus) or an alphavirus (e.g., Chikungunya virus (CHIKV), Ross River virus, O'nyong'nyong virus, Semliki Forest virus) in a subject (e.g., human or veterinary animal) and associated disease or disorder. In one embodiment, the composition of the invention comprises a AgBR1 polypeptide, or a variant thereof. [0140] The present invention also encompasses a method of inducing anti-mosquito-borne virus (e.g., anti-flavivirus or anti-alphavirus) immunity using the compositions described herein.

[0141] In another embodiment, the methods of the invention comprise administering to the subject a bacterium or virus comprising a nucleic acid sequence encoding at least one mosquito salivary protein. In another embodiment, the methods of the invention comprise administering to the subject a bacterium or virus expressing at least a portion of at least one mosquito salivary protein. In another embodiment, the methods of the invention comprise administering to the subject a bacterium or virus comprising at least a portion of at least one mosquito salivary protein.

[0142] Effectiveness of the resulting immune response can be determined for detecting the induction of cytotoxic T lymphocytes (CTL) which are well known in the art. A method for evaluating the inducing action of CTL using dendritic cells (DCs) as APC is well known in the art. DC is a representative APC having the strongest CTL inducing action among APCs. In this method, the polypeptide or combination of polypeptides is initially contacted with DC and then this DC is contacted with T cells. Detection of T cells having cytotoxic effects against the cells of interest after the contact with DC shows that the polypeptide or combination of polypeptides has an activity of inducing the cytotoxic T cells. Furthermore, the induced immune response can be also examined by measuring IFN-gamma produced and released by CTL in the presence of antigenpresenting cells that carry immobilized polypeptide or combination of polypeptides by visualizing using anti-IFNgamma antibodies, such as an ELISPOT assay.

[0143] Apart from DC, peripheral blood mononuclear cells (PBMCs) may also be used as the APC. The induction of CTL is reported to be enhanced by culturing PBMC in the presence of GM-CSF and IL-4. Similarly, CTL has been shown to be induced by culturing PBMC in the presence of keyhole limpet hemocyanin (KLH) and IL-7.

[0144] Generally, when using a polypeptide for cellular immunotherapy, efficiency of the CTL-induction can be increased by combining a plurality of polypeptides having different structures and contacting them with DC. Therefore, when stimulating DC with protein fragments, it is advantageous in certain embodiments to use a mixture of multiple types of fragments.

[0145] The induction of immunity by the compositions of the invention can be further confirmed by observing the induction of antibody production.

[0146] Thus, the invention provides a method for treating or preventing an infection by a mosquito-borne virus such as, e.g., a flavivirus (such as but not limited to, Zika virus, West Nile virus, Dengue virus, tick-borne encephalitis virus, and yellow fever virus) or an alphavirus (such as but not limited to, Chikungunya virus (CHIKV), Ross River virus, O'nyong virus, and Semliki Forest virus). The therapeutic compounds or compositions of the invention may be administered prophylactically or therapeutically to subjects suffering from, at risk of developing, or susceptible to developing an infection by a mosquito-borne virus such as, e.g., a flavivirus or an alphavirus. Such subjects may be identified using standard clinical methods. In the context of the present invention, prophylactic administration occurs prior to the manifestation of overt clinical symptoms of a disease, such that a disease or disorder is prevented or alternatively delayed in its progression.

[0147] The polypeptide or combination of polypeptides of the invention having immunological activity, or a polynucleotide or vector encoding such a polypeptide or combination of polypeptides, may optionally be combined with an adjuvant. An adjuvant refers to a compound that enhances the immune response against the polypeptide or combination of polypeptides when administered together (or successively) with the polypeptide having immunological activity. Nonlimiting examples of suitable adjuvants include cholera toxin, salmonella toxin, alum and such, but are not limited thereto. Furthermore, a vaccine of this invention may be combined appropriately with a pharmaceutically acceptable carrier. Examples of such carriers are sterilized water, physiological saline, phosphate buffer, culture fluid and such. Furthermore, the vaccine may contain as necessary, stabilizers, suspensions, preservatives, surfactants and such. The vaccine is administered systemically or locally. Vaccine administration may be performed by single administration or boosted by multiple administrations.

[0148] Administration of the compositions of the invention can comprise, for example, intramuscular, intravenous, peritoneal, subcutaneous, intradermal, as well as topical administration.

[0149] The actual dose and schedule can vary depending on whether the compositions are administered in combination with other pharmaceutical compositions, or depending on inter-individual differences in pharmacokinetics, drug disposition, and metabolism. Similarly, amounts can vary in in vitro applications depending on the particular cell line utilized (e.g., based on the number of vector receptors present on the cell surface, or the ability of the particular vector employed for gene transfer to replicate in that cell line). Furthermore, the amount of vector to be added per cell will likely vary with the length and stability of the therapeutic gene inserted in the vector, as well as also the nature of the sequence, and is particularly a parameter which needs to be determined empirically, and can be altered due to factors not inherent to the methods of the present invention (for instance, the cost associated with synthesis). One skilled in the art can easily make any necessary adjustments in accordance with the exigencies of the particular situation.

[0150] These methods described herein are by no means all-inclusive, and further methods to suit the specific application will be apparent to the ordinary skilled artisan. Moreover, the effective amount of the compositions can be further approximated through analogy to compounds known to exert the desired effect.

[0151] Administration of the therapeutic composition in accordance with the present invention may be continuous or intermittent, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of the compositions of the invention may be essentially continuous over a preselected period of time or may be in a series of spaced doses. Both local and systemic administration is contemplated. The amount administered will vary depending on various factors including, but not limited to, the composition chosen, the particular disease, the weight, the physical condition, and the age of the subject, and whether prevention or treatment is to be achieved. Such factors can be readily determined by the clinician employing animal models or other test systems which are well known to the art.

[0152] Compositions of the invention can be administered singly or in any combination. Further, infection inhibitors (e.g., immunogenic compositions comprising viral antigens or nucleic acids encoding such viral antigens) and active compounds can be administered singly or in any combination in a temporal sense, in that they may be administered concurrently, or before, and/or after each other.

[0153] The present disclosure is not limited to treatment of a disease or disorder that is caused by a flavivirus or an alphavirus but can be useful for treating other mosquitoborne diseases.

EXAMPLES

[0154] The present invention is also described and demonstrated by way of the following examples. However, the use of these and other examples anywhere in the specification is illustrative only and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to any particular preferred embodiments described here. Indeed, many modifications and variations of the invention may be apparent to those skilled in the art upon reading this specification, and such variations can be made without departing from the invention in spirit or in scope. The invention is therefore to be limited only by the terms of the appended claims along with the full scope of equivalents to which those claims are entitled.

Materials and Methods for Examples 1-7

[0155] All experiments were performed in accordance with guidelines from the Guide for the Care and Use of Laboratory Animals of the NIH. The animal experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at the Yale University School of Medicine (Assurance number A3230-01). All infection experiments were performed in a biosafety level 2 animal facility, according to Yale University regulations. Every effort was made to minimize murine pain and distress. Mice were anesthetized with ketamine/xylazine for mosquito infection experiments and euthanized as suggested by the Yale IACUC.

Viruses and Cell Lines

[0156] Vero cells (ATCC) were maintained in DMEM containing 10% FBS and antibiotics at 37° C. with 5% CO₂. *Aedes albopictus* C6/36 cells were grown in DMEM supplemented with 10% FBS, 1% tryptose phosphate, and antibiotics at 30° C. with 5% CO₂. *Drosophila* S2 cells (ATCC) were passaged in Schneider's *Drosophila* media with 10% FBS at 28° C. A Mexican strain of Zika virus (Accession number KX446950), MEX2-81, was propagated in C6/36 insect cells.

Mosquitoes and Animals

[0157] *A. aegypti* (Ho Chi Minh strain, obtained from the J. Powell laboratory at Yale) mosquitoes were maintained on 10% sucrose feeders inside a 12"×12"×12" metal mesh cage (BioQuip #1450B) at 28° C. and ~80% humidity. Egg masses were generated via blood meal feeding on naïve mice. All mosquitoes were housed in a warm chamber in a space approved for BSL2 and ACL3 research. Four to six-week old gender mixed Ifnαr 1^{-/-}Ifnγr^{-/-} mice (AG129-SV129 background) were used in the Zika virus infection studies (30). Mice were randomly chosen for experimental groups. For isolating splenocytes, 5-week old male C57BL/6 mice were purchased from the Jackson Laboratory. All mice were kept in a pathogen-free facility at Yale University.

Yeast Display Screening

[0158] To prepare RNA for library construction, salivary glands from about 300 A. aegypti mosquitoes, which had previously fed on mice once, were harvested. RNA was purified with the RNeasy Mini Kit (QIAGEN) and the purity of collected RNA was validated by gel electrophoresis confirm the presence of 18S and 28S rRNA. The cDNAs were synthesized by a modified SMART[™] cDNA synthesis kit according to protocols by Bio S&T Inc. (Quebec, Canada). After generating double strand cDNAs by primer extension and cDNA normalization, cDNAs were directionally cloned into the yeast expression vector pYD1 (Invitrogen, CA) to generate a salivary gland expression library (Invitrogen, CA). Digestion of plasmids purified from 10 clones of the pYD1-salivary gland library showed an average insert size of 1.2 kb and 100% of the clones contained inserts. The total number of primary clones was over 1 million. Plasmid DNA was purified from the library using the QIAGEN Plasmid Midi Kit (QIAGEN, CA, USA). Growth of transformed yeast cells and induction of recombinant protein production was done as previously described (12,50). Briefly, fresh Saccharomyces cerevisiae EBY100 cells (Invitrogen, CA) with 2 µg of plasmid DNA were electroporated and subsequently grown in SDCAA medium (2% dextrose, 0.67% yeast nitrogen base, 0.5% bacto amino acids, 30 mM NaHPO₄, 62 mM NaH₂PO₄) overnight at 30° C. with shaking at 200 rpm.

[0159] The induction of surface protein expression was performed as described previously (12,50). In brief, transformed yeast cells were grown for 2.4 hours at 30° C. in SGCAA medium (2% galactose, 0.67% yeast nitrogen base, 0.5% bacto amino acids, 30 mM NaHPO₄, 62 mM NaH₂PO₄). After induction with galactose, selection was performed by MACS separation (Miltenyi Biotec, Auburn, Calif.). Induced yeast cells were incubated with purified IgG derived from mice repeatedly bitten by A. aegypti. For MACS separation, an LS column (Miltenyi Biotec Cat #130-042-401) was placed onto the magnet and stand assembly. After washing the column, induced yeast cells were applied to the column. After passing through the column, bound yeast cells were eluted by removing the column from the magnet and adding SDCAA medium to the column. Then, eluted yeast cells were propagated for additional rounds of sorting. After 4 rounds of magnetic sorting, plasmids were recovered using a Zymoprep[™] II Yeast Plasmid Miniprep kit (Zymo Research), transformed into E. coli DH5a-competent cells (Invitrogen, CA), and sequenced.

Purification of Recombinant Proteins and Antiserum Preparation

[0160] AgBR1 (LOC5573204), SP (LOC5578630) and D7Bclu (LOC5567956) were cloned in-frame into the pMT-Bip-V5-His tag vector (Invitrogen, CA) and recombinant proteins expressed and purified using the *Drosophila* Expression System (Invitrogen, CA) as described earlier (50). AgBR1, SP and D7Bclu were purified from the supernatant by TALON Metal Affinity Resin (Clontech, CA) and eluted with 150 mM imidazole. The eluted samples were filtered through a 0.22-µm filter and concentrated with a 10-kDa concentrator (Sigma-Aldrich, MO) by centrifugation at 4° C., washed and dialyzed against PBS. Recombinant protein purities were assessed by SDS-PAGE and

quantified using the BCA protein estimation kit (Thermo Scientific. IL). The PCR primer sequences for cloning are listed in Table 3.

[0161] To generate rabbit sera against recombinant proteins, rabbits were immunized subcutaneously with 80-150 μ g of recombinant proteins in complete Freund's adjuvant and boosted twice at every two weeks with 80-150 μ g of recombinant proteins in incomplete Freund's adjuvant. Rabbits were euthanized and sera were obtained by cardiac puncture two weeks after the final boost. Reactivity to recombinant proteins was examined by immunoblot and ELISA.

Enzyme-Linked Immunosorbent Assay (ELISA)

[0162] Recombinant AgBR1, SP, D7Bclu, OVA, or salivary gland extracts in PBS (0.1 μ g/50 μ l/well) were coated on 96 well plates overnight at 4° C. After being blocked with 2% non-fat milk for one hour at room temperature, the plates were then incubated with serum samples serially diluted in PBS for one hour at room temperature. After being washed with PBS plus 0.05% Tween-20 (PBS-T) (Sigma) three times, the plates were incubated with HRP-conjugated secondary antibodies. Enzyme activity was detected by incubation with 100 μ l of 3,3',5,5'-Tetramethylbenzidine solution (KPL, USA) for 15 minutes at room temperature in the dark. The reaction was stopped by the addition of 1M H₂SO₄. The optical density (OD) at 450 nm was measured with a microplate reader.

Immunoblot

[0163] Recombinant proteins, BSA or salivary gland extracts were separated by SDS-PAGE using 4-20% Mini-Protean TGX gels (Bio-Rad) at 200 V for 25 min. Proteins were transferred onto a PVDF membrane for 60 min at 4 V. Blots were blocked in 1% non-fat milk in water for 60 min. Primary antibodies were diluted in 0.05% PBS-T and incubated with the blots for 1 h at room temperature or 4° C. overnight. HRP-conjugated secondary antibodies were diluted in PBS-T and incubated for 1 h at room temperature. After washing by PBS-T, the immunoblots were imaged with a LI-COR Odyssey imaging system.

Splenocyte Stimulation with Recombinant AgBR1

[0164] Splenocytes were isolated from C57BL/6 mice. Briefly, the spleens were minced in RPMI 1640 (Sigma-Aldrich) and forced gently through a 70 µm cell-strainer nylon mesh using a sterile syringe plunger and centrifuged at 400 g for 5 min. After washing once using cold PBS, spleen cells were incubated in 2 ml 0.83% NH₄Cl for 5 min, then placed in 20 ml PBS, centrifuged at 400 g for five minutes and then resuspended in RPMI 1640. The total number of cells was calculated using a hemocytometer. Isolated splenocytes were stimulated with 5 µg/ml recombinant AgBR1 or BSA and cultured with serum-free RPMI medium for 6 hours and 24 hours. Total RNA was extracted by the RNeasy Mini Kit (QIAGEN) according to the instructions. The cDNA was generated with iScript cDNA Synthesis Kit (Bio-rad) according to manufacturer's protocol. Gene expression was examined by quantitative RT-PCR (qRT-PCR) using IQ[™] SYBR Green Supermix. Target gene mRNA levels were normalized to mouse β actin RNA levels according to the $2^{-\Delta\Delta Ct}$ calculations. The qRT-PCR primer sequences are listed in Table 3.

Co-Inoculation of Zika Virus with AgBR1

[0165] AG129 mice were inoculated via subcutaneous (footpad) with 3 PFU of Zika virus along with $10 \mu g AgBR1$ (total volume; 40μ). Survivals were monitored everyday post-infection. Mice exhibiting neurologic disease such as paralysis or weight loss of over 20% of body weight were euthanized. The weight loss is very rapid and usually begins three days before death, coinciding with neurological symptoms. Total RNA from murine blood was extracted in TRIzol Reagent and qRT-PCR was performed to examine Zika virus levels as previously described (23).

Passive or Active Immunization Studies

[0166] Zika virus injection was performed as described in Uraki et al. (33). Briefly, Zika virus-filled needles were carefully inserted into the thorax of each mosquito and 69 nl of virus (100 PFU) was injected using a Nanoject II autonanoliter injector (Drummond). Infected mosquitoes were placed back in paper cups with mesh lids and maintained in triple containment for 10 days in a warm chamber. Mosquitoes were knocked-down on ice and salivary glands were dissected to examine the virus levels after mosquito feeding. RNA from salivary glands was purified with the RNeasy Mini Kit (QIAGEN), and cDNA was generated with iScript cDNA Synthesis Kit (Bio-rad) according to manufacturer's protocol. Gene expression was examined by quantitative RT-PCR (qRT-PCR) using IQ[™] SYBR Green Supermix. Viral RNA levels were normalized to mosquito Rp49 RNA levels according to the $2^{-\Delta\Delta Ct}$ calculations.

[0167] For passive rabbit antiserum transfer experiments, mice were injected intraperitoneally with 150 µl per animal of antiserum against specific mosquito proteins or naive rabbit serum one day before challenge. On the same day, two infected mosquitoes were randomly aliquoted into individual cups with mesh covers. On the following day, mice were anesthetized with ketamine-xylazine and fed on by two Zika virus-infected mosquitoes. For active immunization, mice were immunized subcutaneously with 10 µg of AgBR1 or ovalbumin in complete Freund's adjuvant and boosted twice every 2 weeks with the same amount of AgBR1 or ovalbumin in incomplete Freund's adjuvant. Two weeks after the final immunization, mice were anesthetized with ketamine-xylazine and fed on by two Zika virus infected mosquitoes. The blood of fed mice was collected at 1, 3, 5, 7 and 9 days post infection. Survivals were monitored every day. Mice exhibiting weight loss of >20% of initial body weight or neurologic disease were euthanized. The weight loss is very rapid and usually begins three days before death, coinciding with neurological symptoms. Viremia levels were examined at 1, 3, 5, 7, 9 days post infection (dpi) as described above.

Needle Inoculation of Zika Virus after Passive Immunization

[0168] Mice were injected intraperitoneally with control serum or AgBR1 antiserum one day before challenge. On the following day, mice were inoculated via subcutaneous footpad injection with 0.3 PFU of Zika virus. Survivals were monitored everyday post-infection. Mice exhibiting weight loss of >20% of initial body weight or neurologic disease were euthanized. The weight loss is very rapid and usually begins three days before death, coinciding with neurological symptoms. Viremia levels were examined at 1, 3, 5, 7, 9 dpi as described above.

Gene Silencing

[0169] RNA interference of genes expressed in the mosquito SGs was performed. Double stranded (ds) RNA targeting either a 400 bp region of the AgBR1 gene or an irrelevant green fluorescent protein (GFP) gene were transcribed using gene-specific primers designed with a T7 promoter and the MEGAScript RNAi kit (Thermo Fisher Scientific, Ambion). The primers for generating dsRNA are listed in Table 3. For silencing the AgBR1 gene, adult female A. aegypti mosquitoes were kept on ice and then transferred to a cold tray to receive a dsRNA injection. Two hundred ng of dsRNA in PBS were microinjected into the thorax of each mosquito using a Nanoject II Auto-Nanoliter Injector (Drummond). At day 3 post dsRNA injection, mosquitoes were knocked-down on ice and injected with Zika virus described above. At day 10 post virus injection, salivary glands were dissected to examine the AgBR1 expression levels by qRT-PCR and AgBR1 protein production by immunoblot.

Analysis of Local Immune Responses after Bites of Zika Virus Infected Mosquitoes or Intradermal Injection

[0170] For the analysis of local immune responses after bites of Zika virus infected mosquitoes, AG129 mice were allowed to be fed on the left ear by Zika virus-infected *A*. *aegypti* mosquitoes.

[0171] For the analysis of local immune responses after intradermal injection, AgBR1 was intradermally injected into the left ear. Briefly, the ear of an individual mouse was gently immobilized over a 14 ml Falcon tube covered with double stick tape. Five hundred nanoliters containing 0.5 $\mu g/\mu l$ were injected intradermally into the dorsal ear using glass micropipettes with a 80 μ m diameter beveled opening made as described elsewhere (33) and a Nanoject II Auto-Nanoliter Injector (Drummond).

[0172] One day later, mice were euthanized, and the locations bitten by mosquitoes or intradermally-injected locations and naïve skins were punched using a Disposable Biopsy Punch. Total RNA was extracted by the RNeasy Fibrous Tissue Mini Kit (QIAGEN) according to the manufacturer's instructions.

[0173] For qRT-PCR, the cDNA generation and analysis of gene expression was conducted as described above. Gene expression was queried using IQTM SYBR Green Supermix. Target gene mRNA levels were normalized to mouse β actin RNA levels according to the 2^{- $\Delta\Delta Ct$} calculations. The qRT-PCR primer sequences are listed in Table 3.

[0174] For RNA-seq library preparation and sequencing, barcoded libraries were generated by standard Truseq mRNA library protocol (Illumina) and sequenced with a 2×75 bp paired-end protocol on the HiSeq 4000 Sequencing System (Illumina).

[0175] All the analysis of RNA-seq data was performed using Partek flow (v7.0). RNA-seq data were trimmed and mapped to a mm10 genome reference using STAR (2.5.0e). The aligned reads were quantified to ENSEMBL transcripts release 91 using the Partek' E/M algorithm and the subsequent steps were performed on gene-level annotation followed by total count normalization. The gene-level data were normalized by dividing the gene counts by total number of reads followed by addition of a small offset (0.001). Differential expression was assessed by fitting the Partek's log-normal model with shrinkage (comparable in performance to limma-trend). Genes having geometric mean below value of 1.0 were filtered out from the analysis. Hierarchal clustering was performed on the genes, which were differentially expressed across the conditions (P value <0.05, fold change >1.5 for each comparison). Gene set enrichment analysis (GSEA) was performed on normalized gene expression counts of RNA-seq data as described previously (34). Gene sets with an estimated false discovery rate (FDR) of <0.05 were considered significant according to the GSEA guidelines.

Histopathology

[0176] Ear skins of the bite site and non-bite site on the contralateral ear were harvested by punch biopsy, fixed in 4% paraformaldehyde/PBS, paraffin embedded, and processed for hematoxylin and eosin staining. The histological findings were scored for the severity and character of the inflammatory response using a blinded grading scale that was previously described (51), with minor modifications. Responses were graded as follows: 0, no response; 1, minimal response; 2, mild response; 3, moderate response; and 4, marked response. The responses were evaluated and graded on the histological sites with the most prominent responses in each specimen. The total histology score was calculated as the sum of scores, including inflammation, neutrophils, mononuclear cells and edema. The slides were blinded, randomized, and reread to determine the histology score by the same dermatopathologist throughout all studies.

Imaging Mass Cytometry (IMC)

[0177] IMC was performed on slides dewaxed in xylene for 20 minutes according to previously described studies (52). After hydration in sequential concentrations of ethanol (100%, 95%, 80%, 70%) for 5 min, slides were incubated with antigen retrieval solution at 90-95° C. for 20 min. Slides were then cooled to room temperature and washed with ddH_2O and PBS (lacking Ca⁺⁺ or Mg⁺⁺) for 5 min. After blocking with 3% BSA in PBS for 45 min, slides were labeled with metal-conjugated antibodies against CD3 (170Er-Polyclonal, C-Terminal), CD11b (149Sm-EPR1344), MHCII (174Yb-M5/114.15.2) and Ly6G (141Pr-1A8) diluted in PBS with 0.5% BSA at 4° C. overnight. After being washed with 0.1% Triton-X in PBS and then PBS, slides were labeled with intercalator-Ir (1:2.000 dilution) in PBS (lacking Ca⁺⁺ or Mg⁺⁺) for 30 minutes at room temperature. After being washed again with ddH₂O for 5 min, the slides were dried. Tissues were laser ablated using a 200 Hz Hyperion[™] Imaging System (Fluidigm Corp., South San Francisco, Calif. and the aerosol containing the ion cloud was directly transported to a Helios Mass Cytometer (Fluidigm). Images of labeled slides were obtained using the MCD viewer 1.0 (www.fluidigm.com/software).

Analysis of Immune Cells in Mice Following Zika Virus-Infected Mosquito Bites or Intradermal Injection.

[0178] For the analysis of immune cells following Zika virus-infected mosquito bites, AG129 mice were allowed to be fed by Zika virus-infected *A. aegypti* mosquitoes on the ear. For the analysis of immune cells following AgBR1 injection, AG129 mice were intradermally injected with AgBR1 in the ear as described above. After 24 hours, mice were sacrificed and both the bitten or injected and naive ears were cut off at the base and split into dorsal and ventral halves. Ears were incubated for 1.5 hours in 2 mg/ml of Dispase II (Sigma) in DMEM media with 10% FBS, and

then cut into small pieces. Small pieces were then digested for 1.5 hours in 5 mg/ml of collagenase (Gibco) in media. Digested samples were then individually passed through 70 μ M filters to obtain single-cell suspensions.

[0179] After washing once with PBS containing 2% FBS (FACS buffer), cells were stained using the LIVE/DEADTM Fixable Violet Dead Cell Stain Kit (Thermo Fisher) and then incubated with fluorochrome-conjugated monoclonal antibodies against CD45 (PerCP—BD Pharmingen; Clone 30-F11), MHCII (APC-Cy7—Biolegend; Clone M4/114.15. 2), CD11b (PE—Biolegend; Clone M1/70), CD11c (PE-Cy7—BD Pharmingen; Clone HL3), and Ly6G (FITC—Tonbo; Clone RB6-8C5) for 30 minutes at room temperature, washed twice with FACS buffer. Samples were run on a BD LSRII flow cytometer and analyzed using FlowJo software.

Statistical Analysis

[0180] GraphPad Prism software was used to analyze all the data. Animals were randomly allocated into different groups. No statistical methods were used to predetermine sample size. Rp49 and mouse β actin normalized viral RNA levels were analyzed using the two-sided Wilcoxon-Mann-Whitney test. Host responses in vitro and in vivo were performed using a two-way ANOVA for multiple comparisons or using the two-sided Wilcoxon-Mann-Whitney or the two-sided Wilcoxon matched-pairs signed rank test for two sample comparisons, as indicated in the figure legends. Survival was assessed by a Gehan-Wilcoxon test. A p value of <0.05 was considered statistically significant.

Example 1: Identification and Characterization of Potential Target Salivary Gland Proteins

[0181] To breed mosquitos with Zika virus, eggs were hatched in a shallow dish with distilled water with 2 parts brewer's yeast (Bioserv #1710) and 3 parts desiccated liver powder (Bioserv #1320). After pupae emerged, mosquitoes were collected and placed in a small crystal dish with distilled water inside a 12"×12"×12" metal mesh cage (Bio-Quip #1450B). Adult mosquitoes were maintained on 10% sucrose feeders in walk-in incubator at 28° C. and ~80% humidity. Egg masses were generated via blood meal on naïve mice. For Zika virus injection experiments, mosquitoes were knocked-down on ice before transfer to a cold plate under a dissecting microscope. A pulled microcapillary needle was filled with ZIKV using a Nanoject II autonanoliter injector (Drummond). The Zika virus-filled needle was carefully inserted into the thorax of each mosquito and 69 nl of virus is injected. Infected mosquitoes were placed back in paper cups with mesh lids and maintained in triple containment for 10 days. All mosquitoes, clean and infected were housed in a warm chamber.

[0182] A murine model of the Zika virus was created as follows. *Ae. aegypti* mosquitoes intrathoracically injected with ZIKV were allowed to feed on AG129 mice which lack interferon α/β and γ receptors, so as to easily and efficiently transmit ZIKV to these mice (33). *Ae. aegypti* mosquitoes feed and engorge on AG129 mice.

[0183] Passive immunizations were performed by IP injections of antigen-specific IgG (total volume not exceeding 150 μ l) in PBS one day prior to mosquito feeding. For active immunization of mice, 10 μ g of antigen were administered subcutaneously in Freund's adjuvant at 2-3 sites in a

total volume not greater than 0.2 ml. A post-immunization sample (test bleed) was similarly drawn by retro-orbital bleeding 7 days after the final immunization to confirm reactivity to recombinant antigens by western blotting or ELISA.

[0184] AG129 mice are susceptible to very small amounts of Zika virus and develop viremia, leading to the death at 1-5 weeks (34). Therefore, this model is useful to access vaccine efficacy in the natural context of mosquito-bite infection to test vaccine efficacy on several strains of Zika virus, including pre-epidemic and post-epidemic strains.

[0185] Mosquito feeding generally resulted in minimal discomfort and injury to mice. Not more than 5 Zika virus-infected mosquitoes were placed on mice. Animals to be infected or immunized were restrained in an appropriate apparatus designed to limit the chances of injury and reduce the amount of distress of the animal during these procedures. Mice were observed daily for symptoms of Zika virus after mosquito feeding. If any animal showed 20% weight loss, scruffy fur or paralysis, it was euthanized.

[0186] Mice were anesthetized during the process of mosquito feeding with IP injection of Ketamine/Xylazine (100 mg/10 mg per kg body weight). Anesthetized mice were laid on top of mesh lids to allow mosquitoes to feed. The mice did not experience undue stress during the process of mosquito feeding. The application of feeding can be classified as minimal distress and did not affect the general health of the animals. Mosquitoes were fed for approximately 10-30 min. Mosquito carcasses after dissection were placed in 10% chlorine bleach solution for 20 minutes prior to autoclaving.

[0187] Antigenic proteins in mice that were bitten by Ae. aegypti were identified using a screen overcoming disadvantages inherent in SDS-PAGE and proteomics for detection of proteins of low-abundance and low-antigenicity. Yeast surface display screening was used because the method can identify uncommon proteins by iterative rounds of magnetic-activated cell sorting (50). An Ae. aegypti salivary gland yeast surface display library was generated by isolating RNA from salivary glands, reverse transcribing these transcripts to cDNA and cloning into the pYD1 vector before transformation into yeast cells. The protocol for enrichment of yeast clones expressing salivary gland proteins is adapted from a recent publication (12). An A. aegypti salivary gland yeast surface display library was generated and probed with IgG from mice repeatedly bitten by A. aegypti (FIGS. 1A and 1B) or humans bitten by Ae. aegypti. These mouse and human sera were highly reactive with an Ae. aegypti salivary gland extract, as demonstrated by ELISA and immunoblot (FIGS. 1A, 1B, 2A and 2B). Magnetic-activated cell sorting was used to enrich for yeast cells expressing salivary proteins recognized by mouse antibodies (FIGS. 3A and 3B) and human antibodies (FIGS. 4A and 4B) and after four rounds of sorting individual yeast clones were isolated, and the recombinant plasmids were recovered. Five clones, encoding unique mosquito genes were antigenic in mice (LOC5578630, LOC5578631 (NeSt1), LOC5567956, LOC5580038, LOC5573204 (AgBR1)) (FIG. 3C) and four unique mosquito genes were antigenic in humans (LOC5566287, LOC5567958, LOC5568702, and LOC110675548) (FIG. 4C) were identified using this method.

[0188] To examine the effect of these nine proteins on Zika infection, nucleic acid sequences encoding each of these

proteins were cloned into the pMT *Drosophila* vector, expressed the recombinant proteins in *Drosophila* S2 cells, and purified using nickel affinity chromatography. The nine proteins were run on an SDS-PAGE gel, then stained with Coomassie Brilliant Blue (FIG. **5**A) and analyzed by Western blot with anti-His antibody (FIG. **5**B). To generate antibodies to use in passive immunization experiments and for the further analysis of these proteins, rabbit serum was generated against all identified antigenic proteins and validated by immunoblot using the recombinant proteins and mosquito salivary gland extract (FIG. **6**).

> Example 2: Mixture of Antiserum Against Antigenic Mosquito Salivary Gland Proteins Protects Against Zika Virus Infection

[0189] Mice were passively immunized intraperitoneally with 150 µl of a mixture of all specific antisera, or control antiserum. One day later, the passively immunized mice were fed upon by Zika virus-infected mosquitoes with similar levels of virus in their salivary glands (FIG. 7B). Blood was collected every other day for 9 days from mice fed on by Zika virus-infected mosquitoes and analyzed for Zika virus infection by qRT-PCR using primers described previously (40). The tested pooled antisera significantly reduced Zika virus levels over the course of infection (FIG. 7C) and in mice on day 5 (FIG. 7D), and conferred significant protection against pathogenesis, measured by survival, compared with the control group (FIG. 7D). This mixture of antibodies against these antigenic proteins does not affect Zika virus replication (FIG. 8A) or pathogenesis (FIG. 8B) when mice are passively immunized and then infected using subcutaneous needle infection.

Example 3: Effect of AgBR1 Protein in Zika Virus Infection

[0190] To identify if any of these proteins is capable of inducing an immune response in cells, splenocytes were treated with antigenic mosquito salivary gland proteins. One protein, called AgBR1 is a Bacteria-responsive protein 1 which belongs to group V chitinase-like proteins (41). Next, it was examined whether AgBR1 stimulates inflammatory responses in vitro. Murine splenocytes stimulated with recombinant AgBR1 (see FIGS. 5C and 5D) produced in S2 cells (5 µg/ml) demonstrated significantly higher levels of Il6 expression compared with controls, with the data shown in FIG. 9. As increased vascular permeability contributes to flavivirus pathogenicity (42) and IL-6 is associated with these processes (43), it was next examined whether AgBR1 influences Zika virus infection in vivo. Given previous studies demonstrating that approximately half of the protein in the salivary glands is discharged during a blood meal (44,45), the concentration of AgBR1 in mosquito saliva can be estimated to be between 1.6-8.2 µM (FIG. 10C, Table 1). Therefore, AG129 mice were injected with Zika virus and AgBR1 (5.1 µM, 10 µg of AgBR1 in total volume 40 µl).

[0191] At day 3 post infection, significantly higher viremia levels were observed in the group of mice inoculated with Zika virus in conjunction with AgBR1, compared to those of mice challenged with Zika virus alone. When AgBR1 is co-inoculated along with Zika virus, higher levels of virus are detected in the blood by qRT-PCR at day 3 after subcutaneous injection (FIG. **10**A). In addition, AgBR1 protein significantly impaired the survival of Zika virus-

infected mice. Mice injected with a mixture of virus and AgBR1 also experienced significantly more pathogenesis as measured by survival (FIG. **10**B). AgBR1 protein significantly impaired the survival of Zika virus-infected mice (FIG. **10**B). These results demonstrate that AgBR1 can exacerbate Zika virus infection and disease in vivo.

[0192] To determine if passive immunization can protect mice from Zika virus infection, AG129 mice were injected with 150 uL of rabbit serum against AgBR1 before infection via mosquito bite. Mosquitoes with similar levels of viral infection (FIG. **11**A) were allowed to feed on mice, and then blood was collected from mice for 9 days. AgBR1 antiserum significantly reduced Zika virus levels on days 1, 3 and 9 after infection (FIG. **11**B). This also significantly protected mice from pathogenesis as measured by survival over 30 days (FIG. **11**C). This protection is not from a non-specific interaction as this antiserum failed to protect from needle infection with Zika virus (FIG. **12**). Antiserum against two other abundant antigenic salivary gland proteins is not protective against Zika virus infection (FIG. **13**).

[0193] Here, AG129 mice were used that lack both Type I and II IFN receptors but can elicit B-cell and T-cell responses (76,77). As type I interferon signaling can contribute to optimal antibody responses (78), it is possible that further efforts using alternative adjuvants, protein concentration or different animal models could enhance the effect of active immunization. Overall, these results indicate that immunization with AgBR1 partially influenced mosquito-transmitted Zika virus infection.

[0194] To determine whether the effects observed with AgBR1 extended to other proteins identified in the screen, two additional proteins were selected: D7Bclu and SP, whose expression has been identified as upregulated salivary gland proteins during flavivirus infection (67). D7Bclu and SP antisera were generated in a similar fashion to the AgBR1 antiserum and performed passive immunization experiments. Neither the D7Bclu nor SP antisera altered the viremia or protected mice from lethal mosquito-borne Zika virus infection, as shown in FIGS. **13**A-D.

[0195] To more fully understand the underlying mechanism of protection of immunization with AgBR1, assays were performed to determine whether AgBR1 antiserum influenced the early innate immune response at the bite site after exposure of mice to Zika virus-infected mosquitoes. A histological analysis of the bite site 24 hours post-feeding by Zika virus-infected mosquitoes showed prominent inflammatory cell infiltration mainly composed of neutrophils in the dermis of mice administered naïve serum (control), which was less apparent in mice administered AgBR1 antiserum. The data is shown in FIGS. 14A and 14B. Consistent with these findings, histology scores were significantly lower in mice administered AgBR1 antiserum compared with mice administered naïve serum, as shown in FIG. 14C. Furthermore, imaging mass cytometry showed that infiltrating cells at the bite site of Zika virus-infected mosquito bites were mainly Ly6G⁺ and CD11b⁺ cells, supporting the observation made with hematoxylin and eosin staining that the infiltrating cells are predominantly composed of neutrophils, monocytes, and macrophages, with some minor populations of T cells or other immune cells (FIG. 14D). In addition, the infiltration of Ly6G⁺ cells and CD11b⁺ cells is reduced in mice administered AgBR1 antiserum, in contrast to control animals (FIG. 14D). The alteration of infiltrating cell populations in the skin of bitten mice administered AgBR1 antiserum indicates that the AgBR1 antiserum influenced the number of CD45⁺CD11b⁺ Ly6 G⁺ neutrophils at the bite site. See FIGS. **14**E and **14**F. These results suggest that AgBR1 antiserum suppressed acute inflammation, and particularly the neutrophilic response, at the mosquito bite site.

[0196] Analysis by RNAseq also indicates an increase in inflammatory and cytokine response in the control serum group as compared to AgBR1 antiserum (FIG. **15**).

[0197] To further understand how AgBR1 may influence mosquito-borne Zika infection, RNA sequencing was performed on tissue collected at the bite site of mice 24 hours after Zika virus-infected mosquito feeding. 536 upregulated genes were found out of 986 differentially expressed genes between the bite site and resting site in control mice following Zika virus-infected mosquito feedings. See FIG. 15A and Table 2. A variety of cytokine and chemokine genes, including neutrophil-attracting chemokines Cxcl1, proinflammatory cytokine Il1b, monocytic chemoattractive chemokines Ccl2 and Ccl6, were significantly upregulated at the bite site compared to the resting site. This result was consistent with a previous report describing a detrimental role for inflammatory neutrophils that express IL-1 β in the induction of cutaneous inflammatory responses at the bite site (31,49). GSEA analysis also revealed that inflammatory responses and cytokine signaling, which are mediated by host immune cells, were highly enriched in bitten skin, supporting these histological findings (FIG. 15B, Tables 4-7).

[0198] The impact of AgBR1 antiserum on inflammatory responses induced by Zika virus-infected mosquito bites was evaluated. By focusing on genes that were upregulated in the bite site, 18 genes were identified, including Il1b, Cxcl1 and Cc12, which were attenuated in mice inoculated with AgBR1 antiserum (FIGS. 15A and 15C). The reduction of Il1b was also confirmed by qPCR (FIG. 15D). In addition, Il6 expression levels were examined in each group because AgBR1 stimulates II6 expression in vitro. Though II6 was initially not included in the differential gene expression analysis due to the low expression in control skin, Il6 expression levels were nonetheless significantly suppressed in AgBR1 antiserum-treated mice compared with control mice, consistent with the in vitro data (FIG. 15D). It was also found that the direct inoculation of AgBR1 into the skin significantly induces IL1b and Il6 expression (FIG. 15E).

[0199] Arboviral infection triggers the recruitment of peripheral neutrophils and monocytes to the site of infection (31,46) and, previous studies showed that neutrophils are important targets of flaviviruses in vivo and that infiltration of neutrophils contribute to the initial flavivirus infection and dissemination (31,46-48). Here, it is shown that AgBR1 induces neutrophil recruitment at the bite site and blocking this effect suppresses the early host response. These data suggest that targeting AgBR1 blocks the early host responses caused by the bite of Zika virus-infected mosquitoes, leading to the suppression of viral dissemination and protection against lethal Zika virus infection.

Example 4: Examine the Efficacy of AgBR1 as a Vaccine Candidate

[0200] Standard immunization protocols approved by the Yale Animal Care and Use Committee are followed to immunize mice with rAgBR1. Briefly, four to six-week-old AG129 mice are actively immunized by subcutaneous injec-

tion of 10 μ g of purified recombinant protein in Freund's adjuvant. Either one or two booster immunizations with 10 μ g of recombinant protein in adjuvant are provided once every two weeks. Control animals are immunized with ovalbumin (InvivoGen, CA).

[0201] Five-10 µl samples of blood are collected by retroorbital bleed two weeks after every booster immunization. Reactivity against both rAgBR1 and the native mosquito antigens in a salivary gland extract are assessed by ELISA (FIG. 16A). Using data obtained from active immunization testing, a determination is made whether active immunization with rAgBR1 is likely to elicit sufficient concentrations of anti-AgBR1 specific antibodies for protection against Zika virus transmission. From the data regarding reactivity to native and recombinant protein, an assessment is made as to which immunization protocol is optimal for effective antibody production in mice. Immunization with recombinant proteins often fails to result in constant, high concentrations of antibodies. Mosquito bites may boost the existing immune response and therefore help maintain a high concentration of antibodies.

[0202] Wild-type mice are not susceptible to infection with Zika virus, and AG129 mice, which lack IFN receptor α and γ subunits, must be used in challenge experiments. However, AG129 mice are often immunocompromised and may fail to mount a sufficiently robust antibody response. In such case, wild-type mice are immunized and their interferon receptors are inactivated by passive immunization of IFNAR1-blocking mAb (MAR1-5A3) as described in Lazear et al. (39).

[0203] The protective effect of active immunization with AgBR1 antigen in preventing mosquito-borne Zika virus infection was assessed using a murine model. Two weeks after the final immunization with the optimal conditions, mice are fed on by either two Zika virus infected mosquitoes. Every other day until nine days after mosquito feeding (representing the time point when ZIKV is expected to have fully disseminated throughout the mice), transmission is assessed by taking 10-15 µl of blood from control and experimental animals by retro-orbital bleed and virus burden is assessed by RNA isolation and qRT-PCR as described previously (41). The cDNA template in each reaction is normalized to mouse β -actin. The significance of difference in virus level in mice and survival between the groups is assessed by a Gehan-Wilcoxon test, respectively. Mice immunized with AgBR1 protein have less virus at day 5 (FIG. 16B) and are protected from Zika virus pathogenesis, as shown in FIG. 16C.

[0204] Animals can be immunized with heat inactivated antigens or truncated recombinant antigens. Salivary antigens secreted into the host skin upon future *Ae. aegypti* mosquito bites (both infected and uninfected), have the potential advantage of boosting the anamnestic response in the host and are preferred vaccine candidates.

[0205] The passive immunization experiments were repeated using the same techniques in West Nile virus (WNV) infection and it was demonstrated that blocking AgBR1 can also enhance survival after WNV infection with mosquito bite, as shown in FIG. **17**.

Example 5: Effect of AgBR1 on Neutrophil Recruitment in the Skin

[0206] To examine whether suppression of AgBR1 gene and AgBR1 protein expression in the salivary glands alters the levels of CD45⁺CD11b⁺Ly6G⁺ cells infiltration after mosquito bites. dsRNA against AgBR1 was injected intrathoracically into Aedes aegypti mosquitoes. Expression level of AgBR1 RNA after knockdown was measured using qRT-PCR (FIG. 18A) and protein levels were measured using Western Blot using AgBR1 rabbit antiserum (FIG. 18B). Mosquitoes were infected intrathoracically with Zika virus and after 10 days mosquitoes were collected, and RNA was isolated. Using Zika virus specific primers, viral levels in mosquito were measured, and the levels of Zika virus replication was not altered in the AgBR1 knockdown group (FIG. 18C). The levels of CD45⁺CD11b⁺Ly6G⁺ cells were significantly increased in mice bitten by control mosquitoes, but not in mice bitten by AgBR1 dsRNA-treated mosquitoes (FIG. 18D). These results further demonstrate that AgBR1 plays a role in recruiting CD45⁺CD11b⁺Ly6G⁺ cells to the Zika virus infected-mosquito bite site.

Example 6: Role of Antigenic Salivary Gland Proteins in Stimulation of Neutrophils

[0207] Mosquito saliva can stimulate local immune cells to express IL1B, CCL2 and CXCL2 at the bite site to change the local immune environment, which leads to an increase of flavivirus-susceptible myeloid-lineage cells. To assess whether any of the antigenic proteins are capable of stimulating immune cells to express these molecules, each of the antigenic proteins were used to treat primary naïve neutrophils harvested from uninfected WT mice and RAW 264.7 macrophage cells. Most SG proteins showed no effect on primary neutrophils ex vivo, but one SG protein, LOC5578631, induced the expression of IL1B (FIG. 19), CXCL2 (FIG. 20) and CCL2 (FIG. 21). This protein fails to induce IL1B (FIG. 22) or CXCL2 (FIG. 23) in the RAW macrophage cell line. These data suggest that the LOC5578631 protein is capable of activating neutrophils and thus LOC5578631 protein is called Neutrophil Stimulating Factor 1 (NeSt1).

Example 7: NeSt1 Enhances Zika Virus Infection In Vivo

[0208] To determine if passive immunization against NeSt1 can protect mice from Zika virus infection, AG129 mice were injected with 150 uL of rabbit serum against NeSt1 before infection via mosquito bite. Mosquitoes with similar levels of viral infection (FIG. **24**) were allowed to feed on mice, and then blood was collected from mice for 9 days. NeSt1 antiserum significantly reduced Zika virus levels on day 1 after infection (FIG. **25**), with no virus detected in 5 out of 12 animals in NeSt1 antiserum group. Passive immunization against NeSt1 also significantly protected mice from pathogenesis as measured by survival over 30 days, as shown in FIG. **26**.

[0209] In order to examine whether blocking the NeSt1 protein can change the immune microenvironment at the bite site, serum generated from rabbits inoculated against NeSt1 and pre-immune sera from the same animals were used to passive immunize WT mice before feeding naïve mosquitoes on the ear of these animals. Three hours elapsed to allow for infiltration or expansion of immune cells at the local bite site before harvesting the ears and examining the immune response by flow cytometry (FIG. **27**). No difference was detected in langerhans cell percentage in the ears of naïve and bitten mice or between NeSt1 antiserum treated

compared to naïve sera treated group (FIG. 28). More neutrophils were seen after mosquito bite in both the naïve and NeSt1 antisera, but no differences were detected through the two groups (FIG. 29). The percentage of macrophages in the bitten ear was increased in the control group (FIG. 30) and the percentage of dendritic cells was decreased after mosquito bite in the control group (FIG. 31). Mice treated with NeSt1 antisera did not experience this change in macrophage and dendritic cell percentage (FIGS. 30 and 31) indicating that blocking NeSt1 was capable of preventing the infiltration of macrophages, which are susceptible to Zika virus infection, into the bite site.

[0210] To determine whether blocking NeSt1 at the bite site can affect the induction of pro-IL-1 β , CXCL2, and/or CCL2 at the bite site, mice were first passively immunized against NeSt1. Mosquitoes were then allowed to feed on one of the ears (bitten), while leaving the other ear unbitten (naive). After 3 h, ear tissue at the bite site was removed and assayed for pro-IL-1 β , CXCL2, and CCL2. Mice that had been passively immunized against NeSt1 were shown to express significantly lower levels of pro-IL-1 β (FIG. **32**A) and CXCL2 (FIG. **32**B) after a mosquito bite. No significant differences in CCL2 expression levels were observed between the two groups (FIG. **32**C). These data suggest that NeSt1 is capable of inducing pro-IL-1 β and CXCL2, two molecules that are capable of increasing the number of ZIKV-susceptible cells at the bite site.

Example 8: AgBR1 Antibodies Delays Lethal Aedes aegypti-Borne West Nile Virus Infection in Mice

[0211] To determine whether targeting AgBR1 altered pathogenesis during mosquito-borne WNV infection, immunized mice were passively immunized with AgBR1 antiserum before challenging them with WNV by mosquito bite. *Ae. aegypti* mosquitoes were used as a vector model, since the well-annotated whole genome sequence and easy maintenance make this species ideal for laboratory viral transmission studies (63,71).

Mosquitoes and Animals

[0212] Ae. aegypti (Orlando strain, collected from Orlando, Fla. in 1952) and Cx. pipiens mosquitoes were maintained on 10% sucrose feeders inside a $12"\times12"\times12"$ metal mesh cage (BioQuip #1450B) at 28° C. and ~80% humidity. Eggs were generated via blood meal feeding on an artificial membrane feeder with defibrinated sheep's blood (Hemostat Laboratories). All mosquitoes were housed in a warm chamber in a space approved for BSL3 and ACL3 research. Four-week-old male mice (Swiss Webster mice from Charles River) were used in the WNV infection studies. All mice were kept in a pathogen-free facility at the Connecticut Agricultural Experiment Station.

Mosquito Injection and Dissections

[0213] For WNV injection, WNV-filled needles were carefully inserted into the thorax of each mosquito and 69 nl of virus $(3.4 \times 10^3 \text{ PFU})$ was injected using a Nanoject II autonanoliter injector (Drummond). Infected mosquitoes were placed back in paper cups with mesh lids and maintained in triple containment for 7 days in a warm chamber. After

feeding infected mosquitoes on naïve mice, they were knocked-down on ice and salivary glands were dissected to examine the virus levels.

Passive Immunization Studies

[0214] Mice were injected intraperitoneally with 150 μ l per animal of AgBR1 or SP antiserum or naive rabbit serum one day before challenge. On the following day, mice were anesthetized with ketamine-xylazine and fed on by a single WNV-infected mosquito per mouse. The blood of fed mice was collected at 1, 3, 5 and 7 days post infection. Survivals and weights were monitored every day. Mice exhibiting weight loss of >20% of initial body weight or neurologic disease were euthanized. Viremia levels were examined at 1, 3, 5 and 7 days post infection by quantitative real time-PCR. Analysis of Local Immune Responses after Bites of West Nile Virus Infected Mosquitoes

[0215] Mice were passively immunized with either AgBR1 or naive antiserum 24 hours prior to allowing infected *Ae. aegypti* mosquitoes to feed on the left ear. After 6 or 24 hours post feedings, mice were euthanized, and the locations bitten by mosquitoes and naïve locations on the opposite ear were punched using a Disposable Biopsy Punch. Total RNA was extracted by the RNeasy Fibrous Tissue Mini Kit (QIAGEN) according to the manufacturer's instructions. For quantitative RT-PCR, the cDNA was generated with iScript cDNA Synthesis Kit (Bio-rad) according to manufacturer's protocol. Gene expression was examined by qRT-PCR using IQTM SYBR Green Supermix. Target gene mRNA levels were normalized to mouse β actin RNA levels according to the 2^{- ΔACt} calculations. The qRT-PCR primer sequences are available upon request.

Immunoblot

[0216] Three sets of salivary glands from *Ae. aegypti* and *Cx. pipiens* were placed in 20 μ l Novex 2× Tris-Glycine SDS Sample Buffer, heated to 85° C. for 5 min, diluted 1:1 with water and the whole sample was loaded on a 16% Tris-glycine gel. AgBR1 and homologous proteins were examined with AgBR1 antiserum (1:1000 dilution), followed by incubation with HRP-conjugated secondary antibodies.

Statistical Analysis

[0217] GraphPad Prism software was used to analyze all the data. Mouse β actin-normalized viral RNA levels and body weights were analyzed using the Wilcoxon-Mann-Whitney test. Host responses in vivo was performed using a two-way ANOVA for multiple comparisons. Survival was assessed by a Gehan-Wilcoxon test. A p value of <0.05 was considered statistically significant.

[0218] To determine whether targeting AgBR1 altered pathogenesis during mosquito-borne WNV infection, mice were passively immunized with AgBR1 antiserum before challenging them with WNV by mosquito bite. *Ae. aegypti* mosquitoes were used as a vector model, since the well-annotated whole genome sequence and easy maintenance make this species ideal for laboratory viral transmission studies (63,71). Wild type Swiss Webster mice were administered AgBR1 or control antiserum and 24 hours later were bitten by WNV-infected *Ae. aegypti* mosquitoes (FIG. 17A). Passive immunization with AgBR1 antiserum significantly reduced WNV RNA levels in the murine bloodstream at an early stage (3 days) of infection (FIG. 17B). Components of

mosquito saliva can modulate local host responses and recruit several immune cells which can be target of virus replication (31,69,72), which may lead to virus dissemination at an earlier, rather than later, time point. Although a significant difference as not detected at Day 1, it may be due to the complex interplay of recruited immune cells at the bite site, which leads to shifting populations of WNV-susceptible cells over the first hours and days of infection. In addition, pretreatment with AgBR1 antiserum delayed virally-induced weight loss (FIG. 17C) and prolonged median survival time of mice by 20% (FIG. 17D). As the mosquito-borne WNV infection model used in this study (survival rate: 0%, median survival time: 7 days in control) is much more virulent than a mosquito-borne Zika infection model (survival rate: 30-45%, mean survival time: 12-25 days in control) (69), the 1.5-day delay of fatal outcome is noteworthy. Overall, these results indicate that blocking AgBR1 suppresses virus replication and/or dissemination at early time points and alters mosquito-borne WNV infection.

[0219] An experiment was then performed to determine whether the effects observed with AgBR1 were specific to this protein or if any antigenic *Ae. aegypti* salivary gland protein was capable of affecting WNV infection. An additional protein was selected: the putative 34 kDa family secreted salivary protein (SP). Sera from mice bitten by mosquitoes showed strong reactivity to the SP protein (69). SP has also been reported as a salivary gland protein that was upregulated during flavivirus infection (67).

[0220] Identical passive immunization experiments were performed using SP antiserum. SP antiserum did not alter viremia, weight loss or survival time after lethal mosquitoborne WNV infection. The results are shown in FIGS. 17G-17I. In FIG. 17G, the virus levels in blood of mice treated with SP antiserum, fed by an infected mosquito. Blood was collected every other day for 7 days from mice fed on by WNV-infected mosquitoes and analyzed by qRT-PCR. WNV RNA levels were normalized to mouse β actin RNA levels. Mice immunized with naïve serum served as controls. Error bars represent mean±SEM. Each data point represents one mouse. Normalized viral RNA levels were analyzed using one-tailed Wilcoxon-Mann-Whitney test. In FIG. 17H, the weight of mice fed by an infected mosquito. Mice were monitored daily after WNV infection. Error bars represent mean±SEM. Weight at each time point were compared using one-tailed Wilcoxon-Mann-Whitney test. FIG. 17I shows the results of survival assessment by a Gehan-Wilcoxon test (n=8/each group biologically independent samples pooled from two separate experiments).

[0221] An experiment was performed to determine whether AgBR1 antibodies alter the early host responses after feeding by mosquitoes infected with WNV. Proinflammatory genes including Il1b, Il6 and Tnfa, were significantly suppressed at the bite site in mice treated with AgBR1 antiserum at 6 hours post feeding (FIG. 17E). In addition to these genes, the expression levels of Mmp9, which is previously reported to play an important role in WNV entry into the brain (73), and those of Nlrp3, which is a key molecule of NLRP3 inflammasome that drives IL-1ß signaling and is involved in WNV control in the central nervous system (CNS) (74) were examined. As shown in FIG. 17H, Mmp9 and Nlrp3 genes were significantly suppressed in AgBR1 antiserum-treated mice at 6 hours post feedings. Interestingly, no differences in the expression level of any of these genes was seen 24 hours after bites with WNV- infected mosquitoes (FIG. **17**F). The present study of WNV took advantage of immunocompetent wild type mice, as contrasted with the immuno-incompetent Ifnar^{-/-} Ifngr^{-/-} mice, such that it is possible that the difference of mouse models could cause the time lag of early host responses. Overall, these results demonstrated that AgBR1 antiserum suppresses the early local host responses after WNV-infected mosquito feedings, suggesting that the suppression of host responses by AgBR1 antibodies leads to the delay of viral dissemination and fatal outcome.

[0222] AgBR1 antiserum also specifically recognizes a protein in *Culex pipiens* salivary glands (FIG. **17**J). Since *Ae. aegypti* AgBR1 has high homology (amino acid identities=80%) with *Culex* spp. chitotriosidase-1 protein, which is predicted in silico to be secreted from the salivary gland, it is hypothesized that this *Culex* protein recognized by AgBR1 antiserum may have similar function during WNV infection.

[0223] In conclusion, this example demonstrates that passive immunization with AgBR1 antiserum delays lethal *Ae. aegypti*-borne WNV infection in mice, similar to that shown for Zika virus infection transmitted by the same mosquitoes. A strategy of targeting individual arthropod salivary factors such as AgBR1 might be broadly applicable to other mosquito-borne pathogens.

```
LIST OF SEQUENCES:
```

LOC5573204 (SEQ ID NO: 1; Genbank Accession No. ABF18180.1) MWFFKVGALLFLAALVSANNATTGPKVLCYYDGOMSLREGLGKITVTDIE

LALPFCTHLLYGFAGVNPETYRLKALDESLELDSGKGOYRLATTLKRRYP

NLKVLLSVGGYKDLTEEKPFEKYLTLLESAGSRTAFVNSVYSTLKTYDFD

GLDLAWQFPQTKPKRIRGWTGKVWHGFKKLFTGDSVLDPKADEHREEFTA

LVRDLKNALVADNFILGLTVLPHVNESIFMDVPLLKDNLDYVNLASFDQQ

TPERNPKEGDYTAPIYEPSERVEGNNVDAEASYWQGTPAGKIVIGIPTYG

RGWKLVEKSGITGVPPIPADGPSIPGPHSGINGFYSWAEVCAKLPNPGNA

NLQGADQPLRKIGDPTRRFGAYAFRIPDENEEHGIWLSYEDPDTAGNKAA

YVKAKGLGGISIFDLGNDDVRGACAGDKFPILRAAKYRL

LOC5578630 (SEQ ID NO: 2; Uniprot Accession No. Q1HRF7-1) MSPSKKILVLLFFPILLVSSHPIPAEDPAKQCNLSEDDLTKLKAAISSAS SAKAANEDILPSTTLAACPMLKNFTEMLKTVATDMEVLKTQGVSNMEVQL LRESFEEKLNDLAKNKDIFERQANQDTSKAEGEMVEKINKLQLEMAKLQE EIEEQTKQMYVDMIEYIFERLKMNDTEAIDSYAQIVMKTKMHELIMKLKT DRLVLWEMVKYVEGKKNKWVGRKVLNTILDQVNKLKLYKPEEVEIGKNSL

 $\verb|VVVWCWKFNSETVYGTTDEDQKSFHLAKLFFPKEKGCKECADVKSRTMCN||$

NDYPKVMVKAFG

(SEQ ID NO: 31)

-continued		-continued				
LOC5578631 (SEQ ID NO: 3; Uniprot Acc	cession	LOC5578630 Antigenic Peptide				
No. 5578631) METSLPITVVFLIVLITGAQTKPTQGSCTLTDEDISI	DIKSAVQKASKAAV	NSLVVVWCWK	(SEQ	ID	NO :	14)
NDIVLDPTLIDKCPMLEKITASLKSVATEIVQMRDS	ATSTDQVDQLKQNF	LOC5578630 Antigenic Peptide				
EDQVNQIVKSRDIFEKQSGTQATKEHGEMLERMTALQ	QVKVTELEQQIAKQ	KKILVLLFFPILLVSSHPIPAE	(SEQ	ID	NO :	15)
TASMYEDMAELIFQRLQMNSTESVRSYTKHMMEEKLI	SELMNKLETNYRIY	LOC5578630 Antigenic Peptide				
LGALRFLNHMNDQELIGKVFDGILKRLGDMKADSDD	/KENGRNLLVNLLC	LPSTTLAACPMI.	(SEQ	ID	NO :	16)
WTVNNDFLGKKYKERQVDLYRMALKFYPKTYEKAAN	EADVRSRQFCEENF	LOC5578630 Antigenic Bentide				
PANLITWFAVSWNDRG			(SEQ	ID	NO :	17)
LOC5567956 (SEQ ID NO: 4; Uniprot Acc No. 5567956) MFPPRKFLLSSFILAALHVTAAPLWDAKDPEQLRFI1	cession ISRCMEDWYPKAKN	IOC5578630 Antigenic Peptide	(SEO	ID	NO :	18)
PKAALQNWLGWKLEPSDDQATQCYTKCVLEKIGFYEI	PGEKRFKGVRVMQQ	SFHLAKLFFP	. ~			
WETFHKYLNADREKVHDLTSTFDFIPPLKSSSCSEVI	FEAFKKVNGKHSET	LOC5578630 Antigenic Peptide	(9 F 0	Π	NO.	10)
IRAILFGKGESSKKYYQEKGVKIKQKEQSLFMHCEAI	NYPKGSPQRKDLC	LNTILDQVNKLKLYKPEEV	(SEQ	ID	110.	19)
GIRKYQMGSGIVFERHMECIFKGLRYMTSKNELDVDF	SIARDFIVVKKKPD	LOC5578630 Antigenic Peptide	(CEO	TD	NO	201
AMKAMMKTCKANLKEKNPGKIAVHYYKCLMNDSKVT	IDFKEAFDYREVRS	TKLKAAISSASSA	(SEQ	ID	110 :	20)
KDYFAALTGKLKPYSRSDVRKQVDDIDKIQCS		LOC5578630 Antigenic Peptide	(()	TD	10	0.1.)
LOC5580038 (SEQ ID NO: 5; Uniprot Acc	cession	QMYVDMIEYIFE	(SEQ	ID	NO :	21)
No. Q8T9T8-1) MKYLLTFLMALSLVNLMLTRPTPEDDGGTSEEPQTQE	TTGSDEKNGASEE	LOC5578631 Antigenic Peptide				
PNADDASKPDDVEEKGDDDTAKKEDDGESKDGEGSE	KSDKEKGEPKNDPR	SLPITVVFLIVLITG	(SEQ	ID	NO :	22)
ETYNKVIEQLDQIKVDNVEDGHERSELAADIQRYLR	IPIVDVIGSAGDFS	LOC5578631 Antigenic Peptide				
KIAKCFKSMVGDAKKAIEEDVKGFKECTAKKDSNAY	QCSQDRSTVQDKIA	NLLVNLLCWTV	(SEQ	ID	NO :	23)
KMSSKIASCVASNRS		LOC5578631 Antigenic Peptide				
LOC5573204 Antigenic Peptide	(SEO ID NO. ()	ALQVKVTELEQQIAKQ	(SEQ	ID	NO :	24)
NLKVLLSVGGY	(SEQ ID NO: 6)	LOC5578631 Antigenic Peptide				
LOC5573204 Antigenic Peptide	/ ·- ·	IKSAVOKASKAAVNDIVLDPTLIDKCPML	(SEQ	ID	NO :	25)
FKVGALLFLAALVSA	(SEQ ID NO: 7)					
LOC5573204 Antigenic Peptide		hotss/west Antigenic Peptide	(SEQ	ID	NO :	26)
TALVRDLKNALVADNFILGLTVLPHVNES	(SEQ ID NO: 8)	ITASLKSVATEIV				
LOC5573204 Antigenic Peptide		LOC5578631 Antigenic Peptide	(SEQ	ID	NO :	27)
KITVTDIELALPFCTHLLYGFAGV	(SEQ ID NO: 9)	ANLITWFAVS				
LOC5573204 Antigenic Peptide		LOC5578631 Antigenic Peptide	(9 F 0	Π	NO.	201
TAFVNSVYSTLKTY	(SEQ ID NO: 10)	IGKVFDGILKR	(SEQ	ID	140.	20)
LOC5573204 Antigenic Pentide		LOC5578631 Antigenic Peptide				
	(SEQ ID NO: 11)	ERQVDLYRMALKFYPKT	(SEQ	ID	NO :	29)
		LOC5567956 Antigenic Peptide				
LUC55/3204 Antigenic Peptide	(SEQ ID NO: 12)	ATQCYTKCVLEKI	(SEQ	ID	NO :	30)
IOCEE72204 Antigonia Dontido		1005567956 Antigenic Pentide				
LUCSS/3204 Antigenic Peptide		Locobo / Soo Antrigenite reputde				

(SEQ ID NO: 13)

RGACAGDKFPILRAAK

KIAVHYYKCLMIND

25

-continued		-continued							
LOC5567956 Antigenic Peptide		LOC5568702 (SEQ ID NO: 45; Uniprot Accession							
RKFLLSSFILAALHVTAAPLW	(SEQ ID NO: 32)	MVQFPVLLITLSLAFEVHSSYAENRRLQLVRDIDGTQQLVNPNPYRVLNA							
LOC5567956 Antigenic Peptide	/	${\tt HLERSFNAQSDIIFRLYTRKNPEKHQILKPNDTSSILNSNFNADLPTRFL}$							
RDFIVVKKK	(SEQ ID NO: 33)	IHGWNQNGESDILIELRRSYLSVEDFNVIGVDWGEG	3ALTINYVMARKRVE						
LOC5567956 Antigenic Peptide	/	SVGLVTSQLIDTLVDASGVILDSIYVIGHSLGAHVA	\GIVGKHQRGQLNTI						
TFDFIPPLKSSSCSEVFEAFKK	(SEQ ID NO: 34)	VGLDPAGPLFSLNSSDILNQNHAQYVEMVSTGARLI	JGTYEPLGDANFYPN						
LOC5567956 Antigenic Peptide		GGLEQAGCGLDLFGI CAHARSWI YFAETVTNGKGFI	<pre>GIKCAMIEDLEGET</pre>						
LFMHCEALNYP	(SEQ ID NO: 35)	CNLSGLPNVWMGGEPSNHERGVKGIFMVHTNSEAPI	7AKD						
LOC5567956 Antigenic Peptide		LOC110675548 (SEQ ID NO: 46; Uniprot	Accession						
YFAALTGKLKPY	(SEQ ID NO: 36)	No. Q17NB9) MILQFWVVTFSVLFAARADENHSILIKLNDLDHRF	IQMFSQQFYRHTQQV						
LOC5580038 Antigenic Peptide	(CEO ID NO. 27)	TDRVSALKISIDTNLLELDQQIQQALDGIQSNESS	SASATKPPGLTTIP						
KMSSKIASCVAS	(SEQ ID NO: 37)	IGSEPRVPALYERERYGGDWLVVMHRYDGSVKFDR	IWAEYRDGFGMVGQE						
LOC5580038 Antigenic Peptide		FWYGLERLHQLTKEKSYELMVEMEDFNGSLKYAWY)KFVVGPEEQRYALV						
LLTFLMALSLVNLMLT	(SEQ ID NO: 38)	ELGTFNGTTDGDSLKPHKGSGFSTYDNDDFGCSNK	AKGGWWYYSGKCYG						
LOC5580038 Antigenic Peptide		SSLTGIWKNELAYSSIVWMKFSDVSNTPLKLVRMMIRPKN							
SELAADIQRYLRNPIVDVIGSA	(SEQ ID NO: 39)	LOC5566287 Antigenic Peptide	(CEO TE NO 47)						
LOC5580038 Antigenic Peptide		LWIIIFAILCVAQA	(SEQ ID NO: 47)						
NKVI EQLDQI KVDNV	(SEQ ID NO: 40)	LOC5566287 Antigenic Peptide							
LOC5580038 Antigenic Peptide		FYSYVEAVSQVLADLE	(SEQ ID NO: 48)						
FSKIAKCFKSMVG	(SEQ ID NO: 41)	LOC5566287 Antigenic Peptide	/ · · · · · · · ·-						
LOC5580038 Antigenic Peptide		GSVIPVSYE	(SEQ ID NO: 49)						
AYQCSQDRSTVQDK	(SEQ ID NO: 42)	LOC5566287 Antigenic Peptide							
LOC5566287 (SEQ ID NO: 43; Uniprot A	Accession	ITQIKHRIKHLLQEKCNLCSAK	(SEQ ID NO: 50)						
No. Q17NC0) MNRQLWIIIFAILCVAQAEEDNPTTEKMEELGIAT:	INNFTREFYSYVEAV	LOC5566287 Antigenic Peptide							
SQVLADLELTTTASITQIKHRIKHLLQEKCNLCSA	(AEGPALDQGYVTTS	KKQVPLKF	(SEQ ID NO: 51)						
NGSVIPVSYEQTRFGGGWIVLMQRYDGTVRFNRSW	AEYRDGFGMVGHEFW	LOC5566287 Antigenic Peptide							
LGLERIHQMTKDAEYELMIEMQDFEGNYKYAGYDA	FAVGPEEERYPLAKV	YPLAKVG	(SEQ ID NO: 52)						
GKFNKTAYVDSFGKHRGYGFSTYDNDDNGCSNQYGI	RGGWWYYRKSCFGAS	LOC5566287 Antigenic Peptide							
LTGIWQNKQDWKSISWVWFSTEKKQVPLKFARMMMI	RLKTAE	RKSCFGASLTG	(SEQ ID NO: 53)						
LOC5567958 (SEQ ID NO: 44; Uniprot 2	Accession	LOC5566287 Antigenic Peptide							
No. P18153) MKLPLLLAIVTTFSVVASTGPFDPEEMLFTFTRCM	EDNLEDGPNRLPMLA	GWIVLMQ	(SEQ ID NO: 54)						
KWKEWINEPVDSPATQCFGKCVLVRTGLYDPVAQKI	FDASVIQEQFKAYPS	LOC5566287 Antigenic Peptide							
LGEKSKVEAYANAVQQLPSTNNDCAAVFKAYDPVHI	(AHKDTSKNLFHGNK	LDQGYVTT	(SEQ ID NO: 55)						
ELTKGLYEKLGKDIRQKKQSYFEFCENKYYPAGSD	KRQQLCKIRQYTVLD	LOC5566287 Antigenic Peptide							
DALFKEHTDCVMKGIRYITKNNELDAEEVKRDFMQV	/NKDTKALEKVLNDC	YAGYDAFAVG	(SEQ ID NO: 56)						
KSKEPSNAGEKSWHYYKCLVESSVKDDFKEAFDYRI	EVRSQIYAFNLPKKQ	LOC5566287 Antigenic Peptide							
VYSKPAVQSQVMEIDGKQCPQ		TAYVDSF	(2EÖ TI NO: 27)						

-continued

-continued

00110111404		00110111404	
LOC5566287 Antigenic Peptide	(SEQ ID NO: 58)	LOC5568702 Antigenic Peptide	(SEQ ID NO: 77)
ISWVWFS		AQYVEMV	
LOC5566287 Antigenic Peptide	(SEQ ID NO: 59)	LOC5568702 Antigenic Peptide	(SEO ID NO· 78)
WLGLERI		NTIVGLDPAGPLFSLNSS	(610 15 10. 70)
LOC5567958 Antigenic Peptide	(SEQ ID NO: 60)	LOC5568702 Antigenic Peptide	(CEO ID NO. 70)
PLLLAIVTTFSVVAST		KGIFMVH	(SEQ ID NO: 79)
LOC5567958 Antigenic Peptide	(SEQ ID NO: 61)	LOC5568702 Antigenic Peptide	
WHYYKCLVESS		CNLSGLPNV	(SEQ ID NO: 80)
LOC5567958 Antigenic Peptide	(SEQ ID NO: 62)	LOC5568702 Antigenic Peptide	
PVDSPATQCFGKCVLVRTG			(SEQ ID NO: 81)
LOC5567958 Antigenic Peptide	(SEO TD NO: 63)		
CAAVFKAYDPVHKA	(510 15 16. 00)	LOC5568702 Antigenic Peptide	(SEQ ID NO: 82)
LOC5567958 Antigenic Peptide	(CEO ID NO. 64)	PTRFLIHG	
YREVRSQIYAFNLPKKQVYSKPAVQSQVM	(SEQ ID NO: 64)	LOC5568702 Antigenic Peptide	(SEO ID NO: 83)
LOC5567958 Antigenic Peptide	(SDIIFRLY	(<u>z</u> ,
KVEAYANAVQQLP	(SEQ ID NO: 65)	LOC5568702 Antigenic Peptide	(SEO ID NO. 84)
LOC5567958 Antigenic Peptide	(CEO ID NO. (C)	GIKCAMI	(BEQ ID NO. 04)
YDPVAQKFDASVIQEQFKAYPSL	(SEQ ID NO: 66)	LOC5568702 Antigenic Peptide	
LOC5567958 Antigenic Peptide		GARLLGTY	(SEQ ID NO: 85)
QQLCKIRQYTVLDDA	(SEQ ID NO: 67)	LOC110675548 Antigenic Peptide	
LOC5567958 Antigenic Peptide	(SEO ID NO. (8)	QFWVVTFSVLFAA	(SEQ ID NO: 86)
LEKVLNDC	(SEQ ID NO: 68)	LOC110675548 Antigenic Peptide	
LOC5567958 Antigenic Peptide		LAYSSIVWMKFSDVSNTPLKLVRM	(SEQ ID NO: 87)
YFEFCENKYYPA	(SEQ ID NO: 69)	LOC110675548 Antigenic Pentide	
LOC5567958 Antigenic Peptide			(SEQ ID NO: 88)
FKEHTDCVMKG	(SEQ ID NO: 70)		
LOC5568702 Antigenic Peptide		LOCII0675548 Antigenic Peptide	(SEQ ID NO: 89)
FPVLLITLSLAFEVHSS	(SEQ ID NO: 71)	EPRVPALY	
LOC5568702 Antigenic Peptide		LOC110675548 Antigenic Peptide	(SEQ ID NO: 90)
VESVGLVTSQLIDTLVDASGVILDSIYVIGHSLGAH	(SEQ ID NO: 72) VAGIVGKH	HSILIKLND	
LOC5568702 Antigenic Peptide		LOC110675548 Antigenic Peptide	(SEO TO NO. 91)
QAGCGLDLFGICAHARSWIYFAE	(SEQ ID NO: 73)	RYALVELG	(<u>-</u> ,
LOC5568702 Antigenic Peptide		LOC110675548 Antigenic Peptide	
LQLVRD	(SEQ ID NO: 74)	TDRVSALKIS	(SEQ ID NO: 92)
LOC5568702 Antigenic Peptide		LOC110675548 Antigenic Peptide	, <u> </u>
TQQLVNPNPYRVLNAH	(SEQ ID NO: 75)	SGKCYGSSLTG	(SEQ ID NO: 93)
LOC5568702 Antigenic Peptide		LOC110675548 Antigenic Peptide	
TINYVMAR	(SEQ ID NO: 76)	SLKYAWYDKFVVGP	(SEQ ID NO: 94)

26

-continued

LOC110675548	Antigenic	Peptide	(550	тр	NO ·	95)	
LERLHQL			(SEQ	тD	110:	937	
LOC110675548	Antigenic	Peptide	(SEO	TD	NO·	96)	
DTNLLELDQQIQQ	ALDG		(522	10		50,	
LOC110675548	Antigenic	Peptide	(SEO	ID	NO:	97)	
SQQFYRHTQQ			2			,	
LOC110675548	Antigenic	Peptide	(SEO	ID	NO:	98)	
DGSVKF			~~~~~			,	
LOC110675548	Antigenic	Peptide	(SEO	ID	NO:	99)	
PPGLTTIPIG						/	

(Aedes aegypti Polypeptide)

D

MAKAPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERL IGDAAKNQVAMNPTNTIFDAKRLIGRKFDDPAIQADMKHWPFDVISVEGK PKIQVEYKGETKNFFPEEISSMVLTKMKETAEAYLGKTVSNAVVTVPAYF NDSQRQATKDAGTISGLNVLRIINEPTAAAIAYGLDKKTAGERNVLIFDL GGGTFDVSILSIDDGIFEVKSTAGDTHLGGEDFDNRLVNHFAQEFKRKHK KDLSTNKRALRRLRTACERAKRTLSSSTQASIEIDSLFEGTDFYTSITRA RFEELNADLFRSTMEPVEKAIRDAKMDKASIHDIVLVGGSTRIPKVQKLL QDFFNGKELNKSINPDEAVAYGAAVQAAILHGDKSEEVQDLLLLDVTPLS LGIETAGGVMSVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVFEGERAMT KDNNLLGKFELSGIPPAPRGVPQIEVTFDIDANGILNVTALEKSTNKENK ITITNDKGRLSKEDIERMVNEAEKYRSEDEKQKETISAKNALESYCFNMK ATMEDDKLKDKITDSDKTLIMDKCNDTIKWLDANQLAEKEEYEHRQKELE SVCNPIITKLYQSAGGAPGGMPGFPGGAPGAGAGAAPGAGSGSGFTIEEV

(Aedes aegypti Polypeptide) SEQ ID NO: 101 MSVNRTISAHQAAKEHVLAVSRDFISQPRLTYKTVSGVNGPLVILDEVKF PKFAEIVQLRLNDGTVRSGQVLEVSGSKAVVQVFEGTSGIDAKNTVCEFT GDILRTPVSEDMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIY PEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIAAQICRQAGLVKH TGKSVLDEHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLA NDPTIERIITPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAR EEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPNDDITHP IPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKD HSDVSNQLYACYAIGKDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFIS QGNYENRTVFESLDIGWQLLRIFPKEMLKRIPASILAEFYPRDSRH (Aedes aegypti Polypeptide) SEQ ID NO: 102

SEQ ID NO: 102 MPANIIMKILITSILILKLAIHVVPQHLISSGASAVESKPVSARPTYEDY KRQRENFLQAEEYHFLGANVTLNENEQLVNKFLMRLKLEEMVKGFNDSYN -continued

FIPARHIFEVLDRFGQSKVFKVIQRLPKGGVLHAHDMALGSTDLIVNATY RENLWQKGNFGVSHGPQFKFSKEKPGKEWSLVSEIRQWMTDKVYDAKVGE IFSLYNADPLNAYKSLDDVWSKFQNLFGSLAPLITFAPVWRQYYHDSLKQ FYDDHVQYLEFRGVLPDVYDLDGKIYSAEEIVQMYYEETEEFKSSHPEFI GAKFIYAPGRFATDDEFLKIIDTAKRLHKKFPTFLAGFDLVGQEDPGRSL LEFAPALLKLPASINFFFHAGETNWYGMKTDQNLIDAVLLGSKRIGHGFA VLKHPKVLKEIKRRQICIEINPISNQVLKLVQDQRNHPAALLFSDNYPVV VSSDDPSFWRSTPLSHDFYVAFTGIASAKQDLRLLKQLALNSIEYSAMNS EEKTSAKEKWSQAWHDQISALATDIVAGSV

(Aedes aegypti polypeptide)

SEQ ID NO: 103 MAGRPGYSEVIFLYVVSVAVIARATDNMPVNKDVSKLFPLTLIHINDLHA RFEETNMKSNVCTQKDQCIAGIARVYQKIKDLLKEYESKNPIYLNAGDNF QGTLWYNLLRWNVTADFIKKLKPAAMTLGNHEFDHTPKGLAPYLAELNKE GIPTIVANLVMNNDPDLKSSKIPKSIKLTVGKRKIGIIGVLYDKTHEIAQ TGKVTLSNAVEAVRREAAALKKDNIDIIVVLSHCSYEEDKKIAAEAGDDI DVIVGAHSHSFLYSPDSKQPHDPKDKVEGPYPTLVESKNKRKIPIVQAKS FGKYVGRLTLYFDEEGEVKNWEGYPVFIDHKVQQDPQILKDLVPWRAKVE AIGSTVVGETMIELDRDSCRDQECTLGVLYADGFADQYTNDTFRPFAIIQ AGNFRNPIKVGKITNGDIIEAAPFGSTADLIRLKGADIWDVAEHSFALDD EGRTNCLQVSGLRIVIDISKPVRSRVKKIEVMDYTNPKSDKLKPLDKEAE YYIVVPSYLADGKDGFSAMKRATARRTGPLDSDVFKNYVEKIKKVDNLKL GRVIVCKGSKCT

(Aedes aegypti polypeptide)

SEQ ID NO: 104 MIDQCACSHQLSAALSTEDMLRTSSIVFLTCCLTFLIEGSSFKLKIIHFN DIHARFDEVTNSSSPCSGNGETCVAGIARLVTTIEKLRKQNENHLVLNAG DVFQGTIWYTLLKWNVSQQFMNMVKADAMTLGNHEFDDSFPVLIPFLENT KNVTPVVVSNLVFPKQLSRDVTKFRSLIKEDPLVLTVGGQSIGIIGVIFD ETDKIGNSDPLKFKSSIETVRIAAKQLKSKGVNIIIVLSHCGVFDDKKIA EQAGEDIDIIVGGHTHTLLYNGDPPSKHAALDKYPIVVETGNNHKVLIVQ AFCHGHYVGNIDLTFDDEGEITAFEGQPIYQENRIEKNALVEARVRELRK DVEVKSLVKVGESKLELSNDCRLKDCTFGSVLADAYVWHPRSRSNAPMIA MIHPGNFRISLAAGAITRGQILTALPFNSNANRVTVLGSTIKKAIEFGTS INPRRCSFNALQTAGIKIDVDYGKPVGNRTVILLKTGGKYKRLVESKKYD ILVNSYVFKGGDGFDMFKHLAVKGRAPFDAELLEQYIVARKGIQKSGLLQ SRMNVSHVEKALSEVKSCKOSF

(Aedes aegypti polypeptide)

SEQ ID NO: 105 MCSTGFCLVFFLAQVVFQMNYSEQQTTVVMENGAISESEINVDIVMEQYI LKFYTKRFVEGQNLVVAPLLTFRVFMSLYKAMDASAKFDLHSLLGIQQDT SVEKMSEIEAFANKHTLPVDEKQISVETRLYYDKSIGNARSVLTAKSLKP

SEO TD NO: 100

-continued

IGTSFSDKRAFCEKVNSWIRNAPIKGTDNLVRDYDLNNETQAFVAGALSI YWNTOLKSSTDOKGFOGENVKFLEGSISAGYAKLDNLKVEVVELISDKVD GVKLWLIMPDRASSIKDFNDOLSVESIROIENGLTAOKVDVSLALPMVTI EYNSQEDAYVTEVFEVFSSLFTKPSVKLVDGKDDLYVIKNFLMKCILRFV ESDASADSKAQSTGMLVKFDRPFVMMMLSKEGNVPILLANYFSPTDKLRA LEAKERRLKAEANEHLDL

(Aedes aegypti polypeptide) SEO ID NO: 106 MNLWIIGFCSIYFACSVRSQFTSVPVSYDAQNDHNEFSWNAFKKVFTDYK ENFVMSPYSLRRLFSCFOGVKLLTSASGTNLOOELSNVLKIVPNOOPSGO DHRPYVEOWVRYSSAKYLNRTAMAVAIGSEKVSTVYESIINNCVIYTGHL OPSNAORMGOVINDALKNITNNAVOSYLTDTDINPNWKFFAIDSWOFEGL WKFKFQEEFSATCYFYASREKKGLTKFLYLEEMLKYGNFPEWNVQAVELP YHDOSPLSCLLMMPLDGNYESLIHSMNOSRFKEVLSKLNEIKTTVRIPOF GLOTTVPGROLLESMGMKVPFNOGVFKVFEOGODVALGEIVOKMEMSIAA DGEKQAQSFVDKRQDKQFTAHQPFLFVVYDRNELVPILVGFYLKTPPEAA MGLEDKOKCDDPPVGYO

(Aedes aegypti polypeptide) SEQ ID NO: 107 MNRQLWIIIFAILCVAQAEEDNPTTEKMEELGIATINNFTREFYSYVEAV SQVLADLELTTTASITQIKHRIKHLLQEKCNLCSAKAEGPALDQGYVTTS NGSVIPVSYEQTRFGGGWIVLMQRYDGTVRFNRSWAEYRDGFGMVGHEFW LGLERIHQMTKDAEYELMIEMQDFEGNYKYAGYDAFAVGPEEERYPLAKV GKFNKTAYVDSFGKHRGYGFSTYDNDDNGCSNOYGRGGWWYYRKSCFGAS LTGIWONKODWKSISWVWFSTEKKOVPLKFARMMMRLKTAE

SEO ID NO: 108 MILQFWFVTFSVLFAARADENHSILIKLNDLDHRFTQMFSQQFYRHTREV TDRVSALKASIDTNLLELDQQIQQALDGIQSNESSSSTSATKSSGLTTIP I GSEPRVPAL YERERYGGDWL VVMHRYDGSVKFDRTWAEYRDGFGMVGOE FWYGLERLHQLTKEKSYELMVEMEDFNGNLKYAWYDKFVVGPEEQRYALV ELGTFNGTTDGDSLKPHKGSGFSTYDNDDFGCSNKYAKGGWWYYSGKCYG SSLTGIWKNELAYSSIVWVKFSDVSNTPLKLVRMMIRPKN

(Aedes aegypti polypeptide)

(Aedes aegypti polypeptide)

SEO ID NO: 109 MSPSNKILVLLLFPILLVSSHPIPAEDPAKOCNLSEDDLTKLKAAISGAS SAKAANEDILPNTTLAACPMLKNFTEMLKTVATDMEVLKTQGVSNMEVQL LRESPECTINDLAKNKDIFEROANODTSKAEGEMVEKINKLOLEMAKLOE EIEEQTKQMYVDMIEYIFERLKMNDTEAIDSYAQIVMKTKMHELIMKLKT DRLVLWEMVKYVEGKKNKWVGRKVLNTILDOVNKLKLYKPEEVEIGKNSL VVVWCWKFNSETVYGTTDEDOKSFHLAKLFFPKEKGCKECANVKSRTMCN NDYPKVMVKAFG

-continued

(Aedes aegypti polypeptide) SEO ID NO: 110 MKLPLLLAIVTTFSVVASTGPFDPEEMLFTFTRCMEDNLEDGPNRLPMLA KWKEWINEPVDSPATQCFGKCVLVRTGLYDPVAQKFDASVIQEQFKAYPS ${\tt LGEKSKVEAYANAVQQLPSTNNDCAAVFKAYDPVHKAHKDTSKNLFHGNK}$ ELTKGLYEKLGKDIRQKKQSYFEFCENKYYPAGSDKRQQLCKIRQYTVLD DALFKEHTDCVMKGIRYITKNNELDAEEVKRDFMQVNKDTKALEKVLNDC KSKEPSNAGEKSWHYYKCLVESSVKDDFKEAFDYREVRSOI YAFNLPKKO VYSKPAVQSQVMEIDGKQCPQ

SEO ID NO: 111 $\tt MHSPKSFLLLAVVFVALRVTAAPLWNAKNPEQLQYIAARCMEEWSPKAKD$ PKAALKNWMEWKLQPSNEEATQCYTKCMLENIGYYEPGEKRLKGVRVMQQ WETENRYOSADRNKVHDLTDTFDFIKPLKSSSCSDVFNAYKDVHAKHLET IKAILFCDGKSAEKYYKDKGKNVKQKGESIFVHCEEIHYPVGSPQRNELC KVRKYELGTGKPFENLMECIFKGVRYFNDKNELNIDEIARDFTOVGKKPD AVKAAMENCKSKTKETDPGKKAVEYYKCLLADSKVKKDFMEAFDYREIRS

(Aedes aegypti polypeptide)

KDYYAQITGKLKPYSASDVRKEVNDIDSNKCV

(Aedes aegypti polypeptide)

(Aedes aegypti polypeptide)

SEQ ID NO: 112 MKLKVYICQVIFSFLAVSVFCEENCNIPESELSKIDHVLRHMEKPIYSEE QFASDNEECTNLLNGIHAQLRRLTQRYKLMNKGYVKVEEYQRMADDYEKQ LKTLNDELVELQQHTSEKASATIAKLKEDIKKLDEEVGTLHEKLKGIKQD FEKVKRDLCVTYLNSNOMSKAKAKLKEMASTYLIEIVOOOLNKSNANIMP MLEFSAAI PDLDDMGEAYKEI YKFLEEOKRLEGEDSVLLEATVLKMNASL KEGSNITDERRTQIEGLLKDLATKSTIVFSTWTKELKKINDAVVIKNALD HMFVSOMKVFGALVGDTSDFGSIRNFVKLTVVCNNYYKVAAYKELIDRKI GNALGT IMFDLLTLEVNEMKFDPHVPDE I PKLFEATLSSLPNSLTELRTC LGKVOTYNKKTNKCVVATGNDFDVHKDKLGDFYRVVVADYGCTSFRLEAS GDKASVRIVTPSGNPMSNVNLHLEGNSLHNYVATPKSNKPDRTPSSSDEW ILDANYNNDTIKIESQFSDYKTKKTEVDHLLVRDINHLPHVLVARYGFMG LKNSDAKDTIEWNLKCGS

SEO ID NO: 113 METSLPITVVFLIVLITGAOTKPTOGSCTLTDEDISDIKSAVOKASKAAV NDIVLDPTLIDKCPMLEKITASLKSVATEIVQMRDSAISTDQVDQLKQNF EDOVNOTVKSRDTFEKOSGTOATKEHGEMLERMTALOVKVTELEOOTAKO TASMYEDMAELIFQRLQMNSTESVRSYTKHMMEEKLEELMNKLETNYRIY LGALRFLNHMNDOELIGKVFDGILKRLGDMKADSDDVKENGRNLLVNLLC WTVNNDFLGKKYKEROVDLYRMALKFYPKTYEKAANEADVRSROFCEENF PANLITWFAVSWNDRG

SEO ID NO: 118 MAGKPGIQLFVIFILLSSFAAVVWTTDNMPADKDVSKLFPLTLIHINDLH ARFDETNMKSNACTAKDOCIAGIARVYOKIODLLKEYKSKNAIYLNAGDN FOGTLWYNLLRWOVTADFITKLKPTAMTLGNHEFDHTPKGLAPYLAELDK AGIPTLVANLVMNDDPDLKSSKIOKSIKVTVGGKTIGIIGVLYDKTHEIA QTGKVTLSNAVETVKREAAALKKDKVDIIVVLSHCSYDEDKKIAKEAGQD

MSTLKKISDEDRESKFGYVFAVSGPVVTAERMSGSAMYELVRVGYYELVG EIIRLEGDMATIQVYEETSGVTVGDPVLRTGKPLSVELGPGIMGSIFDGI ORPLKDINELTSSIYIPKGVNIPCLSRTOSWGFNPLNVKVGSHITGGDLY GLVHENTLVKHKLLVPPRAKGTVRYIAPPGNYTVDDIILETEFDGEINKW SMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFPCVQGGTTAIPGAFG CGKTVISQALSKYSNSDVIIYVGCGERGNEMSEVLRDFPELSVEIDGVTE SIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMADSTSR WAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGS VSIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKLAORKHFPSINWLIS YSKYMRALDDFYDKNFOEFVPLRTKVKEILOEEEDLSEIVOLVGKASLAE TDKITLEVAKLLKDDFLOONSYSAYDRFCPFYKTVGMLRNMIGFYDMARH AVETTAOSENKITWNVIRDSMGNILYOLSSMKFKDPVKDGEAKIKADFDO

VNVITWFAVSRAAEGWGLRGTL

LYEDLOOAFRNLED

(Aedes albopictus polypeptide)

(Aedes aegypti polypeptide)

(Aedes albopictus polypeptide) SEO TD NO: 116 MKTSLPIVVLLTAVISGVHPNPTPKSCTVSEEDLTTIRNAIQKASRASLD ${\tt DVNLDEDLIAKCPLLKTITASLKSVASEIATLKDTGISEEQVDELKQSYE}$ QQVNEIVKSRDIFEKQSGGDVMKEQGAMINRMTELQVQVAQLQQQIGEQT SRMYDDMAELIFORLAMNSTDSIRNYTAHMMEOKLHTLMTKLETNYRIFL GALRYLDHLGDOPLIDKVFDGILKRLDEMSLETNKERENGKYVLVNLLCW ${\tt TVNNRFLTEKYRKKQLELFRIALKFYPKTGNKEANEADIRGRQFCDANFP$

I KAI LFCDGKSAEKYYKDKGKTSKOKKVLCTGS

(Aedes albopictus polypeptide) SEO ID NO: 115 MHSLKSSPLLAAVFLALHVTGAPFWNAKNPDELQSIAARCMDEWSPKAKD PKAALKNWKEWRLOPSNDEATKCYTKCMLENIGFYEPAEKRLKGVRIMOO WETESRYOSADREKVHDLTDTENETRPLKSSSCTDVENAYKDVHARHLET

KMSSKIASCVASNRS

(Aedes aegypti polypeptide) SEO ID NO: 114 MKYLLTFLMALSLVNLMLTRPTPEDDGGTSEEPQTQETTGSDEKNGASEE PNADDASKPDDVEEKGDDDTAKKEDDGESKDGEGSEKSDKEKGEPKNDPR ETYNKVIEQLDQIKVDNVEDGHERSELAADIQRYLRNPIVDVIGSAGDFS KIAKCFKSMVGDAKKAIEEDVKGFKECTAKKDSNAYQCSQDRSTVQDKIA

-continued

(Aedes albopictus polypeptide) SEO ID NO· 121 MCSTGLCLVFFIAQAVFLMNYSEQQTTVVMENGAISEKETNVDEVMTQFI MKFYTKRFVEGQNLVVAPLLIFRVFMSMYGEMDASAKFDLHSLVGIPQEA SAEKMSEFEAFANKYALPVGVORNLVETRLYYDKSIGKIRSSLEAKSLKP FPTNFADKQTFCNEVNTWIRNTPINGTDDLVHDYYLNNETAAFVAGALSI DWNMOLKTSSDVKAFEGENVKFLEGSTSTRYAKLDNLKVEVVEMVTDNLS GVKLWLIMPDEASSIKKFNDQLSIASIRQIEKGLTALQKEDVALTVPMVT IEYNSOEDAYVTEVFEVFSSLFSKPAVKPWFRVSVKDDLYAVKNFLMKCI LRFVGSDAPADSKGOSTEKAVSFNRPFVMMILSKESNVPILLANYFSPKD KLRALEAKERHLRMKAKEHLDL

SESYNG

SEO ID NO: 117

(Aedes albopictus polypeptide) SEO ID NO: 120 MAFNGIALLITATIFIGSCYANYCDSSLCRQGPHVACNAPQQFGPACGNN RKFVPMDSKLKTIILNTHNKLRAEIANGMHGFPQAARMPTLVWDDELAHI AS FNARKCIFAHDKCRNTROFKFSGONLAITTFYGFNFOAGDRAENFTOE WFNEHKDCPKSYVDAYPSSHRGPOIGHFTOLVNDRTWKVGCSMMHYITNG KMINYYLVCNYTMTNMIGEPIYTKGRTGSKCETGONPOFKGLCSPREKVK

KRSSAKDTIEWYLKCAS

(Aedes albopictus polypeptide) SEO ID NO: 119 MKWSVYIALLVFAFLTSPVFSEENCNIPESELSKIDDVLRHMEKPIYSED HYTSNNEECTNLLNGIHAOLRRLTORYKLMNKGYVKVEEYKRMAEDYENO LKTLNAELLELQEHTSDKANAAIAKLKEDIKKLDEDVDTLHNKLKGIKQD FEKVKRDLCLTYLNSNOMSNAKAKVKEMASTYLTETTOORLNTKYANTTP MLDFSTAIPDLDDRGEAYKEIYKFIETHERLDGEDAVLLEASLLKMNATL KEGSNITDERRTEIEKMLKELAEKSAVVFKTWSTELKGIEDTIIKYALDH $\verb"LFVNQMKVFGGIVGDTFEFAPIRHLLKLLVVCNNYYKVAAYKELIDRKIG"$ NVLGTIMFDLTTLEANEMSFDLHVPDEIPKLFNATLGSLPNSLTQLLPCL NKVHVYNAKTNMCIVAPEDRFDVQQEKLTDFHRVVLAKYGCTAFRLESSP NKASVKFVKPSGNALSSINLQLENDQWHSHVGTPTANKPDRKPSSSDEWI LDANYVNDTVKIQSEFNEYKASQAEVDHLLVMDVKYLPHVVVGRYGVRGL

WGRVIVCKAGSPCT

IDVIVGAHSHSFLYSKESNKPYDQKDKIEGPYPTIVESNNKRKIPIVQAK SFGKYVGRLTLYFDNEGEVKHWEGYPEFIDNKVKODPKILEALIPWRKKV OEIGSTKVGETTIELDRDSCRDKECTLGVLYADAFADHYTNSSFRPFAII QAGNFRNPIKVGKITNGDIIEAAPFGSTADLIRLKGDSLWAVAEHSFALD DENRTNCLQVSGLRIVIDPSKKIGSRVVKIDVMDNRNPKSEDLKPLDKNA EYFIALPSYLADGKDGFSAMKKATARWTGPLDSDVFKSYVEKIKKVDKLK

-continued

(Aedes albopictus polypeptide) SEQ ID NO: 122 MKILLAVVFVLNLTNLAVPQHLITSSPSLPESKPVGRRPTYEEYKQQRES FLQTEDHHLLGANVTLTENEQLVNKFIMQMKLDEMEKGFNDSYNFIPARH IFEVLDRFGQSKVFNVIRRLPKGGVLHAHDMALGSTDLIVNATYLENLWQ KGNFGLNHGPEFKFSRERPGKEWSLVSEIRQWMTNEVYDAKVAEVFSLYN ADPLNAYKSLDNVWSKFQNLFACLAPLITFAPVWRQYYHDSLKQFYDDHV QYLEFRGVLPEVYDLDGKVYSAEEIVQLYYEETEQFKAKYPDFIGVKFIY APGRYASDEEFQKLLDTTNRLHKKFPNFLAGFDLVGQEDPGRSLFEFAPA LLKLPASINFFFHAGETNWYGMKTDQNLVDAVLLGTKRIGHGFAVLKHPK VLKEIKRRQICIEINPISNQVLKLVQDQRNHPAALLFSDNYPVVVSSDDP SFGRSTPLSHDFYVAFTGIASAKQDWRWLKQLALNSIEYSAMNSEEKTVA KEKWNOAWDHOFSRLAVDFVAGKILENWIMKIV

(Aedes aegypti Polypeptide)

SEQ ID NO: 123 MQPRILHLTVLATIIGVALTANVPSTPGRKLNIPAPSNAGKTKGIEIWRI ENFQPVAVPKAEYGKFYTGDSYLVLNTNEDKNKKKSYDVHFWLGLKTTQD EAGSAAILTVQLDDLLGGGPVQHREVEGSESDLFLSYFKGGIRYLEGGVA SGFKHVQTNAAHPKRLFHVKGAKNIRLRQVELAVSAMNKGDCFILDSDRD VFVWVGPKANRVEKLKAINVANDIRDRDHNGRATVHIVDEFSTLSDQESF FKSLGSGSPSTVPDQSTAKEDAAFEKADAARVELYKVTDSKAGKLAVEPI TQKPLKQEMLKPDDAFILDTGSGLYVWIGKSATQQEKTQSLVKAQEFIKN KKYPAWTPVERIVQNAETAPFKHFFQTWRDAGSTGSRLV

(Polypeptide)

(Polypeptide)

SEQ ID NO: 124 MKSIVSITITVLAIICEGQATNYCDPSLCARGTPHIACNGLSTLSRTCGA GSFEVALNRADQQLIVDLHNKLRSKVAMGQQKNSAGQRFQQACRMATLQW DPELAHIAATNARRCVYGHDTCRNTASMKFAGQNIAIKYYYGMTFTNEQL LTGFINSWFSEFKDATPQQIARYPANYRGPAIGHFTQIVSDRTSRIGCSM VSYNKNGFINKLFVCNYGLTNIINQPVYVAGNVCSGCTTGCNKVFPGLCN TAERVSNNP

SEQ ID NO: 125 MKVYICQVIFSFLAVSVFCEENCNIPESELSKIDHVLRHMEKPIYSEEQF ASDNEECTNLLNGIHAQLRRLTQRYKLMNKGYVKVEEYQRMADNYEKQLK TLNDELVELQQHTSEKASATIAKLKEDIKKLDEEVGTLHEKLKGIKQDFE KVKRDLCVTYLNSNQMSKAKAKLKEMASTYLIEIVQQQLNKSNANIMPML EFSAAIPDLDDMGEAYKEIYKFLEEQKRLEGEDSVLLEATVLKMNASLKE GSNITDERRTQIEGLLKDLATKSTIVFSTWTKELKKINDAVVIKNALDHM FVSQMKVFGALVGDTSDFGSIRNFVKLTIVCNNYYKVAAYKELIDRKIGN ALGTIMFDLLTLEVNEMKFDPHVPDEIPKLFEATLSSLPNSLTELRTCLG KVQIYNKKTNKCVVATGNDFDVHKDKLGDFYRVVVADYGCTSFRLEASGD

		-
CONT	п	nued
COILC	-	iiucu

${\tt KASVRIVTPSGNPMSNVNLHLEGNSLHNYVATPKSNKPDRTPSSSDEWIL$

DANYNNDTIKIESQFSDYKTKKTEVDHLLVRDINHLPHVLVARYGFMGLK

NSDAKDTIEWNLKCGS (Oligonucleotide)

SEQ ID NO: 126 TAATACGACTCACTATAGGGGATGGACAGATGTCTCTTCGTG

(Oligonucleotide) SEQ ID NO: 127 TAATACGACTCACTATAGGGCCAAATCCAATCCATCGAAA (Oligonucleotide) SEQ ID NO: 128 TAATACGACTCACTATAGGGGTGAGCAAGGGCGAGGAG (Oligonucleotide)

SEQ ID NO: 129 TAATACGACTCACTATAGGGCATGATATAGACGTTGTGGCTGTT

TABLE 1

Endogenous AgBR1 concentration of an A. aegypti salivary gland.												
Salivary gland extract (SGE, µg)	Relative Band Intensity	Estimated AgBR1 (ng)	Concentration (µM)									
4	0.0111	1.6	1.6-8.2									

TABLE 2

List of upregulated genes at the bite site of mice treated with control (naive) serum.									
Gene ID	Total counts	P-value (Naive- control* Bites vs. Naive- control* No bites)	FDR step up (Naive- control* Bites vs. Naive- control* No bites)	Ratio (Naive) control* Bites vs. Naive- control* No bites)					
Serpine1	9.20E+01	5.30E-06	2.67E-02	5.59E+00					
Chil3	5.58E+01	1.79E-06	2.67E-02	2.01E+02					
Ly6c1	5.53E+02	5.80E-04	9.70E-02	2.03E+00					
Ccl9	1.82E+02	3.19E-05	7.01E-02	8.69E+00					
Il1b	2.91E+01	3.58E-06	2.67E-02	2.41E+01					
Msr1	5.87E+01	3.48E-05	7.01E-02	1.15E+01					
Ccl2	8.25E+01	1.76E-05	5.31E-02	3.01E+01					
Ly6a	1.45E+03	1.63E-04	9.70E-02	2.49E+00					
Ifitm3	1.01E+03	4.38E-05	7.01E-02	3.15E+00					
Hsd11b1	1.23E+02	4.85E-03	1.67E-01	1.77E+00					
Cd53	1.35E+02	3.85E-05	7.01E-02	3.29E+00					
Ccl7	1.04E+02	4.63E-05	7.01E-02	2.07E+01					
Ccl8	3.03E+02	1.93E-04	9.70E-02	3.02E+00					
Hp	1.59E+03	3.42E-02	3.01E-01	2.92E+00					
Lilrb4a	7.02E+01	5.78E-05	7.28E-02	7.41E+00					
Ms4a6d	8.59E+01	9.10E-05	8.61E-02	6.10E+00					
Ccl6	3.16E+02	1.03E-02	2.09E-01	1.67E+00					
Adm	8.62E+01	9.03E-03	2.03E-01	3.22E+00					
Lyve1	2.09E+02	2.66E-03	1.46E-01	4.01E+00					
Slfn2	7.26E+01	2.94E-04	9.70E-02	4.01E+00					
Wfdc17	8.84E+01	2.27E-04	9.70E-02	4.79E+00					
Akr1b8	9.98E+01	3.92E-04	9.70E-02	2.32E+00					
Lrgl	1.82E+02	4.84E-02	3.35E-01	2.23E+00					
Icam1	1.41E+02	8.49E-05	8.56E-02	2.78E+00					
Cxcl14	3.03E+02	9.29E-04	1.13E-01	2.10E+00					
Ifitm2	1.94E+03	6.61E-04	1.04E-01	1.87E+00					
Ctsb	3.28E+03	5.24E-03	1.70E-01	1.58E+00					

	List of upregulated g treated with c	enes at the bi ontrol (naive)	te site of mice serum.		List	of upregulated g treated with co	enes at the bit ontrol (naïve)	te site of mice serum.	
Upp1	1.37E+01	8.52E-04	1.09E-01	4.35E+00	Fcer1g	1.53E+02	2.65E-03	1.46E-01	3.38E+00
Bst1	2.99E+01	5.09E-04	9.70E-02	3.15E+00	Ptx3	2.16E+01	1.81E-03	1.30E-01	5.03E+00
Timp1	1.49E+02	4.23E-04	9.70E-02	1.32E+01	Cd14	6.62E+01	1.72E-03	1.30E-01	3.77E+00
Cend3	4.42E+02 2.94E+02	1.81E-03 3.00E-03	1.30E-01 1.48E-01	1.//E+00 2.00E±00	Cd/ Mpeg1	1.69E+01 1.56E+02	4.83E-02 2.34E-03	3.35E-01 1.40E-01	2.41E+00 2.62E±00
Li1r4b	5.34E+01	6.39E-05	7.29E-02	5.52E+00	Cpne2	1.51E+02	7.32E-04	1.40E-01 1.05E-01	1.92E+00
Ifi204	2.09E+01	2.16E-02	2.62E-01	2.96E+00	Pdia4	4.10E+02	5.88E-03	1.79E-01	1.69E+00
Ctla2a	1.39E+02	2.31E-03	1.40E-01	3.49E+00	Creld2	2.13E+02	2.69E-04	9.70E-02	1.86E+00
Capn2	4.59E+02	1.98E-03	1.31E-01	1.72E+00	Atrip	1.59E+01	3.82E-02	3.15E-01	1.65E+00
Tmsb10	3.60E+02	6.31E-04	1.03E-01	2.56E+00	C3ar1	5.14E+01	6.02E-03	1.80E-01	3.00E+00
Coari Serpina3m	1.41E+01 3.18E+01	1.25E-03 6.71E-04	1.20E-01 1.05E-01	5.38E+00 6.61E+00	Svep1 Gm3788	2.91E+02 1.07E+01	4.85E-02	3.35E-01 1.30E-01	2.98E+00 3.38E+00
Cer5	1.90E+01	4.71E-04	9.70E-02	1.09E+01	Rnasel	8.01E+01	3.56E-02	3.05E-01	1.70E+00
Gsta4	5.53E+01	1.03E-04	9.12E-02	4.54E+00	Thbs1	1.83E+03	4.43E-02	3.28E-01	1.59E+00
Ddr2	4.69E+02	9.25E-04	1.13E-01	2.70E+00	C1qb	3.71E+02	3.90E-02	3.15E-01	2.05E+00
Ifi207	2.69E+01	1.74E-02	2.47E-01	2.14E+00	Ftl1	2.68E+03	1.58E-02	2.38E-01	1.63E+00
Cib	1.58E+02	4.37E-02	3.26E-01	2.05E+00	Ptprc	1.11E+02	1.36E-02	2.27E-01	1.89E+00
Gm6560	1 2.00E+01 6.28E+02	3.06E-03	9.70E_02	4.03E+00 1.92E+00	Angpu4 Relt	7.60E+01 2.52E+01	2.04E-02 5.73E-03	2.38E-01	2.13E+00 3.00E+00
Fcgr2b	1.62E+02	1.59E-03	1.30E-01	2.79E+00	Pdia6	9.19E+02	2.85E-03	1.48E-01	1.73E+00
Ccr1	4.16E+01	1.68E-04	9.70E-02	7.47E+00	Serpina3e-ps	1.36E+01	1.51E-03	1.30E-01	4.57E+00
AB124611	1.28E+01	9.80E-04	1.14E-01	4.62E+00	Clec4n	4.65E+01	5.79E-04	9.70E-02	4.75E+00
Spp1	1.26E+02	8.04E-04	1.08E-01	6.08E+00	Wisp2	2.20E+02	7.80E-03	1.91E-01	3.16E+00
Hspa5	2.59E+03	4.64E-04	9.70E-02	1.79E+00	Fgr	2.53E+01	2.47E-03	1.42E-01	3.83E+00
Trim40 Clec7a	1.01E+01 2.60E+01	3.43E-02	9.70E-01	1.92E+00 8.27E+00	Layn Pedhb22	1.39E+01 3.76E+01	1.80E-02 1.25E-02	2.52E-01 2.20E-01	2.34E+00 2.10E+00
Dok2	5.82E+01	4.70E-03	1.66E-01	3.96E+00	Adam8	1.38E+02	5.23E-05	7.20E-01	2.74E+00
Srgn	1.02E+02	5.09E-04	9.70E-02	4.53E+00	Lgmn	8.96E+02	8.53E-03	1.98E-01	2.26E+00
Sprr1b	1.09E+02	2.63E-04	9.70E-02	2.37E+01	March1	2.46E+01	4.18E-02	3.22E-01	1.53E+00
Calr	2.92E+03	3.18E-04	9.70E-02	2.12E+00	Clec4a2	5.48E+01	2.46E-03	1.42E-01	5.46E+00
Clec5a Madada	1.64E+01	1.58E-03	1.30E-01	3.67E+00	Dab2	4.96E+02	1.77E-02	2.49E-01	2.56E+00
Pxdc1	9.46E+01	6.38E-03	1.08E-01	1.51E+00	Cd300lb	5.02E+02 1 58E+01	2.04E-02 7.28E-03	2.38E-01	2.13E+00 4.52E+00
Pdpn	7.96E+01	9.06E-03	2.03E-01	2.62E+00	Slco2a1	4.88E+02	3.11E-03	1.48E-01	1.54E+00
Serpina3n	1.93E+03	4.84E-04	9.70E-02	6.74E+00	Slc11a1	1.75E+01	2.38E-02	2.67E-01	3.01E+00
Ptafr	2.48E+01	4.85E-03	1.67E-01	2.74E+00	Ceacam1	2.84E+01	3.88E-02	3.15E-01	2.64E+00
Mrc1	3.18E+02	3.42E-03	1.52E-01	3.22E+00	Emilin2	1.63E+02	2.20E-02	2.63E-01	3.08E+00
1 mem 8	3.89E+01 4.55E+01	1.07E-03	1.15E-01 1.30E-01	4.00E+00	Dnajb11 Pnf141	4./1E+02 3.86E+02	3.48E-04 1.41E-03	9.70E-02 1.20E-01	1.50E+00
Gm15922	2.45E+01	3.32E-03	1.50E=01	4.81E+00	N1m3	9.65E+00	1.05E-03	1.15E-01	4.64E+00
Cd163	1.66E+02	6.23E-03	1.81E-01	2.30E+00	Itgb2	9.96E+01	1.89E-02	2.53E-01	3.05E+00
Samhd1	2.75E+02	2.34E-04	9.70E-02	2.42E+00	Mcemp1	1.05E+01	1.40E-03	1.29E-01	5.17E+00
Lcp2	2.05E+01	4.09E-03	1.62E-01	2.68E+00	Tmem150a	4.66E+01	1.87E-02	2.53E-01	1.73E+00
Ifnar2 Mfad10	1.29E+02	5.96E-03	1.80E-01	1.67E+00	Cyba Itaal	1.65E+02	2.91E-02	2.84E-01	2.16E+00
Cer2	1.93E+02 1.38E+02	1.95E=04	9.70E=02	6.36E+00	mgai Gm9844	8.95E+01	3.39E=03	1.55E=01	2.03E+00 2.40E+00
Tnfaip2	9.92E+01	6.50E-03	1.82E-01	1.56E+00	Slc15a3	5.39E+01	1.67E-03	1.30E-01	1.84E+00
Cd68	1.53E+02	1.50E-02	2.34E-01	2.29E+00	Pfn1	1.74E+03	5.76E-04	9.70E-02	1.63E+00
Lbp	2.77E+02	9.22E-03	2.04E-01	2.45E+00	Fam49b	1.71E+02	3.62E-03	1.55E-01	1.86E+00
Lrrc25	2.93E+01	1.42E-03	1.29E-01	3.85E+00	Ssbp4	1.49E+02	1.48E-02	2.34E-01	1.50E+00
Anxa5 Hdc	4.44E+01 3.97E+01	3.30E-02 1.70E-03	3.05E-01	2.01E+00 3.52E+00	Cyth4 Gda	7.95E+01 2.89E+02	1.40E-02 6.60E-03	2.28E-01 1.82E-01	3.25E+00 2.17E±00
Lvz2	1.25E+03	1.18E-02	2.19E-01	2.37E+00	Svk	8.97E+01	1.21E-02	2.20E-01	1.88E+00
Cebpd	1.35E+02	1.29E-02	2.24E-01	1.96E+00	Samsn1	1.35E+01	8.64E-03	1.99E-01	3.22E+00
Clec4d	2.23E+01	1.87E-04	9.70E-02	2.17E+01	Nqo1	1.33E+02	6.75E-05	7.29E-02	2.30E+00
Tnfrsf1b	6.68E+01	2.67E-03	1.46E-01	3.77E+00	Pik3r5	3.23E+01	1.47E-02	2.33E-01	2.30E+00
Manf	4.85E+02	1.55E-04	9.70E-02	1.86E+00	Tpsab1	2.10E+02	5.58E-03	1.74E-01	2.82E+00
HK3 Cyn7b1	1.48E+01 3.90E+01	5.47E-03	9.70E_02	3.31E+00	Man	2.00E+03 1.14E+03	9.00E-03 3.24E-02	2.03E = 01 2.95E = 01	2.61E+00
Parm1	3.93E+01	2.22E-02	2.63E-01	1.96E+00	F630028O10Rik	1.14E+05 1.25E+01	5.57E-04	9.70E-02	5.60E+00
Msn	8.65E+02	4.35E-03	1.64E-01	1.90E+00	AI662270	2.54E+01	2.21E-02	2.63E-01	2.76E+00
Plek	1.10E+02	7.40E-04	1.06E-01	3.14E+00	Cd200r1	1.63E+01	1.63E-02	2.41E-01	3.25E+00
Tlr13	3.26E+01	6.50E-04	1.04E-01	4.59E+00	Pf4	1.79E+02	1.43E-02	2.29E-01	3.06E+00
Semasa Slo2793	0.32E+01 3.50E+02	2.90E-02 3.33E.04	∠.84E-01 9.70E 02	2.07E+00 3.11E+00	rull Smim3	0.18E+03 7.18E+01	1.4/E-02 3.50E-02	2.33E-01 3.03E-01	1.00E+00
Csf3r	2.63E+02	1.43E-04	9.70E-02 9.70E-02	1.39E+00	Sash3	2.15E+01	2.41E-02	2.67E-01	2.86E+00
Nek6	1.13E+02	1.20E-02	2.20E-01	1.54E+00	Cd48	3.84E+01	4.03E-02	3.17E-01	1.93E+00
Tubb6	2.04E+02	9.10E-03	2.03E-01	2.76E+00	Mcoln2	2.57E+01	1.52E-02	2.35E-01	2.57E+00
Capns1	1.15E+03	5.29E-03	1.71E-01	1.65E+00	Adgrg3	1.46E+01	2.66E-02	2.78E-01	2.84E+00
Lyn Kwt16	7.33E+01	3.21E-03	1.48E-01	2.74E+00	Corola	2.53E+02	2.16E-02	2.62E-01	2.72E+00
Anhh1in	8.15E+02 7.21E+01	2.27E-04 1.65E-02	9.70E-02 2.41E-01	4.32E+01 2.50E+00	r Kill Pak1-rs7	4.24E+03 5.00E+02	4.04E-03 1 32E-02	1.02E-01 2.25E-01	1.79E+00 1.58E+00
Sirpb1c	2.98E+01	5.22E-04	9.70E-02	1.59E+01	Tyrobp	1.88E+02	9.84E-03	2.09E-01	2.62E+00
Gm27029	1.25E+01	1.16E-02	2.18E-01	2.33E+00	Gm5537	5.58E+02	1.17E-02	2.19E-01	1.59E+00

TABLE 2-continued

	List c	of upregulated go treated with co	enes at the bit ontrol (naïve)	e site of mice serum.		List c	of upregulated g treated with co	enes at the bi ontrol (naïve)	te site of mice serum.
Annueñ 6.56F+01 3.68E-02 3.08E-01 3.181E+02 3.28E-04 9.70E-01 1.68E-01 1.89E-02 3.08E-01 1.98E-01 4.58E-00 4.58E-00 1.98E-01 Grant 3.00E-01 2.58E-00 2.58E+00 2.58E+	Slc7a8	4.67E+01	1.65E-02	2.41E-01	2.89E+00	Gm3839	1.15E+01	4.20E-02	3.22E-01
Fam6ba 1.81E+02 3.291-04 9.70E-02 1.66E+00 Hyoni 4.35E+02 4.12E-03 3.20E+0 5.25E+03 1.14E+02 6.35E+03 1.14E+03 6.35E+03 1.13E+04 6.35E+03 1.13E+04 6.35E+03 1.13E+04 6.35E+03 1.13E+04 6.35E+03 1.13E+04 6.35E+03 1.13E+04 7.35E+03 7.35E+03 7.35E+03 7.35E+03 7.35E+03 7	Armc6	6.56E+01	3.68E-02	3.10E-01	1.54E+00	Prss12	1.39E+02	8.73E-03	1.99E-01
Gent 300E+01 6.25E-03 1.81E-02 2.81E+00 18100550028k 1.34E+02 4.82E-03 3.20E- Spr2.2 1.352+03 6.12E-64 1.01E-01 2.83E+01 Riph3 4.06E+01 9.21E-02 2.07E- Diala 2.37E+00 3.37E+00 3.32E+00 2.01E+00 1.01E+00 2.01E+00 1.01E+00 2.01E+00 3.02E+00 2.01E+00 3.02E+00	Fam69a	1.81E+02	3.29E-04	9.70E-02	1.66E+00	Hyou1	4.35E+02	4.51E-03	1.64E-01
Cal2 2.2848-00 2.848-00 2.878-00 Gm837 1.148-02 6.868-00 2.878-00 Trin 1.055-04 2.012-04 <td>Gent1</td> <td>3.90E+01</td> <td>6.25E-03</td> <td>1.81E-01</td> <td>2.81E+00</td> <td>1810055G02Rik</td> <td>1.34E+02</td> <td>4.12E-02</td> <td>3.20E-01</td>	Gent1	3.90E+01	6.25E-03	1.81E-01	2.81E+00	1810055G02Rik	1.34E+02	4.12E-02	3.20E-01
Spr2.2 1.35:e403 6.12E-04 1.01E-01 2.383:e401 KpN3 4.691:e411 2.01E-02 2.387:e101 2.27E:e Molog 6.441:e101 2.17E:e101 2.37E:e101 2.27E:e Molog 6.441:e101 2.17E:e101 2.37E:e101 </td <td>Ccl22</td> <td>2.26E+01</td> <td>2.84E-02</td> <td>2.83E-01</td> <td>3.27E+00</td> <td>Gm5837</td> <td>1.14E+02</td> <td>6.56E-03</td> <td>1.82E-01</td>	Ccl22	2.26E+01	2.84E-02	2.83E-01	3.27E+00	Gm5837	1.14E+02	6.56E-03	1.82E-01
Prime J. Joshi and J. Juli - 40 2.881-01 J. J. Juli - 40 Rame 1.944-141 J. Juli - 40 Juli - 40 Molaka 3.5778-04 J. Stratevi J. Stratevi Juli - 40	Sprr2a2	1.35E+03	6.12E-04	1.01E-01	2.83E+01	Ripk3	4.69E+01	9.61E-03	2.07E-01
WOOLS S.J.F.HU 4.J.B.HU 2.J.A.HEVI L.A.HEVI L.I.M.HEVI	Pirb	7.96E+01	2.93E-02	2.85E-01	2.92E+00	Mmp9	6.44E+01	2.34E-02	2.67E-01
Dataline 2.051101	Myolg	5.5/E+01	4.37E-02	3.26E-01	2.24E+00	Kan	1.04E+03	1.1/E-03	1.19E-01
Numb 1.23E-00 2.34E-00 2.34E-00 Collad 1.77E-01 2.32E-02 2.54E-00 1.77E-01 2.32E-02 2.56E-01 3.37E-02 3.56E-01 3.37E-02 3.56E-01 3.37E-02 3.56E-01 3.37E-02 3.56E-01 3.37E-01 3.57E-00 3.57E-03 3.66E-02 3.14E-01 3.57E-03 3.67E-03 3.37E-01 3.37E-00 Gmfg per 3.35E-042 3.24E-03	Madaha	2.20E+01	2.39E-02	2.07E-01	4.12E+00	Ma2	7.01E+02	2.91E-03	1.48E-01
	Neto2	4.03E+01	7.31E 03	2.40E-01	3.30E+00	Cel24	1.77E+01	3.19E-02	2.93E-01
Phrig 1.55E+02 1.15E+00 Cmrfg 2.50E+01 3.87E+02 3.07E+02 3.37E+02 3.27E+02 3.37E+02 3.27E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+02 3.37E+01 3.07E+03 3.37E+02 3.37E+01	Illell	1.22E+01	2 39E=02	2.67E = 01	3.21E+00	L rrc59	5.81E+02	2.03E=02 4.04F=04	9.70E=02
Shiflit Shiflit SABE-40 LSOE-02 SABE-40 LSOE-02 SABE-40 SABE-40 LASE-02 ZIABE-40 LASE-02 ZIABE-40 LASE-02 ZIABE-40 LASE-02 ZIABE-40 LASE-02 ZIABE-40 LASE-02 ZIABE-40 SABE-40 ZIABE-40	Ptpri	1.25E+02	1.13E-02	2.16E-01	1.51E+00	Gmfg	2.50E+01	3.57E-02	3.06E-01
Spnr2a3 7.74E+01 5.39E-44 9.70E-02 3.08E+01 Tubb5 2.95E+03 1.01E+02 2.14E+ Serpiabla 4.03E+02 4.88E-03 1.27E+04 Dinfr 1.31E+02 3.24E+ Serpiabla 4.03E+02 2.82E+01 1.77E+04 Graf477 5.33E+02 1.84E+02 2.51E+ Flot2 3.35E+02 2.26E+01 1.82E+04 Graf171 2.30E+01 1.95E+02 2.34E+ Nikbie 3.26E+01 1.55E+01 2.75E+00 Evit2 2.81E+04 4.97E+02 3.34E+ Cleckal 5.67E+01 2.52E+02 2.57E+00 Fykl 5.25E+02 2.25E+02	Sdf2l1	8.91E+01	1.90E-02	2.53E-01	1.89E+00	Ddx39	3.46E+02	8.84E-04	1.11E-01
Pin2 1.72E+01 4.88E+03 1.67E+01 S.17E+00 Cmrfip-ps 3.66E+01 3.22E+02 3.02E+02 3.02E+01 <t< td=""><td>Sprr2a3</td><td>7.74E+01</td><td>5.39E-04</td><td>9.70E-02</td><td>3.08E+01</td><td>Tubb5</td><td>2.95E+03</td><td>1.10E-02</td><td>2.14E-01</td></t<>	Sprr2a3	7.74E+01	5.39E-04	9.70E-02	3.08E+01	Tubb5	2.95E+03	1.10E-02	2.14E-01
Seepinbla 40.8E+02 3.26E-01 1.77E+00 Diff 1.31E+02 7.84E-03 1.92E- Gm9025 Flot2 3.35E+02 2.08E-01 1.82E+00 Gm11451 2.09E+01 1.95E-02 2.35E- 01 Flot2 2.33E+01 3.86E-02 2.38E-01 1.74E+00 Gm11451 2.09E-01 4.74E-02 3.14E- 02 3.16E-01 3.06E-02 2.38E-01 1.74E+00 Cdkn2d 1.24E-02 3.32E-02 3.32E- 02 3.32E- 02 2.38E-01 2.57E+00 Pigk1 5.29E+02 2.82E- 02 2.83E- 02 2.38E-01 3.52E+00 2.95E+01 3.52E+00 Sors2 4.03E+01 4.56E-02 2.97E- 2.97E Clocka1 3.30E+00 3.38E-01 3.32E+00 Sors2 4.03E+01 4.35E-02 2.33E- 2.33E+00 3.30E+02 2.32E+02 4.03E+01 4.35E-02 2.32E+ 2.33E- 2.33E+01 3.30E+02 2.32E+02 3.32E+02 3.30E+02 3.32E+02 3.3	Pira2	1.72E+01	4.88E-03	1.67E-01	5.17E+00	Gmfg-ps	3.56E+01	4.32E-02	3.24E-01
Gm9025 2.82E+01 3.00E+02 2.86E-01 2.17E+00 Gm4737 5.23E+01 1.84E-02 2.51E- Flot2 3.35E+00 3.05E+00 Cst2ra 4.93E+01 4.97E+02 3.34E- Nikbie 3.26E+01 1.58E-02 2.53E-01 2.74E+00 Cst2ra 4.93E+01 4.75E-02 3.26E-01 Tmprs11g 8.20E+02 1.03E-04 9.70E- TM4H+00 Cst2ra 4.93E+01 4.35E-02 2.83E- Cleckal 5.07E+01 3.32E+01 3.25E+00 Spil 8.95E+01 3.35E-02 2.83E- Zyx 4.88E+02 3.26E-01 3.25E+00 Spil 8.95E+01 4.35E-02 3.26E- Ecscr 7.33E+01 4.97E-02 3.38E-01 2.39E+00 Socrs2 4.03E+01 4.85E-02 3.35E-02 ZomptA 4.93E+02 3.35E-01 3.32E+01 1.82E+02 Socrs2 4.03E+01 8.85E+02 3.35E-02 3.32E+01 1.82E+02 Socrs2 4.03E+01 8.85E+02 3.35E-02 3.32E+01	Serpinb1a	4.03E+02	4.35E-02	3.26E-01	1.77E+00	Dhfr	1.31E+02	7.84E-03	1.92E-01
Flot2 3.584-02 2.638-00 1.8284-00 Gm11451 2.098-01 1.578-02 2.585- NRbie 3.2684-01 1.586-02 2.388-01 1.748+00 Cdkn24 1.248+01 4.991-04 4.777-02 3.484- Thyi 8.208+02 1.038-02 2.388-01 2.778+00 Pekl 2.818-01 3.216-02 2.888- Cicedat 5.678+00 3.288-02 2.958-01 1.528+00 Spil 8.958+01 3.316-02 2.978- Cicedat 3.038-01 3.288-01 2.958+01 S.058+02 A.018+01 3.306-03 1.908- Z010528A1118 3.0316+02 3.288-01 3.288+01 3.016-03 1.908- 2.388- 1.908+00 Crepkl2 1.118+03 3.016-03 1.908- 2.388- 1.908+00 Crepkl2 1.118+03 3.016-03 1.908- 2.388- 1.908+00 1.908+01 1.908+02 2.388- 1.908+01 1.908+02 2.388- 1.908+02 1.908+02 2.388- 1.908+02 1.908+02 2.388-01 <t< td=""><td>Gm9025</td><td>2.82E+01</td><td>3.00E-02</td><td>2.86E-01</td><td>2.17E+00</td><td>Gm4737</td><td>5.23E+02</td><td>1.84E-02</td><td>2.51E-01</td></t<>	Gm9025	2.82E+01	3.00E-02	2.86E-01	2.17E+00	Gm4737	5.23E+02	1.84E-02	2.51E-01
Illing 2.43E+01 3.16E-02 3.15E-01 3.01E+00 CsE2ra 4.93E+02 4.97E-03 1.67E-03 1.67E-03 1.67E-04 3.04E-04 2.97E-01 1.67E-04 3.04E-03 2.97E-01 2.75E-03 1.67E-04 3.02E-02 2.82E-02 3.82E-01 3.52E+00 Sorts2 4.03E+01 4.56E-02 3.32E-01 3.82E-01 3.38E-01 3.36E-01 Sorts2 4.03E+01 4.36E-02 3.32E-02 3.26E-01 1.86E-02 3.36E-02 3.36E-01 Sorts2 4.03E+02 3.36E-02 3.36E-01 Sorts2 4.03E+02 3.36E-02 3.36E-01 Sorts2 4.33E+02 3.36E-02 3.36E-02 3.36E-02 3.36E-02 3.36E-02 3.36E-02 3.36E-01 Sorts2 4.35E+02 3.36E+02 <td>Flot2</td> <td>3.35E+02</td> <td>2.20E-02</td> <td>2.63E-01</td> <td>1.82E+00</td> <td>Gm11451</td> <td>2.09E+01</td> <td>1.95E-02</td> <td>2.55E-01</td>	Flot2	3.35E+02	2.20E-02	2.63E-01	1.82E+00	Gm11451	2.09E+01	1.95E-02	2.55E-01
NRbie 3.26E+01 1.59E+02 2.38E-01 1.74E+00 Cdkn2d 1.24E+02 4.99E+03 1.67E-04 9.70E- Tmprss1lg 4.99E+01 6.20E+02 2.24E+00 Evi2b 2.81E+01 4.52E+02 2.88E- Zyx 4.88E+02 2.24E-01 2.32F+01 S.91E+00 Sorea2 4.03E+01 4.52E+02 2.32E- Zyx 4.88E+02 3.28E-01 3.29E+00 Sorea2 4.03E+01 4.56E+02 2.32E- Zolto32A1118 3.05E+03 2.44E+04 4.97E+02 1.55E+00 Crispid2 1.11E+03 3.30E+03 1.30E- Zolto32A1118 3.05E+03 1.42E+01 1.56E+00 RerIs 3.36E+01 1.54E+03 1.30E- Kr6b 9.71E+02 2.43E+04 9.70E+02 1.69E+00 RerIs 3.36E+03 1.34E+02 3.39E+03 1.34E+02 3.39E+03 1.34E+02 3.39E+03	Il2rg	2.43E+01	3.86E-02	3.15E-01	3.01E+00	Csf2ra	4.93E+01	4.77E-02	3.34E-01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nfkbie	3.26E+01	1.59E-02	2.38E-01	1.74E+00	Cdkn2d	1.24E+02	4.99E-03	1.67E-01
$\begin{split} \begin{tabular}{ll} limits 14 $126 $1.50 $1.388-01 $2.678+00 $1.502 $2.818+01 $3.281-02 $2.838-$2.828-02 $2.838-$2.828-02 $2.838-$2.828-02 $2.838-$2.828-02 $2.838-$2.828-$2.2838-$2.828-$2.2838-$2.828-$2.2838-$2.838-$2.2388-$2.2388,$2.23888,$2.2388,$2.2388,$2.2388,$2.2388,$2.23888,$2.2388,$2.23888,2.238	Thy1	8.20E+02	1.03E-02	2.09E-01	2.42E+00	Lrp8	4.18E+01	3.10E-04	9.70E-02
Checkal So/F=01 3.28E=02 2.39E=01 1.27E+00 Fight S.28E+02 2.82E=02 2.37E= Esser 7.33E+01 4.97E=02 3.38E=01 2.39E+00 Sorsa2 4.03E+01 3.50E=03 3.50E=04 3.50E=04 3.50E=04 3.50E=04 3.50E=02 1.11E+03 3.50E=03 3.50E=04 3.50E=04 3.50E=02 3.53E=01 3.50E=03 3.50E=03 1.50E= 2610528A11Ekk 3.03E=04 4.91E=02 3.37E=01 1.56E+00 Ruvbl2 1.58E+03 1.56E=03 1.56E+03 1.57E+04 3.57E+01 1.57E+04 3.57E+01 1.57E+00 Gm554 2.21E+01 1.57E+02 2.57E+01 2.33E+02 2.22E+02 2.38E+01 1.57E+00 Gm554 2.17E+01 3.38E+02	Tmprss11g	4.99E+01	6.90E-03	1.84E-01	2.67E+00	Evi2b	2.81E+01	4.52E-02	3.28E-01
Zyx 4, 881±402 3, 881±-02 2, 291±-01 1, 3, 294±00 Spirl 8, 395±401 3, 3, 18±-02 2, 292± Prina 2, 301±403 2, 491±-03 1, 325±01 1, 565±400 Crispid2 1, 11±+03 3, 305±-03 1, 325± Tit2 5, 091±+01 4, 911±-02 3, 375±-01 1, 565±400 Ler51 3, 262±01 1, 885±-02 2, 335± Tir2 5, 091±+01 5, 081±+04 9, 701±-02 1, 701±+00 Rurb12 1, 691±+02 1, 335± 1, 301± Kr66 9, 711±+02 1, 631±-03 1, 301±-01 2, 845±+01 Parp12 1, 691±+02 1, 631±-03 3, 205±-03 1, 845± Sr61 1, 991±+01 5, 331±+01 1, 108±-02 2, 481±+01 Parp12 8, 75±+01 6, 95±-03 1, 635± Cyrip 5, 331±+01 1, 112±-02 2, 481±+01 9, 205±+00 1, 635±+02 2, 92±-03 1, 635±+02 2, 92±+03 1, 445±+02 2, 11±+02 2, 21±+02 2, 21±+02 2, 21±+02 2, 21±+02 2, 21±+02 2, 21±+02	Clec4a1	5.67E+01	3.25E-02	2.95E-01	2.57E+00	Pgkl	5.29E+02	2.82E-02	2.83E-01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zyx Essen	4.88E+02	3.28E-02	2.90E-01	1.52E+00	Spii Sama2	8.95E+01	3.31E-02	2.97E-01
$ \begin{array}{c} 1.111.2 \\ 1.111.111.111.1111.1111.1111.$	Ecser Pdia 2	7.33E+01	4.97E-02	1.42E 01	2.39E+00	Cricold2	4.03E+01	4.30E-02	3.29E-01
$\begin{array}{c} 1.2.2.2.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2$	2610528A11Rik	2.30E+03	2.49E=03	9.70E_02	1.95E+00	AC154572.2	5 38E±01	4.30E-03	3.23E_01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tlr?	5.09E+01	4.91E-02	3 37E-01	1.55E+02	Ier51	3.26E+01	1.88E-02	2.53E-01
$ \begin{array}{c} Krido & 9,71E+02 & 1.63E+03 & 1.30E+01 & 2.44E+01 & Parp12 & 8.76E+01 & 6.96E+03 & 1.84E+ \\ Fscn1 & 9.94E+01 & 5.80E+03 & 1.77E+01 & 3.12E+00 & Ac123061.1 & 3.70E+01 & 4.53E+02 & 3.29E+ \\ Threm173 & 5.77E+01 & 1.69E+02 & 2.44E+01 & 2.91E+00 & Osmr & 2.05E+02 & 4.29E+01 & 1.63E+02 \\ Cdh1 & 5.32E+01 & 1.08E+04 & 9.12E+02 & 4.82E+01 & Dymk & 1.43E+02 & 1.84E+02 & 2.51E+ \\ Threm175 & 5.77E+01 & 2.95E+03 & 1.48E+01 & 3.26E+00 & Gm6180 & 9.49E+01 & 5.3E+03 & 1.72E+00 \\ Symp & 5.35E+01 & 1.17E+02 & 2.19E+01 & 1.72E+00 & Gm5851 & 9.09E+00 & 1.07E+02 & 2.12E+ \\ Symp & 5.35E+01 & 5.12E+03 & 1.69E+01 & 5.2E+00 & Gm5851 & 9.09E+00 & 1.07E+02 & 2.23E+0 \\ Marcks & 3.44E+02 & 2.89E+02 & 2.84E+01 & 5.2E+00 & Lcn2 & 2.92E+02 & 9.67E+03 & 2.07E+ \\ CH1 & 2.01E+03 & 1.55E+03 & 1.30E+01 & 1.70E+00 & Hnrma3 & 9.35E+01 & 2.73E+01 & 2.21E+03 \\ Hck & 1.58E+01 & 4.45E+03 & 1.64E+01 & 3.18E+00 & Cs27th2 & 7.09E+01 & 3.42E+02 & 2.31E+ \\ Thrisf13b & 1.70E+01 & 3.38E+02 & 3.00E+01 & 1.53E+00 & Sc37th2 & 7.09E+01 & 3.42E+02 & 2.30E+ \\ Thrisf13b & 1.70E+01 & 3.38E+02 & 3.00E+01 & 1.53E+00 & Sc37th2 & 7.09E+01 & 3.42E+02 & 2.67E+ \\ Aplm1 & 3.61E+02 & 1.07E+02 & 2.23E+01 & 1.53E+00 & Sc37th2 & 7.09E+01 & 3.42E+02 & 2.67E+ \\ Yav1 & 2.92E+01 & 3.3E+02 & 3.03E+01 & 1.63E+00 & Hnrma3 & 5.31E+01 & 4.51E+03 & 1.64E+ \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.25E+01 & 2.43E+00 & Cs1b & 1.47E+02 & 3.47E+03 & 1.54E+ \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.25E+01 & 2.43E+00 & Cs1b & 1.47E+02 & 3.47E+03 & 1.54E+ \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.48E+01 & 1.62E+00 & Hnrm3 & 5.3E+02 & 1.26E+02 & 2.63E+ \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.48E+01 & L62E+00 & Hnrm4 & 1.98E+02 & 2.16E+03 & 1.54E+02 \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.48E+01 & L62E+00 & Hnrm4 & 1.98E+02 & 2.02E+02 & 2.67E+03 \\ Jam1 & 2.09E+01 & 3.3E+02 & 2.48E+01 & 5.08E+00 & Tra1 & 8.38E+02 & 5.08E+03 & 1.54E+02 \\ Jam2 & 1.09E+01 & 3.3E+02 & 2.48E+01 & 5.08E+00 & Tra1 & 8.38E+02 & 5.08E+03 & 1.54E+02 \\ Jam2 & 1.09E+01 & 3.3E+02 & 2.58E+01 & 2.48E+00 & Marcks11 & 2.5E+02 & 1.56E+02 & 2.48E+02 \\ Jam2 & 2.39E+01 & 3.3$	Impdh2	2.79E+02	2.43E-04	9.70E-02	1.70E+00	Ruvbl2	1.69E+02	1.54E-03	1.30E-01
Fscn1 9.94E+01 5.80E-03 1.77E-01 3.12E+00 ACi 23061.1 3.70E+01 4.53E-02 3.29E-03 Cdhr1 5.32E+01 1.08E-04 9.12E-02 4.82E+01 Dtymk 1.43E+02 1.84E-02 2.51E-02 Cdhr1 6.70E+01 1.77E-02 2.95E-03 1.48E-01 3.26E+00 Gm6180 9.49E+01 5.32E+01 1.77E-02 2.12E- Psmb10 1.52E+02 2.89E-02 2.64E-01 1.57E+00 Gm2564 2.21E+01 1.31E-03 1.40E- Pebp3 2.45E+01 5.12E-03 1.66E-01 1.77E+00 Ems3 9.95E+02 2.92E+02 2.97E+03 2.33E-03 1.30E- Cdl 1.05E+01 3.38E-03 1.36E-01 1.77E+00 Ems3 5.95E+02 1.77E-02 2.33E+ Cdl 1.58E+01 3.45E-03 1.36E-01 2.33E+04 Emp3 3.21E+04 3.14E-03 1.46E-01 Traft 1.38E+01 2.32E-02 2.71E+02 2.34E+02 3.01E-02 3.21E+04 3.16E-03	Krt6b	9.71E+02	1.63E-03	1.30E-01	2.84E+01	Parp12	8.76E+01	6.96E-03	1.84E-01
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Fscn1	9.94E+01	5.80E-03	1.77E-01	3.12E+00	AC123061.1	3.70E+01	4.53E-02	3.29E-01
Cdhr.1 5.32E+01 1.08E-04 9.12E-02 4.82E+01 Dtymk 1.43E+02 1.84E-02 2.51E Cytip 5.53E+01 1.17E-02 2.19E-01 1.72E+00 Gms851 9.09E+00 1.07E-02 2.12E Psmb10 1.52E+02 2.89E-02 2.84E-01 1.57E+00 Gms551 9.09E+00 1.07E-02 2.01E Rarcks 3.94E+02 2.22E-02 2.63E-01 1.52E+00 Apol8 2.75E+01 2.33E-03 1.40E Chl 2.01E+03 1.55E+03 1.30E-01 1.70E+00 Emmp33 9.53E+02 2.17E-02 2.33E+01 Chl 1.33E+01 2.45E+03 1.36E+01 3.18E+00 Emol 5.05E+02 1.37E+03 1.30E+01 Jaml 3.61E+02 1.70E+03 1.30E-01 1.53E+00 Ngf 1.84E+01 1.42E+02 3.43E+02 Jaml 2.09E+01 3.31E-02 2.23E+01 2.43E+00 Kal 1.98E+02 2.21E-02 2.63E+01 Jaml 2.09E+01 3.35E+02	Tmem173	5.77E+01	1.69E-02	2.44E-01	2.91E+00	Osmr	2.05E+02	4.29E-03	1.63E-01
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cdhr1	5.32E+01	1.08E-04	9.12E-02	4.82E+01	Dtymk	1.43E+02	1.84E-02	2.51E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ifitm1	6.70E+01	2.95E-03	1.48E-01	3.26E+00	Gm6180	9.49E+01	5.39E-03	1.72E-01
Psmb10 1.52E+02 2.89E-02 2.84E-01 1.57E+00 Gm2564 2.1E+01 1.21E-02 2.20E Pebp3 2.45E+01 5.12E-02 2.63E+01 1.52E+00 A.00E 2.33E+03 1.40E Pebp3 2.45E+01 5.12E-03 1.69E-01 2.23E+00 Hampa3 9.53E+02 1.27E-02 2.23E Hck 1.58E+01 4.45E-03 1.64E-01 3.18E+00 Enol 5.06E+02 1.9E-02 3.01E Trinfr13b 1.70E+01 3.38E-02 2.71E+00 Csf2rb2 7.09E+01 3.42E-02 3.04E Ap1m1 3.61E+02 1.70E-03 1.30E-01 1.53E+00 Ngf 1.84E+01 7.12E-03 1.85E-02 Jam1 2.09E+01 3.51E-02 2.31E+01 2.34E+02 2.34E-02 2.37E Vav1 2.02E+01 1.33E-02 2.25E+01 2.43E+00 Kslb 1.47E+02 3.47E-03 1.54E Csf2rb 1.09E+02 1.16E-02 2.19E 1.36E+01 1.75E+02 2.47E+01	Cytip	5.53E+01	1.17E-02	2.19E-01	1.72E+00	Gm5851	9.09E+00	1.07E-02	2.12E-01
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Psmb10	1.52E+02	2.89E-02	2.84E-01	1.57E+00	Gm2564	2.21E+01	1.21E-02	2.20E-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Marcks	3.94E+02	2.22E-02	2.63E-01	1.52E+00	Apol8	2.75E+01	2.33E-03	1.40E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pebp3	2.45E+01	5.12E-03	1.69E-01	2.23E+00	Len2	2.92E+02	9.67E-03	2.07E-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Unit	2.01E+03	1.55E-03	1.30E-01	1.70E+00 3.18E+00	Encl	9.53E+02	1.2/E-02	2.23E-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tufref13b	1.38E+01	4.45E-05	1.04E-01	2.71E+00	Ceftrb2	7.00E+02	1.19E-03	3.01E_01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trafi	1.33E+01	2.52E=02	2.71E=01	2.71E+00 2.54E+00	Bcl3	5.31E+01	4.51E=02	1.64E=01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ap1m1	3.61E+02	1.70E-03	1.30E-01	1.53E+00	Nøf	1.84E+01	7.12E-03	1.85E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jam1	2.09E+01	3.51E-02	3.03E-01	1.63E+00	Hpgd	2.17E+02	2.34E-02	2.67E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Vav1	2.92E+01	1.33E-02	2.25E-01	2.43E+00	Cks1b	1.47E+02	3.47E-03	1.54E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Csf2rb	1.09E+02	1.10E-02	2.14E-01	2.27E+00	Lsm4	1.98E+02	2.21E-02	2.63E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Impdh1	1.57E+02	2.19E-03	1.37E-01	1.62E+00	H13	6.32E+02	1.23E-03	1.20E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Irf8	3.21E+01	2.87E-02	2.84E-01	2.17E+00	Fam162a	1.70E+02	1.17E-02	2.19E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Slc7a11	7.83E+01	1.87E-03	1.30E-01	2.47E+00	Eno1b	1.75E+03	7.07E-04	1.05E-01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Igsf6	1.94E+01	1.37E-02	2.27E-01	3.35E+00	Txn1	8.38E+02	5.09E-04	9.70E-02
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cd300a	2.59E+01	2.02E-02	2.58E-01	2.81E+00	Marcksl1	1.50E+02	4.96E-04	9.70E-02
Laptims $2.92E+02$ $2.87E-02$ $2.84E-01$ $1.96E+00$ Hmox1 $9.55E+02$ $1.96E+03$ $1.31E-03$ Ccl12 $2.35E+01$ $6.88E-03$ $1.84E-01$ $9.89E+00$ II4ra $3.07E+02$ $6.55E-03$ $1.82E-$ Ldha $3.49E+03$ $2.87E-02$ $2.84E-01$ $1.51E+00$ Crlf2 $3.39E+01$ $1.69E-02$ $2.44E-$ Tagln2 $1.10E+03$ $3.16E-03$ $1.48E-01$ $1.60E+00$ Gm15725 $3.82E+01$ $2.85E-02$ $2.84E-$ Irak4 $6.75E+01$ $1.09E-02$ $2.13E-01$ $1.54E+00$ Enkd1 $2.62E+01$ $1.04E-02$ $2.10E-$ Fyb $3.08E+01$ $9.37E-03$ $2.05E-01$ $2.20E+00$ Snpa $2.82E+02$ $6.65E-03$ $1.82E-$ Cxcl1 $2.67E+01$ $5.21E-04$ $9.70E-02$ $1.31E+01$ Gins1 $4.26E+01$ $1.92E-02$ $2.55E-$ Nime1 $4.78E+02$ $2.33E-03$ $1.40E-01$ $1.85E+00$ Ifi35 $1.96E+02$ $2.39E-02$ $2.67E-$ Ripor2 $1.85E+01$ $1.83E-02$ $2.51E-01$ $2.27E+00$ Gm15590 $1.42E+01$ $4.46E-02$ $3.28E-$ Impdh2-ps $7.61E+02$ $5.07E-04$ $9.70E-02$ $1.71E+00$ Ranbp1 $3.45E+02$ $3.64E-03$ $1.55E-$ Mthfd2 $4.07E+01$ $4.38E-02$ $3.26E-01$ $1.92E+00$ Brca2 $9.93E+04$ $9.35E-04$ $1.13E-$ Mthfd2 $4.07E+01$ $4.38E-02$ $3.26E-01$ $1.92E+00$ Brca2 $9.93E+04$ $3.56E+02$ $2.93E-02$ $2.85E-$	Dynlt1b	2.52E+02	9.72E-03	2.07E-01	1.62E+00	Vcan	1.54E+02	3.92E-02	3.15E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Laptm5	2.92E+02	2.87E-02	2.84E-01	1.96E+00	Hmox1	9.55E+02	1.90E-03	1.31E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CcI12	2.35E+01	6.88E-03	1.84E-01	9.89E+00	114ra	3.07E+02	6.55E-03	1.82E-01
Inderto1.60E+033.16E+033.16E+031.46E+011.60E+000Cm137233.82E+012.82E+022.88E+022.88E+022.88E+022.88E+022.88E+022.88E+022.88E+022.88E+022.88E+022.88E+032.82E+022.66E+031.82E+032.82E+022.66E+031.82E+032.82E+022.66E+031.82E+022.55E-031.82E+022.55E-012.82E+022.66E+031.82E+022.55E-031.82E+032.82E+022.66E+031.82E+022.55E-031.82E+032.67E+012.92E+022.55E-031.82E+032.67E+012.92E+022.55E-032.67E+032.67E+042.97E+032.67E+012.27E+00Gm155901.42E+014.46E+023.28E-023.28E-032.67E+042.97E+023.28E-031.55E-031.55E-041.55E+033.45E+023.64E+033.55E+041.55E-043.28E+033.55E+041.13E-033.45E+023.64E+033.55E+041.13E-033.28E+013.92E+019.35E+041.13E-043.28E+013.92E+031.41E-14E+041.42E+014.49E+033.45E+023.64E+031.41E-14E+041.41E+14E+041.23E+033.44E+023.28E+013.34E+023.34E+022.36E+011.92E+00Brea29.93E+019.35E+041.13E+022.82E+022.85E+031.41E+14E+032.62E+031.41E+14E+041.74E+022.88E+022.85E+022.85E+022.85E+022.85E+031.41E+14E+041.74E+022.85E+031.41E+14E+041.74E+022.85E+022.85E+031.41E+14E+04	Lana Taala 2	3.49E+03	2.8/E-02	2.84E-01	1.51E+00	Cr112 Cm15725	3.39E+01	1.69E-02	2.44E-01
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Taginz Irok4	1.10E+05	3.10E-03	1.48E-01	1.60E+00	GIII15725 Enkd1	3.82E+01	2.85E-02	2.84E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hak4 Evb	0.75E+01 3.08E+01	0.37E_03	2.13E = 01 2.05E = 01	2.20E+00	Sume	2.02E+01 2.82E+02	1.04E-02	2.10E-01 1.82E-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ryu Cveli	2.08E+01	9.37E-03	2.03E=01	2.20E+00	Sinpa Gine1	2.62E+02 4.26E+01	1.03E-03	2.55E_01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nme1	2.07E+01 4.78E+02	2.33E=03	1.40E=01	1.51E+01	Ifi35	1.96E±02	2.39E=02	2.55E=01 2.67E=01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ripor?	1.85E+01	1.83E-02	2.51E-01	2.27E+00	Gm15590	1.90E+02 1.42E+01	4 46E-02	3.28E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ncf4	4.40E+01	2.91E-02	2.84E-01	2.05E+00	Gib1	1.03E+01	4.49E-02	3.28E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Impdh2-ps	7.61E+02	5.07E-04	9.70E-02	1.71E+00	Ranbp1	3.45E+02	3.64E-03	1.55E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Alg8	2.43E+01	5.03E-03	1.67E-01	1.92E+00	Brca2	9.93E+01	9.35E-04	1.13E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mthfd2	4.07E+01	4.38E-02	3.26E-01	1.90E+00	Slc39a14	9.67E+01	2.39E-03	1.41E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Flvcr1	8.70E+01	1.35E-02	2.26E-01	1.54E+00	Arf2	3.56E+02	2.93E-02	2.85E-01
Dusp6 1.79E+02 3.18E-02 2.93E-01 1.78E+00 Cad 2.46E+02 3.64E-03 1.55E- Flna 1.39E+03 3.94E-02 3.15E-01 1.68E+00 Serpinc1 1.40E+01 1.74E-02 2.47E- Etv4 3.57E+01 1.29E-02 2.24E-01 1.78E+00 Tslp 1.96E+01 2.74E-02 2.81E- Rab31 2.88E+02 4.64E-03 1.65E-01 2.07E+00 Snrpf 1.18E+02 5.22E-03 1.70E- Bak1 1.33E+02 1.05E-02 2.11E-01 1.58E+00 Hsp90aa1 8.11E+02 4.44E-03 1.64E- Logle0 4.03E+03 1.6E 01 2.58E+00 Gravef02 1.30E+01 1.64E-01 1.64E-01	Ncf2	3.28E+01	3.34E-02	2.98E-01	1.93E+00	Gpr132	1.04E+01	4.78E-02	3.34E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dusp6	1.79E+02	3.18E-02	2.93E-01	1.78E+00	Cad	2.46E+02	3.64E-03	1.55E-01
Etv4 3.57E+01 1.29E-02 2.24E-01 1.78E+00 Tslp 1.96E+01 2.74E-02 2.81E- Rab31 2.88E+02 4.64E-03 1.65E-01 2.07E+00 Snrpf 1.18E+02 5.22E-03 1.70E- Bak1 1.33E+02 1.05E-02 2.11E-01 1.58E+00 Hsp90aa1 8.11E+02 4.44E-03 1.64E- Logle0 4.03E+03 1.05E-03 2.58E+00 Grav602 1.30E+01 4.26E+012 1.05E-04 4.44E-03 1.64E-	Flna	1.39E+03	3.94E-02	3.15E-01	1.68E+00	Serpinc1	1.40E+01	1.74E-02	2.47E-01
Rab31 2.88E+02 4.64E-03 1.65E-01 2.07E+00 Snrpf 1.18E+02 5.22E-03 1.70E- Bak1 1.33E+02 1.05E-02 2.11E-01 1.58E+00 Hsp90aa1 8.11E+02 4.44E-03 1.64E- Look9 4.93E+02 1.10E-03 1.16E-01 2.58E+00 Gmr602 1.30E+01 4.44E-03 1.64E-	Etv4	3.57E+01	1.29E-02	2.24E-01	1.78E+00	Tslp	1.96E+01	2.74E-02	2.81E-01
Bak1 1.33E+02 1.05E-02 2.11E-01 1.58E+00 Hsp90aa1 8.11E+02 4.44E-03 1.64E- Loolo 4.93E+02 1.10E-03 1.16E-01 2.58E+00 Gmc602 1.20E+01 4.44E-03 1.64E-	Rab31	2.88E+02	4.64E-03	1.65E-01	2.07E+00	Snrpf	1.18E+02	5.22E-03	1.70E-01
L_{color} A 03E 02 1 10E 03 1 16E 01 2 58E 00 Cm 6002 1 20E 01 4 42E 02 1 64E	Bak1	1.33E+02	1.05E-02	2.11E-01	1.58E+00	Hsp90aa1	8.11E+02	4.44E-03	1.64E-01
Lgais7 4.95E+02 1.10E-05 1.10E-01 2.36E+00 GIII0992 1.50E+01 4.45E-03 1.04E-	Lgals9	4.93E+02	1.10E-03	1.16E-01	2.58E+00	Gm6992	1.30E+01	4.43E-03	1.64E-01

2.53E+00

1.90E+00

1.57E+00

1.51E+00

1.51E+00

3.15E+00

1.64E+00

1.64E+00

4.77E+00

2.03E+00

5.13E+00

1.61E+00

1.77E+00

1.72E+00 2.01E+00

1.71E+00

1.56E+00

1.68E+00

2.16E+00

1.74E+00 1.56E+00 2.56E+00

2.70E+00

1.69E+00

2.16E+00 2.15E+00

2.16E+00 1.55E+00 2.09E+00 1.63E+00 1.54E+00

1.67E+00

1.83E+00

1.75E+00 1.74E+00

2.58E+00 3.89E+00

2.46E+00

8.26E+00

1.50E+00

2.04E+00

1.76E+00

5.59E+00

3.69E+00

1.53E+00

1.62E+00

1.55E+00

1.50E+00

1.81E+00

1.88E+00

1.55E+00

1.92E+00

2.86E+00

1.91E+00

1.95E+00

1.92E+00

2.00E+00

1.80E+00

1.51E+00

1.88E+00 1.53E+00

1.99E+00 1.96E+00 1.57E+00 2.56E+00

1.95E+00 1.57E+00 1.77E+00

1.67E+00

1.98E+00 1.62E+00

1.57E+00

1.51E+00

2.58E+00

TABLE 2-continued

TABLE 2-continued

List of upregulated genes at the bite site of mice treated with control (naïve) serum.			List of upregulated genes at the bite site of mice treated with control (naïve) serum.						
1110038B12Bik	6 80E±01	1 47E_02	2 33E_01	1 50E±00	Gm12088	1 34E±01	2 38E_02	2.67E_01	1 84E±00
Gm12758	2.09E+01	2 15E-02	2.55E=01 2.62E=01	2.14E+00	Then?	9.41E+01	6.44E-03	1.82E-01	1.64E+00
Gm11847	5.18E+01	2.49E-02	2.70E-01	1.77E+00	Srm	3.12E+02	2.90E-03	1.48E-01	1.60E+00
Dusp2	1.09E+01	1.41E-02	2.28E-01	2.25E+00	Has3	2.28E+01	1.64E-02	2.41E-01	4.85E+00
Cenps	7.19E+01	1.64E-02	2.41E-01	1.64E+00	Wdhd1	7.23E+01	4.28E-02	3.23E-01	1.76E+00
Gm17383	3.70E+01	2.56E-02	2.73E-01	2.60E+00	Gm13092	1.22E+02	3.27E-02	2.95E-01	1.59E+00
2610203C20Rik	1.13E+02	3.94E-02	3.15E-01	1.57E+00	Socs3	3.30E+02	2.97E-03	1.48E-01	1.98E+00
Alg3	5.95E+01	3.22E-03	1.48E-01	1.62E+00	Anapc15-ps	8.79E+00	3.30E-02	2.97E-01	1.73E+00
Gm5844	1.03E+02	1.31E-02	2.25E-01	1.57E+00	Fosl1	1.73E+01	4.43E-02	3.28E-01	1.72E+00
Cenpt	7.41E+01	5.15E-03	1.69E-01	1.71E+00	Nfkbid	1.15E+01	3.99E-02	3.16E-01	1.64E+00
Pglyrp1	1.35E+01	1.80E-02	2.50E-01	2.60E+00	Pim2	3.55E+01	1.39E-02	2.28E-01	1.60E+00
Pold2	2.44E+02	1.99E-02	2.5/E-01	1.57E+00	Ada Cm 5701	4.45E+01	1.62E-02	2.40E-01	1./6E+00
SIC10a14 Nup43	1.38E+02 8.04E+01	2.52E-02	2.00E-01	1.30E+00	Gm11675	1.93E+01 6.42E+01	2.07E-02	2.00E-01	2.18E+00
Acv1	6.13E±01	1.39E_02	2.28E_01	1.70E+00	Sema4c	1.95E±02	4.70E=02	1.42E-01	1.53E+00
Fh12	2 24E+01	9.21E=03	2.28E=01 2.04E=01	1.98E+00	Tes	1.95E+02	6.69E-03	1.42E=01	1.52E+00
Mcm3	2.79E+02	2.99E-02	2.86E-01	1.79E+00	Lm11	2.50E+01	3.62E-02	3.07E-01	1.54E+00
Gm20390	3.17E+02	4.84E-03	1.67E-01	1.83E+00	Tyms	2.24E+02	4.88E-02	3.36E-01	1.53E+00
Pfkl	2.14E+02	2.96E-02	2.86E-01	1.54E+00	Mtcl1	4.53E+01	2.00E-02	2.57E-01	2.78E+00
Gm26809	8.67E+01	1.36E-04	9.70E-02	2.14E+00	Rfng	3.04E+02	8.59E-04	1.09E-01	1.53E+00
Mmp3	2.61E+02	8.43E-03	1.97E-01	4.04E+00	Snhg4	1.31E+02	1.59E-02	2.38E-01	1.61E+00
Ints7	1.06E+02	3.89E-02	3.15E-01	1.53E+00	Ndnf	9.79E+01	4.44E-02	3.28E-01	3.12E+00
Orc1	3.19E+01	1.25E-02	2.20E-01	2.08E+00	Gm3379	3.54E+01	2.22E-02	2.63E-01	1.93E+00
Slc19a1	9.69E+01	1.94E-02	2.55E-01	1.53E+00	Trip13	4.31E+01	1.12E-02	2.16E-01	1.86E+00
Rbm14	2.04E+02	3.62E-03	1.55E-01	1.58E+00	Sprr2g	1.50E+01	3.00E-02	2.86E-01	6.51E+00
Gemin6	5.88E+01	1.78E-02	2.49E-01	1.52E+00	Gpr176	1.05E+01	2.27E-02	2.66E-01	2.59E+00
Aldh18a1	1.28E+02	2.26E-02	2.65E-01	1.62E+00	Panx1	1.73E+02	1.97E-03	1.31E-01	1.64E+00
Dhrs13	2.46E+01	6.82E-03	1.84E-01	2.39E+00	Stat3	1.34E+03	4.24E-03	1.63E-01	1.64E+00
Mcm4	3.38E+02	2.13E-02	2.62E-01	1.51E+00	Gemin4	4.19E+01	4.68E-02	3.33E-01	2.10E+00
Lsm2 Bom1	8.84E+01	2.68E-03	1.40E-01	1.66E+00	SIC9a1 Gm6210	7.23E+02	7.90E-04	1.08E-01	1.58E+00
Chill	3.13E+01 2.16E+03	5.64E-03	1.38E-01 1.63E-01	2.03E+00	Gill0210 Feflekmt4	5.01E+01	4.00E-02	2.30E-01	1.87E+00
Nup93	2.10E+03	4.05E-03	1.62E-01	2.95E+00	Gm5620	1.74E+01	3.96E-02	3.15E-01	1.51E+00
Slc29a2	4 36E+01	6.81E-03	1.84E-01	2 38E+00	Duph1	1.53E+02	9.13E-03	2.03E-01	1.52E+00
Vstm2a	9.31E+00	2.41E-02	2.67E-01	1.99E+00	Gm12666	1.17E+01	4.36E-02	3.26E-01	1.63E+00
Cdt1	1.24E+02	3.34E-02	2.98E-01	1.61E+00	S100a9	3.12E+02	2.90E-02	2.84E-01	1.76E+01
Rad51	7.52E+01	3.31E-02	2.97E-01	1.90E+00	Mrto4	1.67E+02	6.54E-03	1.82E-01	1.54E+00
Mcm6	4.00E+02	3.61E-02	3.07E-01	1.84E+00	Stfa3	1.83E+01	7.01E-03	1.84E-01	5.45E+00
Ercc61	4.30E+01	4.75E-02	3.34E-01	1.87E+00	Nkain1	1.22E+01	4.62E-03	1.65E-01	2.87E+00
Ccne1	3.17E+01	2.26E-02	2.65E-01	2.01E+00	Psmg4	7.14E+01	5.49E-03	1.72E-01	1.50E+00
Casp6	8.71E+01	2.83E-02	2.83E-01	1.51E+00	S100a8	1.94E+02	1.37E-02	2.27E-01	1.22E+01
Abcg2	2.24E+02	1.62E-03	1.30E-01	1.66E+00	Ampd3	1.73E+02	1.74E-02	2.47E-01	1.70E+00
Gm5855	1.17E+01	6.87E-03	1.84E-01	2.34E+00	Duxbl2	1.76E+01	2.24E-02	2.63E-01	1.75E+00
Gm6977	5.53E+01	4.47E-02	3.28E-01	1.69E+00	Kab15	3.41E+02	2.48E-02	2.70E-01	1.62E+00
1015 BC100530	2.19E+02	1.00E-03	1.30E-01	1.38E+00	Umgh1 ng2	3.00E+01	2.13E-02	2.02E-01	1.71E+00
BC100550 Ppp40	4.22E+01	2.73E-02	2.81E-01	1.93E+01	Noc41	1.22E+01	1.00E 03	1.31E_01	1.90E+00
Lvar	1.62E+02	4.42E = 03	1.64E = 01	1.53E+00	Gm12722	1.00L+02 1.10E+01	4 77E=02	3.34E = 01	1.63E+00
Clec2l	2.17E+01	3.35E-03	1.54E 01	3.76E+00	Dsg1c	7 44E+01	2.07E-03	1.32E-01	2.04E+00
Sprr2h	4.07E+01	1.29E-02	2.24E-01	7.43E+00	1700052K11Rik	6.55E+01	4.96E-02	3.38E-01	1.55E+00
Ppia	3.97E+03	3.64E-03	1.55E-01	1.50E+00	Krt6a	1.25E+03	2.14E-03	1.36E-01	3.99E+00
Ndc1	1.34E+02	9.31E-03	2.05E-01	1.54E+00	Hirip3	1.12E+02	2.12E-02	2.62E-01	1.64E+00
Bfsp1	1.48E+01	2.35E-02	2.67E-01	1.90E+00	Pgam1	9.91E+02	2.48E-03	1.42E-01	1.63E+00
Skap2	4.01E+02	1.47E-03	1.29E-01	1.50E+00	B4galnt4	1.07E+01	4.00E-02	3.16E-01	1.83E+00
Smyd5	1.15E+02	2.39E-03	1.41E-01	1.60E+00	Rpl10-ps5	8.71E+01	1.61E-02	2.40E-01	1.68E+00
Car12	2.72E+02	2.84E-03	1.48E-01	2.26E+00	Hrh2	1.09E+01	2.93E-03	1.48E-01	2.72E+00
Casp3	1.40E+02	4.46E-02	3.28E-01	1.52E+00	AC131178.1	2.54E+01	1.76E-02	2.48E-01	1.99E+00
Fbxo10	9.27E+01	2.90E-02	2.84E-01	1.60E+00	Gadl1	7.43E+02	1.32E-02	2.25E-01	1.71E+00
Lsm5	3.60E+01	3.32E-02	2.97E-01	1.61E+00	BC055324	3.24E+01	3.50E-02	3.03E-01	1.56E+00
Gsica	6.03E+01	1.74E-02	2.47E-01	1.64E+00	Gm0003	1.40E+01	4.49E-02	3.28E-01	1.93E+00
Stom Gm8203	3.92E+02	5.92E-03	1.84E-01	1.00E+00	Galaté	1.09E+02 8.87E+01	2.04E-02	2.78E-01	1.54E+00
Gm13461	2.84E±02	5.85E-04	9.70E=02	1.59E+00	Gm3448	3.70E+01	3.41E-02	3.01E-01	2.00E+00
Pom3	6.75E+01	2.46E-02	2.69E-01	1.51E+00	Nat8l	5.68E+02	2.80E-02	2.83E-01	1.66E+00
Erh	2.54E+02	7.60E-03	1.88E-01	1.54E+00	AC022775.2	1.95E+01	2.54E-02	2.73E-01	1.59E+00
 Fam171a2	1.20E+02	3.53E-04	9.70E-02	2.36E+00	Gm6793	2.30E+01	3.60E-02	3.06E-01	1.97E+00
Xdh	3.95E+02	4.86E-03	1.67E-01	1.55E+00	Mgat5b	1.84E+01	9.60E-04	1.14E-01	3.43E+00
Nfyb	2.65E+02	4.29E-03	1.63E-01	1.61E+00	Rpl29	4.19E+01	2.29E-02	2.66E-01	1.51E+00
Hbegf	6.68E+01	1.45E-02	2.31E-01	1.78E+00	Gm11805	9.02E+00	3.77E-02	3.13E-01	1.72E+00
Myof	4.58E+02	2.93E-02	2.85E-01	1.57E+00	Pla2g7	1.06E+02	3.05E-02	2.90E-01	1.58E+00
Prss27	5.47E+01	1.71E-02	2.46E-01	2.14E+00	AC154176.1	1.50E+02	3.09E-02	2.90E-01	1.62E+00
Slc14a1	2.12E+01	8.28E-03	1.96E-01	3.46E+00	Top2a	3.70E+02	2.35E-02	2.67E-01	1.96E+00
Entpd7	3.80E+01	5.03E-03	1.67E-01	1.74E+00	H2afx	1.38E+02	1.79E-03	1.30E-01	1.90E+00
Gm7899	1.79E+01	4.70E-02	3.34E-01	2.05E+00	Gtse1	4.83E+01	1.03E-03	1.14E-01	2.30E+00

TABLE 2-continued

3.53E+00

1.54E+00

1.56E+00

1.57E+00

LSMean (Naive-

control*No

bites) (Naive-

control*Bites

vs. Naive-

control*No

bites)

2.80E+00

1.01E-01

3.42E+01

4.39E+00

4.18E-01 1.26E+00

8.78E-01

9.31E+01

6.13E+01

7.66E+00

7.98E+00

1.53E+00 1.82E+01

3.15E+01

2.37E+00

3.25E+00

2.41E+01

3.03E+00

7.50E+00

3.41E+00

3.96E+00

7.23E+00

5.55E+00

9.52E+00

2.37E+01

1.58E+02

2.79E+02

5.98E-01

1.77E+00

2.70E+00

3.68E+01

2.07E+01

2.43E+00

6.25E-01

6.51E+00

3.87E+01

2.51E+01

4.72E-01

1.06E+00

4.30E-01 2.82E+00

2.94E+01

1.40E+00

8.00E+00

7.28E-01

5.48E+01

9.51E+00

1.47E+00

5.66E-01

4.52E+00

2.34E+02

5.37E-01

8.13E-01

2.28E+00

4.76E+00

1.27E+00

2.41E+02 8.07E-01

1.24E+00

8.39E+00

TABLE 2-continued

List	of upregulated g treated with co	enes at the bit ontrol (naive)	e site of mice serum.		List	of upregulated genes a treated with control	t the bite site ((naïve) serum.
	0.000.000	2.95E 02	2.94E 01	2185.00	Fam167a	5.88E+01 6.34	E-03 1.82
JM12933	9.99E+00	2.85E-02	2.84E-01	2.18E+00	Pinx1 Cha2	6.70E+01 1.88	SE-02 2.53
han	5.55E+02	1.80E-02	2.50E-01	1.51E+00	Gm10182	1.40E+02 4.39	E-02 2.01
01102 mem 266	0.21E+02	7.37E_03	2.30E-01	2.19E+00			
nrr?e	1.99E+01	7.37E=03	3.20E_01	2.19E+00			LSMean
ni	6 30E+01	4.12E-02	2.28E-01	5.25E+00		Fold abanga	(Naive-
pi Idh1a3	2.09E+01	8.71E-03	1.99E-01	2.52E+00		(Naive-	(Naive-
unius unhi	1.81E+02	2 89E-02	2 84E-01	2.02E+00		control*Bites	control*Bit
cr2	5.99E+01	2.04E-02	2.58E-01	3.05E+00		vs. Naive-	vs. Naive-
132-ps	2.85E+01	4.88E-02	3.36E-01	1.52E+00	Carra ID	control*No	control*No
nd	1.11E+01	3.30E-02	2.97E-01	1.80E+00	Gene ID	bites)	bites)
ih3	3.06E+02	4.83E-02	3.35E-01	1.65E+00	Serpine1	5.59E+00	1.56E+01
px2	7.00E+01	1.62E-02	2.40E-01	2.34E+00	Chil3	2.01E+02	2.03E+01
rwd1	1.86E+02	1.62E-02	2.40E-01	1.56E+00	Ly6c1	2.03E+00	6.95E+01
npw	3.70E+01	1.98E-02	2.56E-01	1.72E+00	U15	8.69E+00 2.41E+01	3.82E+01
p56	3.64E+02	7.01E-03	1.84E-01	1.65E+00	Msr1	2.41E+01 1.15E+01	1.45E+01
o53i11	4.41E+02	3.23E-02	2.95E-01	1.57E+00	Ccl2	3.01E+01	2.64E+01
tn3	4.25E+01	1.81E-02	2.50E-01	1.54E+00	Ly6a	2.49E+00	2.32E+02
s2	1.11E+01	4.39E-02	3.26E-01	1.70E+00	Ifitm3	3.15E+00	1.93E+02
cpd1	5.26E+02	5.81E-03	1.77E-01	1.58E+00	Hsd11b1	1.77E+00	1.35E+01
oatch4	2.11E+02	1.83E-02	2.51E-01	1.61E+00	Cal7	3.29E+00 2.07F±01	2.03E+01 3.17E±01
ank1	1.21E+01	3.30E-02	2.97E-01	1.65E+00	Ccl8	3.02E+00	5.51E+01
p1a1	3.80E+03	3.26E-04	9.70E-02	1.95E+00	Нр	2.92E+00	9.19E+01
- etd	5.11E+01	1.33E-02	2.25E-01	1.58E+00	Lilrb4a	7.41E+00	1.75E+01
76k	2.85E+01	6.90E-04	1.05E-01	3.05E+00	Ms4a6d	6.10E+00	1.98E+01
p12	1.71E+02	1.86E-02	2.52E-01	1.54E+00	Ccl6	1.67E+00 3.22E+00	4.04E+01
2h1	3.89E+01	2.92E-02	2.84E-01	1.58E+00	Lvve1	4.01E+00	3.01E+01
3ra2	2.07E+01	2.45E-02	2.69E-01	2.24E+00	Slfn2	4.01E+00	1.37E+01
nf	7.57E+01	1.80E-02	2.50E-01	1.56E+00	Wfdc17	4.79E+00	1.90E+01
17a-ps10	1.33E+01	3.03E-02	2.88E-01	1.68E+00	Akr1b8	2.32E+00	1.67E+01
d1	9.06E+02	1.25E-02	2.20E-01	1.57E+00	Lrg1	2.23E+00	1.24E+01
rc4	2.92E+01	2.30E-02	2.66E-01	3.11E+00	Cxcl14	2.78E+00 2.10E+00	2.04E+01 4.97E+01
g-ps	7.95E+01	4.43E-03	1.64E-01	1.57E+00	Ifitm2	1.87E+00	2.97E+02
n8666	4.81E+01	4.42E-02	3.28E-01	1.52E+00	Ctsb	1.58E+00	4.42E+02
or35	3.53E+01	4.74E-02	3.34E-01	1.67E+00	Upp1	4.35E+00	2.60E+00
k1	1.47E+02	3.03E-02	2.88E-01	1.54E+00	Bst1 Timp1	3.15E+00 1.32E+01	5.58E+00 3.57E+01
olc1	3.74E+02	6.02E-03	1.80E-01	1.52E+00	Cend3	1.32E+01 1.77E+00	6.52E+01
cenp	1.22E+02	3.98E-02	3.16E-01	1.63E+00	Csfl	2.09E+00	4.33E+01
əlah	5.00E+02	1.14E-02	2.17E-01	1.50E+00	Li1r4b	5.52E+00	1.34E+01
5dc2	3.10E+02	6.29E-03	1.82E-01	1.65E+00	Ifi204	2.96E+00	1.85E+00
bb3	3.04E+01	2.63E-03	1.46E-01	2.40E+00	Ctla2a Capp2	3.49E+00	2.27E+01
n-ps1	1.37E+01	4.48E-02	3.28E-01	1.82E+00	Capii2 Tmsb10	2.56E+00	6.42E+01
506816	2.81E+01	5.48E-03	1.72E-01	2.05E+00	C5ar1	5.38E+00	2.54E+00
n15452	1.42E+01	4.10E-02	3.19E-01	1.67E+00	Serpina3m	6.61E+00	6.98E+00
pdc1b	1.71E+01	3.68E-02	3.10E-01	1.87E+00	Cer5	1.09E+01	4.69E+00
b4113	1.75E+02	1.49E-03	1.29E-01	1.52E+00	Gsta4 Ddr2	4.54E+00	1.28E+01
bd19	9.47E+01	1.24E-02	2.20E-01	1.51E+00	Dar2 1fi207	2.70±+00 2.14F±00	7.94E+UI 2.99E±00
sf3	1.77E+02	2.30E-03	1.40E-01	1.71E+00	Cfb	2.05E+00	1.64E+01
1sp9	1.28E+01	2.46E-02	2.69E-01	2.04E+00	AC160962.1	4.65E+00	3.39E+00
- d44	7.00E+02	3.82E-04	9.70E-02	1.76E+00	Gm6560	1.92E+00	1.05E+02
m45902	3.26E+01	2.80E-02	2.83E-01	1.74E+00	Fcgr2b	2.79E+00	2.66E+01
fdc12	1.09E+02	1.08E-02	2.13E-01	4.99E+00	AB124611	7.47E+00 4.62E±00	1.10E+01 2.61E±00
dh	8 38F+01	1.64E-02	2.41E-01	318E+00	Spp1	6.08E+00	2.51E+00 2.74E+01
 ns13-ns?	5 42 F±01	2 04E-02	2.58E_01	1.83E±00	Hspa5	1.79E+00	4.19E+02
poro-poz	J. 4 20E+01	1.47E 02	2.360-01	1.650+00	Trim46	1.92E+00	1.03E+00
1018	4.29E+01	1.47E-02	2.33E-01	1.08E+00	Clec7a	8.27E+00	6.73E+00
.81	9.24E+02	3.97E-02	3.10E-01	1.62E+00	Dok2	3.96E+00	9.02E+00
30102E08Rik	2.34E+01	1.14E-02	2.17E-01	1.74E+00	Srgn Sprr1b	4.33E+00 2 37F±01	2.15E+01 3.02E±01
00038G22Rik	1.48E+01	2.27E-02	2.66E-01	1.89E+00	Calr	2.12E+00	5.11E+02
127	1.05E+02	3.76E-03	1.57E-01	1.70E+00	Clec5a	3.67E+00	2.96E+00
127						51072100	
dca8	1.05E+02	4.48E-02	3.28E-01	1.64E+00	Ms4a4a	5.15E+00	6.36E+00

TABLE 2-continued

	••	•, –	· -

1.82E-01

2.53E-01

2.67E-01

3.26E-01

the bite site of mice

(Naivecontrol*Bites)

control*Bites

List of upregulated genes at the bite site of mice				List of upregulated genes at the bite site of mice				
	treated with contr	ol (naive) serum.	milee		treated with control	(naïve) serum.	uive) serum.	
Pdpn	2.62E+00	1.13E+01	4.30E+00	Slco2a1	1.54E+00	7.37E+01	4.78E+01	
Serpina3n	6.74E+00	4.71E+02	6.98E+01	Slc11a1	3.01E+00	2.36E+00	7.86E-01	
Ptafr	2.74E+00	3.49E+00	1.27E+00	Ceacam1	2.64E+00	3.62E+00	1.37E+00	
Mrc1	3.22E+00	5.31E+01	1.65E+01	Emilin2	3.08E+00	2.39E+01	7.76E+00	
Tmem8	4.00E+00	7.84E+00	1.96E+00	Dnajb11 D=f141	1.56E+00	7.40E+01	4.75E+01	
Cm15022	5.19E+00	9.07E+00	1.75E+00	Kn1141 Nilma2	1.52E+00	5.76E+01	3.80E+01	
Cd163	4.81E+00 2.30E+00	4.40E+00 2.34E+01	9.28E-01	INIIPS Itab?	4.04E+00 3.05E+00	2.18E+00	4.70E-01	
Samhd1	2.50E+00 2.42E+00	5.01E+01	2.07E+01	Mcemn1	5.17E+00	2.41E+00	4 66E-01	
Lcp2	2.68E+00	3.08E+00	1.15E+00	Tmem150a	1.73E+00	6.77E+00	3.92E+00	
Ifnar2	1.67E+00	1.84E+01	1.10E+01	Cvba	2.16E+00	2.35E+01	1.09E+01	
Mfsd10	1.64E+00	3.05E+01	1.87E+01	Itgal	2.65E+00	2.65E+00	1.00E+00	
Ccr2	6.36E+00	2.89E+01	4.55E+00	Gm9844	2.40E+00	1.58E+01	6.59E+00	
Tnfaip2	1.56E+00	1.32E+01	8.48E+00	Slc15a3	1.84E+00	8.85E+00	4.80E+00	
Cd68	2.29E+00	2.15E+01	9.41E+00	Pfn1	1.63E+00	2.80E+02	1.72E+02	
Lbp	2.45E+00	4.15E+01	1.70E+01	Fam49b	1.86E+00	2.77E+01	1.49E+01	
Lrrc25	3.85E+00	5.87E+00	1.52E+00	Ssbp4	1.50E+00	2.09E+01	1.39E+01	
Anxa3	2.61E+00	5.16E+00	1.97E+00	Cyth4	3.25E+00	1.31E+01	4.03E+00	
Hdc	3.52E+00	7.59E+00	2.16E+00	Gda	2.17E+00	4.60E+01	2.12E+01	
Lyzz Cabud	2.37E+00	1.75E+02	7.42E+01	Syk	1.88E+00	1.32E+01	7.00E+00	
Cebpa	1.96E+00	1.8/E+01 7.02E+00	9.54E+00	Samsn1	3.22E+00	2.15E+00	6.68E-01	
Tufrof1b	2.17E+01 3.77E+00	1.92E+00	3.03E-01	NQ01 D:1-3+5	2.30E+00	2.00E+01	2.14E+01	
Manf	1.86E±00	8.35E±01	J.21E+00 4.49E+01	These h1	2.30E+00	4.93E+00	2.14E+00	
Hk3	5.51E+00	2.57E+00	4.6E = 01	Hsp90h1	1.56E+00	2.94E+02	1.15E+01	
Cvp7b1	3.99E+00	8.66E+00	2.17E+00	Men	2.61E+00	1.57E+02	6.01E+01	
Parm1	1.96E+00	5.05E+00	2.58E+00	F630028O10Rik	5.60E+00	3.34E+00	5.97E-01	
Msn	1.90E+00	1.31E+02	6.90E+01	AI662270	2.76E+00	3.93E+00	1.42E+00	
Plek	3.14E+00	2.08E+01	6.63E+00	Cd200r1	3.25E+00	2.68E+00	8.25E-01	
Tlr13	4.59E+00	7.40E+00	1.61E+00	Pf4	3.06E+00	2.90E+01	9.49E+00	
Sema3a	2.07E+00	8.41E+00	4.07E+00	Fth1	1.60E+00	8.98E+02	5.60E+02	
Slc27a3	3.11E+00	7.11E+01	2.29E+01	Smim3	1.68E+00	9.30E+00	5.53E+00	
Csf3r	1.39E+01	8.48E+00	6.08E-01	Sash3	2.86E+00	3.44E+00	1.20E+00	
Nek6	1.54E+00	1.59E+01	1.03E+01	Cd48	1.93E+00	5.05E+00	2.62E+00	
Tubb6	2.76E+00	3.15E+01	1.14E+01	Mcoln2	2.57E+00	4.01E+00	1.56E+00	
Capitsi	1.05E+00 2.74E+00	1.08E+02	1.02E+02	Adgrg5	2.84E+00 2.72E+00	2.30E+00 4.10E+01	8.32E-01	
Lyn Krt16	2.74E+00 4.32E+01	3.07E+02	7.09E+00	Pkm	2.72E+00 1.79E+00	4.10E+01	3.71E+02	
Aphhlin	2 50E+01	1.03E+02	4.13E+00	Pak1-rs7	1.79E+00	7.17E+01	4.53E±01	
Simble	1.59E+01	9 34E+00	5.86E-01	Tyrobn	2.62E+00	3.24E+01	1.24E+01	
Gm27029	2.33E+00	1.85E+00	7.93E-01	Gm5537	1.59E+00	8.07E+01	5.07E+01	
Fcer1g	3.38E+00	2.86E+01	8.45E+00	Slc7a8	2.89E+00	7.92E+00	2.74E+00	
Ptx3	5.03E+00	4.54E+00	9.03E-01	Armc6	1.54E+00	8.89E+00	5.77E+00	
Cd14	3.77E+00	1.30E+01	3.44E+00	Fam69a	1.66E+00	3.03E+01	1.83E+01	
Cd7	2.41E+00	1.94E+00	8.05E-01	Gent1	2.81E+00	6.91E+00	2.45E+00	
Mpeg1	2.62E+00	2.64E+01	1.01E+01	Ccl22	3.27E+00	2.99E+00	9.14E-01	
Cpne2	1.92E+00	2.54E+01	1.32E+01	Sprr2a2	2.83E+01	4.92E+02	1.74E+01	
Pdia4	1.69E+00	6.09E+01	3.60E+01	Pirb	2.92E+00	1.24E+01	4.25E+00	
Creld2	1.86E+00	3.65E+01	1.97E+01	Myolg	2.24E+00	8.08E+00	3.61E+00	
Atrip	1.65E+00	1.83E+00	1.11E+00	Ddah1 M-4-6-	4.12E+00	3.60E+00	8.74E-01	
Coart Sven1	3.00E+00	8.24E+00 3.87E+01	2.73E+00 1.30E+01	Nata 2	3.30E+00	8.33E+00	2.49E+00 8.63E 01	
Gm3788	2.98E+00	2.10E+01	6.20E=01	Illel1	2.24E+00 3.21E+00	2.81E+00	8.05E-01	
Rnasel	1.70E+00	9.91E+00	5.82E+00	Ptnri	1.51E+00	1.79E+01	1.19E+01	
Thbs1	1.59E+00	2.04E+02	1.28E+02	Sdf211	1.89E+00	1.35E+01	7.16E+00	
Clab	2.05E+00	4.70E+01	2.29E+01	Sprr2a3	3.08E+01	2.89E+01	9.40E-01	
Ftl1	1.63E+00	3.83E+02	2.35E+02	Pira2	5.17E+00	3.76E+00	7.26E-01	
Ptprc	1.89E+00	1.59E+01	8.43E+00	Serpinb1a	1.77E+00	5.57E+01	3.15E+01	
Angptl4	2.15E+00	1.07E+01	5.01E+00	Gm9025	2.17E+00	4.03E+00	1.85E+00	
Relt	3.00E+00	4.45E+00	1.48E+00	Flot2	1.82E+00	4.82E+01	2.65E+01	
Pdia6	1.73E+00	1.44E+02	8.35E+01	Il2rg	3.01E+00	3.64E+00	1.21E+00	
Serpina3e-p	es 4.57E+00	3.06E+00	6.68E-01	Nfkbie	1.74E+00	4.85E+00	2.79E+00	
Clec4n	4.75E+00	1.13E+01	2.37E+00	Thy1	2.42E+00	1.41E+02	5.83E+01	
W1sp2	3.16E+00	3.67E+01	1.16E+01	Tmprss11g	2.67E+00	8.58E+00	3.21E+00	
Fgr	3.83E+00	5.17E+00	1.35E+00	Clec4a1	2.57E+00	8.8/E+00	3.46E+00	
Layn Podhb22	2.34E+00 2.10E+00	2.00E+00	7.8/E-01	Zyx Eccor	1.52E+00 2.30E+00	0.38E+01	4.32E+01	
Adam8	2.10E+00 2.74E±00	3.00E+00	2.70E+00 1 00F±01	Pdia3	2.395+00 1 56F±00	3.57E±01	7.30E+00 2.28E±02	
Lomn	2.745+00 2.26E+00	1.46E+02	6.44E+01	2610528A11Rib	1.95E+02	1.39E+02	7.12E_01	
March1	1.53E+00	2.99E+00	1.95E+00	Tlr2	1.56E+00	6.58E+00	4.23E+00	
Clec4a2	5.46E+00	1.22E+01	2.23E+00	Impdh2	1.70E+00	4.59E+01	2.70E+01	
Dab2	2.56E+00	7.26E+01	2.83E+01	Krt6b	2.84E+01	3.27E+02	1.15E+01	
Lcp1	2.15E+00	4.34E+01	2.02E+01	Fscn1	3.12E+00	1.84E+01	5.90E+00	
Cd300lb	4.52E+00	3.01E+00	6.67E-01	Tmem173	2.91E+00	9.67E+00	3.33E+00	

TABLE 2-continued

TABLE 2-continued

TABLE 2-continued				TABLE 2-continued				
List of t	upregulated genes at reated with control	t the bite site of r (naïve) serum.	nice	List of upregulated genes at the bite site of mice treated with control (naïve) serum.				
Cdhr1	4.82E+01	2.33E+01	4.84E-01	Dtvmk	1.75E+00	2.24E+01	1.27E+01	
Ifitm1	3.26E+00	1.36E+01	4.17E+00	Gm6180	1.74E+00	1.58E+01	9.09E+00	
Cytip	1.72E+00	8.14E+00	4.73E+00	Gm5851	2.58E+00	1.81E+00	6.99E-01	
Psmb10	1.57E+00	2.14E+01	1.37E+01	Gm2564	3.89E+00	4.66E+00	1.20E+00	
Marcks	1.52E+00	5.74E+01	3.77E+01	Apol8	2.46E+00	5.24E+00	2.13E+00	
Pcbp3	2.23E+00	4.12E+00	1.85E+00	Len2	8.26E+00	8.19E+01	9.91E+00	
Unit	1.70E+00 2.18E+00	3.31E+02	1.94E+02	Hnrnpa3	1.50E+00	1.45E+02	9.6/E+01	
Tufrsfl3b	2.71E+00	2.70E+00	9.37E-01 9.96E-01	Csf2rb2	2.04E+00	9.34E+01	4.39E+01	
Traf1	2.54E+00	1.96E+00	7.73E-01	Bcl3	5.59E+00	1.37E+01	2.46E+00	
Ap1m1	1.53E+00	5.52E+01	3.61E+01	Ngf	3.69E+00	3.70E+00	1.00E+00	
Jaml	1.63E+00	2.86E+00	1.76E+00	Hpgd	1.53E+00	3.26E+01	2.13E+01	
Vav1	2.43E+00	4.93E+00	2.03E+00	Cks1b	1.62E+00	2.40E+01	1.48E+01	
Csf2rb	2.27E+00	1.80E+01	7.93E+00	Lsm4	1.55E+00	3.05E+01	1.97E+01	
Impdh1	1.62E+00	2.50E+01	1.54E+01	H13	1.50E+00	9.97E+01	6.63E+01	
Iri8 Slo7o11	2.17E+00	5.10E+00	2.36E+00	Fam162a	1.81E+00	2.80E+01	1.55E+01	
Josf6	2.47E+00	3.56E+01	1.06E+00	Tyn1	1.88E+00	5.12E+02 1.38E+02	8.91E+01	
Cd300a	2.81E+00	4.31E+00	1.53E+00	Marcks11	1.92E+00	2.71E+01	1.42E+01	
Dynlt1b	1.62E+00	3.86E+01	2.39E+01	Vcan	2.86E+00	2.83E+01	9.88E+00	
Laptm5	1.96E+00	4.40E+01	2.24E+01	Hmox1	1.91E+00	1.71E+02	8.95E+01	
Cel12	9.89E+00	6.08E+00	6.15E-01	Il4ra	1.95E+00	5.34E+01	2.74E+01	
Ldha	1.51E+00	4.92E+02	3.27E+02	Crlf2	1.92E+00	5.52E+00	2.87E+00	
Tagln2	1.60E+00	1.74E+02	1.09E+02	Gm15725	2.00E+00	5.95E+00	2.98E+00	
Irak4	1.54E+00	9.84E+00	6.38E+00	Enkdl	1.80E+00	4.37E+00	2.43E+00	
ryb Cvol1	2.20E+00	5.19E+00	2.36E+00	Snrpa Gine1	1.51E+00	4.47E+01	2.95E+01 3.62E+00	
Nme1	1.51E+01 1.85E+00	9.04E+00 8.14E+01	4.39E+01	Jf35	1.88E+00 1.53E+00	2.03E+00	3.02E+00	
Ripor2	2.27E+00	2.92E+00	1.29E+00	Gm15590	1.99E+00	2.19E+00	1.10E+00	
Ncf4	2.05E+00	6.86E+00	3.35E+00	Gjb1	1.96E+00	1.56E+00	7.98E-01	
Impdh2-ps	1.71E+00	1.27E+02	7.42E+01	Ranbp1	1.57E+00	5.49E+01	3.49E+01	
Alg8	1.92E+00	4.05E+00	2.11E+00	Brca2	2.56E+00	1.93E+01	7.55E+00	
Mthfd2	1.90E+00	6.00E+00	3.15E+00	Slc39a14	1.95E+00	1.76E+01	9.01E+00	
Flvcrl	1.54E+00	1.29E+01	8.39E+00	Arf2	1.57E+00	5.40E+01	3.44E+01	
NCI2	1.93E+00	4.90E+00	2.54E+00	Gpr132 Cod	1.77E+00 1.67E+00	1.59E+00 2.02E+01	8.96E-01	
Elna	1.78E+00 1.68E+00	2.02E+01 1.00E+02	1.46E+01 1.18E+02	Cad Serpine1	1.07E+00 1.98E+00	3.92E+01 2.28E±00	2.53E+01 1.15E+00	
Etv4	1.08E+00	5 37E+00	3.02E+00	Tslp	1.62E+00	2.23E+00 2.73E+00	1.69E+00	
Rab31	2.07E+00	4.88E+01	2.36E+01	Snrpf	1.57E+00	1.87E+01	1.20E+01	
Bak1	1.58E+00	2.02E+01	1.27E+01	Hsp90aa1	1.51E+00	1.27E+02	8.46E+01	
Lgals9	2.58E+00	9.86E+01	3.82E+01	Gm6992	2.58E+00	2.61E+00	1.01E+00	
Gm3839	2.53E+00	1.70E+00	6.69E-01	1110038B12Rik	1.50E+00	1.06E+01	7.05E+00	
Prss12	1.90E+00	2.25E+01	1.18E+01	Gm12758	2.14E+00	3.60E+00	1.68E+00	
Hyoul 1810055C02Dil	1.57E+00	0.05E+01	4.25E+01	Gm1184 /	1.77E+00	8.10E+00	4.56E+00	
Gm5837	1.51E+00	1.83E+01 1.73E+01	1.23E+01 1.15E+01	Cenps	2.23E+00 1.64E+00	2.13E+00 1.10E+01	9.43E=01 6.71E±00	
Rink3	3.15E+00	9.30E+00	2.95E+00	Gm17383	2.60E+00	6.52E+00	2.51E+00	
Mmp9	1.64E+00	9.20E+00	5.62E+00	2610203C20Rik	1.57E+00	1.72E+01	1.09E+01	
Ran	1.64E+00	1.71E+02	1.04E+02	Alg3	1.62E+00	9.64E+00	5.96E+00	
Gsdmc	4.77E+00	2.90E+01	6.08E+00	Gm5844	1.57E+00	1.66E+01	1.06E+01	
Me2	2.03E+00	1.10E+01	5.40E+00	Cenpt	1.71E+00	1.23E+01	7.15E+00	
Ccl24	5.13E+00	3.24E+00	6.31E-01	Pglyrp1	2.60E+00	2.66E+00	1.02E+00	
Lrrc59	1.61E+00	9.52E+01	5.92E+01	Pold2	1.57E+00	3.72E+01	2.38E+01	
Ddv30	1.77E+00	5.81E+00	2.02E+00 3.37E+01	Nup43	1.30E+00 1.70E+00	2.41E+01 1.47E+01	1.01E+01 8.66E+00	
Tubb5	2.01E+00	4.95E+02	2.46E+02	Acv1	1.57E+00	9.59E+00	6.09E+00	
Gmfg-ps	1.71E+00	5.06E+00	2.96E+00	Fhl2	1.98E+00	4.08E+00	2.06E+00	
Dhfr	1.56E+00	1.95E+01	1.25E+01	Mcm3	1.79E+00	4.47E+01	2.50E+01	
Gm4737	1.68E+00	8.02E+01	4.77E+01	Gm20390	1.83E+00	5.62E+01	3.07E+01	
Gm11451	2.16E+00	3.35E+00	1.55E+00	Pfkl	1.54E+00	3.22E+01	2.09E+01	
Csf2ra	1.74E+00	7.54E+00	4.34E+00	Gm26809	2.14E+00	1.72E+01	8.06E+00	
Cdkn2d	1.56E+00	1.92E+01	1.23E+01	Mmp3	4.04E+00	6.56E+01	1.62E+01	
Eri2h	2.30E+00 2.70E±00	0.30E+00 4 61 F±00	3.20±+00 1.71F±00	Orc1	1.35E+00 2.08F±00	1.39E+01 5.60E±00	1.04±+01 2.69F±00	
Pok1	1.69E+00	7.93E+01	4.70E+01	Slc19a1	1.53E+00	1.46E+01	9.57E+00	
Spi1	2.16E+00	1.47E+01	6.78E+00	Rbm14	1.58E+00	3.26E+01	2.07E+01	
Sorcs2	2.15E+00	6.15E+00	2.86E+00	Gemin6	1.52E+00	8.96E+00	5.88E+00	
Crispld2	2.16E+00	1.94E+02	8.97E+01	Aldh18a1	1.62E+00	2.02E+01	1.25E+01	
AC154572.2	1.55E+00	7.70E+00	4.98E+00	Dhrs13	2.39E+00	5.01E+00	2.10E+00	
Ier51	2.09E+00	5.47E+00	2.62E+00	Mcm4	1.51E+00	5.11E+01	3.39E+01	
Ruvbl2	1.63E+00	2.72E+01	1.67E+01	Lsm2	1.66E+00	1.49E+01	9.00E+00	
rarp12	1.54E+00	1.32E+01	8.03E+UU 3.17E+00	Chill	1./9E+00	8.74E+UU	4.88E+00	
Oemr	1.07E+00	3.30E+00 3.47E-01	1.90E±01	Nup03	2.95E+00 1.56E+00	4.00E+U2 3.70E+01	2 30E±01	
Collin	1.03E+00	3.47E+01	1.201401	Inup#5	1.50E+00	J./2E+01	2.376401	

List of upregulated genes at the bite site of mice treated with control (naïve) serum.			List of upregulated genes at the bite site of mice treated with control (naïve) serum.				
Slc29a2	2.38E+00	8.24E+00	3.47E+00	Dnph1	1.52E+00	2.48E+01	1.64E+01
Vstm2a	1.99E+00	1.57E+00	7.86E-01	Gm12666	1.63E+00	1.96E+00	1.20E+00
Cdt1	1.61E+00	1.93E+01	1.20E+01	S100a9	1.76E+01	1.19E+02	6.74E+00
Rad51	1.90E+00	1.24E+01	6.55E+00	Mrto4	1.54E+00	2.72E+01	1.76E+01
Mcm6 Ercc61	1.84E+00	6.43E+01 7.10E+00	3.49E+01	Stfa3 Nikojn1	5.45E+00	5.02E+00	9.20E-01
Cone1	2.01E+00	5.56E+00	2.77E+00	Psmo4	2.87E+00 1.50E+00	1.16E+01	7 70E+00
Casp6	1.51E+00	1.30E+01	8.58E+00	S100a8	1.22E+01	6.75E+01	5.51E+00
Abcg2	1.66E+00	3.83E+01	2.30E+01	Ampd3	1.70E+00	2.89E+01	1.70E+01
Gm5855	2.34E+00	2.21E+00	9.44E-01	Duxbl2	1.75E+00	2.82E+00	1.61E+00
Gm6977	1.69E+00	8.99E+00	5.33E+00	Rab15	1.62E+00	6.56E+01	4.04E+01
Tbl3	1.58E+00	3.58E+01	2.27E+01	Gm27219	1.71E+00	6.41E+00	3.74E+00
BC100530 Rpp40	1.93E+01 1.55E+00	2.08E+01 6.65E+00	1.39E+00 4.28E+00	Hmg01-ps3	1.96E+00 1.78E+00	2.20E+00 3.35E+01	1.12E+00 1.88E+01
Lvar	1.53E+00	2 59E+01	1.70E+01	Gm12722	1.78E+00	1.81E+00	1.11E+00
Clec21	3.76E+00	5.58E+00	1.48E+00	Dsg1c	2.04E+00	1.31E+01	6.39E+00
Sprr2h	7.43E+00	1.22E+01	1.64E+00	1700052K11Rik	1.55E+00	1.03E+01	6.69E+00
Ppia	1.50E+00	6.35E+02	4.22E+02	Krt6a	3.99E+00	3.43E+02	8.58E+01
Ndc1	1.54E+00	2.12E+01	1.38E+01	Hirip3	1.64E+00	1.82E+01	1.11E+01
Bisp1	1.90E+00	2.57E+00	1.36E+00	Pgam1	1.63E+00	1.70E+02	1.04E+02
Skap2 Smyd5	1.50E+00	7.17E+01 1.02E+01	4.78E+01 1.20E+01	B4gaint4 Rpl10-pc5	1.85E+00 1.68E+00	1.81E+00 1.54E+01	9.8/E-01 9.15E+00
Car12	2.26E+00	6.44E+01	2.85E+01	Hrh2	2.72E+00	2.19E+00	8.06E-01
Casp3	1.52E+00	2.10E+01	1.39E+01	AC131178.1	1.99E+00	4.69E+00	2.35E+00
Fbxo10	1.60E+00	1.40E+01	8.71E+00	Gadl1	1.71E+00	1.33E+02	7.81E+01
Lsm5	1.61E+00	5.77E+00	3.58E+00	BC055324	1.56E+00	5.06E+00	3.25E+00
Gstcd	1.64E+00	9.84E+00	6.00E+00	Gm6063	1.93E+00	2.60E+00	1.34E+00
Stom	1.66E+00	9.74E+01	5.88E+01	Trex1	1.54E+00	2.68E+01	1.73E+01
Gm8203 Gm13461	1.59E+00	5.21E+01	3.28E+01	Gainto Gm3448	2.60E+00	2.01E+01 7.58E+00	7.71E+00
Pom3	1.54E+00	1.03E+01	6.78E+00	Nat8l	1.69E+00	1.07E+02	6.49E+01
Erh	1.54E+00	4.10E+01	2.65E+01	AC022775.2	1.59E+00	3.33E+00	2.09E+00
Fam171a2	2.36E+00	2.41E+01	1.02E+01	Gm6793	1.97E+00	4.34E+00	2.21E+00
Xdh	1.55E+00	6.32E+01	4.08E+01	Mgat5b	3.43E+00	4.53E+00	1.32E+00
Nfyb	1.61E+00	4.35E+01	2.71E+01	Rpl29	1.51E+00	6.90E+00	4.56E+00
Hbegf	1.78E+00	1.10E+01 7.10E+01	6.19E+00	Gm11805 Dia2=7	1.72E+00	1.63E+00	9.46E-01
Pres 27	1.57E+00 2.14E+00	7.10E+01 1.01E+01	4.53E+01 4.73E+00	AC154176.1	1.38E+00 1.62E+00	1.72E+01 2.60E+01	1.09E+01
Slc14a1	3.46E+00	4.84E+00	1.40E+00	Top2a	1.96E+00	7.01E+01	3.58E+01
Entpd7	1.74E+00	6.59E+00	3.79E+00	H2afx	1.90E+00	2.64E+01	1.39E+01
Gm7899	2.05E+00	3.22E+00	1.57E+00	Gtse1	2.30E+00	1.01E+01	4.37E+00
Gm12988	1.84E+00	2.26E+00	1.23E+00	Gm12933	2.18E+00	1.96E+00	8.98E-01
Tpcn2	1.61E+00	1.55E+01	9.64E+00	Enah	1.51E+00	5.55E+01	3.68E+01
Srm Uac3	1.60E+00 4.85E+00	5.26E+01	3.30E+01	Sbno2 Tmem266	1.53E+00 2.19E+00	9.96E+01	6.50E+01
Wdhd1	4.35E+00 1.76E+00	1.15E+01	6.56E+00	Sprr2e	7.70E+00	6.61E+00	8.59E=01
Gm13092	1.59E+00	1.99E+01	1.25E+01	Slpi	5.25E+00	1.97E+01	3.75E+00
Socs3	1.98E+00	6.09E+01	3.08E+01	Aldh1a3	2.52E+00	4.26E+00	1.69E+00
Anapc15-ps	1.73E+00	1.48E+00	8.54E-01	Kenh1	2.08E+00	4.04E+01	1.94E+01
Fosl1	1.72E+00	2.62E+00	1.52E+00	Cxcr2	3.05E+00	1.48E+01	4.83E+00
Nikbid Dim 2	1.64E+00	1.84E+00	1.12E+00	Rp132-ps Dend	1.52E+00	5.03E+00	3.31E+00
A da	1.00E+00	5.79E+00 7.47E+00	4.25E+00	Cdb3	1.60E+00	5.78E+00	3.50E+01
Gm5791	2.18E+00	3.62E+00	1.66E+00	Gpx2	2.34E+00	1.73E+01	7.39E+00
Gm11675	1.55E+00	1.03E+01	6.67E+00	Grwd1	1.56E+00	3.09E+01	1.98E+01
Sema4c	1.52E+00	3.19E+01	2.10E+01	Cenpw	1.72E+00	6.62E+00	3.86E+00
Tes	1.54E+00	1.70E+01	1.10E+01	Nop56	1.65E+00	6.31E+01	3.82E+01
Lrp11	1.54E+00	3.74E+00	2.44E+00	Trp53i11	1.57E+00	7.86E+01	5.00E+01
Tyms Mtal1	1.53E+00	3.44E+01	2.25E+01	Ictn3	1.54E+00	6.83E+00	4.45E+00
Rfng	2.78E+00 1.53E+00	9.01E+00 4.98E+01	3.43E+00	Gisz Grend1	1.70E+00 1.58E+00	8.83E+00	5.58E+01
Snhg4	1.61E+00	2.49E+01	1.54E+01	Gpatch4	1.61E+00	3.57E+01	2.22E+01
Ndnf	3.12E+00	2.30E+01	7.37E+00	Shank1	1.65E+00	2.02E+00	1.22E+00
Gm3379	1.93E+00	6.41E+00	3.32E+00	Atp1a1	1.95E+00	7.45E+02	3.81E+02
Trip13	1.86E+00	7.69E+00	4.13E+00	Detd	1.58E+00	8.57E+00	5.44E+00
Sprr2g	6.51E+00	4.66E+00	7.15E-01	Ly6k	3.05E+00	7.01E+00	2.30E+00
Opri /0 Pany1	2.59E+00 1.64E±00	2.19E+00 2.04E+01	8.4/E-01 1.79E+01	Krp12 Geh1	1.54E+00 1.58E+00	2.91E+01 6.69E±00	1.88E+01 4.25E+00
Stat3	1.64E+00	2.28E+02	1.39E+02	Il13ra2	2.24E+00	4.34E+00	1.93E+00
Gemin4	2.10E+00	7.39E+00	3.52E+00	Cenf	1.56E+00	1.28E+01	8.21E+00
Slc9a1	1.58E+00	1.20E+02	7.58E+01	Rpl7a-ps10	1.68E+00	2.46E+00	1.46E+00
Gm6210	1.87E+00	8.75E+00	4.67E+00	Plbd1	1.57E+00	1.60E+02	1.02E+02
Eeflakmt4	1.51E+00	8.52E+00	5.63E+00	Lrrc4	3.11E+00	8.15E+00	2.62E+00
Gm5620	1.67E+00	2.78E+00	1.66E+00	Tdg-ps	1.57E+00	1.39E+01	8.82E+00

TABLE 2-continued

TABLE 2-continued

	List of upregulated genes at the bite site of mice treated with control (naïve) serum.					
Gm8666	1.52E+00	7.81E+00	5.14E+00			
Gpr35	1.67E+00	6.13E+00	3.67E+00			
Itpk1	1.54E+00	2.41E+01	1.56E+01			
Nolc1	1.52E+00	6.28E+01	4.12E+01			
Incenp	1.63E+00	2.14E+01	1.31E+01			
Oplah	1.50E+00	8.39E+01	5.58E+01			
Nt5dc2	1.65E+00	5.77E+01	3.49E+01			
Tubb3	2.40E+00	6.40E+00	2.67E+00			
Txn-ps1	1.82E+00	2.55E+00	1.40E+00			
AI506816	2.05E+00	6.04E+00	2.95E+00			
Gm15452	1.67E+00	2.66E+00	1.59E+00			
Depdc1b	1.87E+00	3.33E+00	1.78E+00			
Epb4113	1.52E+00	2.95E+01	1.94E+01			
Btbd19	1.51E+00	1.59E+01	1.06E+01			
Igsf3	1.71E+00	3.18E+01	1.86E+01			
Dusp9	2.04E+00	2.48E+00	1.21E+00			
Cd44	1.76E+00	1.30E+02	7.39E+01			
Gm45902	1.74E+00	5.89E+00	3.38E+00			

TABLE 2-continued

List of upregulated genes at the bite site of mice treated with control (naïve) serum.						
Wfdc12	4.99E+00	3.58E+01	7.17E+00			
Tdh	3.18E+00	2.23E+01	7.01E+00			
Rps13-ps2	1.83E+00	1.00E+01	5.49E+00			
Poc1a	1.68E+00	7.80E+00	4.63E+00			
Gja1	1.62E+00	1.63E+02	1.00E+02			
9330102E08Rik	1.74E+00	4.30E+00	2.48E+00			
2700038G22Rik	1.89E+00	2.88E+00	1.52E+00			
Rpl27	1.70E+00	1.91E+01	1.13E+01			
Cdca8	1.64E+00	1.92E+01	1.17E+01			
Stx11	1.60E+00	6.82E+00	4.28E+00			
Fam167a	3.53E+00	1.59E+01	4.51E+00			
Pinx1	1.54E+00	1.14E+01	7.40E+00			
Cks2	1.56E+00	9.48E+00	6.08E+00			
Gm10182	1.57E+00	2.43E+01	1.55E+01			

Control-resting skin: n = 2, Control-bitten skin: n = 2, AgBR1 antiserum-bitten skin: n = 2 biologically independent samples. Normalized read counts were statistically modeled using Partek Flow's Gene Specific Analysis (GSA) approach.

TABLE 3

01	igonucleotide primers used in the experiments.
	Oligonucleotide primers for qRT-PCR
Zika virus	F: TTGGTCATGATACTGCTGATTGC (SEQ ID NO: 130) R: CCTTCCACAAAGTCCCTATTGC (SEQ ID NO: 131)
Mosquito Rp49	F: GCTATGACAAGCTTGCCCCCA (SEQ ID NO: 132) R: TCATCAGCACCTCCAGCT (SEQ ID NO: 133)
Mouse βactin	F: GATGACGATATCGCTGCGCTG (SEQ ID NO: 134) R: GTACGACCAGAGGCATACAGG (SEQ ID NO: 135)
Mouse Tnfa	F: TGGAACTGGCAGAAGAGGCACT (SEQ ID NO: 136) R: GAGATAGCAAATCGGCTGACGG (SEQ ID NO: 137)
Mouse Illb	F: GCTTCAGGCAGGCAGTATCAC (SEQ ID NO: 138) R: CGACAGCACGAGGCTTTTT (SEQ ID NO: 139)
Mouse Il6	F: ATGAAGTTCCTCTCTGCAAGAGACT (SEQ ID NO: 140) R: CACTAGGTTTGCCGAGTAGATCTC (SEQ ID NO: 141)
Mosquito AgBR1	F: CGTCAACTTGGCTTCGTTCG (SEQ ID NO: 142) R: GATGCCGGATTTCTCCACCA (SEQ ID NO: 143)
	Oligonucleotide primers for cloning into the expression vector
AgBR1	F: CTCGCTCGGGAGATCTAACAATGCCACTACCGGCCCAAAGGTCCTC (SEQ ID NO: 144) R: GCCCTCTAGACTCGAGCAGCCTATACTTAGCAGCCCTCAG (SEQ ID NO: 145)
SP	F:CTCGCTCGGGAGATCTCACCCAATTCCAGCCGAAGATCCCGCCAAGC (SEQ ID NO: 146) R:CCCTCTAGACTCGAGACCAAAAGCCTTCACCATGACCTTCGGATAG (SEQ ID NO: 147)
D7Bclu	F: CTCGCTCGGGAGATCTGCACCTTTATGGGATGCAAAGGATCCAGAGC (SEQ ID NO: 148) R: GCCCTCTAGACTCGAGGCTACACTGGATCTTGTCGATATCG (SEQ ID NO: 149)
(Digonucleotide primers for dsRNA preparation
dsAgBR1 RNA	F: TAATACGACTCACTATAGGGGATGGACAGATGTCTCTTCGTG (SEQ ID NO: 150) R: TAATACGACTCACTATAGGGCCAAATCCAATCCATCGAAA (SEQ ID NO: 151)

TABLE 3-continued

Oligonucleotide primers used in the experiments.

dsGFP F: TAATACGACTCACTATAGGGGTGAGCAAGGGCGAGGAG RNA (SEQ ID NO: 152) R: TAATACGACTCACTATAGGGCATGATATAGACGTTGTGGCTGTT (SEQ ID NO: 153)

TABLE	4
-------	---

	List of GSEA enriched pathway at bite sites in mice treated with control serum using hallmark gene sets							
	GS follow link to MSigDB	NES	FDR q-val					
1	HALLMARK_INFLAMMATORY_	2.5049036	0					
2	RESPONSE HALLMARK_ALLOGRAFT_ REJECTION	2.3367434	0					
3	HALLMARK_IL6_JAK_STAT3_	2.016875	8.00E-04					
4	SIGNALING HALLMARK_TNFA_SIGNALING_ VIA_NFKB	1.8812603	0.001689706					

TABI	LE	4-continued
------	----	-------------

List of GSEA enriched pathway at bite sites in mice treated with control serum using hallmark gene sets						
GS follow link to MSigDB NES FDR q-val						
5 HALLMARK_IL2_STAT5_ SIGNALING	1.5615453	0.028370652				
Control portion altim a - 2 Control bitter altim a - 2 A-DD1 anti-come bitter altim a						

Control-resting skin: n = 2, Control-bitten skin: n = 2, AgBR1 antiserum-bitten skin: n = 2 biologically independent samples. FDR statistics were performed based on study described in Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545-15550 (2005).

TABLE 5

	List of GSEA enriched pathway at bite sites in mice treated with control serum using KEGG gene sets						
	GS follow link to MSigDB	NES	FDR q-val	LEADING EDGE			
1	KEGG_CYTOKINE_CYTOKINE_ RECEPTOR_INTERACTION	2.5147192	0	tags = 34%, list = 10%, signal = 37%			
2	KEGG_HEMATOPOIETIC_CELL_ LINEAGE	2.1477058	3.80E-04	tags = 34%, list = 12%, signal = 38%			
3	KEGG_RIBOSOME	2.0992713	0.00114546	tags = 64%, list = 21%, signal = 80%			
4	KEGG_NOD_LIKE_RECEPTOR_ SIGNALING_PATHWAY	2.0794337	0.001266238	tags = 18%, list = 3%, signal = 18%			
5	KEGG_TYPE_I_DIABETES_MELLITUS	2.047159	0.001789215	tags = 47%, list = 9%, signal = 52%			

Control-resting skin: n = 2,

Control-bitten skin: n = 2,

AgBR1 antiserum-bitten skin: n = 2 biologically independent samples.

FDR statistics were performed based on study described in *Subramanian, A. et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl Acad. Sci. USA* 102, 15545-15550 (2005).

IABLE 6

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
	HALLMARK_INFLAMMATORY_RES	PONSE	
SELL IL1B IL6 IL18RAP CSF3R	selectin L (lymphocyte adhesion molecule 1) interleukin 1, beta interleukin 6 (interferon, beta 2) interleukin 18 receptor accessory protein colony stimulating factor 3 receptor (granulocyte)	4.533662319 3.462865114 3.456357479 3.251766205 3.238983631	Yes Yes Yes Yes Yes

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
OSM	oncostatin M	2.948629141	Yes
MSR1	macrophage scavenger receptor 1	2.937763929	Yes
C5AR1	complement component 5a receptor 1	2.387494087	Yes
MEFV	Mediterranean fever	2.353091955	Yes
MARCO	macrophage receptor with collagenous	2.29198432	Yes
TNFRSF9	structure tumor necrosis factor receptor superfamily,	2.029400826	Yes
SERPINE1	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1),	1.842594028	Yes
0015		1.927(21102	37
CLECEA	C true lectin demain family 5 member 4	1.82/021102	res Voc
BDKBB1	bradykinin recentor B1	1.790042001	Vec
PTAEP	platelet-activating factor receptor	1.7890033333	Vec
PROKA	prokineticin 2	1.485730708	Vec
CCL 22	chemokine (C-C motif) ligand 22	1 440871716	Ves
CSE3	colony stimulating factor 3 (granulocyte)	1 422928095	Ves
TLR1	toll-like receptor 1	1.34019506	Yes
PLAUR	plasminogen activator, urokinase receptor	1.308592319	Yes
FPR1	formyl peptide receptor 1	1.262866974	Yes
TNFRSF1B	tumor necrosis factor receptor superfamily,	1.259392858	Yes
SLAMF1	signaling lymphocytic activation molecule family member 1	1.241883397	Yes
CCL24	chemokine (C-C motif) ligand 24	1.233121157	Yes
GPR132	G protein-coStupled receptor 132	1.176985025	Yes
LYN	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	1.097683549	Yes
LCP2	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)	1.090578794	Yes
PIK3R5	phosphoinositide-3-kinase, regulatory subunit 5, p101	1.057828546	Yes
C3AR1	complement component 3a receptor 1	1.036981106	Yes
RGS1	regulator of G-protein signalling 1	0.960995197	Yes
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes
CD14	CD14 molecule	0.848022759	Yes
CCRL2	chemokine (C-C motif) receptor-like 2	0.822621703	Yes
STAB1	stabilin 1	0.800862968	Yes
ILIU TNECEO	interleukin 10	0.7718181659	Yes
1101519	member 9	0.7/1818101	Tes Vee
ADM ICAM1	intercallular adhasian malacula 1 (CD54)	0.740417522	Tes Vec
DTD4	human rhinovirus receptor	0.740373382	Vaa
	toll like recentor 2	0.080959040	Vac
CCL17	chemokine (C-C motif) ligand 17	0.664499223	Ves
BST2	hone marrow stromal cell antigen 2	0.6320346	Yes
CCL20	chemokine (C-C motif) ligand 20	0.625092983	Yes
CCR7	chemokine (C-C motif) receptor 7	0.594285488	Yes
CD82	CD82 molecule	0.569351971	Yes
LIF	leukemia inhibitory factor (cholinergic differentiation factor)	0.547570944	Yes
TNFAIP6	tumor necrosis factor, alpha-induced protein 6	0.543578744	Yes
HBEGE	heparin-binding EGE-like growth factor	0.541148901	Yes
CD48	CD48 molecule	0.540921032	Yes
RGS16	regulator of G-protein signalling 16	0 526294231	Yes
SELE	selectin E (endothelial adhesion molecule 1)	0 494481832	Ves
CD40	CD40 molecule, TNF receptor superfamily	0.492939293	Yes
LTA	lymphotoxin alpha (TNF superfamily,	0.44320941	No
HAS2	hvaluronan synthase 2	0 441109390	No
11/102 ITC: 15	integrin alpha 5 (fibronactin recentor alpha	0.441196269	No
IIUAJ	polypeptide)	0.4290490/1	INO
SLC4A4	solute carrier family 4, sodium bicarbonate cotransporter, member 4	0.396574855	No
CXCL9	chemokine (C-X-C motif) ligand 9	0.391491205	No
IL10RA	interleukin 10 receptor, alpha	0.343504012	No

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
GCH1	GTP cyclohydrolase 1 (dopa-responsive dystonia)	0.327480644	No
LCK IFITM1	lymphocyte-specific protein tyrosine kinase interferon induced transmembrane protein 1 (9-77)	0.318335414 0.315781265	No No
PDPN	podoplanin	0.294152737	No
PTGIR	prostaglandin I2 (prostacyclin) receptor (IP)	0.285321265	No
OLR1	oxidised low density lipoprotein (lectin-like) receptor 1	0.284122884	No
INHBA	inhibin, beta A (activin A, activin AB alpha polypeptide)	0.280317694	No
TIGB3	antigen CD61)	0.256395549	No
CCL7	chemokine (C-C motif) ligand 7	0.251811057	No No
UNCLIU IDE1	interference (C-X-C moul) ligand 10	0.220/01//3	INO Na
IKFI	interferon regulatory factor 1	0.21415/283	NO No
L AMD3	bicostatili M receptor	0.207781732	No
SLC28A2	solute carrier family 28 (sodium-coupled nucleoside transporter), member 2	0.192293972	No
EBI3	Epstein-Barr virus induced gene 3	0.188898429	No
SLC7A2	solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	0.175343886	No
ICAM4	intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)	0.169187918	No
CD69	CD69 molecule	0.166904241	No
ADRM1	adhesion regulating molecule 1	0.161846325	No
PTGER4	prostaglandin E receptor 4 (subtype EP4)	0.143603638	No
NDP	Norrie disease (pseudoglioma)	0.107874334	No
SCARF1	scavenger receptor class F, member 1	0.093449399	No
IL15RA	interleukin 15 receptor, alpha	0.084517181	No
CXCLII	chemokine (C-X-C motif) ligand 11	0.079039596	No
САВВ	cytochrome b-245, beta polypeptide	0.06/99/418	No
IDIAD1	(chronic granulomatous disease)	0.050(2004)	21
IFNAKI	interferon (alpha, beta and omega) receptor 1	0.059620846	NO
IFNGK2	amma transducer 1)	0.04001/130	INO
TPDG	trenhoblest glycoprotein	0.045252148	No
CSEL	colony stimulating factor 1 (macrophage)	0.043232148	No
CYCR6	chemokine (C-X-C motif) recentor 6	0.031615365	No
GPC3	glypican 3	0.026109839	No
EIF2AK2	eukaryotic translation initiation factor 2-	0.021446833	No
CHST2	alpha kinase 2 carbohydrate (N-acetylølucosamine-6-0)	0.006915596	No
EDN1	sulfotransferase 2 endothelin 1	0.002488923	No
P2RX4	purinergic receptor P2X, ligand-gated ion	0.002422775	No
PTPRE	channel, 4 protein tyrosine phosphatase, receptor type, E	-0.01096273	No
PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	-0.01937426	No
TACR3	tachykinin receptor 3	-0.02168826	No
NPFFR2	neuropeptide FF receptor 2	-0.03000635	No
NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	-0.03587324	No
DCBLD2	discoidin, CUB and LCCL domain containing 2	-0.04324392	No
IL15	interleukin 15	-0.04502484	No
IL1R1	interleukin 1 receptor, type I	-0.05148519	No
FZD5	trizzled homolog 5 (Drosophila)	-0.05248347	No
ADORA2B	adenosine A2b receptor	-0.07098219	No
CMKLR1	chemokine-like receptor 1	-0.07226631	No
TLR3	toll-like receptor 3	-0.0735488	No
CDKNIA KCNA3	cycnin-dependent kinase innibitor IA p21, Cip1) potassium voltage-gated channel, shaker- related subfamily, member 3	-0.08443426 -0.09990013	N0 N0
MMP14	matrix metalloneptidase 14 (membrane-inserted)	-0.10503554	No
HRH1	histamine receptor H1	-0.11474121	No
IRAK2	interleukin-1 receptor-associated kinase 2	-0.13551585	No
ATP2B1	ATPase, Ca++ transporting, plasma membrane 1	-0.14145075	No
SCN1B	sodium channel, voltage-gated, type I beta	-0.14982769	No
SLC31A2	solute carrier family 31 (copper transporters), member 2	-0.15675473	No
	//		

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
PVR	poliovirus receptor	-0.15986347	No
SLC11A2	solute carrier family 11 (proton-coupled	-0.16051796	No
	divalent metal ion transporters), member 2		
KLF6	Kruppel-like factor 6	-0.16283926	No
ITGB8	integrin, beta 8	-0.16627799	No
PDE4B	phosphodiesterase 4B, cAMP-specific	-0.16894662	No
MYDI	(phosphodiesterase 14 dunce homolog, Diosophila)	_0 16008833	No
BTG2	BTG family, member 2	-0.17541341	No
SLC7A1	solute carrier family 7 (cationic amino acid	-0.17681299	No
	transporter, y+ system), member 1		
RIPK2	receptor-interacting serine-threonine kinase 2	-0.1842809	No
SRI DODX7	sorcin	-0.19541027	No
P2RX/	purinergic receptor P2X, ligand-gated ion channel, /	-0.1960772	No No
IDIP	low density linearotein receptor (femilial	-0.19852574	No
LDLK	hypercholesterolemia)	-0.20240238	NO
HIF1A	hypoxia-inducible factor 1, alpha subunit (basis beliv temporistion factor)	-0.20901471	No
AHR	aryl hydrocarbon receptor	-0.21279255	No
CX3CL1	chemokine (C-X3-C motif) ligand 1	-0.22508623	No
MET	met proto-oncogene (hepatocyte growth	-0.2252703	No
	factor receptor)		
LY6E	lymphocyte antigen 6 complex, locus E	-0.22614777	No
NMI	N-myc (and STAT) interactor	-0.22712676	No
SEMA4D	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short	-0.22815116	No
IT 1 A	interleukin 1 alpha	-0.22882077	No
ABII	abl-interactor 1	-0.22882077	No
GNA15	guanine nucleotide binding protein	-0.23037907	No
orano	(G protein), alpha 15 (Gq class)	0120007707	110
SPHK1	sphingosine kinase 1	-0.23109274	No
NFKB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	-0.25809258	No
ACVR2A	activin A receptor, type IIA	-0.26500779	No
AQP9	aquaporin 9	-0.2774868	No
IRF7	interferon regulatory factor 7	-0.28254756	No
ACVR1B	activin A receptor, type IB	-0.29110909	No
IL/K SLC21A1	interleukin / receptor	-0.3005/914	No No
SLCJIAI	transporters) member 1	-0.30950858	110
KIF1B	kinesin family member 1B	-0.31039682	No
IL2RB	interleukin 2 receptor, beta	-0.31792504	No
TAPBP	TAP binding protein (tapasin)	-0.32166621	No
GNAI3	guanine nucleotide binding protein (G	-0.32649222	No
	protein), alpha inhibiting activity polypeptide 3		
RELA	v-rel reticuloendotheliosis viral oncogene	-0.32651395	No
	homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65		
ATP2A2	(avian) ATPase, Ca++ transporting, cardiac muscle,	-0.32773513	No
ABCA1	ATP-binding cassette, sub-family A	-0.33476061	No
RAF1	v-raf-1 murine leukemia viral oncogene homolog 1	-0.3348152	No
PCDH7	BH-protocadherin (brain-heart)	-0.34278125	No
CD55	CD55 molecule, decay accelerating factor	-0.34951958	No
	for complement (Cromer blood group)		
TACR1	tachykinin receptor 1	-0.36803696	No
RASGRP1	RAS guanyl releasing protein 1 (calcium and DAG-regulated)	-0.37512192	No
PSEN1	presenilin 1 (Alzheimer disease 3)	-0.38747761	No
ATP2C1	ATPase, Ca++ transporting, type 2C, member 1	-0.39031595	No
CALCRL	calcitonin receptor-like	-0.41768777	No
SLC1A2	solute carrier family 1 (glial high affinity	-0.48958847	No
TT 19	giutaniate transporter), member 2 interlaukin 18 (interferon commo inducing factor)	0 5164242	No
EMP3	epithelial membrane protein 3	-0.5104245	No
GABBR1	gamma-aminohutyric acid (GABA) R recentor 1	-0.54345095	No
STUDIN	Samma anniooutyne acid (OADA) D receptor, I	0.04040000	110

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.				
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT	
AXL	AXL receptor tyrosine kinase	-0.57041121	No	
MYC	v-myc myelocytomatosis viral oncogene homolog (avian)	-0.57849312	No	
GP1BA	glycoprotein Ib (platelet), alpha polypeptide	-0.59780264	No	
TNFSF15	tumor necrosis factor (ligand) superfamily, member 15	-0.65267819	No	
FFAR2	free fatty acid receptor 2	-0.66044772	No	
NMUR1	neuromedin U receptor 1	-0.66688561	No	
HPN KCNJ2	hepsin (transmembrane protease, serine 1) potassium inwardly-rectifying channel, subfamily J, member 2	-0.68898129 -0.70222563	No No	
TIMP1	TIMP metallopeptidase inhibitor 1	-0.70523745	No	
TNFSF10	tumor necrosis factor (ligand) superfamily, member 10	-0.78845328	No	
IL18R1	interleukin 18 receptor 1	-0.81675339	No	
RHOG	ras homolog gene family, member G (rhoG)	-0.9650324	No	
EREG	epiregulin	-1.24036241	No	
ROS1	v-ros UR2 sarcoma virus oncogene homolog 1 (avian) HALLMARK_ALLOGRAFT_REJECTION	-1.97980785 I	No	
IL1B	interleukin 1, beta	3.462865114	Yes	
IL6	interleukin 6 (interferon, beta 2)	3.456357479	Yes	
IL18RAP	interleukin 18 receptor accessory protein	3.251766205	Yes	
STAT4	signal transducer and activator of transcription 4	3.148304939	Yes	
TNF	tumor necrosis factor (TNF superfamily, member 2)	2.751254082	Yes	
GZMB	granzyme B (granzyme 2, cytotoxic T- lymphocyte-associated serine esterase 1)	2.667121887	Yes	
CCR1	chemokine (C-C motif) receptor 1	2.132987738	Yes	
CCR5	chemokine (C-C motif) receptor 5	2.054755688	Yes	
CCL5	chemokine (C-C motif) ligand 5	1.827621102	Yes	
ITGAL	integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide)	1.800091743	Yes	
CD7	CD/ molecule	1.628337383	Yes	
FGR	Gardner-Kasneed Jeline sarcoma viral	1.552860975	Yes	
CCI 22	chemokine (C-C motif) ligand 22	1 440871716	Ves	
TLR1	toll-like recentor 1	1 34019506	Ves	
IL12A	interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35)	1.315529704	Yes	
CCL4	chemokine (C-C motif) ligand 4	1.303452969	Yes	
GPR65	G protein-coupled receptor 65	1.301272631	Yes	
CCR2	chemokine (C-C motif) receptor 2	1.17247808	Yes	
PRF1	perforin 1 (pore forming protein)	1.171788573	Yes	
IGSF6	immunoglobulin superfamily, member 6	1.100607872	Yes	
LYN	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	1.097683549	Yes	
LCP2	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)	1.090578794	Yes	
IL2RG	interleukin 2 receptor, gamma (severe combined immunodeficiency)	1.083326221	Yes	
DYRK3	dual-specificity tyrosine-(Y)- phosphorylation regulated kinase 3	1.04365015	Yes	
IRF8	interferon regulatory factor 8	0.984531879	Yes	
TLR6	toll-like receptor 6	0.974328399	Yes	
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes	
SOCSI	suppressor of cytokine signaling 1	0.9121/684/	Yes	
FIB STAD1	r i N binding protein (r i B-120/150)	0.841911/95	ies Voc	
CCI 19	stabili 1 chemokine (C-C motif) ligand 19	0.800802908	Vec	
ITGB2	integrin, beta 2 (complement component 3 receptor 3	0.783176661	Vec	
H 10	and 4 submit)	0.783170001	ies N	
ILIU PCL3	P cell CL //wmphome 2	0.777381659	res Vac	
DCL3 ICAM1	n-cen CLL/Iyiiipiioiiia 5 intercellular adhesion molecula 1	0./004//019	108 Vac	
	(CD54), human rhinovirus receptor	0.740373382	ies	
ммру	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	0.740974486	Yes	
IL13	interleukin 13	0.6945768	Yes	
ILII TI DO	interieukin 11	0.684957564	Yes	
GCNT1	ton-nike receptor 2 glucosaminyl (N-acetyl) transferase 1, core 2	0.671268702	res Yes	
IL4	(beta-1,6-N-acetylgiucosaminyltransferase) interleukin 4	0.65638262	Yes	

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma p16 inhibits CDK4)	0.650471985	Yes
CD86	CD86 molecule	0.631752431	Yes
CD80	CD80 molecule	0.600226164	Yes
LTB	lymphotoxin beta (TNF superfamily, member 3)	0.579620421	Yes
LIF	leukemia inhibitory factor (cholinergic differentiation factor)	0.547570944	Yes
WAS	Wiskott-Aldrich syndrome (eczema-thrombocytopenia)	0.525824308	Yes
PTPRC	protein tyrosine phosphatase, receptor type, C	0.522265971	Yes
RPS19	ribosomal protein S19	0.506382108	Yes
NCF4	cD40 molecule, TNF receptor superlamity member 5	0.492939293	ies Vec
IV86	lymphocyte antigen 86	0.405555584	Ves
FCGR2B	Fc fragment of IgG, low affinity IIb, receptor (CD32)	0.436047524	Yes
HCLS1	hematopoietic cell-specific Lyn substrate 1	0.427405208	Yes
CD3D	CD3d molecule, delta (CD3-TCR complex)	0.415081888	Yes
CXCL9	chemokine (C-X-C motif) ligand 9	0.391491205	Yes
CXCR3	chemokine (C-X-C motif) receptor 3	0.380579948	Yes
BRCA1	breast cancer 1, early onset	0.38035053	Yes
RPL9	ribosomal protein L9	0.372396767	Yes
CD8A	CD8a molecule	0.337146819	No
SIT1	signaling threshold regulating transmembrane adaptor 1	0.334993273	No
CD28	CD28 molecule	0.331128299	No
LCK	lymphocyte-specific protein tyrosine kinase	0.318335414	No
IFNAR2	interferon (alpha, beta and omega) receptor 2	0.2814/7422	No
UBE2N	ubiquitin-conjugating enzyme E2N (UBC13 homolog, veast)	0.279983729	No
CCL7	chemokine (C-C motif) ligand 7	0.251811057	No
CD79A	CD79a molecule, immunoglobulin-associated alpha	0.249655664	No
MAP4K1	mitogen-activated protein kinase kinase kinase 1	0.249342158	No
ETS1	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	0.217027962	No
FAS	Fas (TNF receptor superfamily, member 6)	0.173293099	No
51851A4	2,8-sialyltransferase 4	0.14/20/29/	NO
RPL39	ribosomal protein L39	0.145141497	No
GLMN	glomulin, FKBP associated protein	0.138915822	NO
ZARZO	cytotoxic and regulatory 1 cell molecule	0.132859111	No
ZAF70 TGER1	transforming growth factor, beta 1	0.127001003	No
SPI1	(Camurati-Engelmann disease)	0.119634412	No
5111	proviral integration oncogene spi1	0.119054412	140
STAT1	signal transducer and activator of transcription 1, 91kDa	0.050059285	No
IFNGR2	interferon gamma receptor 2 (interferon gamma transducer 1)	0.046017136	No
CSF1	colony stimulating factor 1 (macrophage)	0.042810541	No
CCLII	chemokine (C-C motif) ligand 11	0.039969306	No
APBB1	amyloid beta (A4) precursor protein-binding, family B,	-0.002237323	No No
GBP2	guanylate hinding protein 2, interferon-inducible	-0.031019775	No
TAP1	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	-0.033033174	No
CD3G	CD3g molecule, gamma (CD3-TCR complex)	-0.033679064	No
SOCS5	suppressor of cytokine signaling 5	-0.042330034	No
INHBB	inhibin, beta B (activin AB beta polypeptide)	-0.043366853	No
IL15	interleukin 15	-0.045024838	No
CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	-0.045578849	No
IL12RB1 CD74	interleukin 12 receptor, beta 1 CD74 molecule, major histocompatibility complex, class II invariant chain	-0.050351642 -0.073090956	No No
TLR3	toll-like receptor 3	-0.073548801	No
TAP2	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)	-0.081326358	No
UBE2D1	ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast)	-0.089536563	No
ELF4 CD4	E74-like factor 4 (ets domain transcription factor) CD4 molecule	-0.119385988 -0.128431112	No No

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
DTDN/	matein transing abarahatana, nan assantan tras 6	0 124159392	Na
IIINO III6	interleukin 16 (lymphocyte chemosttractant factor)	0.130530182	No
MAP3K7	mitogen-activated protein kinase kinase kinase 7	-0.139330182	No
RPS9	ribosomal protein S9	-0.145742506	No
FIF4G3	eukaryotic translation initiation factor 4 gamma 3	-0.146932095	No
PRKCG	protein kinase C. gamma	-0.148039475	No
TPD52	tumor protein D52	-0.149961919	No
MRPL3	mitochondrial ribosomal protein L3	-0.158919781	No
EGER	epidermal growth factor receptor (erythroblastic	-0.164786458	No
IKBKB	leukemia viral (v-erb-b) oncogene homolog, avian) inhibitor of kappa light polypeptide gene enhancer in	-0.167352051	No
1.170	B-cells, kinase beta	0.1/771.4015	N 7
JAK2	Janus kinase 2 (a protein tyrosine kinase)	-0.167714015	No
CCND2	cyclin D2	-0.172594517	No
HDAC9	histone deacetylase 9	-0.17316395	No
AARS	alanyl-tRNA synthetase	-0.175502419	No
IL2/RA	interleukin 27 receptor, alpha	-0.1///59618	No
IFNGRI	interferon gamma receptor 1	-0.181889921	No
RIPK2	receptor-interacting serine-threonine kinase 2	-0.184280902	NO
MTIF2	mitochondrial translational initiation factor 2	-0.19249332	No
HIFIA	hypoxia-inducible factor 1, alpha subunit (basic helix- loop-helix transcription factor)	-0.209014714	No
CFP	complement factor properdin	-0.21020171	NO
F2K	coagulation factor II (thrombin) receptor	-0.219984412	NO No
ABII	abl-interactor 1	-0.229079112	NO No
B2M	beta-2-microglobulin	-0.230708095	NO N-
LI/3 TCED1	transforming growth factor hate 2	-0.23181931	No
CD47	CD47 malagula	-0.233663360	No
CD4/	U 2 inducible T cell kinese	-0.230719309	No
OSV	a gra truncipie l'ecci kinase	0.234082004	No
DARS	c-sic tyrosine kinase	0.260919124	No
ACVR2A	activity A recentor, type IIA	-0.265007794	No
IRE4	interferon regulatory factor 4	-0.281879067	No
IRE7	interferon regulatory factor 7	-0.28167563	No
TDAE2	TNE recentor accorded factor 2	0.202227083	No
NOV1	NCK adaptor protoin 1	-0.292227985	No
GALNT1	IDB N acetul aluba D calacterarinamalumentida N	-0.300779011	No
DEGS1	acetylgalactosaminyltransferase 1 (GalNAc-T1)	-0.308093349	No
DEGDI H ADD	(Drosophila)	0.309142411	
IL2RB	interleukin 2 receptor, beta	-0.317925036	No
TAPBP	TAP binding protein (tapasin)	-0.321666211	No
ACHE	acetylcholinesterase (Yt blood group)	-0.328164309	No
CD247	CD247 molecule	-0.337787271	No
IL7	interleukin 7	-0.356599182	No
CD2	CD2 molecule	-0.376374722	No
BCL10	B-cell CLL/lymphoma 10	-0.387535632	No
PSMB10	proteasome (prosome, macropain) subunit, beta type, 10	-0.392836064	No
IL2RA	interleukin 2 receptor, alpha	-0.422955573	No
CCND3	cyclin D3	-0.436431259	No
NPM1	nucleophosmin (nucleolar phosphoprotein B23, numatrin)	-0.437718987	No
EIF5A	eukaryotic translation initiation factor 5A	-0.440881759	No
ABCE1	ATP-binding cassette, sub-family E (OABP), member 1	-0.462895155	No
KLRD1	killer cell lectin-like receptor subfamily D, member 1	-0.488495886	No
WARS	tryptophanyl-tRNA synthetase	-0.497032523	No
NME1	non-metastatic cells 1, protein (NM23A) expressed in	-0.507820129	No
IL18	interleukin 18 (interferon-gamma-inducing factor)	-0.516424298	No
FLNA	filamin A, alpha (actin binding protein 280)	-0.591539323	No
TRAT1	T cell receptor associated transmembrane adaptor 1	-0.612580657	No
BCAT1	branched chain aminotransferase 1 cytosolic	-0.632505953	No
PF4	nlatelet factor 4 (chemokine (C-V-C motif) ligend 4)	-0.685/00007	No
CD96	CD06 molecule	-0.606216106	No
TIMP1	TIMP metallonentidage inhibitor 1	0.705227449	No
T HVIT I	anter inclanopeptidase minionor i	-0.703237448	INU No
CISS	cathepsin S	-0.790032366	INO
KAKS	arginyi-tKINA synthetase	-0.809948447	INO
CAPG AKT1	capping protein (actin filament), gelsolin-like v-akt murine thymoma viral oncogene homolog 1	-0.915236473 -0.990338564	ino No

TABLE 6-continued

	Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT	
THY1	Thy-1 cell surface antigen	-1.102289557	No	
RPL3L	ribosomal protein L3-like	-1.196903586	No	
EKEG KRT1	epireguini keratin 1 (epidermolytic hyperkeratosis)	-1.240302400	No	
	HALLMARK_IL6_JAK_STAT3_SIGNALING	Э	110	
IL1B	interleukin 1, beta	3.462865114	Yes	
IL6	interleukin 6 (interferon, beta 2)	3.456357479	Yes	
CSF3R	colony stimulating factor 3 receptor (granulocyte)	3.238983631	Yes	
INF CXCL1	tumor necrosis factor (1NF superfamily, member 2) chemokine (C-X-C motif) ligand 1 (melanoma growth	2.751254082	Yes	
CACLI	stimulating activity, alpha)	2.00/189121	168	
CCR1	chemokine (C-C motif) receptor 1	2.132987738	Yes	
TNFRSF1B	tumor necrosis factor receptor superfamily, member 1B	1.259392858	Yes	
IL2KG	combined immunodeficiency)	1.083320221	res	
PIK3R5	phosphoinositide-3-kinase, regulatory subunit 5, p101	1.057828546	Yes	
CXCL3	chemokine (C-X-C motif) ligand 3	0.966697574	Yes	
SUCSI	suppressor of cytokine signaling 1 colony stimulating factor 2 recenter beta	0.912176847	Yes Vec	
CSF2KD	low-affinity (granulocyte-macrophage)	0.888900024	168	
CD14	CD14 molecule	0.848022759	Yes	
CSF2RA	colony stimulating factor 2 receptor, alpha,	0.78864789	Yes	
CRLF2	cytokine receptor-like factor 2	0.754059553	Yes	
TLR2	toll-like receptor 2	0.671268702	Yes	
CD38	CD38 molecule	0.640005708	Yes	
LTB	lymphotoxin beta (TNF superfamily, member 3)	0.579620421	Yes	
CNIFK	chemokine (C-X-C motif) ligand 9	0.337338140	res No	
ITGB3	integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	0.256395549	No	
CCL7	chemokine (C-C motif) ligand 7	0.251811057	No	
CXCL10	chemokine (C-X-C motif) ligand 10	0.226761773	No	
IRF1	interferon regulatory factor 1	0.214157283	No	
ACVRLI	activin A receptor type II-like I	0.211801216	No No	
EBI3	Enstein-Barr virus induced gene 3	0.207781732	No	
FAS	Fas (TNF receptor superfamily, member 6)	0.173293099	No	
ITGA4	integrin, alpha 4 (antigen CD49D, alpha 4	0.159151196	No	
TCED1	subunit of VLA-4 receptor)	0 120170608	No	
IGLDI	(Camurati-Engelmann disease)	0.120179098	INO	
IL15RA	interleukin 15 receptor, alpha	0.084517181	No	
CXCL11	chemokine (C-X-C motif) ligand 11	0.079039596	No	
STAT2	signal transducer and activator of transcription 2, 113kDa	0.064280972	No	
IFNAR1	interferon (alpha, beta and omega) receptor 1	0.059620846	No	
BAKI STATI	BCL2-antagonist/killer 1	0.059363768	No No	
IFNGR2	interferon gamma receptor 2 (interferon gamma	0.046017136	No	
	transducer 1)			
CSF1	colony stimulating factor 1 (macrophage)	0.042810541	No	
IL17RB	interleukin 17 receptor B	0.030075336	No	
	CD9 molecule	0.026316533	No	
HAX1	HCLS1 associated protein X-1	-0.02173438	No	
CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell	-0.04557885	No	
	chemoattractant)			
IL12RB1	interleukin 12 receptor, beta 1	-0.05035164	No	
IL1R1	interleukin 1 receptor, type I	-0.05148519	No	
IL9K	interieukin 9 receptor	-0.07257795	No No	
CBL	Cas-Br-M (murine) ecotropic retroviral	-0.09309773	NO	
	transforming sequence	5.10050001	110	
CD36	CD36 molecule (thrombospondin receptor)	-0.11540288	No	
PTPN11	protein tyrosine phosphatase, non-receptor	-0.14138806	No	
	type 11 (Noonan syndrome 1)			
TYK2	tyrosine kinase 2	-0.16118781	No	
JUN	jun oncogene	-0.16524719	No	
ILI/KA	interleukin 1 / receptor A	-0.1/849953	No	

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
IFNGR1	interferon gamma receptor 1	-0.18188992	No
IL6ST	interleukin 6 signal transducer (gp130,	-0.20624523	No
MAP3K8	oncostatin M receptor) mitogen-activated protein kinase kinase	-0.2093222	No
	kinase 8		
PIM1	pim-1 oncogene	-0.21471494	No
ILIK2 DTDND	interleukin 1 receptor, type II	-0.215/6229	No Na
PDGEC	platelet derived growth factor C	-0.21002430	No
PTPN1	protein tyrosine phosphatase, non-receptor type 1	-0.23609251	No
IL10RB	interleukin 10 receptor, beta	-0.26419479	No
STAM2	signal transducing adaptor molecule (SH3 domain and ITAM motif) 2	-0.28349385	No
ACVR1B	activin A receptor, type IB	-0.29110909	No
IL7	interleukin 7	-0.35659918	No
CD44	CD44 molecule (Indian blood group)	-0.41463488	No
IL13RA1	interleukin 13 receptor, alpha 1	-0.41913402	No No
IL2KA	interleukin 2 receptor, alpha	-0.42295557	No
I FPR	leptin recentor	-0.44120242	No
TNFRSF12A	tumor necrosis factor receptor superfamily, member 12A	-0.51185614	No
GRB2	growth factor receptor-bound protein 2	-0.56912065	No
CSF2	colony stimulating factor 2 (granulocyte-macrophage)	-0.62405962	No
LTBR	lymphotoxin beta receptor (TNFR superfamily, member 3)	-0.67464828	No
PF4	platelet factor 4 (chemokine (C-X-C motif) ligand 4)	-0.68549991	No
A2M	alpha-2-macroglobulin	-0.77927083	No
MYD88	myeloid differentiation primary response gene (88)	-0.79646552	No No
ILISKI STAT2	aignal transducer and activator of transcription 3	-0.810/3339	No
SIAIS	(acute-phase response factor)	-0.895555529	INU
TNFRSF1A	tumor necrosis factor receptor superfamily, member IA	-0.96931034	No
HMOX1	heme oxygenase (decycling) 1	-1.15975845	No
	HALLMARK_TNFA_SIGNALING_VIA_NFI	КB	
IL1B	interleukin 1. beta	3 462865114	Ves
IL6	interleukin 6 (interferon, beta 2)	3.456357479	Yes
TNF	tumor necrosis factor (TNF superfamily, member 2)	2.751254082	Yes
CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)	2.667189121	Yes
TNFRSF9	tumor necrosis factor receptor superfamily, member 9	2.029400826	Yes
CXCL2	chemokine (C-X-C motif) ligand 2	1.990867496	Yes
SERPINE1	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1	1.842594028	Yes
CCL5 PTV3	chemokine (C-C motif) ligand 5	1.82/621102	res Vac
PIAS	plasminogen activator, urakinase recentor	1.801822002	Vec
CCI4	chemokine (C-C motif) ligand 4	1.303452969	Yes
TRAF1	TNF receptor-associated factor 1	1.300272942	Yes
PLEK	pleckstrin	1.008932829	Yes
CXCL3	chemokine (C-X-C motif) ligand 3	0.966697574	Yes
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes
DUSP2	dual specificity phosphatase 2	0.894410133	Yes
IL23A COPL 2	interleukin 23, alpha subunit p19	0.838/99894	Yes
SLC2A6	solute carrier family 2 (facilitated glucose transporter)	0.822021703	Ves
SECENC	member 6	0.020073107	105
FOSL1	FOS-like antigen 1	0.779859602	Yes
TNFSF9	tumor necrosis factor (ligand) superfamily, member 9	0.771818101	Yes
BCL3	B-cell CLL/lymphoma 3	0.768477619	Yes
ICAMI	human rhinovirus receptor	0.746375382	Yes
NEKBIE	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon	0.742087662	Yes
CEBPD	CCAAI/enhancer binding protein (C/EBP), delta	0.70218122	Yes
F1U52	(prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	0.090838883	res
ILK2 VIE4	ton-like receptor 2 Knympol like factor 4 (mt)	0.620784276	Yes
CCL20	chemokine (C-C motif) ligand 20	0.039704270	Ves
NR4A3	nuclear receptor subfamily 4 group A member 3	0.624355614	Yes
1 1 1 X TZ XJ	nuclear receptor submitting 7, group A, member 5	0.02-00001+	100

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
CD80	CD80 molecule	0.600226164	Yes
AREG	amphiregulin (schwannoma-derived growth factor)	0.548579574	Yes
LIF	leukemia inhibitory factor (cholinergic differentiation factor)	0.547570944	Yes
TNFAIP6	tumor necrosis factor, alpha-induced protein 6	0.543578744	Yes
PHLDA2	pleckstrin homology-like domain, family A, member 2	0.543070078	Yes
HBEGF	heparin-binding EGF-like growth factor	0.541148901	Yes
B4GALT5	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5	0.432685524	No
FUT4	fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)	0.386936367	No
TNC	tenascin C (hexabrachion)	0.34414199	No
GCH1	GTP cyclohydrolase 1 (dopa-responsive dystonia)	0.327480644	No
OLR1	oxidised low density lipoprotein (lectin-like) receptor 1	0.284122884	No
INHBA	inhibin, beta A (activin A, activin AB alpha polypeptide)	0.280317694	No
CLCF1	cardiotrophin-like cytokine factor 1	0.26978004	No
TNFAIP2	tumor necrosis factor, alpha-induced protein 2	0.231159508	No
PHLDA1	pleckstrin homology-like domain, family A, member 1	0.226918563	No
CXCL10	chemokine (C-X-C motif) ligand 10	0.226761773	No
DUSP4	dual specificity phosphatase 4	0.222908363	No
IRF1	interferon regulatory factor 1	0.214157283	No
NFIL3	nuclear factor, interleukin 3 regulated	0.181677267	No
NR4A2	nuclear receptor subfamily 4, group A, member 2	0.1683653	No
CD69	CD69 molecule	0.166904241	No
PTGER4	prostaglandin E receptor 4 (subtype EP4)	0.143603638	No
SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	0.129979178	No
PANX1	pannexin 1	0.12138366	No
FOSB	FBJ murine osteosarcoma viral oncogene homolog B	0.113320433	No
TNFAIP3	tumor necrosis factor, alpha-induced protein 3	0.100990877	No
BTG1	B-cell translocation gene 1, anti-proliferative	0.100179978	No
IL15RA	interleukin 15 receptor, alpha	0.084517181	No
CXCL11	chemokine (C-X-C motif) ligand 11	0.079039596	No
SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	0.069677271	No
IFIT2	interferon-induced protein with tetratricopeptide repeats 2	0.05142466	No
IFNGR2	interferon gamma receptor 2 (interferon gamma transducer 1)	0.046017136	No
CSF1	colony stimulating factor 1 (macrophage)	0.042810541	No
STAT5A	signal transducer and activator of transcription 5A	0.015167505	No
ATF3	activating transcription factor 3	0.007687764	No
EGR3	early growth response 3	0.003858579	No
EDN1	endothelin 1	0.002488923	No
F2RL1	coagulation factor II (thrombin) receptor-like 1	-0.00567373	No
PTPRE	protein tyrosine phosphatase, receptor type, E	-0.01096273	No
GFP12	glutamine -fructose -6-phosphate transaminase 2	-0.02297758	No
IER5	immediate early response 5	-0.02526059	No
TANK	TRAF family member-associated NFKB activator	-0.02547635	No
TAP1	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	-0.03303317	No
GADD45B	growth arrest and DNA-damage-inducible, beta	-0.03472245	No
NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	-0.03587324	No
KLF10	Kruppel-like factor 10	-0.03688239	No
GEM	GTP binding protein overexpressed in skeletal muscle	-0.04264625	No
DNAJB4	DnaJ (Hsp40) homolog, subfamily B, member 4	-0.05442556	No
PER1	period homolog 1 (Drosophila)	-0.05708625	No
BCL6	B-cell CLL/lymphoma 6 (zinc finger protein 51)	-0.06102759	No
BIRC3	baculoviral IAP repeat-containing 3	-0.06623559	No
LAMB3	laminin, beta 3	-0.07300156	No
ZC3H12A	zinc finger CCCH-type containing 12A	-0.07837815	No
FOS	v-fos FBJ murine osteosarcoma viral oncogene homolog	-0.08169513	No
CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	-0.08443426	No
CCNL1	cyclin Ll	-0.08534243	No
MAP2K3	mitogen-activated protein kinase kinase 3	-0.09317061	No
ZBTB10	zinc finger and BTB domain containing 10	-0.10083003	No
TIPARP	TCDD-inducible poly(ADP-ribose) polymerase	-0.10120153	No

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
TRIP10	thyroid hormone receptor interactor 10	-0.11554773	No
SERPINB8	serpin peptidase inhibitor, clade B	-0.1231901	No
BMP2	hone morphogenetic protein 2	-0 14009446	No
ATP2B1	ATPase, Ca++ transporting, plasma membrane 1	-0.14145075	No
SOD2	superoxide dismutase 2, mitochondrial	-0.14157586	No
GADD45A	growth arrest and DNA-damage-inducible, alpha	-0.14824487	No
DDX58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	-0.15164469	No
FJX1	four jointed box 1 (Drosophila)	-0.15888149	No
KLF0 DUSP1	dual emotificity phoenhotece 1	-0.16283926	No No
ЛN	iun oncogene	-0.16524719	No
REL	v-rel reticuloendotheliosis viral oncogene homolog (avian)	-0.16811736	No
PDE4B	phosphodiesterase 4B, cAMP-specific (phosphodiesterase E4 dunce homolog, Drosophila)	-0.16894662	No
MXD1	MAX dimerization protein 1	-0.16998833	No
BTG2	BTG family, member 2	-0.17541341	No
TNIP2	INFAIP3 interacting protein 2	-0.18125953	No No
NRAA1	nuclear receptor subfamily 4 group A member 1	-0.1842809	No
IAG 1	iagged 1 (Alagille syndrome)	-0.19007757	No
LDLR	low density lipoprotein receptor (familial	-0.20240238	No
NFKB2	hypercholesterolemia) nuclear factor of kappa light polypeptide	-0.20358734	No
101114	gene enhancer in B-cells 2 (p49/p100)	0.00000000	
IL6ST	interferon induced with helicase C domain 1 interleukin 6 signal transducer (gp130, oncostatin M recentor)	-0.20616461 -0.20624523	No No
SLC16A6	solute carrier family 16, member 6 (monocarboxylic, acid transporter 7)	-0.20754693	No
MAP3K8	mitogen-activated protein kinase kinase kinase 8	-0.2093222	No
RELB	v-rel reticuloendotheliosis viral oncogene homolog B, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3 (avian)	-0.21800217	No
G0S2	G0/Glswitch 2	-0.22224158	No
ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)	-0.22630355	No
IL1A	interleukin 1, alpha	-0.22882077	No
MARCKS	myristoylated alanine-rich protein kinase C substrate	-0.22976576	No
SPHKI FOSL 2	EOS like antigen 2	-0.23109274	No
TRIB1	tribbles homolog 1 (Drosophils)	-0.23224030	No
EGR2	early growth response 2 (Krox-20 homolog.	-0.2432663	No
TNFAIP8	Drosophila) tumor necrosis factor, alpha-induced protein8	-0 24982262	No
PDLIM5	PDZ and LIM domain 5	-0.25230208	No
RHOB	ras homolog gene family, member B	-0.25625306	No
CFLAR	CASP8 and FADD-like apoptosis regulator	-0.25688204	No
NFKB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	-0.25809258	No
INFE2L2 SMAD2	SMAD mothers against DPP homeles 2 (Descentible)	-0.23833997	NO No
PIK2	polo-like kinase 2 (Drosophila)	-0.20353646	No
TNIP1	TNFAIP3 interacting protein 1	-0.27545539	No
SAT1	spermidine/spermine N1-acetyltransferase 1	-0.27614322	No
EHD1	ÊH-domain containing 1	-0.28172371	No
KYNU	kynureninase (L-kynurenine hydrolase)	-0.28701586	No
CCND1	cyclin D1	-0.28974119	No
SNN	stannin	-0.2964263	No
IRS2 EIE1	insulin receptor substrate 2	-0.30096406	No No
PLAU	nlasminogen activator urokinase	-0.3023138	No
IL7R	interleukin 7 receptor	-0.30657914	No
MAFF	v-maf musculoaponeurotic fibrosarcoma	-0.31840307	No
RELA	oncogene homolog F (avian) v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light	-0.32651395	No
ABCA1	polypeptide gene enhancer in B-cells 3, p65 (avian) ATP-binding cassette, sub-family A (ABC1), member 1	-0.33476061	No
TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
PNRC1	proline-rich nuclear receptor coactivator 1	-0.3378354	No
NFAT5	nuclear factor of activated T-cells 5, tonicity-responsive	-0.33818045	No
DUSP5	dual specificity phosphatase 5	-0.3400479	No
NINJ1	ninjurin 1	-0.37850687	No
KLF9	Kruppel-like factor 9	-0.39027402	No
MCL1	myeloid cell leukemia sequence 1 (BCL2-related)	-0.40117186	No
HESI	hairy and enhancer of split I, (Drosophila)	-0.40132076	No
CEBPB	CCAAT/enhancer binding protein (C/EBP) beta	-0.40729272	No
CD44	CD44 molecule (Indian blood group)	-0.41463488	No
SPSB1	splA/ryanodine receptor domain and SOCS box containing 1	-0.42047217	No
PFKFB3	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	-0.43228999	No
PPP1R15A	protein phosphatase 1, regulatory (inhibitor) subunit 15A	-0.43424553	No
BIRC2	baculoviral IAP repeat-containing 2	-0.4354732	No
TSC22D1	TSC22 domain family, member 1	-0.43681926	No
SOCS3	suppressor of cytokine signaling 3	-0.44126242	No
ID2	negative helix-loop-helix protein	-0.44099800	NO
TUBB2A EGP1	tubulin, beta 2A	-0.4/803/86	No
LOKI	immediate early remained 3	-0.485//189	No
EENA1	enhrin-A1	-0.49308348	No
CD83	CD83 molecule	-0.50458539	No
SQSTM1	sequestosome 1	-0.50716919	No
B4GALT1	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1	-0.51576161	No
IL18	interleukin 18 (interferon-gamma-inducing factor)	-0.5164243	No
KLF2	Kruppel-like factor 2 (lung)	-0.519408047	No
CYR61	cysteine-rich, angiogenic inducer, 61	-0.564450562	No
мүс	v-myc myelocytomatosis viral oncogene homolog (avian)	-0.578493118	No
CSF2	colony stimulating factor 2 (granulocyte-macrophage)	-0.624059618	No
IEK2	immediate early response 2	-0.680687428	No
SDC4	synde can 4 (amphiglycan, ryudocan)	-0.083481429	No
ZFP36	zinc finger protein 36. C3H type, homolog (mouse)	-0.918698609	No
MSC	musculin (activated B-cell factor-1)	-1.425963402	No
JUNB	jun B proto-oncogene HALLMARK_IL2_STATS_SIGNALING	-1.767692924	No
SELL	selectin L (lymphocyte adhesion molecule 1)	4.533662319	Yes
MUC1	mucin 1, cell surface associated	2.119087458	Yes
SEPPINC1	samin pentidese inhibitar alada C (antithrombin)	2.029400826	Yes
SLICINCI	member 1	2.011505042	105
AHCY	S-adenosylhomocysteine hydrolase	1.540450335	Yes
IL1RL1	interleukin 1 receptor-like 1	1.417232871	Yes
BATF	basic leucine zipper transcription factor, ATF-like	1.339311957	Yes
GPR65	G protein-coupled receptor 65	1.301272631	Yes
TRAF1	TNF receptor-associated factor 1	1.300272942	Yes
INFRSFIB	tumor necrosis factor receptor superfamily, member 1B	1.259392858	Yes
ENO3	enolase 3 (beta, muscle)	1.107318997	Yes
IDE8	interform regulatory factor 8	1.016289473	Yes
SI C20A2	solute carrier family 20 (nucleoside	0.964551879	Vec
RHOH	transporters), member 2 res homolog cane family member H	0.034723258	Vec
SOCS1	suppressor of cytokine signaling 1	0.934723238	Yes
CD79B	CD79b molecule, immunoglobulin-associated beta	0.805104673	Yes
IL10	interleukin 10	0.777381659	Yes
CTLA4	cytotoxic T-lymphocyte-associated protein 4	0.773720741	Yes
PLSCR1	phospholipid scramblase 1	0.761682391	Yes
TLR7	toll-like receptor 7	0.725582063	Yes
IL13	interleukin 13	0.6945768	Yes
CD86	CD86 molecule	0.631752431	Yes
LTB	lymphotoxin beta (TNF superfamily, member 3)	0.579620421	Yes
ETV4	ets variant gene 4 (EIA enhancer binding protein, EIAF)	0.579223096	Yes
MAPO	incrotuotie-associated protein 6	0.374204383	res

51

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
CDC6	CDC6 cell division cycle 6 homolog	0.569661617	Yes
LIF	(S. cerevisiae) leukemia inhibitory factor (cholinergic differentiation factor)	0.547570944	Yes
CD48	CD48 molecule	0.540921032	Yes
APLP1	amyloid beta (A4) precursor-like protein 1	0.531183481	Yes
RGS16	regulator of G-protein signalling 16	0.526294231	Yes
ICOS	inducible T-cell co-stimulator	0.480524778	No
SHE	Src homology 2 domain containing E	0.421151727	No
AGER	advanced glycosylation end product-specific receptor	0.402864873	No
INFSFII SLC20A8	tumor necrosis factor (ligand) superfamily, member 11	0.372757733	NO No
SLC39A8	interleukin 10 receptor, alpha	0.304194393	No
GPX4	substitutione peroxidase 4 (phospholipid hydroperoxidase)	0.319138467	No
SPP1	secreted phosphoprotein 1 (osteopontin.	0.311187059	No
	bone sialoprotein I, early T-lymphocyte activation 1)	0.011107007	1.0
GALM	galactose mutarotase (aldose 1-epimerase)	0.300109804	No
PRAF2	PRA1 domain family, member 2	0.275571346	No
UMPS	uridine monophosphate synthetase (orotate	0.234596103	No
	phosphoribosyl transferase and orotidine-5'-		
	decarboxylase)		
TNFRSF8	tumor necrosis factor receptor superfamily, member	0.232401714	No
SPRY4	sprouty homolog 4 (Drosophila)	0.231/38269	No No
CYCL 10	chameltine (C X C metif) ligand 10	0.220918303	No
LRRC8C	leucine rich repeat containing 8 family, member C	0.226701775	No
CST7	cystatin F (leukocystatin)	0.22027007	No
CASP3	caspase 3. apoptosis-related cysteine peptidase	0.213040709	No
NFIL3	nuclear factor, interleukin 3 regulated	0.181677267	No
AKAP2	A kinase (PRKA) anchor protein 2	0.180033192	No
SELP	selectin P (granule membrane protein 140kDa,	0.175435156	No
AMACR	antigen CD62) alpha-methylacyl-CoA racemase	0.139369324	No
ST3GAL4	ST3 beta-galactoside alpha-2,3-sialyltransferase 4	0.134488985	No
GBP4	guanylate binding protein 4	0.095500618	No
P4HA1	procollagen-proline, 2-oxoglutarate 4-	0.09174899	No
SVT11	dioxygenase (profine 4-nydroxylase), alpha polypeptide 1	0.088011808	No
VRP1	X-box binding protein 1	0.083011898	No
ADAM19	ADAM metallopeptidase domain 19 (meltrin beta)	0.073120117	No
SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	0.069677271	No
PENK	proenkephalin	0.058247235	No
CDKN1C	cyclin-dependent kinase inhibitor 1C (p57, Kip2)	0.05285516	No
SWAP70		0.047020242	No
PLAGL1	pleiomorphic adenoma gene-like 1	0.045933478	No
PKKCH CSE1	protein kinase C, eta	0.043407484	No
SNX9	sorting nexin 9	0.031658247	No
F2RL2	coagulation factor II (thrombin) receptor-like 2	0.016297607	No
ENPP1	ectonucleotide pyrophosphatase/phosphodiesterase 1	0.012228195	No
IL3RA	interleukin 3 receptor, alpha (low affinity)	0.007537159	No
P2RX4	purinergic receptor P2X, ligand-gated ion channel, 4	0.002422775	No
TNFRSF4	tumor necrosis factor receptor superfamily, member 4	-0.00651959	No
FGL2	fibrinogen-like 2	-0.00713548	No
ITGA6	integrin, alpha 6	-0.00743946	No
PIGER2	prostagiandin E receptor 2 (subtype EP2), 53kDa	-0.01937426	NO N-
PTCH1	patched homolog 1 (Drosophile)	-0.03472243	No
BCL2	B-cell CLL/lymphoma 2	-0.06359753	No
IKZF4	IKAROS family zinc finger 4 (Eos)	-0.07420553	No
TNFRSF21	tumor necrosis factor receptor superfamily,	-0.09369773	No
POLI2E1	POU domain class 2 transcription factor 1	-0.09776106	No
TIAM1	T-cell lymphoma invasion and metastasis 1	-0.09797610	No
NEKBIZ	nuclear factor of kappa light polypentide	-0.10177696	No
	gene enhancer in B-cells inhibitor, zeta	0.101//020	110
RABGAP1L	RAB GTPase activating protein 1-like	-0.1046719	No
SOCS2	suppressor of cytokine signaling 2	-0.10708491	No
FURIN	furin (paired basic amino acid cleaving enzyme)	-0.10786293	No
NRP1	neuropilin 1	-0.10988839	No

TABLE 6-continued

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
AHNAK	AHNAK nucleoprotein (desmoyokin)	-0.12126806	No
IGF1R	insulin-like growth factor 1 receptor	-0.12401183	No
DHRS3	dehydrogenase/reductase (SDR family) member 3	-0.12833633	No
RORA	RAR-related orphan recentor A	-0.12808702 -0.13175237	No
BMP2	bone morphogenetic protein 2	-0.14009446	No
ARL4A	ADP-ribosylation factor-like 4A	-0.14104421	No
SLC1A5	solute carrier family 1 (neutral amino acid transporter), member 5	-0.14482026	No
NCOA3	nuclear receptor coactivator 3	-0.14673433	No
HIPK2	homeodomain interacting protein kinase 2	-0.14735302	No
KI F6	Kruppel-like factor 6	-0.15203937	No
NDRG1	N-myc downstream regulated gene 1	-0.16343482	No
SH3BGRL2	SH3 domain binding glutamic acid-rich protein like 2	-0.16945736	No
MXD1	MAX dimerization protein 1	-0.16998833	No
NT5E	5'-nucleotidase, ecto (CD73)	-0.17018586	No
CDCP1	CUB domain containing protein 1	-0.17038067	No
CCND2	cyclin D2	-0.17259452	No
TGM2	interferon gamma receptor 1 transplutaminaga 2 (C polymontido, protoin	-0.18188992	No
CDC42SE2	glutamine-gamma-glutamyltransferase)	-0.10735253	No
BMPR2	bone morphogenetic protein receptor, type II	-0.2040211	No
DEDING	(serine/threonine kinase)	0.005.0000	
PTRH2	peptidyl-tRNA hydrolase 2	-0.20548932	No
PDCD2L MAP3K8	programmed cell death 2-like	-0.20/936/9	No
SPRED2	sprouty-related, EVH1 domain containing 2	-0.21080628	No
ITGAV	integrin, alpha V (vitronectin receptor, alpha polyceptide, antigen CD51)	-0.21208024	No
AHR	aryl hydrocarbon receptor	-0.21279255	No
IGF2R	insulin-like growth factor 2 receptor	-0.21324262	No
PIM1	pim-1 oncogene	-0.21471494	No
IL1R2	interleukin 1 receptor, type II	-0.21576229	No
SNA14 DCPS	decemping enzyme, scavenger	-0.22292101	No
COL6A1	collagen, type VI, alpha 1	-0.2306418	No
SMPDL3A	sphingomyelin phosphodiesterase, acid-like 3A	-0.2336476	No
PUS1	pseudouridylate synthase 1	-0.23526376	No
RHOB	ras homolog gene family, member B	-0.25625306	No
BCL2L1	BCL2-like 1	-0.26874608	No
IKF6 MVO1E	interferon regulatory factor 6	-0.26956779	No
IRF4	interferon regulatory factor 4	-0.27304020	No
IKZF2	IKAROS family zinc finger 2 (Helios)	-0.28325367	No
HK2	hexokinase 2	-0.29201287	No
TNFRSF18	tumor necrosis factor receptor superfamily, member 18	-0.29958081	No
HUWE1	HECT, UBA and WWE domain containing 1	-0.30141243	No
SI00AI	S100 calcium binding protein Al	-0.30719495	No
IL2KB MAFE	w-maf musculoaponeurotic fibrosarcoma	-0.31792304 -0.31840307	No
ITGAE	oncogene homolog F (avia) integrin alpha E (antigen CD103, human	-0.32581159	No
IIGHE	mucosal lymphocyte antigen 1; alpha polypeptide)	0.52501155	110
TWSG1	twisted gastrulation homolog 1 (Drosophila)	-0.3268795	No
ECMI	extracellular matrix protein 1	-0.32777062	No
MAPKAPK2	mit-apina (globulin) inition H3 mitogen-activated protein kinase-activated protein kinase 2	-0.33747	No
GATA1	GATA binding protein 1 (globin transcription factor 1)	-0.34819636	No
COCH	Coagulation factor C homolog, cochlin (Limulus polynhemus)	-0.35349667	No
FAM126B	family with sequence similarity 126, member B	-0.37080041	No
GABARAPL1	GABA(A) receptor-associated protein like 1	-0.37952036	No
UCK2	uridine-cytidine kinase 2	-0.39549923	No
CISH	cytokine inducible SH2-containing protein	-0.40262353	No
CTSZ	cathepsin Z	-0.41291174	No
CD44	CD44 molecule (Indian blood group)	-0.41463488	No
	interleukin 2 receptor, alpha	-0.41774288	INO No
1L2NA	meneukin 2 receptor, alpha	-0.42293337	INU

Gene List in gene sets of enriched pathway in Table 4.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
PHTF2	putative homeodomain transcription factor 2	-0.43087524	No
FAH	fumarylacetoacetate hydrolase (fumarylacetoacetase)	-0.43588102	No
CCND3	cyclin D3	-0.43643126	No
MYO1C	myosin IC	-0.44808453	No
ODC1	ornithine decarboxylase 1	-0.46056387	No
ANXA4	annexin A4	-0.47317448	No
CD83	CD83 molecule	-0.50458539	No
CKAP4	cytoskeleton-associated protein 4	-0.51768428	No
MYC	v-myc myelocytomatosis viral oncogene homolog (avian)	-0.57849312	No
CD81	CD81 molecule	-0.58255219	No
CSF2	colony stimulating factor 2 (granulocyte-macrophage)	-0.62405962	No
CAPN3	calpain 3, (p94)	-0.63329792	No
SYNGR2	synaptogyrin 2	-0.63514042	No
GUCY1B3	guanylate cyclase 1, soluble, beta 3	-0.64079314	No
CCR4	chemokine (C-C motif) receptor 4	-0.64653838	No
PRNP	prion protein (p27-30) (Creutzfeldt-Jakob	-0.76452804	No
	disease, Gerstmann-Strausler-Scheinker		
TR TEGELO	syndrome, fatal familial insomnia)	0.70045220	3.7
INFSFIU	tumor necrosis factor (ligand) superfamily, member 10	-0.78845328	No
IL18R1	interleukin 18 receptor 1	-0.81675339	No
CAPG	capping protein (actin filament), gelsolin-like	-0.91523647	No
EMP1	epithelial membrane protein 1	-0.96930897	No
IFITM3	interferon induced transmembrane protein 3 (I-8U)	-1.08716643	No
GSTO1	glutathione S-transferase omega 1	-1.18441701	No
RNH1	ribonuclease/angiogenin inhibitor 1	-1.19759107	No
RRAGD	Ras-related GTP binding D	-1.36585367	No

TABLE 6-continued

TABLE 7

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
	HALLMARK_INFLAMMATORY_R	RESPONSE	
PPBP	pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)	3.837641716	Yes
IL1B	interleukin 1. beta	3.462865114	Yes
IL6	interleukin 6 (interferon, beta 2)	3.456357479	Yes
CCL1	chemokine (C-C motif) ligand 1	3.329092503	Yes
IL18RAP	interleukin 18 receptor accessory protein	3.251766205	Yes
CSF3R	colony stimulating factor 3 receptor	3.238983631	Yes
	(granulocyte)		
OSM	oncostatin M	2.948629141	Yes
TNF	tumor necrosis factor (TNF superfamily,	2.751254082	Yes
	member 2)		
CXCL1	chemokine (C-X-C motif) ligand 1	2.667189121	Yes
	(melanoma growth stimulating activity, alpha)		
CCR1	chemokine (C-C motif) receptor 1	2.132987738	Yes
CCR5	chemokine (C-C motif) receptor 5	2.054755688	Yes
TNFRSF9	tumor necrosis factor receptor	2.029400826	Yes
	superfamily, member 9		
CXCL2	chemokine (C-X-C motif) ligand 2	1.990867496	Yes
CCL5	chemokine (C-C motif) ligand 5	1.827621102	Yes
CXCL5	chemokine (C-X-C motif) ligand 5	1.754894018	Yes
CCL3	chemokine (C-C motif) ligand 3	1.564267635	Yes
TNFSF8	tumor necrosis factor (ligand)	1.533434033	Yes
	superfamily, member 8		
TNFSF14	tumor necrosis factor (ligand)	1.530670643	Yes
	superfamily, member 14		
TPO	thyroid peroxidase	1.496503949	Yes
CCL22	chemokine (C-C motif) ligand 22	1.440871716	Yes
CSF3	colony stimulating factor 3	1.422928095	Yes
IL21R	(granulocyte) interleukin 21 receptor	1.375825167	Yes

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
IL12A	interleukin 12A (natural killer cell	1.315529704	Yes
	stimulatory factor 1, cytotoxic		
CCL4	chemokine (C-C motif) ligand 4	1 303452969	Yes
TNFRSF1B	tumor necrosis factor receptor	1.259392858	Yes
	superfamily, member 1B		
CCL24	chemokine (C-C motif) ligand 24	1.233121157	Yes
UL2RG	interleukin 2 receptor gamma (severe	1.17247808	Yes
illerto	combined immunodeficiency)	1.005520221	105
IFNK	interferon, kappa	0.981288373	Yes
TNFRSF13B	tumor necrosis factor receptor	0.980329454	Yes
CXCL3	chemokine (C-X-C motif) ligand 3	0.966697574	Yes
XCR1	chemokine (C motif) receptor 1	0.960530758	Yes
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes
CSF2RB	colony stimulating factor 2 receptor,	0.888966024	Yes
IL.24	interleukin 24	0.877363384	Yes
IL23A	interleukin 23, alpha subunit p19	0.838799894	Yes
IL17B	interleukin 17B	0.823239386	Yes
AMH	anti-Mullerian hormone	0.818140507	Yes
CSF2KA	alpha low-affinity (granulocyte-macrophage)	0.78864789	res
CCL19	chemokine (C-C motif) ligand 19	0.784207284	Yes
IL10	interleukin 10	0.777381659	Yes
TNFSF9	tumor necrosis factor (ligand)	0.771818101	Yes
CCL25	chemokine (C-C motif) ligand 25	0 763763368	Ves
CRLF2	cytokine receptor-like factor 2	0.754059553	Yes
IL19	interleukin 19	0.750038803	Yes
CCR9	chemokine (C-C motif) receptor 9	0.745218694	Yes
IL1/A IL13	interleukin 17A	0.707072496	Yes
TNFSF4	tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated dwopretain 1, 34/Da)	0.689626753	Yes
IL11	interleukin 11	0.684957564	Yes
CCL17	chemokine (C-C motif) ligand 17	0.664499223	Yes
IL4	interleukin 4	0.65638262	Yes
INFRSFIUB	superfamily, member 10b	0.031900731	ies
CCL20	chemokine (C-C motif) ligand 20	0.625092983	Yes
VEGFC	vascular endothelial growth factor C	0.620482028	Yes
LTB	lymphotoxin beta (TNF superfamily.	0.579620421	Yes
212	member 3)		1.00
CNTFR	ciliary neurotrophic factor receptor	0.557358146	Yes
IL20RB	interleukin 20 receptor beta	0.556012034	Yes
LII	differentiation factor)	0.347370944	108
CD40	CD40 molecule, TNF receptor superfamily member 5	0.492939293	Yes
CXCR4	chemokine (C-X-C motif) receptor 4	0.484079331	Yes
TSLP		0.474735647	Yes
LTA	lymphotoxin alpha (TNF superfamily,	0.444680154 0.44320941	Yes Yes
FI T4	member 1) fms-related tyrosine kinase A	0.435430467	Ves
CXCL9	chemokine (C-X-C motif) ligand 9	0.391491205	No
CXCR3	chemokine (C-X-C motif) receptor 3	0.380579948	No
TNFSF11	tumor necrosis factor (ligand) superfamily, member 11	0.372757733	No
CCL28	chemokine (C-C motif) ligand 28	0.358908564	No
IL10RA	interleukin 10 receptor, alpha	0.343504012	No
TNFRSF25	tumor necrosis factor receptor	0.331647813	No
IFNAR2	supertamily, member 25 interferon (alpha, beta and omega)	0.281477422	No
INHBA	inhibin, beta A (activin A, activin AB alpha polypeptide)	0.280317694	No

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
CLCF1	cardiotrophin-like cytokine factor 1	0.26978004	No
CCL7	chemokine (C-C motif) ligand 7	0.251811057	No
PDGFRA	platelet-derived growth factor receptor, alpha polypeptide	0.249525964	No
TNFRSF8	tumor necrosis factor receptor superfamily, member 8	0.232401714	No
CXCL10	chemokine (C-X-C motif) ligand 10	0.226761773	No
ACVRL1	activin A receptor type II-like 1	0.211801216	No
OSMR	oncostatin M receptor	0.207781732	No
FAS	Fas (TNF receptor superfamily, member 6)	0.173293099	No No
TNEDSE14	superfamily, member 11a, NFKB activator	0.15240027	No
110665614	superfamily, member 14 (herpesvirus entry mediator)	0.13240927	INO
KDR	kinase insert domain receptor (a type III receptor tyrosine kinase)	0.150256053	No
TGFB1	transforming growth factor, beta 1 (Camurati-Engelmann disease)	0.120179698	No
TNFSF12	tumor necrosis factor (ligand) superfamily, member 12	0.112915978	No
HGF	hepatocyte growth factor (hepapoietin A; scatter factor)	0.098659903	No
IL25	interleukin 25	0.094349928	No
IL15RA	interleukin 15 receptor, alpha	0.084517181	No
CXCL11	chemokine (C-X-C motif) ligand 11	0.079039596	No
EDA	ectodysplasin A	0.07362695	No
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	0.070668168	No
IFNAR1	interferon (alpha, beta and omega) receptor 1	0.059620846	No
FLT1	fins-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor receptor)	0.050929114	No
IFNGR2	interferon gamma receptor 2 (interferon gamma transducer 1)	0.046017136	No
PDGFRB	platelet-derived growth factor receptor, beta polypeptide	0.045934543	No
CSF1	colony stimulating factor 1 (macrophage)	0.042810541	No
CCL11	chemokine (C-C motif) ligand 11	0.039969306	No
CXCR6	chemokine (C-X-C motif) receptor 6	0.031615365	No
IL17RB	interleukin 17 receptor B	0.030075336	No
TGFBR1	transforming growth factor, beta receptor I (activin A receptor type II-	0.027430039	No
PRIR	nke killase, 55kDaj	0.015084264	No
II 3R A	interleukin 3 receptor alpha (low affinity)	0.010004204	No
TNFRSF17	tumor necrosis factor receptor superfamily, member 17	7.15E-04	No
TNFRSF4	tumor necrosis factor receptor superfamily, member 4	-0.006519591	No
ACVR1	activin A receptor, type I	-0.006812894	No
TNFSF13B	tumor necrosis factor (ligand) superfamily, member 13b	-0.012086863	No
CCR3	chemokine (C-C motif) receptor 3	-0.012453511	No
IL22RA2	interleukin 22 receptor, alpha 2	-0.022728374	No
FLT3	fms-related tyrosine kinase 3	-0.036438417	No
INHBB	inhibin, beta B (activin AB beta polypeptide)	-0.043366853	No
IL15	interleukin 15	-0.045024838	No
CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	-0.045578849	No
CCR10	chemokine (C-C motif) receptor 10	-0.047813334	No
IL12RB1	interleukin 12 receptor, beta 1	-0.050351642	No
IL1R1	interleukin 1 receptor, type I	-0.051485192	No
CCR8	chemokine (C-C motif) receptor 8	-0.062265944	No
TGFB3	transforming growth factor, beta 3	-0.069080003	No
IL9K VIT	Interieukin 9 receptor	-0.072577946	NO No
NH	sarcoma viral oncogene homolog	-0.07003402	110
IL23R	interleukin 23 receptor	-0.083718598	No

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
TNFRSF21	tumor necrosis factor receptor	-0.093697727	No
NGFR	nerve growth factor receptor (TNFR superfamily, member 16)	-0.105525017	No
IL1RAP BMPR1B	interleukin 1 receptor accessory protein bone morphogenetic protein receptor, type IB	-0.112636082 -0.112772785	No No
CCR6	chemokine (C-C motif) receptor 6	-0.119453743	No
GDF5	growth differentiation factor 5 (cartilage-derived morphogenetic (protein-1)	-0.139077023	No
BMP2 TNFRSF19	bone morphogenetic protein 2 tumor necrosis factor receptor	-0.140094459 -0.163563892	No No
IIII KSI IJ	superfamily, member 19	-0.105505052	110
EGFR	epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)	-0.164786458	No
BMPR1A	bone morphogenetic protein receptor, type IA	-0.169454694	No
IL17RA	interleukin 17 receptor A	-0.178499535	No
IFNGR1	interferon gamma receptor 1	-0.181889921	No
CXCL16	chemokine (C-X-C motif) ligand 16	-0.20063293	No
BMPR2	type II (serine/threonine kinase)	-0.204021096	No
AMHR2	anti-Mullerian hormone receptor, type II	-0.204355285	No
CSF1R	colony stimulating factor 1 receptor, formerly McDonough feline sarcoma	-0.204763398	No
IL6ST	interleukin 6 signal transducer (gp130, oncostatin M receptor)	-0.206245229	No
IL1R2	interleukin 1 receptor, type II	-0.215762287	No
PDGFC	platelet derived growth factor C	-0.219196126	No
CX3CL1	chemokine (C-X3-C motif) ligand 1	-0.225086227	No
MET	met proto-oncogene (hepatocyte growth factor receptor)	-0.225270301	No
ILIA	interleukin 1, alpha	-0.228820771	No
TGFB2	transforming growth factor, beta 2	-0.233885586	No
PDGFB	platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog)	-0.238625541	No
IL22RA1	interleukin 22 receptor, alpha 1	-0.240860581	No
GHR	growth hormone receptor	-0.260692686	No
IL10RB	interleukin 10 receptor, beta	-0.264194787	No
ACVR2A	activin A receptor, type IIA	-0.265007794	No
ACVRIB	activin A receptor, type IB	-0.291109085	No
IL20KA	interleukin 20 receptor, alpha	-0.291834027	No No
IDUIA	polypeptide	-0.293814242	NO
TNFRSF11B	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	-0.294232696	No
TGFBR2	transforming growth factor, beta receptor II (70/80kDa)	-0.298537552	No
TNFRSF18	tumor necrosis factor receptor superfamily, member 18	-0.299580812	No
IL/K VEGEP	merieukin / receptor vascular endothelial growth factor D	-0.3003/9143	INO No
U 2RB	interleukin 2 recentor beta	-0.317925036	No
LIFR	leukemia inhibitory factor receptor alpha	-0.331205487	No
EDA2R	ectodysplasin A2 receptor	-0.346847653	No
EDAR	ectodysplasin A receptor	-0.348729432	No
CXCL14	chemokine (C-X-C motif) ligand 14	-0.354058266	No
CNTF	ciliary neurotrophic factor	-0.355169892	No
IL7	interleukin 7	-0.356599182	No
CTF1	cardiotrophin 1	-0.382776916	No
EPOR	erythropoietin receptor	-0.407475233	No
IL13RA1	interleukin 13 receptor, alpha 1	-0.419134021	No
IL2RA	interleukin 2 receptor, alpha	-0.422955573	No
LEPR	leptin receptor	-0.489379466	No
BWL/	bone morphogenetic protein 7	-0.494219154	No
IL12RB2	interleukin 12 receptor, beta 2	-0.511588156	No

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
TNFRSF12A	tumor necrosis factor receptor	-0.511856139	No
IL18	interleukin 18 (interferon-gamma-	-0.516424298	No
IL20	interleukin 20	-0.517831087	No
MPL	myeloproliferative leukemia virus oncogene	-0.612580657	No
CSF2	(granulocyte-macrophage)	-0.024039018	NO
CCR4	chemokine (C-C motif) receptor 4	-0.646538377	No
TNFSF15	tumor necrosis factor (ligand)	-0.652678192	No
LEP	leptin (obesity homolog, mouse)	-0.674438477	No
LTBR	lymphotoxin beta receptor (TNFR	-0.674648285	No
PF4	platelet factor 4 (chemokine (C-X-C	-0.685499907	No
XCL1	chemokine (C motif) ligand 1	-0.706809223	No
TNFSF13	tumor necrosis factor (ligand)	-0.743143797	No
IL5	superfamily, member 13 interleukin 5 (colony-stimulating factor,	-0.77403909	No
TNFSF18	tumor necrosis factor (ligand)	-0.779219151	No
TNFSF10	tumor necrosis factor (ligand) superfamily, member 10	-0.788453281	No
IL18R1	interleukin 18 receptor 1	-0.816753387	No
TNFRSF1A	tumor necrosis factor receptor	-0.969310343	No
EGF TNFRSF13C	epidermal growth factor (beta-urogastrone) tumor necrosis factor receptor	-1.048612952 -1.065307021	No No
ACVR2B	superfamily, member 13C activin A receptor, type IIB	-1.067408323	No
	KEGG_HEMATOPOIETIC_CELL_LI	NEAGE	
IL1B	interleukin 1. beta	3.462865114	Yes
IL6	interleukin 6 (interferon, beta 2)	3.456357479	Yes
IL18RAP	interleukin 18 receptor accessory protein	3.251766205	Yes
51A14	transcription 4	5.148504959	108
TNF	tumor necrosis factor (TNF superfamily, member 2)	2.751254082	Yes
GZMB	granzyme B (granzyme 2, cytotoxic T- lymphocyte-associated serine esterase 1)	2.667121887	Yes
CCR1	chemokine (C-C motif) receptor 1	2.132987738	Yes
CCL5	chemokine (C-C motif) receptor 5 chemokine (C-C motif) ligand 5	2.054/55688	Yes
ITGAL	integrin, albha L (antigen CD11A (p180), lymphocyte function-associated antigen 1;	1.800091743	Yes
CD7	CD7 molecule	1.628337383	Yes
FGR	Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog	1.552860975	Yes
CCL22	chemokine (C-C motif) ligand 22	1.440871716	Yes
ILRI IL12A	toll-like receptor 1 interleukin 12A (natural killer cell	1.34019506 1.315529704	Yes Yes
ILIZA	stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35)	1.515525704	105
CCL4	chemokine (C-C motif) ligand 4	1.303452969	Yes
GPR65	G protein-coupled receptor 65	1.301272631	Yes
CCR2	chemokine (C-C motif) receptor 2	1.17247808	Yes
PKF1	perform 1 (pore forming protein)	1.171788573	Yes
IGSF6 LYN	v-ves-1 Yamaguchi sarcoma viral related	1.100607872	res Yes
LCP2	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of	1.090578794	Yes
U DD C	76kDa)	1.09222(221	Vac
il2KU	combined immunodeficiency)	1.083320221	res
DYRK3	dual-specificity tyrosine-(Y)- phosphorylation regulated kinase 3	1.04365015	Yes

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
IRF8	interferon regulatory factor 8	0.984531879	Yes
TLR6	toll-like receptor 6	0.974328399	Yes
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes
SOCS1	suppressor of cytokine signaling 1	0.912176847	Yes
FYB	FYN binding protein (FYB-120/130)	0.841911793	Yes
STAB1	stabilin 1	0.800862968	Yes
ITCP2	integrine hete 2 (complement component 3	0.784207284	Yes
H 10	receptor 3 and 4 subunit)	0.783170001	ies V
ILIU PCL3	nterieukin 10 R cell CLI //wmphame 2	0.777381659	Yes
ICAM1	intercellular adhesion molecule 1 (CD54)	0.766477619	Ves
ICAMI	human rhinovirus receptor	0.740575562	105
MMP9	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	0.740974486	Yes
IL13	interleukin 13	0.6945768	Yes
IL11	interleukin 11	0.684957564	Yes
TLR2	toll-like receptor 2	0.671268702	Yes
GCNT1	glucosaminyl (N-acetyl) transferase 1, core 2 (beta-1,6-N- cetyle/ucosaminyltransferace)	0.671001792	Yes
11.4	interleukin 4	0.65638262	Yes
CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma p16 inhibits CDK4)	0.650471985	Yes
CD86	CD86 molecule	0.631752431	Yes
CD80	CD80 molecule	0.600226164	Yes
LTB	lymphotoxin beta (TNF superfamily, member 3)	0.579620421	Yes
LIF	leukemia inhibitory factor (cholinergic differentiation factor)	0.547570944	Yes
WAS	Wiskott-Aldrich syndrome (eczema- thrombocytopenia)	0.525824308	Yes
PTPRC	protein tyrosine phosphatase, receptor type, C	0.522265971	Yes
RPS19	ribosomal protein S19	0.506382108	Yes
CD40	CD40 molecule, TNF receptor superfamily member 5	0.492939293	Yes
NCF4	neutrophil cytosolic factor 4, 40kDa	0.465533584	Yes
LY86	lymphocyte antigen 86	0.449851602	Yes
FCGK2B	receptor (CD32)	0.436047524	ies
CD3D	CD3d molecule delta (CD3 TCP complex)	0.427405208	Tes Ves
CXCI 9	chemokine (C-X-C motif) ligand 9	0.413081888	Yes
CXCR3	chemokine (C-X-C motif) receptor 3	0 380579948	Yes
BRCA1	breast cancer 1, early onset	0.38035053	Yes
RPL9	ribosomal protein L9	0.372396767	Yes
	. KEGG_RIBOSOME		
RPL17	ribosomal protein L17	1.672627926	Yes
RPL29	ribosomal protein L29	1.535640955	Yes
RPS21	ribosomal protein S21	1.305340767	Yes
RPS16	ribosomal protein S16	1.209875584	Yes
RPL7	ribosomal protein L7	1.179243684	Yes
RPS6	ribosomal protein S6	0.962560833	Yes
RPL33 RPL38	ribosomal protein L33	0.879049003	10S Vec
RPL11	ribosomal protein L11	0.03202033 0.769688666	Ves
RPL4	ribosomal protein L4	0.757808089	Yes
RPL32	ribosomal protein L32	0.755478978	Yes
RP515	ribosomal protein S15	0.75469929	Yes
RPL14	ribosomal protein L14	0.718787491	Yes
RPS25	ribosomal protein S25	0.702086389	Yes
RPL24	ribosomal protein L24	0.687731743	Yes
RPS8	ribosomal protein S8	0.68595165	Yes
RPS24 RPL21	ribosomal protein S24 ribosomal protein L21	0.663855553 0.640351593	Yes Yes

TABLE 7-continued

	Gene List in gene sets of enriched pat	hway in Table 5.	
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
RPS28	ribosomal protein S28	0.610872269	Yes
FAU	Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (fox derived); ribosomal protein \$30	0.550771177	Yes
RPS5	ribosomal protein S5	0.538966238	Yes
RPL34	ribosomal protein L34	0.533506274	Yes
RPLPO	ribosomal protein, large, P0	0.522892892	Yes
RPL6 RPS10	ribosomal protein L6	0.506569028	Yes Ves
RPS27A	ribosomal protein S27a	0.483083695	Yes
RPL7A	ribosomal protein L7a	0.443502933	Yes
RPL13	ribosomal protein L13	0.387363732	Yes
RPS13	ribosomal protein S13	0.383430898	Yes
RPLP2	ribosomal protein, large, P2	0.374124438	Yes
RPL9 RPS18	ribosomal protein S18	0.372390707	Tes Vec
RPS15A	ribosomal protein S15a	0.329340279	Yes
RPL35A	ribosomal protein L35a	0.322530985	Yes
RPL37	ribosomal protein L37	0.275145084	Yes
RPL22L1	ribosomal protein L22-like 1	0.273913294	Yes
RPL30	ribosomal protein L30	0.266558886	Yes
RPL23A	ribosomal protein L23a	0.26068905	Yes
RPS2	ribosomal protein S7	0.237173088	Yes
RPL18A	ribosomal protein L18a	0.228949845	Yes
RPS20	ribosomal protein S20	0.214455262	Yes
RPL36A	ribosomal protein L36a	0.185356036	Yes
RPS29	ribosomal protein S29	0.179608196	Yes
RPL12	ribosomal protein L12	0.177713573	Yes
RPS3 RPS26	ribosomal protein \$3	0.166580707	Yes Vec
RPL22	ribosomal protein L22	0.165959805	Yes
RPS17	ribosomal protein S17	0.152504608	Yes
RPL37A	ribosomal protein L37a	0.151727423	Yes
RPL39	ribosomal protein L39	0.145141497	Yes
RPS27	ribosomal protein S27	0.138581008	Yes
D DI 10	(metallopanstimulin 1)	0 11 401 50 50	No
RPSA	ribosomal protein SA	0.114013939	No
RPS4X	ribosomal protein SA X-linked	0.107207999	No
RPS12	ribosomal protein S12	0.095793545	No
RPL13A	ribosomal protein L13a	0.094446741	No
RPL27A	ribosomal protein L27a	0.065862156	No
RPL28	ribosomal protein L28	0.041829564	No
RPL5	ribosomal protein L5	0.024316726	No
RPL23	ribosomal protein L23	-0.010726028	No
RPS27L	ribosomal protein S27-like	-0.061738685	No
RPL31	ribosomal protein L31	-0.072339609	No
KPL3 DDC22	ribosomal protein L3	-0.090979747	NO No
RPI 10A	ribosomal protein L10a	-0.118189119	No
RPS9	ribosomal protein S9	-0.145742506	No
RPL41	ribosomal protein L41	-0.153432697	No
RPL18	ribosomal protein L18	-0.165799722	No
RPL26	ribosomal protein L26	-0.168741375	No
RPL36AL	ribosomal protein L36a-like	-0.17463319	No
RPS10	ribosomal protein S10	-0.186098009	No
RPL27	ribosomal protein L27	-0.269447058	No
RPS11	ribosomal protein S11	-0.335371464	No
UBA52	ubiquitin A-52 residue ribosomal	-0.479723126	No
D DI 1 <i>5</i>	protein fusion product 1	0.530300310	NI-
NPDI 12	mitochondrial ribocomal materia L12	-0.572703719	INO No
RPL8	ribosomal protein L8	-0.731413662	No
	mooonim protein 10	0.701-110002	1 · · ·

Gene List in gene sets of enriched pathway in Table 5.			
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
RPL36	ribosomal protein L36	-0.76863873	No
RPL19	ribosomal protein L19	-1.015113831	No
RPL3L	ribosomal protein L3-like	-1.196903586	No
	KEGG_NOD_LIKE_RECEPTOR_SIGNAL	NG_PATHWAY	
II 1D		2 4 6 2 9 6 5 1 1 4	37
	interleukin I, beta	3.402805114	Yes
TNE	tumor necrosis factor (TNE superfamily	2 751254082	Vec
1 INT	member 2)	2.751254082	108
CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)	2.667189121	Yes
MEFV	Mediterranean fever	2.353091955	Yes
CXCL2	chemokine (C-X-C motif) ligand 2	1.990867496	Yes
CCL5	chemokine (C-C motif) ligand 5	1.827621102	Yes
CCL2	chemokine (C-C motif) ligand 2	0.932862163	Yes
CARD6	caspase recruitment domain family,	0.672573209	No
	member 6		
CASP1	caspase 1, apoptosis-related cysteine	0.499731153	No
0017	peptidase (interleukin 1, beta, convertase)	0.351911057	NT-
CCL/ DCTDID1	chemokine (C-C motif) ligand /	0.251811057	No No
rstrift	interacting protein 1	0.220938373	NO
MAPK11	mitogen-activated protein kinase 11	0.193452582	No
TNFAIP3	tumor necrosis factor, alpha-induced	0.100990877	No
	protein 3		
MAPK9	mitogen-activated protein kinase 9	0.090808034	No
CCL11	chemokine (C-C motif) ligand 11	0.039969306	No
MAPK8	mitogen-activated protein kinase 8	0.032760639	No
PYCARD	PYD and CARD domain containing	-0.03229328	No
CASP8	caspase 8, apoptosis-related cysteine	-0.03536839	No
	peptidase		
NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	-0.03587324	No
SUGT1	SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae)	-0.05679465	No
CARD9	caspase recruitment domain family, member 9	-0.06568909	No
BIRC3	baculoviral IAP repeat-containing 3	-0.06623559	No
MAPK3	mitogen-activated protein kinase 3	-0.12906235	No
TRIP6	thyroid hormone receptor interactor 6	-0.13364181	No
MAPK14	mitogen-activated protein kinase 14	-0.13693111	No
MAP3K7	mitogen-activated protein kinase kinase	-0.14027362	No
IKBKB	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta	-0.16735205	No
TRAE6	TNF receptor-associated factor 6	-0.17263973	No
MAPK1	mitogen-activated protein kinase 1	-0.17270541	No
RIPK2	receptor-interacting serine-threonine	-0.1842809	No
WDVC	kinase 2	0.10542105	N-
INBNU	enhancer in B-cells, kinase gamma	-0.19343105	NO
MAPK10	mitogen-activated protein kinase 10	-0.25465888	No
HSP90AA1	heat shock protein 90kDa alpha	-0.25493035	No
	(cytosolic), class A member 1		
NFKB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)	-0.25809258	No
CHUK	conserved helix-loop-helix ubiquitous kinase	-0.32112595	No
RELA	v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65 (avian)	-0.32651395	No
HSP90AB1	heat shock protein 90kDa alpha (cytosolic), class B member 1	-0.35596654	No
NFKBIB	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta	-0.40253881	No
MAPK12	mitogen-activated protein kinase 12	-0.41511443	No
BIRC2	baculoviral IAP repeat-containing 2	-0.4354732	No

TABLE 7-continued

	Gene List in gene sets of enriched pathwa	ay in Table 5.	
GENE SYMBOL	GENE_TITLE	RANK METRIC SCORE	CORE ENRICH- MENT
MAPK13 HSP90B1	mitogen-activated protein kinase 13 heat shock protein 90kDa beta (Grp94), member 1	-0.45562434 -0.50010961	No No
IL18	interleukin 18 (interferon-gamma- inducing factor)	-0.5164243	No
CCL8	chemokine (C-C motif) ligand 8 KEGG_TYPE_I DIABETES_MEL	-1.63008225 LITUS	No
IL1B	interleukin 1 beta	3 462865114	Yes
TNF	tumor necrosis factor (TNF superfamily, member 2)	2.751254082	Yes
GZMB	granzyme B (granzyme 2, cytotoxic T- lymphocyte-associated serine esterase 1)	2.667121887	Yes
IL12A	interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35)	1.315529704	Yes
PRF1	perforin 1 (pore forming protein)	1.171788573	Yes
CD86	CD86 molecule	0.631752431	Yes
CD80	CD80 molecule	0.600226164	Yes
LTA	lymphotoxin alpha (TNF superfamily, member 1)	0.44320941	Yes
CD28	CD28 molecule	0.331128299	No
FAS	Fas (TNF receptor superfamily, member 6)	0.173293099	No
PTPRN	protein tyrosine phosphatase, receptor type, N	0.112962097	No
GAD1	glutamate decarboxylase 1 (brain, 67kDa)	-0.03957521	No
ICA1	islet cell autoantigen 1, 69kDa	-0.0870818	No
ILIA	interleukin 1, alpha	-0.22882077	No
PTPRN2	protein tyrosine phosphatase, receptor type, N polypeptide 2	-0.23292804	No
CPE	carboxypeptidase E	-0.5967598	No
HSPD1	heat shock 60kDa protein 1 (chaperonin)	-0.8842746	No

REFERENCES

- [0224] 1. Dick G W, Kitchen S F, Haddow A J. Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1952; 46(5):509-20. Epub 1952 Sep. 1. PubMed PMID: 12995440.
- [0225] 2. Dick G W. Zika virus. II. Pathogenicity and physical properties. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1952; 46(5):521-34. Epub 1952 Sep. 1. PubMed PMID: 12995441.
- **[0226]** 3. Macnamara F N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1954; 48(2):139-45. Epub 1954 Mar. 1. PubMed PMID: 13157159.
- [0227] 4. Robin Y, Mouchet J. [Serological and entomological study on yellow fever in Sierra Leone]. Bulletin de la Societe de pathologie exotique et de ses filiales. 1975; 68(3):249-58. Epub 1975 May 1. PubMed PMID: 1243735.
- [0228] 5. Kirya B G, Okia N O. A yellow fever epizootic in Zika Forest, Uganda, during 1972: Part 2: Monkey serology. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1977; 71(4):300-3. Epub 1977 Jan. 1. PubMed PMID: 413216.
- [0229] 6. Jan C, Languillat G, Renaudet J, Robin Y. [A serological survey of arboviruses in Gabon]. Bulletin de

la Societe de pathologie exotique et de ses filiales. 1978; 71(2):140-6. Epub 1978 Mar. 1. PubMed PMID: 743766.

- [0230] 7. Fagbami A H. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. The Journal of hygiene. 1979; 83(2):213-9. Epub 1979 Oct. 1. PubMed PMID: 489960; PMCID: 2129900.
- [0231] 8. Saluzzo J F, Gonzalez J P, Herve J P, Georges A J. [Serological survey for the prevalence of certain arboviruses in the human population of the south-east area of Central African Republic (author's transl)]. Bulletin de la Societe de pathologie exotique et de ses filiales. 1981; 74(5):490-9. Epub 1981 Sep. 1. PubMed PMID: 6274526.
- [0232] 9. Olson J G, Ksiazek T G, Suhandiman, Triwibowo. Zika virus, a cause of fever in Central Java, Indonesia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1981; 75(3):389-93. Epub 1981 Jan. 1. PubMed PMID: 6275577.
- [0233] 10. McCrae A W, Kirya B G. Yellow fever and Zika virus epizootics and enzootics in Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982; 76(4):552-62. Epub 1982 Jan. 1. PubMed PMID: 6304948.
- [0234] 11. Monlun E, Zeller H, Le Guenno B, Traore-Lamizana M, Hervy J P, Adam F, Ferrara L, Fontenille D, Sylla R, Mondo M, et al. [Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal]. Bull Soc Pathol Exot. 1993; 86(1):21-8. Epub 1993 Jan. 1. PubMed PMID: 8099299.

- [0235] 12. Chao G, Lau W L, Hackel B J, Sazinsky S L, Lippow S M, Wittrup K D. Isolating and engineering human antibodies using yeast surface display. Nature protocols. 2006; 1(2):755-68. doi: 10.1038/nprot.2006. 94. PubMed PMID: 17406305.
- [0236] 13. Lanciotti R S, Kosoy O L, Laven J J, Velez J O, Lambert A J, Johnson A J, Stanfield S M, Duffy M R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerging infectious diseases. 2008; 14(8):1232-9. Epub 2008 Aug. 6. doi: 10.3201/eid1408.080287. PubMed PMID: 18680646; PMCID: 2600394.
- [0237] 14. Duffy M R, Chen T H, Hancock W T, Powers A M, Kool J L, Lanciotti R S, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert A J, Laven J, Kosoy O, Panella A, Biggerstaff B J, Fischer M, Hayes E B. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009; 360(24):2536-43. doi: 10.1056/NEJMoa0805715. PubMed PMID: 19516034.
- [0238] 15. Bearcroft W G. Zika virus infection experimentally induced in a human volunteer. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1956; 50(5):442-8. Epub 1956 Jan. 1. PubMed PMID: 13380987.
- [0239] 16. Simpson D I. Zika Virus Infection in Man. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1964; 58:335-8. Epub 1964 Jul. 1. PubMed PMID: 14175744.
- [0240] 17. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet H, Musso D, Ghawche F. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro surveillance: bulletin Europeen sur les maladies transmissibles=European communicable disease bulletin. 2014; 19(9). Epub 2014 Mar. 15. PubMed PMID: 24626205.
- [0241] 18. loos S, Mallet H P, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Medecine et maladies infectieuses. 2014; 44(7):302-7. doi: 10.1016/j.medmal.2014.04.008. PubMed PMID: 25001879.
- [0242] 19. Bogoch, I I, Brady O J, Kraemer M U G, German M, Creatore M I, Kulkarni M A, Brownstein J S, Mekaru S R, Hay S I, Groot E, Watts A, Khan K. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016; 387(10016):335-6. Epub 2016 Jan. 19. doi: 10.1016/S0140-6736(16)00080-5. PubMed PMID: 26777915; PMCID: 4873159.
- [0243] 20. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M, Yan J, Li W, Qin C, Han D, Wang N, Li X, Gao G F. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell. 2016; 167(6):1511-24 e10. Epub 2016 Nov. 26. doi: 10.1016/j.cell.2016.11.016. PubMed PMID: 27884405.
- [0244] 21. Govero J, Esakky P, Scheaffer S M, Fernandez E, Drury A, Platt D J, Gorman M J, Richner J M, Caine E A, Salazar V, Moley K H, Diamond M S. Zika virus infection damages the testes in mice. Nature. 2016; 540 (7633):438-42. Epub 2016 Nov. 1. doi: 10.1038/nature20556. PubMed PMID: 27798603; PMCID: 5432198.
- [0245] 22. Uraki R, Jurado K A, Hwang J, Szigeti-Buck K, Horvath T L, Iwasaki A, Fikrig E. Fetal Growth Restriction Caused by Sexual Transmission of Zika Virus in

Mice. The Journal of infectious diseases. 2017; 215(11): 1720-4. Epub 2017 May 5. doi: 10.1093/infdis/jix204. PubMed PMID: 28472297.

- [0246] 23. Uraki R, Hwang J, Jurado K A, Householder S, Yockey L J, Hastings A K, Homer R J, Iwasaki A, Fikrig E. Zika virus causes testicular atrophy. Science advances. 2017; 3(2):e1602899. Epub 2017 Mar. 7. doi: 10.1126/ sciadv.1602899. PubMed PMID: 28261663; PMCID: 5321463.
- [0247] 24. Schneider B S, McGee C E, Jordan J M, Stevenson H L, Soong L, Higgs S. Prior exposure to uninfected mosquitoes enhances mortality in naturallytransmitted West Nile virus infection. PloS one. 2007; 2(11):e1171. doi: 10.1371/journal.pone.0001171. PubMed PMID: 18000543; PMCID: 2048662.
- [0248] 25. Conway M J, Watson A M, Colpitts T M, Dragovic S M, Li Z, Wang P, Feitosa F, Shepherd D T, Ryman K D, Klimstra W B, Anderson J F, Fikrig E. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. Journal of Virology. 2014; 88(1):164-75. doi: 10.1128/JVI.02235-13. PubMed PMID: 24131723; PMCID: 3911723.
- [0249] 26. Jin L, Guo X, Shen C, Hao X, Sun P, Li P, Xu T, Hu C, Rose O, Zhou H, Yang M, Qin C F, Guo J, Peng H, Zhu M, Cheng G, Qi X, Lai R. Salivary factor LTRIN from *Aedes aegypti* facilitates the transmission of Zika virus by interfering with the lymphotoxin-beta receptor. Nature immunology. 2018. Epub 2018 Mar. 7. doi: 10.1038/s41590-018-0063-9. PubMed PMID: 29507355.
- [0250] 27. Machain-Williams C, Reagan K, Wang T, Zeidner N S, Blair C D. Immunization with *Culex tarsalis* mosquito salivary gland extract modulates West Nile virus infection and disease in mice. Viral immunology. 2013; 26(1):84-92. Epub 2013 Feb. 1. doi: 10.1089/vim. 2012.0051. PubMed PMID: 23362833; PMCID: PMC3578371.
- [0251] 28. Rohousova I, Volf P. Sand fly saliva: effects on host immune response and *Leishmania* transmission. Folia parasitologica. 2006; 53(3):161-71. Epub 2006 Nov. 24. PubMed PMID: 17120496.
- [0252] 29. Horka H, Cerna-Kyckova K, Skallova A, Kopecky J. Tick saliva affects both proliferation and distribution of *Borrelia burgdorferi* spirochetes in mouse organs and increases transmission of spirochetes to ticks. International journal of medical microbiology: IJMM. 2009; 299(5):373-80. doi: 10.1016/j.ijmm.2008.10.009. PubMed PMID: 19147403.
- [0253] 30. Cox J, Mota J, Sukupolvi-Petty S, Diamond M S, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. Journal of virology. 2012; 86(14):7637-49. doi: 10.1128/JVI.00534-12. PubMed PMID: 22573866; PMCID: 3416288.
- [0254] 31. Pingen M, Bryden S R, Pondeville E, Schnettler E, Kohl A, Merits A, Fazakerley J K, Graham G J, McKimmie C S. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity. 2016; 44(6):1455-69. Epub 2016 Jun. 23. doi: 10.1016/j.immuni.2016.06.002. PubMed PMID: 27332734; PMCID: 4920956.
- **[0255]** 32. Styer L M, Lim P Y, Louie K L, Albright R G, Kramer L D, Bernard K A. Mosquito saliva causes enhancement of West Nile virus infection in mice. Journal

of virology. 2011; 85(4):1517-27. doi: 10.1128/JVI. 01112-10. PubMed PMID: 21147918; PMCID: 3028906.

- [0256] 33. Uraki R, Hastings A K, Gloria-Soria A, Powell J R, Fikrig E. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection. PLoS neglected tropical diseases. 2018; 12(3): e0006350. Epub 2018 Mar. 6. doi: 10.1371/journal.pntd. 0006350. PubMed PMID: 29505571.
- [0257] 34. Aliota M T, Caine E A, Walker E C, Larkin K E, Camacho E, Osorio J E. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS neglected tropical diseases. 2016; 10(4):e0004682. Epub 2016 Apr. 20. doi: 10.1371/journal.pntd.0004682. PubMed PMID: 27093158; PMCID: 4836712.
- [0258] 35. Flach T L, Ng G, Hari A, Desrosiers M D, Zhang P, Ward S M, Seamone M E, Vilaysane A, Mucsi A D, Fong Y, Prenner E, Ling C C, Tschopp J, Muruve D A, Amrein M W, Shi Y. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature medicine. 2011; 17(4):479-87. Epub 2011 Mar. 15. doi: 10.1038/nm.2306. PubMed PMID: 21399646.
- [0259] 36. Alving C R, Peachman K K, Rao M, Reed S G. Adjuvants for human vaccines. Current opinion in immunology. 2012; 24(3):310-5. Epub 2012 Apr. 24. doi: 10.1016/j.coi.2012.03.008. PubMed PMID: 22521140; PMCID: 3383374.
- [0260] 37. Mbow M L, De Gregorio E, Valiante N M, Rappuoli R. New adjuvants for human vaccines. Current opinion in immunology. 2010; 22(3):411-6. Epub 2010 May 15. doi: 10.1016/j.coi.2010.04.004. PubMed PMID: 20466528.
- [0261] 38. Coffman R L, Sher A, Seder R A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33(4):492-503. Epub 2010 Oct. 30. doi: 10.1016/ j.immuni.2010.10.002. PubMed PMID: 21029960; PMCID: 3420356.
- [0262] 39. Lazear H M et al., A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe. 2016; 19(5):720-730.
- [0263] 40. Uraki, R., Hastings, A. K., Gloria-Soria, A., Powell, J. R. & Fikrig, E. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection. PLoS Negl Trop Dis 12, e0006350, doi: 10.1371/journal.pntd.0006350 (2018).
- [0264] 41. Shi L and Paskewitz, S M, Identification and molecular characterization of two immune-responsive chitinase-like proteins from *Anopheles gambiae*. Insect Molecular Biology. 2004, 13(4):387-398.
- [0265] 42. Beatty, P. R., et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. *Science Translational Medicine* 7(2015).
- [0266] 43. Tanaka, T. & Kishimoto, T. The Biology and Medical Implications of Interleukin-6. *Cancer Immunol Res* 2, 288-294 (2014).
- [0267] 44. Calvo, E., Mans, B. J., Andersen, J. F. & Ribeiro, J. M. Function and evolution of a mosquito salivary protein family. *J Biol Chem* 281, 1935-1942 (2006).
- [0268] 45. Rathore, A. P. S. & St John, A. L. Immune responses to dengue virus in the skin. *Open Biol* 8(2018).
- [0269] 46. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. *Nat Rev Immunol* 11, 762-774 (2011).

- [0270] 47. Osuna, C. E., et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. *Nat Med* 22, 1448-1455 (2016).
- [0271] 48. Bai, F., et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. *J Infect Dis* 202, 1804-1812 (2010).
- [0272] 49. Fong, S. W., Kini, R. M. & Ng, L. F. P. Mosquito Saliva Reshapes Alphavirus Infection and Immunopathogenesis. *J Virol* 92 (2018).
- [0273] 50. Schuijt, T. J., et al. Identification and characterization of *Ixodes scapularis* antigens that elicit tick immunity using yeast surface display. *PLoS One* 6, e15926 (2011).
- [0274] 51. Nakajima, S., et al. Prostaglandin I2-IP signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity. *J Immunol* 184, 5595-5603 (2010).
- [0275] 52. Chang, Q., Ornatsky, O. & Hedley, D. Staining of Frozen and Formalin-Fixed, Paraffin-Embedded Tissues with Metal-Labeled Antibodies for Imaging Mass Cytometry Analysis. *Curr Protoc Cytom* 82, 12 47 11-12 47 18 (2017).
- [0276] 53. Kramer, L. D., Styer, L. M. & Ebel, G. D. A global perspective on the epidemiology of West Nile virus. *Annu Rev Entomol* 53, 61-81, doi:10.1146/annurev. ento.53.103106.093258 (2008).
- [0277] 54. McGee, C. E., Schneider, B. S., Girard, Y. A., Vanlandingham, D. L. & Higgs, S. Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species. *Am J Trop Med Hyg* 76, 424-430 (2007).
- [0278] 55. Reisen, W. & Brault, A. C. West Nile virus in North America: perspectives on epidemiology and intervention. *Pest Manag Sci* 63, 641-646, doi:10.1002/ps. 1325 (2007).
- [0279] 56. Nikolay, B. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap? *Trans R Soc Trop Med Hyg* 109, 609-618, doi:10.1093/trstmh/trv066 (2015).
- [0280] 57. Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: review of the literature. *JAMA* 310, 308-315, doi:10.1001/jama.2013.8042 (2013).
- [0281] 58. Vogels, C. B., Goertz, G. P., Pijlman, G. P. & Koenraadt, C. J. Vector competence of European mosquitoes for West Nile virus. *Emerg Microbes Infect* 6, e96, doi:10.1038/emi.2017.82 (2017).
- [0282] 59. Gould, E. A. & Solomon, T. Pathogenic flaviviruses. *Lancet* 371, 500-509, doi:10.1016/50140-6736 (08)60238-X (2008).
- **[0283]** 60. Vanlandingham, D. L. et al. Relative susceptibilities of South Texas mosquitoes to infection with West Nile virus. *Am J Trop Med Hyg* 77, 925-928 (2007).
- [0284] 61. Andersen, L. K. & Davis, M. D. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force. *Int J Dermatol* 56, 252-259, doi:10.1111/ijd.13438 (2017).
- [0285] 62. Turell, M. J., O'Guinn, M. L., Dohm, D. J. & Jones, J. W. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. *J Med Entomol* 38, 130-134, doi:10.1603/0022-2585-38.2.130 (2001).

- [0286] 63. Matthews, B. J. et al. Improved reference genome of *Aedes aegypti* informs arbovirus vector control. *Nature* 563, 501-507, doi:10.1038/s41586-018-0692-z (2018).
- [0287] 64. Coutinho-Abreu, I. V., Guimaraes-Costa, A. B. & Valenzuela, J. G. Impact of Insect Salivary Proteins in Blood Feeding, Host Immunity, Disease, and in the Development of Biomarkers for Vector Exposure. *Curr Opin Insect Sci* 10, 98-103, doi:10.1016/j.cois.2015.04. 014 (2015).
- [0288] 65. Fontaine, A. et al. Implication of haematophagous arthropod salivary proteins in host-vector interactions. *Parasit Vectors* 4, 187, doi:10.1186/1756-3305-4-187 (2011).
- [0289] 66. Hayashi, H. et al. Anopheline anti-platelet protein from a malaria vector mosquito has anti-thrombotic effects in vivo without compromising hemostasis. *Thromb Res* 129, 169-175, doi:10.1016/j.thromres.2011. 09.015 (2012).
- [0290] 67. Conway, M. J. et al. *Aedes aegypti* D7 Saliva Protein Inhibits Dengue Virus Infection. *PLoS Negl Trop Dis* 10, e0004941, doi:10.1371/journal.pntd.0004941 (2016).
- [0291] 68. Jin, L. et al. Salivary factor LTRIN from *Aedes aegypti* facilitates the transmission of Zika virus by interfering with the lymphotoxin-beta receptor. *Nat Immunol* 19, 342-353, doi:10.1038/s41590-018-0063-9 (2018).
- [0292] 69. Uraki, R. et al. *Aedes aegypti* AgBR1 antibodies modulate early Zika virus infection of mice. *Nat Microbiol*, doi:10.1038/s41564-019-0385-x (2019).
- [0293] 70. Ribeiro, J. M. et al. An annotated catalogue of salivary gland transcripts in the adult female mosquito, *Aedes aegypti. BMC Genomics* 8, 6, doi:10.1186/1471-2164-8-6 (2007).
- **[0294]** 71. Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile

virus infection of mosquitoes. *Cell* 142, 714-725, doi:10. 1016/j.cell.2010.07.038 (2010).

- [0295] 72. Hastings, A. K. et al. *Aedes aegypti* NeSt1 protein enhances Zika virus pathogenesis by activating neutrophils. *J Virol*, doi:10.1128/JVI.00395-19 (2019).
- [0296] 73. Wang, P. et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. *J Virol* 82, 8978-8985, doi:10.1128/JVI.00314-08 (2008).
- [0297] 74. Ramos, H. J. et al. IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. *PLoS Pathog* 8, e1003039, doi:10.1371/journal.ppat. 1003039 (2012).
- [0298] 75. Ruckert, C. & Ebel, G. D. How Do Virus-Mosquito Interactions Lead to Viral Emergence? *Trends Parasitol* 34, 310-321 (2018).
- [0299] 76. Kieny, M. P., Excler, J. L. & Girard, M. Research and development of new vaccines against infectious diseases. *Am J Public Health* 94, 1931-1935 (2004).
- [0300] 77. Sarathy, V. V., Milligan, G. N., Bourne, N. & Barrett, A. D. Mouse models of dengue virus infection for vaccine testing. *Vaccine* 33, 7051-7060 (2015).
- [0301] 78. Zhu, J., Huang, X. & Yang, Y. Type I IFN signaling on both B and CD4 T cells is required for protective antibody response to adenovirus. *J Immunol* 178, 3505-3510 (2007).

[0302] The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

[0303] All patents, applications, publications, test methods, literature, and other materials cited herein are hereby incorporated by reference in their entirety as if physically present in this specification.

SEQUENCE LISTING

<160)> NU	JMBEF	S OF	SEQ	ID 1	10S :	129								
<210 <211)> SH L> LH 2> TY	EQ II ENGTH) NO 1: 43 PRT	1 39											
<213	3> OF	RGANI	[SM:	Aede	es ae	egypt	i								
<400)> SI	EQUEI	ICE :	1											
Met 1	Trp	Phe	Phe	Lys 5	Val	Gly	Ala	Leu	Leu 10	Phe	Leu	Ala	Ala	Leu 15	Val
Ser	Ala	Asn	Asn 20	Ala	Thr	Thr	Gly	Pro 25	Lys	Val	Leu	Суз	Tyr 30	Tyr	Asp
Gly	Gln	Met 35	Ser	Leu	Arg	Glu	Gly 40	Leu	Gly	Lys	Ile	Thr 45	Val	Thr	Asp
Ile	Glu 50	Leu	Ala	Leu	Pro	Phe 55	Суз	Thr	His	Leu	Leu 60	Tyr	Gly	Phe	Ala
Gly 65	Val	Asn	Pro	Glu	Thr 70	Tyr	Arg	Leu	Lys	Ala 75	Leu	Asp	Glu	Ser	Leu 80
Glu	Leu	Asp	Ser	Gly 85	Lys	Gly	Gln	Tyr	Arg 90	Leu	Ala	Thr	Thr	Leu 95	Lys
Arg	Arg	Tyr	Pro 100	Asn	Leu	Lys	Val	Leu 105	Leu	Ser	Val	Gly	Gly 110	Tyr	ГЛа

-continued	
------------	--

Asp	Leu	Thr 115	Glu	Glu	Lys	Pro	Phe 120	Glu	Lys	Tyr	Leu	Thr 125	Leu	Leu	Glu
Ser	Ala 130	Gly	Ser	Arg	Thr	Ala 135	Phe	Val	Asn	Ser	Val 140	Tyr	Ser	Thr	Leu
Lys 145	Thr	Tyr	Asp	Phe	Asp 150	Gly	Leu	Asp	Leu	Ala 155	Trp	Gln	Phe	Pro	Gln 160
Thr	Lys	Pro	Lys	Arg 165	Ile	Arg	Gly	Trp	Thr 170	Gly	Lys	Val	Trp	His 175	Gly
Phe	Lys	Lys	Leu 180	Phe	Thr	Gly	Asp	Ser 185	Val	Leu	Asp	Pro	Lys 190	Ala	Asp
Glu	His	Arg 195	Glu	Glu	Phe	Thr	Ala 200	Leu	Val	Arg	Asp	Leu 205	Lys	Asn	Ala
Leu	Val 210	Ala	Asp	Asn	Phe	Ile 215	Leu	Gly	Leu	Thr	Val 220	Leu	Pro	His	Val
Asn 225	Glu	Ser	Ile	Phe	Met 230	Asp	Val	Pro	Leu	Leu 235	Lys	Asp	Asn	Leu	Asp 240
Fyr	Val	Asn	Leu	Ala 245	Ser	Phe	Asp	Gln	Gln 250	Thr	Pro	Glu	Arg	Asn 255	Pro
rÀa	Glu	Gly	Asp 260	Tyr	Thr	Ala	Pro	Ile 265	Tyr	Glu	Pro	Ser	Glu 270	Arg	Val
Glu	Gly	Asn 275	Asn	Val	Asp	Ala	Glu 280	Ala	Ser	Tyr	Trp	Gln 285	Gly	Thr	Pro
Ala	Gly 290	Lys	Ile	Val	Ile	Gly 295	Ile	Pro	Thr	Tyr	Gly 300	Arg	Gly	Trp	Lys
Leu 305	Val	Glu	Lys	Ser	Gly 310	Ile	Thr	Gly	Val	Pro 315	Pro	Ile	Pro	Ala	Asp 320
Gly	Pro	Ser	Ile	Pro 325	Gly	Pro	His	Ser	Gly 330	Ile	Asn	Gly	Phe	Tyr 335	Ser
Γrp	Ala	Glu	Val 340	Суз	Ala	Lys	Leu	Pro 345	Asn	Pro	Gly	Asn	Ala 350	Asn	Leu
Jln	Gly	Ala 355	Asp	Gln	Pro	Leu	Arg 360	Гла	Ile	Gly	Asp	Pro 365	Thr	Arg	Arg
Phe	Gly 370	Ala	Tyr	Ala	Phe	Arg 375	Ile	Pro	Asp	Glu	Asn 380	Glu	Glu	His	Gly
Ile 385	Trp	Leu	Ser	Tyr	Glu 390	Asp	Pro	Asp	Thr	Ala 395	Gly	Asn	Lys	Ala	Ala 400
Tyr	Val	Lys	Ala	Lys 405	Gly	Leu	Gly	Gly	Ile 410	Ser	Ile	Phe	Asp	Leu 415	Gly
Asn	Aab	Asp	Val 420	Arg	Gly	Ala	Сүз	Ala 425	Gly	Asp	Lys	Phe	Pro 430	Ile	Leu
Arg	Ala	Ala 435	ГЛа	Tyr	Arg	Leu									
<210 <211 <212 <213	0> SH L> LH 2> TY 3> OH	EQ II ENGTH ZPE : RGANI	D NO H: 3: PRT ISM:	2 12 Aede	es ae	∋gypt	:i								
<400)> SI	EQUEI	ICE :	2											
Met 1	Ser	Pro	Ser	Lys 5	Lys	Ile	Leu	Val	Leu 10	Leu	Phe	Phe	Pro	Ile 15	Leu
Leu	Val	Ser	Ser	His	Pro	Ile	Pro	Ala	Glu	Asp	Pro	Ala	Lys	Gln	Cys

	\sim	\sim	n	.	п.	n	11	\frown	\sim
_	\sim	U.	LТ	L	т.	τt	u	-	u

			20					25					30		
Asn	Leu	Ser 35	Glu	Asp	Asp	Leu	Thr 40	Гла	Leu	Lys	Ala	Ala 45	Ile	Ser	Ser
Ala	Ser 50	Ser	Ala	Lys	Ala	Ala 55	Asn	Glu	Asp	Ile	Leu 60	Pro	Ser	Thr	Thr
Leu 65	Ala	Ala	Суз	Pro	Met 70	Leu	Lys	Asn	Phe	Thr 75	Glu	Met	Leu	Lys	Thr 80
Val	Ala	Thr	Asp	Met 85	Glu	Val	Leu	Lys	Thr 90	Gln	Gly	Val	Ser	Asn 95	Met
Glu	Val	Gln	Leu 100	Leu	Arg	Glu	Ser	Phe 105	Glu	Glu	ГЛа	Leu	Asn 110	Asp	Leu
Ala	Lys	Asn 115	Lys	Asp	Ile	Phe	Glu 120	Arg	Gln	Ala	Asn	Gln 125	Asp	Thr	Ser
Lys	Ala 130	Glu	Gly	Glu	Met	Val 135	Glu	Lys	Ile	Asn	Lys 140	Leu	Gln	Leu	Glu
Met 145	Ala	Lys	Leu	Gln	Glu 150	Glu	Ile	Glu	Glu	Gln 155	Thr	Lys	Gln	Met	Tyr 160
Val	Asp	Met	Ile	Glu 165	Tyr	Ile	Phe	Glu	Arg 170	Leu	Lys	Met	Asn	Asp 175	Thr
Glu	Ala	Ile	Asp 180	Ser	Tyr	Ala	Gln	Ile 185	Val	Met	Lys	Thr	Lys 190	Met	His
Glu	Leu	Ile 195	Met	Γλa	Leu	LÀa	Thr 200	Asp	Arg	Leu	Val	Leu 205	Trp	Glu	Met
Val	Lys 210	Tyr	Val	Glu	Gly	Lys 215	Гла	Asn	Lys	Trp	Val 220	Gly	Arg	Lys	Val
Leu 225	Asn	Thr	Ile	Leu	Asp 230	Gln	Val	Asn	Lys	Leu 235	Lys	Leu	Tyr	Lys	Pro 240
Glu	Glu	Val	Glu	Ile 245	Gly	Lys	Asn	Ser	Leu 250	Val	Val	Val	Trp	Cys 255	Trp
Lys	Phe	Asn	Ser 260	Glu	Thr	Val	Tyr	Gly 265	Thr	Thr	Asp	Glu	Asp 270	Gln	Lys
Ser	Phe	His 275	Leu	Ala	Lys	Leu	Phe 280	Phe	Pro	Lys	Glu	Lys 285	Gly	Суз	Lys
Glu	Cys 290	Ala	Asp	Val	Lys	Ser 295	Arg	Thr	Met	Cys	Asn 300	Asn	Asp	Tyr	Pro
Lуя 305	Val	Met	Val	Lys	Ala 310	Phe	Gly								
-010			NO	2											
<211	.> LE	NGTH	I: 31	.6											
<212 <213	:> TY :> OF	PE: GANI	PRT SM:	Aede	es ae	gypt	i								
<400)> SE	QUEN	ICE :	3											
Met 1	Glu	Thr	Ser	Leu 5	Pro	Ile	Thr	Val	Val 10	Phe	Leu	Ile	Val	Leu 15	Ile
Thr	Gly	Ala	Gln 20	Thr	LÀa	Pro	Thr	Gln 25	Gly	Ser	Суа	Thr	Leu 30	Thr	Asp
Glu	Asp	Ile 35	Ser	Asp	Ile	Lya	Ser 40	Ala	Val	Gln	Lys	Ala 45	Ser	Lys	Ala
Ala	Val 50	Asn	Asp	Ile	Val	Leu 55	Asp	Pro	Thr	Leu	Ile 60	Asp	Lys	Суз	Pro

Met	Leu	Glu	Lys	Ile	Thr	Ala	Ser	Leu	Lys	Ser	Val	Ala	Thr	Glu	Ile
65			-		70				-	75					80
Val	Gln	Met	Arg	Asp 85	Ser	Ala	Ile	Ser	Thr 90	Asp	Gln	Val	Asp	Gln 95	Leu
Lvs	Gln	Asn	Phe	Glu	Asp	Gln	Va]	Asn	Gln	Ile	Va]	Lvs	Ser	Ara	Asp
-1 2			100	4	r			105				-15	110	9	- P
Ile	Phe	Glu 115	Lys	Gln	Ser	Gly	Thr 120	Gln	Ala	Thr	Lys	Glu 125	His	Gly	Glu
Met	Leu	Glu	Ara	Met.	Thr	Ala	Leu	Gln	Va]	Lvs	Va]	Thr	Glu	Leu	Glu
	130		9			135				_1.5	140				
Gln 145	Gln	Ile	Ala	Lys	Gln 150	Thr	Ala	Ser	Met	Tyr 155	Glu	Asp	Met	Ala	Glu 160
Leu	I]e	Phe	Gln	Ara	Leu	Gln	Met	Asn	Ser	Thr	Glu	Ser	Val	Ara	Ser
200				165	_04	- 111			170			~~~		175	~~+
Tyr	Thr	Lya	His 180	Met	Met	Glu	Glu	Lys 185	Leu	Glu	Glu	Leu	Met 190	Asn	ГЛа
Leu	Glu	Thr	Agn	Tvr	Ara	TIP	Tvr	Len	Glv	Ale	Leu	Ara	Phe	Leu	Asn
Бец	. Gru	195	7011	- Y T	тy	116	200	Deu	σ±γ	лта	Leu	205	1116	ъсч	~911
His	Met	Asn	Asp	Gln	Glu	Leu 215	Ile	Gly	Lys	Val	Phe	Asp	Gly	Ile	Leu
Lare	210	Ler	C1+-	2 ~~~	Met	215 Larc	~ 1 ھ	bar	6	D.cm	220	W - 1	I.v.e	<i>c</i> 1	200
цуя 225	Arg	ьеч	σтγ	чаb	меt 230	гда	АТА	Asb	ser	азр 235	чар	vai	гЛа	GIU	Asn 240
Gly	Arg	Asn	Leu	Leu	Val	Asn	Leu	Leu	Cys	Trp	Thr	Val	Asn	Asn	Asp
		a 7	.	245		Ŧ.,	a l	•	250					255	
Phe	Leu	Gly	Lуз 260	ГЛЗ	Tyr	ГЛа	Glu	Arg 265	Gln	Val	Asp	Leu	Tyr 270	Arg	Met
Ala	Leu	Lys	Phe	Tyr	Pro	Lys	Thr	Tyr	Glu	Lys	Ala	Ala	Asn	Glu	Ala
_		275		_	<i>a</i> -		280			_		285		_	
Asp	Val 290	Arg	Ser	Arg	Gln	Phe 295	Сүз	Glu	Glu	Asn	Phe 300	Pro	Ala	Asn	Leu
Ile	Thr	Trp	Phe	Ala	Val	Ser	Trp	Asn	Asp	Arg	Gly				
305					310					315					
<21	0> S	EQ II	d No	4											
<21 <21	1> L 2> T	ENGTI YPE :	H: 3 PRT	32											
<21	3 > 0	RGAN	ISM:	Aed	es a	egyp.	ti								
<40	0> S	EQUE	NCE :	4											
Met 1	Phe	Pro	Pro	Arg 5	Lys	Phe	Leu	Leu	Ser 10	Ser	Phe	Ile	Leu	Ala 15	Ala
Leu	His	Val	Thr	Ala	Ala	Pro	Leu	Trp	Asp	Ala	Lys	Asp	Pro	Glu	Gln
			20					25	-		-	-	30		
Leu	Arg	Phe 35	Ile	Thr	Ser	Arg	Cys 40	Met	Glu	Asp	Trp	Tyr 45	Pro	Lys	Ala
Luc	Aar	Dre	Larc	71-	71~	Lor	 C1~	Acr	ጥ~~	Lett	G11-		Luc	Ler	G1
пля	50	LTO	пда	лıd	лıd	55	GTH	ABII	тъ	ыец	60 60	ттр	пда	ыец	Gru
Pro	Ser	Asp	Asp	Gln	Ala	Thr	Gln	Суз	Tyr	Thr	Lys	Суа	Val	Leu	Glu
65					70					75					80
Lys	Ile	Gly	Phe	Tyr 85	Glu	Pro	Gly	Glu	Lys 90	Arg	Phe	ГЛЗ	Gly	Val 95	Arg
Val	Met.	Gln	Gln	Trp	Glu	Thr	Phe	His	Lvs	Tvr	Leu	Asn	Ala	Asp	Ara
			100					105	_1.5	-1-			110	1	9

inued
inued

Glu	Lys	Val 115	His	Asp	Leu	Thr	Ser 120	Thr	Phe	Asp	Phe	Ile 125	Pro	Pro	Leu
Lys	Ser 130	Ser	Ser	Сув	Ser	Glu 135	Val	Phe	Glu	Ala	Phe 140	Lys	Lys	Val	Asn
Gly 145	Lys	His	Ser	Glu	Thr 150	Ile	Arg	Ala	Ile	Leu 155	Phe	Gly	Lys	Gly	Glu 160
Ser	Ser	Lys	Lys	Tyr 165	Tyr	Gln	Glu	Lys	Gly 170	Val	Lys	Ile	Lys	Gln 175	Lys
Glu	Gln	Ser	Leu 180	Phe	Met	His	Cys	Glu 185	Ala	Leu	Asn	Tyr	Pro 190	Lys	Gly
Ser	Pro	Gln 195	Arg	rÀa	Aap	Leu	Cys 200	Gly	Ile	Arg	ГЛа	Tyr 205	Gln	Met	Gly
Ser	Gly 210	Ile	Val	Phe	Glu	Arg 215	His	Met	Glu	Суз	Ile 220	Phe	Lys	Gly	Leu
Arg 225	Tyr	Met	Thr	Ser	Lys 230	Asn	Glu	Leu	Asp	Val 235	Asp	Glu	Ile	Ala	Arg 240
Asp	Phe	Ile	Val	Val 245	Lys	Lys	Lys	Pro	Asp 250	Ala	Met	Lys	Ala	Met 255	Met
Lys	Thr	Cys	Lys 260	Ala	Asn	Leu	Lys	Glu 265	Lys	Asn	Pro	Gly	Lys 270	Ile	Ala
Val	His	Tyr 275	Tyr	Lys	Cys	Leu	Met 280	Asn	Asp	Ser	Lys	Val 285	Thr	Asn	Asp
Phe	Lys 290	Glu	Ala	Phe	Asp	Tyr 295	Arg	Glu	Val	Arg	Ser 300	Lys	Asp	Tyr	Phe
Ala 305	Ala	Leu	Thr	Gly	Lys 310	Leu	Lys	Pro	Tyr	Ser 315	Arg	Ser	Asp	Val	Arg 320
Lys	Gln	Val	Aap	Asp 325	Ile	Asp	Lys	Ile	Gln 330	Суз	Ser				
<210 <211)> SH L> LH	EQ II ENGTH) NO H: 21	5 L5											
<212 <213	2> TY 3> OF	PE : RGANI	PRT [SM:	Aede	es ae	egypt	:i								
<400)> SE	EQUEI	ICE :	5											
Met 1	Lys	Tyr	Leu	Leu 5	Thr	Phe	Leu	Met	Ala 10	Leu	Ser	Leu	Val	Asn 15	Leu
Met	Leu	Thr	Arg 20	Pro	Thr	Pro	Glu	Asp 25	Asp	Gly	Gly	Thr	Ser 30	Glu	Glu
Pro	Gln	Thr 35	Gln	Glu	Thr	Thr	Gly 40	Ser	Asp	Glu	LYa	Asn 45	Gly	Ala	Ser
Glu	Glu 50	Pro	Asn	Ala	Aap	Asp 55	Ala	Ser	Lys	Pro	Asp 60	Aap	Val	Glu	Glu
Lys 65	Gly	Aap	Aap	Asp	Thr 70	Ala	Lys	Lys	Glu	Asp 75	Aap	Gly	Glu	Ser	Lys 80
Asp	Gly	Glu	Gly	Ser 85	Glu	Lys	Ser	Asp	Lys 90	Glu	Lys	Gly	Glu	Pro 95	Lys
Asn	Aap	Pro	Arg 100	Glu	Thr	Tyr	Asn	Lys 105	Val	Ile	Glu	Gln	Leu 110	Aap	Gln
Ile	Lys	Val 115	Asp	Asn	Val	Glu	Asp 120	Gly	His	Glu	Arg	Ser 125	Glu	Leu	Ala
Ala	Asp	Ile	Gln	Arg	Tyr	Leu	Arg	Asn	Pro	Ile	Val	Asp	Val	Ile	Gly

130 135 140 Ser Ala Gly Asp Phe Ser Lys Ile Ala Lys Cys Phe Lys Ser Met Val 145 150 155 160 Gly Asp Ala Lys Lys Ala Ile Glu Glu Asp Val Lys Gly Phe Lys Glu 165 170 175 Cys Thr Ala Lys Lys Asp Ser Asn Ala Tyr Gln Cys Ser Gln Asp Arg 180 185 190 Ser Thr Val Gln Asp Lys Ile Ala Lys Met Ser Ser Lys Ile Ala Ser 195 200 205 Cys Val Ala Ser Asn Arg Ser 210 215 <210> SEQ ID NO 6 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 6 Asn Leu Lys Val Leu Leu Ser Val Gly Gly Tyr 1 5 10 <210> SEQ ID NO 7 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 7 Phe Lys Val Gly Ala Leu Leu Phe Leu Ala Ala Leu Val Ser Ala 1 5 10 15 <210> SEQ ID NO 8 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 8 Thr Ala Leu Val Arg Asp Leu Lys Asn Ala Leu Val Ala Asp Asn Phe 1 5 10 15 Ile Leu Gly Leu Thr Val Leu Pro His Val Asn Glu Ser 25 20 <210> SEQ ID NO 9 <211> LENGTH: 24 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEOUENCE: 9 Lys Ile Thr Val Thr Asp Ile Glu Leu Ala Leu Pro Phe Cys Thr His 1 5 10 15 Leu Leu Tyr Gly Phe Ala Gly Val 20

```
-continued
```

<210> SEQ ID NO 10 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 10 Thr Ala Phe Val Asn Ser Val Tyr Ser Thr Leu Lys Thr Tyr 1 5 10 <210> SEQ ID NO 11 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 11 Phe Met Asp Val Pro Leu Leu Lys Asp Asn Leu Asp Tyr Val Asn Leu 10 1 5 15 Ala Ser Phe <210> SEQ ID NO 12 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 12 Ile Thr Gly Val Pro Pro Ile Pro Ala Asp Gly Pro 1 5 10 <210> SEQ ID NO 13 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 13 Arg Gly Ala Cys Ala Gly Asp Lys Phe Pro Ile Leu Arg Ala Ala Lys 1 5 10 15 <210> SEQ ID NO 14 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 14 Asn Ser Leu Val Val Val Trp Cys Trp Lys 1 5 10 <210> SEQ ID NO 15 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 15

-continued

Lys Lys Ile Leu Val Leu Leu Phe Phe Pro Ile Leu Leu Val Ser Ser 1 5 10 15 His Pro Ile Pro Ala Glu 20 <210> SEQ ID NO 16 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 16 Leu Pro Ser Thr Thr Leu Ala Ala Cys Pro Met Leu 1 5 10 <210> SEQ ID NO 17 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 17 Thr Asp Arg Leu Val Leu Trp Glu Met Val Lys Tyr Val Glu 1 5 10 <210> SEQ ID NO 18 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 18 Ser Phe His Leu Ala Lys Leu Phe Phe Pro 1 5 10 <210> SEQ ID NO 19 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 19 Leu Asn Thr Ile Leu Asp Gln Val Asn Lys Leu Lys Leu Tyr Lys Pro 5 10 1 Glu Glu Val <210> SEQ ID NO 20 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 20 Thr Lys Leu Lys Ala Ala Ile Ser Ser Ala Ser Ser Ala 1 5 10 <210> SEQ ID NO 21 <211> LENGTH: 12

```
-continued
```

<212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 21 Gln Met Tyr Val Asp Met Ile Glu Tyr Ile Phe Glu 1 5 10 <210> SEQ ID NO 22 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 22 Ser Leu Pro Ile Thr Val Val Phe Leu Ile Val Leu Ile Thr Gly 5 1 10 15 <210> SEQ ID NO 23 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 23 Asn Leu Leu Val Asn Leu Leu Cys Trp Thr Val 1 5 10 <210> SEQ ID NO 24 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 24 Ala Leu Gln Val Lys Val Thr Glu Leu Glu Gln Gln Ile Ala Lys Gln 10 1 5 15 <210> SEQ ID NO 25 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 25 Ile Lys Ser Ala Val Gln Lys Ala Ser Lys Ala Ala Val Asn Asp Ile 1 5 10 15 Val Leu Asp Pro Thr Leu Ile Asp Lys Cys Pro Met Leu 20 25 <210> SEQ ID NO 26 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 26 Ile Thr Ala Ser Leu Lys Ser Val Ala Thr Glu Ile Val

-continued

1 5 10 <210> SEQ ID NO 27 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 27 Ala Asn Leu Ile Thr Trp Phe Ala Val Ser 1 5 10 <210> SEQ ID NO 28 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 28 Ile Gly Lys Val Phe Asp Gly Ile Leu Lys Arg 5 1 10 <210> SEQ ID NO 29 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEOUENCE: 29 Glu Arg Gln Val Asp Leu Tyr Arg Met Ala Leu Lys Phe Tyr Pro Lys 1 5 10 15 Thr <210> SEQ ID NO 30 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 30 Ala Thr Gln Cys Tyr Thr Lys Cys Val Leu Glu Lys Ile 1 5 10 <210> SEQ ID NO 31 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 31 Lys Ile Ala Val His Tyr Tyr Lys Cys Leu Met Asn Asp 10 1 5 <210> SEQ ID NO 32 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti

-continued

<400> SEQUENCE: 32 Arg Lys Phe Leu Leu Ser Ser Phe Ile Leu Ala Ala Leu His Val Thr 1 5 10 15 Ala Ala Pro Leu Trp 20 <210> SEQ ID NO 33 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 33 Arg Asp Phe Ile Val Val Lys Lys 1 5 <210> SEQ ID NO 34 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 34 Thr Phe Asp Phe Ile Pro Pro Leu Lys Ser Ser Ser Cys Ser Glu Val 1 5 10 15 Phe Glu Ala Phe Lys Lys 20 <210> SEQ ID NO 35 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 35 Leu Phe Met His Cys Glu Ala Leu Asn Tyr Pro 1 5 10 <210> SEQ ID NO 36 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 36 Tyr Phe Ala Ala Leu Thr Gly Lys Leu Lys Pro Tyr 1 5 10 <210> SEQ ID NO 37 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 37 Lys Met Ser Ser Lys Ile Ala Ser Cys Val Ala Ser 1 5 10

<210> SEQ ID NO 38

75

```
-continued
```

<211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 38 Leu Leu Thr Phe Leu Met Ala Leu Ser Leu Val Asn Leu Met Leu Thr 10 1 5 15 <210> SEQ ID NO 39 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 39 Ser Glu Leu Ala Ala Asp Ile Gln Arg Tyr Leu Arg Asn Pro Ile Val 1 10 15 5 Asp Val Ile Gly Ser Ala 20 <210> SEQ ID NO 40 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 40 Asn Lys Val Ile Glu Gln Leu Asp Gln Ile Lys Val Asp Asn Val 1 5 10 15 <210> SEQ ID NO 41 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 41 Phe Ser Lys Ile Ala Lys Cys Phe Lys Ser Met Val Gly 1 5 10 <210> SEQ ID NO 42 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 42 Ala Tyr Gln Cys Ser Gln Asp Arg Ser Thr Val Gln Asp Lys 1 5 10 <210> SEQ ID NO 43 <211> LENGTH: 291 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 43

-continued

Met Asn Arg Gln Leu Trp Ile Ile Ile Phe Ala Ile Leu Cys Val Ala Gln Ala Glu Glu Asp Asn Pro Thr Thr Glu Lys Met Glu Glu Leu Gly Ile Ala Thr Ile Asn Asn Phe Thr Arg Glu Phe Tyr Ser Tyr Val Glu Ala Val Ser Gln Val Leu Ala Asp Leu Glu Leu Thr Thr Ala Ser Ile Thr Gln Ile Lys His Arg Ile Lys His Leu Leu Gln Glu Lys Cys Asn Leu Cys Ser Ala Lys Ala Glu Gly Pro Ala Leu Asp Gln Gly Tyr 85 90 95 Val Thr Thr Ser Asn Gly Ser Val Ile Pro Val Ser Tyr Glu Gln Thr 100 105 Arg Phe Gly Gly Gly Trp Ile Val Leu Met Gln Arg Tyr Asp Gly Thr 115 120 125 Val Arg Phe Asn Arg Ser Trp Ala Glu Tyr Arg Asp Gly Phe Gly Met Val Gly His Glu Phe Trp Leu Gly Leu Glu Arg Ile His Gln Met Thr Lys Asp Ala Glu Tyr Glu Leu Met Ile Glu Met Gln Asp Phe Glu Gly As
n Tyr Lys Tyr Ala Gly Tyr Asp Ala Phe Ala Val Gly Pro Glu Glu Glu Arg Tyr Pro Leu Ala Lys Val Gly Lys Phe Asn Lys Thr Ala Tyr Val Asp Ser Phe Gly Lys His Arg Gly Tyr Gly Phe Ser Thr Tyr Asp Asn Asp Asp Asn Gly Cys Ser Asn Gln Tyr Gly Arg Gly Gly Trp Trp 230 235 Tyr Tyr Arg Lys Ser Cys Phe Gly Ala Ser Leu Thr Gly Ile Trp Gln Asn Lys Gln Asp Trp Lys Ser Ile Ser Trp Val Trp Phe Ser Thr Glu Lys Lys Gln Val Pro Leu Lys Phe Ala Arg Met Met Met Arg Leu Lys Thr Ala Glu <210> SEQ ID NO 44 <211> LENGTH: 321 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 44 Met Lys Leu Pro Leu Leu Ala Ile Val Thr Thr Phe Ser Val Val Ala Ser Thr Gly Pro Phe Asp Pro Glu Glu Met Leu Phe Thr Phe Thr Arg Cys Met Glu Asp Asn Leu Glu Asp Gly Pro Asn Arg Leu Pro Met Leu Ala Lys Trp Lys Glu Trp Ile Asn Glu Pro Val Asp Ser Pro Ala

	50					55					60				
Thr 65	Gln	Cys	Phe	Gly	Lys 70	Сүз	Val	Leu	Val	Arg 75	Thr	Gly	Leu	Tyr	Asp 80
Pro	Val	Ala	Gln	Lys 85	Phe	Asp	Ala	Ser	Val 90	Ile	Gln	Glu	Gln	Phe 95	Lys
Ala	Tyr	Pro	Ser 100	Leu	Gly	Glu	Lys	Ser 105	Lys	Val	Glu	Ala	Tyr 110	Ala	Asn
Ala	Val	Gln 115	Gln	Leu	Pro	Ser	Thr 120	Asn	Asn	Asp	Cys	Ala 125	Ala	Val	Phe
Lys	Ala 130	Tyr	Asp	Pro	Val	His 135	Lys	Ala	His	Lys	Asp 140	Thr	Ser	Lys	Asn
Leu 145	Phe	His	Gly	Asn	Lys 150	Glu	Leu	Thr	Lys	Gly 155	Leu	Tyr	Glu	Lys	Leu 160
Gly	Lys	Asp	Ile	Arg 165	Gln	Lys	Lys	Gln	Ser 170	Tyr	Phe	Glu	Phe	Cys 175	Glu
Asn	Lys	Tyr	Tyr 180	Pro	Ala	Gly	Ser	Asp 185	Lys	Arg	Gln	Gln	Leu 190	Cys	Lys
Ile	Arg	Gln 195	Tyr	Thr	Val	Leu	Asp 200	Asp	Ala	Leu	Phe	Lys 205	Glu	His	Thr
Asp	Cys 210	Val	Met	Lys	Gly	Ile 215	Arg	Tyr	Ile	Thr	Lys 220	Asn	Asn	Glu	Leu
Asp 225	Ala	Glu	Glu	Val	Lys 230	Arg	Asp	Phe	Met	Gln 235	Val	Asn	Lys	Asp	Thr 240
Lys	Ala	Leu	Glu	Lys 245	Val	Leu	Asn	Asp	Cys 250	Lys	Ser	Lys	Glu	Pro 255	Ser
Asn	Ala	Gly	Glu 260	Lys	Ser	Trp	His	Tyr 265	Tyr	Lys	Суз	Leu	Val 270	Glu	Ser
Ser	Val	Lys 275	Asp	Asp	Phe	Lys	Glu 280	Ala	Phe	Asp	Tyr	Arg 285	Glu	Val	Arg
Ser	Gln 290	Ile	Tyr	Ala	Phe	Asn 295	Leu	Pro	Lys	Lys	Gln 300	Val	Tyr	Ser	Lys
Pro 305	Ala	Val	Gln	Ser	Gln 310	Val	Met	Glu	Ile	Asp 315	Gly	Lys	Gln	Cys	Pro 320
Gln															
<210 <211 <212 <213	0> SH L> LH 2> TY 3> OH	EQ II ENGTH (PE : RGANI	D NO H: 33 PRT [SM:	45 39 Aede	es ae	egypt	=i								
<400)> SH	EQUEI	ICE :	45											
Met 1	Val	Gln	Phe	Pro 5	Val	Leu	Leu	Ile	Thr 10	Leu	Ser	Leu	Ala	Phe 15	Glu
Val	His	Ser	Ser 20	Tyr	Ala	Glu	Asn	Arg 25	Arg	Leu	Gln	Leu	Val 30	Arg	Asp
Ile	Asp	Gly 35	Thr	Gln	Gln	Leu	Val 40	Asn	Pro	Asn	Pro	Tyr 45	Arg	Val	Leu
Asn	Ala 50	His	Leu	Glu	Arg	Ser 55	Phe	Asn	Ala	Gln	Ser 60	Asp	Ile	Ile	Phe
Arg 65	Leu	Tyr	Thr	Arg	Lys 70	Asn	Pro	Glu	Lys	His 75	Gln	Ile	Leu	Lys	Pro 80
Asn	Asp	Thr	Ser	Ser	Ile	Leu	Asn	Ser	Asn	Phe	Asn	Ala	Asp	Leu	Pro

-continued

				85					90					95	
Thr	Arg	Phe	Leu 100	Ile	His	Gly	Trp	Asn 105	Gln	Asn	Gly	Glu	Ser 110	Asp	Ile
Leu	Ile	Glu 115	Leu	Arg	Arg	Ser	Tyr 120	Leu	Ser	Val	Glu	Asp 125	Phe	Asn	Val
Ile	Gly 130	Val	Asp	Trp	Gly	Glu 135	Gly	Ala	Leu	Thr	Ile 140	Asn	Tyr	Val	Met
Ala 145	Arg	Lys	Arg	Val	Glu 150	Ser	Val	Gly	Leu	Val 155	Thr	Ser	Gln	Leu	Ile 160
Asp	Thr	Leu	Val	Asp 165	Ala	Ser	Gly	Val	Ile 170	Leu	Asp	Ser	Ile	Tyr 175	Val
Ile	Gly	His	Ser 180	Leu	Gly	Ala	His	Val 185	Ala	Gly	Ile	Val	Gly 190	Lys	His
Gln	Arg	Gly 195	Gln	Leu	Asn	Thr	Ile 200	Val	Gly	Leu	Asp	Pro 205	Ala	Gly	Pro
Leu	Phe 210	Ser	Leu	Asn	Ser	Ser 215	Asp	Ile	Leu	Asn	Gln 220	Asn	His	Ala	Gln
Tyr 225	Val	Glu	Met	Val	Ser 230	Thr	Gly	Ala	Arg	Leu 235	Leu	Gly	Thr	Tyr	Glu 240
Pro	Leu	Gly	Asp	Ala 245	Asn	Phe	Tyr	Pro	Asn 250	Gly	Gly	Leu	Glu	Gln 255	Ala
Gly	Сув	Gly	Leu 260	Asp	Leu	Phe	Gly	Ile 265	Сув	Ala	His	Ala	Arg 270	Ser	Trp
Ile	Tyr	Phe 275	Ala	Glu	Thr	Val	Thr 280	Asn	Gly	Lys	Gly	Phe 285	Arg	Gly	Ile
Lys	Cys 290	Ala	Met	Ile	Glu	Asp 295	Leu	Glu	Gly	Glu	Thr 300	Суз	Asn	Leu	Ser
Gly 305	Leu	Pro	Asn	Val	Trp 310	Met	Gly	Gly	Glu	Pro 315	Ser	Asn	His	Glu	Arg 320
Gly	Val	Lys	Gly	Ile 325	Phe	Met	Val	His	Thr 330	Asn	Ser	Glu	Ala	Pro 335	Phe
Ala	Lys	Asp													
<210 <211)> SH L> LH	EQ II ENGTH) NO 1: 29	46 €0											
<212 <213	2> T) 3> OF	(PE : RGANI	PRT ISM:	Aede	es ae	egypt	=i								
<400)> SH	EQUEI	ICE :	46											
Met 1	Ile	Leu	Gln	Phe 5	Trp	Val	Val	Thr	Phe 10	Ser	Val	Leu	Phe	Ala 15	Ala
Arg	Ala	Asp	Glu 20	Asn	His	Ser	Ile	Leu 25	Ile	Lys	Leu	Asn	Asp 30	Leu	Asp
His	Arg	Phe 35	Thr	Gln	Met	Phe	Ser 40	Gln	Gln	Phe	Tyr	Arg 45	His	Thr	Gln
Gln	Val 50	Thr	Asp	Arg	Val	Ser 55	Ala	Leu	Lys	Ile	Ser 60	Ile	Aap	Thr	Asn
Leu 65	Leu	Glu	Leu	Asp	Gln 70	Gln	Ile	Gln	Gln	Ala 75	Leu	Asp	Gly	Ile	Gln 80
Ser	Asn	Glu	Ser	Ser 85	Ser	Ser	Ala	Ser	Ala 90	Thr	Lys	Pro	Pro	Gly 95	Leu
Thr	Thr	Ile	Pro	Ile	Gly	Ser	Glu	Pro	Arg	Val	Pro	Ala	Leu	Tyr	Glu

_	C	0	n	t.	i.	n	11	e	d
	0	\sim	тт.	~	-	τ.τ	u	~	a

			100					105					110		
Arg	Glu	Arg 115	Tyr	Gly	Gly	Asp	Trp 120	Leu	Val	Val	Met	His 125	Arg	Tyr	Asp
Gly	Ser 130	Val	Lys	Phe	Asp	Arg 135	Thr	Trp	Ala	Glu	Tyr 140	Arg	Asp	Gly	Phe
Gly 145	Met	Val	Gly	Gln	Glu 150	Phe	Trp	Tyr	Gly	Leu 155	Glu	Arg	Leu	His	Gln 160
Leu	Thr	Lys	Glu	Lys 165	Ser	Tyr	Glu	Leu	Met 170	Val	Glu	Met	Glu	Asp 175	Phe
Asn	Gly	Ser	Leu 180	Гла	Tyr	Ala	Trp	Tyr 185	Asp	Lys	Phe	Val	Val 190	Gly	Pro
Glu	Glu	Gln 195	Arg	Tyr	Ala	Leu	Val 200	Glu	Leu	Gly	Thr	Phe 205	Asn	Gly	Thr
Thr	Asp 210	Gly	Asp	Ser	Leu	Lys 215	Pro	His	Lys	Gly	Ser 220	Gly	Phe	Ser	Thr
Tyr 225	Asp	Asn	Asp	Asp	Phe 230	Gly	Cya	Ser	Asn	Lys 235	Tyr	Ala	Lys	Gly	Gly 240
Trp	Trp	Tyr	Tyr	Ser 245	Gly	Lys	Сув	Tyr	Gly 250	Ser	Ser	Leu	Thr	Gly 255	Ile
Trp	Lys	Asn	Glu 260	Leu	Ala	Tyr	Ser	Ser 265	Ile	Val	Trp	Met	Lys 270	Phe	Ser
Asp	Val	Ser 275	Asn	Thr	Pro	Leu	Lys 280	Leu	Val	Arg	Met	Met 285	Ile	Arg	Pro
Lys	Asn 290														
<210 <211 <212 <213 <220 <223)> SH L> LH 2> TY 3> OH 0> FH 3> OT 0> SH	EQ II ENGTH (PE: RGANJ EATUF THER EQUEN) NO H: 14 PRT ISM: RE: INF(NCE:	47 1 Art: DRMA: 47	Lfic: TION	ial : : Aec	seque les a	ence aegyr	pti						
Leu 1	Trp	Ile	Ile	Ile 5	Phe	Ala	Ile	Leu	Cys 10	Val	Ala	Gln	Ala		
<210 <211 <212 <213 <220 <223)> SH L> LH 2> TY 3> OH 0> FH 3> OY	EQ II ENGTH (PE : RGANJ EATUF THER) NO H: 16 PRT [SM: RE: INF(48 5 Art: DRMAT	Lfic: FION	ial : : Aec	seque les a	ence	pti						
<400 Phe)> SH Tyr	EQUEN Ser	ICE: Tyr	48 Val	Glu	Ala	Val	Ser	Gln	Val	Leu	Ala	Asp	Leu	Glu
1				5					10					15	
<210 <211 <212 <213 <220 <223)> SH L> LH 2> TY 3> OH 0> FH 3> OT	EQ II ENGTH (PE: RGANJ EATUF THER) NO H: 9 PRT ISM: RE: INF(49 Art: DRMAT	Lfic: FION	ial : : Aec	seque les a	ence legyr	oti						
<400)> SI	EQUEN	ICE :	49 D		a		a 7							
Gly 1	Ser	Val	Ile	Pro 5	Val	Ser	Tyr	Glu							

-continued

<210> SEQ ID NO 50 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 50 Ile Thr Gln Ile Lys His Arg Ile Lys His Leu Leu Gln Glu Lys Cys 10 1 5 15 Asn Leu Cys Ser Ala Lys 20 <210> SEQ ID NO 51 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 51 Lys Lys Gln Val Pro Leu Lys Phe 1 5 <210> SEQ ID NO 52 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 52 Tyr Pro Leu Ala Lys Val Gly 1 <210> SEQ ID NO 53 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 53 Arg Lys Ser Cys Phe Gly Ala Ser Leu Thr Gly 1 5 10 <210> SEQ ID NO 54 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 54 Gly Trp Ile Val Leu Met Gln 1 5 <210> SEQ ID NO 55 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti

-continued

<400> SEQUENCE: 55 Leu Asp Gln Gly Tyr Val Thr Thr 1 5 <210> SEQ ID NO 56 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 56 Tyr Ala Gly Tyr Asp Ala Phe Ala Val Gly 1 5 10 <210> SEQ ID NO 57 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 57 Thr Ala Tyr Val Asp Ser Phe 1 5 <210> SEQ ID NO 58 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 58 Ile Ser Trp Val Trp Phe Ser 1 5 <210> SEQ ID NO 59 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 59 Trp Leu Gly Leu Glu Arg Ile 1 5 <210> SEQ ID NO 60 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 60 Pro Leu Leu Ala Ile Val Thr Thr Phe Ser Val Val Ala Ser Thr 1 5 10 15 <210> SEQ ID NO 61 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence

```
-continued
```

<220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 61 Trp His Tyr Tyr Lys Cys Leu Val Glu Ser Ser 1 5 10 <210> SEQ ID NO 62 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 62 Pro Val Asp Ser Pro Ala Thr Gln Cys Phe Gly Lys Cys Val Leu Val 1 5 10 15 Arg Thr Gly <210> SEQ ID NO 63 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 63 Cys Ala Ala Val Phe Lys Ala Tyr Asp Pro Val His Lys Ala 1 5 10 <210> SEQ ID NO 64 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 64 Tyr Arg Glu Val Arg Ser Gln Ile Tyr Ala Phe Asn Leu Pro Lys Lys 10 1 5 15 Gln Val Tyr Ser Lys Pro Ala Val Gln Ser Gln Val Met 20 25 <210> SEQ ID NO 65 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 65 Lys Val Glu Ala Tyr Ala Asn Ala Val Gln Gln Leu Pro 1 5 10 <210> SEQ ID NO 66 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 66

Tyr Asp Pro Val Ala Gln Lys Phe Asp Ala Ser Val Ile Gln Glu Gln

-continued

1	5	10	15
Phe Lys Ala Tyr 20	Pro Ser Leu		
<210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF	67 5 Artificial sequence ORMATION: Aedes aegy	pti	
<400> SEQUENCE:	67		
Gln Gln Leu Cys 1	Lys Ile Arg Gln Tyr 5	Thr Val Leu Asp Asp 10	Ala 15
<pre><210> SEQ ID NO <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF</pre>	68 Artificial sequence ORMATION: Aedes aegy	pti	
<400> SEQUENCE:	68		
Leu Glu Lys Val 1	Leu Asn Asp Cys 5		
<pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF</pre>	69 2 Artificial sequence ORMATION: Aedes aegy	pti	
<400> SEQUENCE:	69		
Tyr Phe Glu Phe 1	Cys Glu Asn Lys Tyr 5	Tyr Pro Ala 10	
<pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF</pre>	70 1 Artificial sequence ORMATION: Aedes aegy	pti	
<400> SEQUENCE:	70		
Phe Lys Glu His 1	Thr Asp Cys Val Met 5	Lys Gly 10	
<pre><210> SEQ ID NO <211> LENGTH: 1 <1212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF</pre>	71 7 Artificial sequence ORMATION: Aedes aegy	pti	
<400> SEQUENCE:	71		
Phe Pro Val Leu 1	. Leu Ile Thr Leu Ser 5	Leu Ala Phe Glu Val 10	. His Ser 15
Ser			
<210> SEQ ID NO	72		

<211> LENGTH: 44 <212> TYPE: PRT

```
-continued
```

<213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 72 Val Glu Ser Val Gly Leu Val Thr Ser Gln Leu Ile Asp Thr Leu Val 10 1 5 15 Asp Ala Ser Gly Val Ile Leu Asp Ser Ile Tyr Val Ile Gly His Ser 25 20 30 Leu Gly Ala His Val Ala Gly Ile Val Gly Lys His 35 40 <210> SEQ ID NO 73 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 73 Gln Ala Gly Cys Gly Leu Asp Leu Phe Gly Ile Cys Ala His Ala Arg 5 10 15 1 Ser Trp Ile Tyr Phe Ala Glu 20 <210> SEQ ID NO 74 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 74 Leu Gln Leu Val Arg Asp 1 5 <210> SEQ ID NO 75 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 75 Thr Gln Gln Leu Val Asn Pro Asn Pro Tyr Arg Val Leu Asn Ala His 1 5 10 15 <210> SEQ ID NO 76 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 76 Thr Ile Asn Tyr Val Met Ala Arg 1 5 <210> SEQ ID NO 77 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE:

```
-continued
```

<223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 77 Ala Gln Tyr Val Glu Met Val 1 5 <210> SEQ ID NO 78 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 78 Asn Thr Ile Val Gly Leu Asp Pro Ala Gly Pro Leu Phe Ser Leu Asn 1 5 10 15 Ser Ser <210> SEQ ID NO 79 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 79 Lys Gly Ile Phe Met Val His 1 5 <210> SEQ ID NO 80 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 80 Cys Asn Leu Ser Gly Leu Pro Asn Val 1 5 <210> SEQ ID NO 81 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 81 Asp Ile Leu Ile Glu Leu Arg Arg Ser Tyr Leu Ser Val Glu Asp Phe 1 5 10 15 <210> SEQ ID NO 82 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 82 Pro Thr Arg Phe Leu Ile His Gly 1 5
86

-continued

<211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 83 Ser Asp Ile Ile Phe Arg Leu Tyr 1 5 <210> SEQ ID NO 84 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 84 Gly Ile Lys Cys Ala Met Ile 1 5 <210> SEQ ID NO 85 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 85 Gly Ala Arg Leu Leu Gly Thr Tyr 1 5 <210> SEQ ID NO 86 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 86 Gln Phe Trp Val Val Thr Phe Ser Val Leu Phe Ala Ala 5 10 1 <210> SEQ ID NO 87 <211> LENGTH: 24 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 87 Leu Ala Tyr Ser Ser Ile Val Trp Met Lys Phe Ser Asp Val Ser Asn 1 5 10 15 Thr Pro Leu Lys Leu Val Arg Met 20 <210> SEQ ID NO 88 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 88

87

```
-continued
```

Asp Trp Leu Val Val Met His Arg 1 5 <210> SEQ ID NO 89 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 89 Glu Pro Arg Val Pro Ala Leu Tyr 1 5 <210> SEQ ID NO 90 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 90 His Ser Ile Leu Ile Lys Leu Asn Asp 1 5 <210> SEQ ID NO 91 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 91 Arg Tyr Ala Leu Val Glu Leu Gly 1 5 <210> SEQ ID NO 92 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 92 Thr Asp Arg Val Ser Ala Leu Lys Ile Ser 1 5 10 <210> SEQ ID NO 93 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 93 Ser Gly Lys Cys Tyr Gly Ser Ser Leu Thr Gly 1 5 10 <210> SEQ ID NO 94 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti

```
-continued
```

<400> SEQUENCE: 94

Ser Leu Lys Tyr Ala Trp Tyr Asp Lys Phe Val Val Gly Pro 1 5 10 <210> SEQ ID NO 95 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 95 Leu Glu Arg Leu His Gln Leu 1 5 <210> SEQ ID NO 96 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 96 Asp Thr Asn Leu Leu Glu Leu Asp Gln Gln Ile Gln Gln Ala Leu Asp 1 5 10 15 Gly <210> SEQ ID NO 97 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 97 Ser Gln Gln Phe Tyr Arg His Thr Gln Gln 1 5 10 <210> SEQ ID NO 98 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 98 Asp Gly Ser Val Lys Phe 1 5 <210> SEQ ID NO 99 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Aedes aegypti <400> SEQUENCE: 99 Pro Pro Gly Leu Thr Thr Ile Pro Ile Gly 1 5 10 <210> SEQ ID NO 100 <211> LENGTH: 651 <212> TYPE: PRT

-continued

<213> ORGANISM:			Aede	es ae	egypt	:i									
<400)> SH	EQUEI	ICE :	100											
Met 1	Ala	Lys	Ala	Pro 5	Ala	Val	Gly	Ile	Asp 10	Leu	Gly	Thr	Thr	Tyr 15	Ser
СЛа	Val	Gly	Val 20	Phe	Gln	His	Gly	Lys 25	Val	Glu	Ile	Ile	Ala 30	Asn	Asp
Gln	Gly	Asn 35	Arg	Thr	Thr	Pro	Ser 40	Tyr	Val	Ala	Phe	Thr 45	Asb	Thr	Glu
Arg	Leu 50	Ile	Gly	Asb	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Met	Asn	Pro	Thr
Asn 65	Thr	Ile	Phe	Asb	Ala 70	Lys	Arg	Leu	Ile	Gly 75	Arg	Lys	Phe	Asp	Asp 80
Pro	Ala	Ile	Gln	Ala 85	Aab	Met	Lys	His	Trp 90	Pro	Phe	Asp	Val	Ile 95	Ser
Val	Glu	Gly	Lys 100	Pro	LÀa	Ile	Gln	Val 105	Glu	Tyr	Lys	Gly	Glu 110	Thr	Lys
Asn	Phe	Phe 115	Pro	Glu	Glu	Ile	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys
Glu	Thr 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Lys	Thr	Val	Ser 140	Asn	Ala	Val	Val
Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
Ala	Gly	Thr	Ile	Ser 165	Gly	Leu	Asn	Val	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
Thr	Ala	Ala	Ala 180	Ile	Ala	Tyr	Gly	Leu 185	Asp	Lys	Lys	Thr	Ala 190	Gly	Glu
Arg	Asn	Val 195	Leu	Ile	Phe	Asp	Leu 200	Gly	Gly	Gly	Thr	Phe 205	Asp	Val	Ser
Ile	Leu 210	Ser	Ile	Asp	Asp	Gly 215	Ile	Phe	Glu	Val	Lys 220	Ser	Thr	Ala	Gly
Asp 225	Thr	His	Leu	Gly	Gly 230	Glu	Asp	Phe	Asp	Asn 235	Arg	Leu	Val	Asn	His 240
Phe	Ala	Gln	Glu	Phe 245	Lys	Arg	Lys	His	Lys 250	Lys	Asp	Leu	Ser	Thr 255	Asn
Lys	Arg	Ala	Leu 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg
Thr	Leu	Ser 275	Ser	Ser	Thr	Gln	Ala 280	Ser	Ile	Glu	Ile	Asp 285	Ser	Leu	Phe
Glu	Gly 290	Thr	Asp	Phe	Tyr	Thr 295	Ser	Ile	Thr	Arg	Ala 300	Arg	Phe	Glu	Glu
Leu 305	Asn	Ala	Asp	Leu	Phe 310	Arg	Ser	Thr	Met	Glu 315	Pro	Val	Glu	Lys	Ala 320
Ile	Arg	Asp	Ala	Lys 325	Met	Asp	Lys	Ala	Ser 330	Ile	His	Asp	Ile	Val 335	Leu
Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Val	Gln	Lys	Leu	Leu 350	Gln	Asp
Phe	Phe	Asn 355	Gly	Lys	Glu	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 365	Asp	Glu	Ala
Val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	His	Gly	Asp	Lys

01 (1)	er 85	Glu	Glu	Val	Gln	Asp 390	Leu	Leu	Leu	Leu	Asp 395	Val	Thr	Pro	Leu	Ser 400
L	eu	Gly	Ile	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410	Ser	Val	Leu	Ile	Lys 415	Arg
P	sn	Thr	Thr	Ile	Pro	Thr	Lys	Gln	Thr	Gln	Thr	Phe	Thr	Thr	Tyr	Ser
F	ap	Asn	Gln	420 Pro	Glv	Val	Leu	Ile	425 Gln	Val	Phe	Glu	Glv	430 Glu	Arq	Ala
	P		435	110	017	Vul	204	440	0111	vui	1110	oru	445	oru		1120
Μ	let	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Lys	Phe	Glu 460	Leu	Ser	Gly	Ile
F 4	ro 65	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480
P	/ab	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Leu	Glu	ГÀа	Ser	Thr 495	Asn
L	ya	Glu	Asn	Lys	Ile	Thr	Ile	Thr	Asn	Asp	Lys	Gly	Arg	Leu	Ser	Lys
c	;lu	Asp	Ile	500 Glu	Ara	Met	Val	Asn	505 Glu	Ala	Glu	Lvs	Tvr	510 Arg	Ser	G] 11
	. . u	P	515	CT U			.41	520	u		CTU.	275	525		DCT	OT U
P	/ab	Glu 530	Lys	Gln	LÀa	Glu	Thr 535	Ile	Ser	Ala	Lys	Asn 540	Ala	Leu	Glu	Ser
Т 5	'yr 45	Сув	Phe	Asn	Met	Lys 550	Ala	Thr	Met	Glu	Asp 555	Asp	LYa	Leu	Lys	Asp 560
L	ya	Ile	Thr	Asp	Ser 565	Asp	Lys	Thr	Leu	Ile 570	Met	Asp	Lys	Сув	Asn 575	Asp
Т	hr	Ile	Lys	Trp	Leu	Asp	Ala	Asn	Gln	Leu	Ala	Glu	Lys	Glu	Glu	Tyr
~	11	니 ~	220	580 C1~	Lare	G1	Ler	<i>с</i> 1	585	W - 1	(***~	۵ <i></i>	Dre	590	T1 ~	ሞኮ~
Ŀ.	τu	чтя	595	GTU	пЛа	GIU	ьец	600	ser	vai	сув	ASU	605	тте	тте	1111
L	yya	Leu 610	Tyr	Gln	Ser	Ala	Gly 615	Gly	Ala	Pro	Gly	Gly 620	Met	Pro	Gly	Phe
F 6	ro 25	Gly	Gly	Ala	Pro	Gly 630	Ala	Gly	Ala	Gly	Ala 635	Ala	Pro	Gly	Ala	Gly 640
5	er	Gly	Ser	Gly	Pro	Thr	Ile	Glu	Glu	Val	Asp					
					045					030						
<	210)> SH .> LH	EQ II ENGTI) NO H: 4	101 96											
<	212 213	> TY > OF	r PE : RGAN	PRT ISM:	Aed	es a	egyp	ti								
<	400	> SI	EQUEI	NCE :	101											
M 1	let	Ser	Val	Asn	Arg 5	Thr	Ile	Ser	Ala	His 10	Gln	Ala	Ala	Гла	Glu 15	His
V	Val	Leu	Ala	Val	Ser	Arg	Asp	Phe	Ile 25	Ser	Gln	Pro	Arg	Leu	Thr	Tyr
L	va	Thr	Val	∠∪ Ser	Gly	Val	Asn	Gly	∠5 Pro	Leu	Val	Ile	Leu	Asp	Glu	Val
-	-		35	-	-	-	-	40		-	-		45	Ľ	-	
L	γya	Phe 50	Pro	Lys	Phe	Ala	Glu 55	Ile	Val	Gln	Leu	Arg 60	Leu	Asn	Asp	Gly
Т 6	'hr 5	Val	Arg	Ser	Gly	Gln 70	Val	Leu	Glu	Val	Ser 75	Gly	Ser	Lys	Ala	Val 80
V	'al	Gln	Val	Phe	Glu	Gly	Thr	Ser	Gly	Ile	Asp	Ala	Lys	Asn	Thr	Val
					85					90					95	

-continued

Сүз	Glu	Phe	Thr 100	Gly	Asp	Ile	Leu	Arg 105	Thr	Pro	Val	Ser	Glu 110	Aab	Met
Leu	Gly	Arg 115	Val	Phe	Asn	Gly	Ser 120	Gly	Lys	Pro	Ile	Asp 125	Lys	Gly	Pro
Pro	Ile 130	Leu	Ala	Glu	Asp	Phe 135	Leu	Asp	Ile	Gln	Gly 140	Gln	Pro	Ile	Asn
Pro 145	Trp	Ser	Arg	Ile	Tyr 150	Pro	Glu	Glu	Met	Ile 155	Gln	Thr	Gly	Ile	Ser 160
Ala	Ile	Aab	Val	Met 165	Asn	Ser	Ile	Ala	Arg 170	Gly	Gln	Lys	Ile	Pro 175	Ile
Phe	Ser	Ala	Ala 180	Gly	Leu	Pro	His	Asn 185	Glu	Ile	Ala	Ala	Gln 190	Ile	Cys
Arg	Gln	Ala 195	Gly	Leu	Val	LÀa	His 200	Thr	Gly	Lys	Ser	Val 205	Leu	Aab	Glu
His	Glu 210	Aap	Asn	Phe	Ala	Ile 215	Val	Phe	Ala	Ala	Met 220	Gly	Val	Asn	Met
Glu 225	Thr	Ala	Arg	Phe	Phe 230	Lys	Gln	Asp	Phe	Glu 235	Glu	Asn	Gly	Ser	Met 240
Glu	Asn	Val	Cys	Leu 245	Phe	Leu	Asn	Leu	Ala 250	Asn	Asp	Pro	Thr	Ile 255	Glu
Arg	Ile	Ile	Thr 260	Pro	Arg	Leu	Ala	Leu 265	Thr	Ala	Ala	Glu	Phe 270	Leu	Ala
Tyr	Gln	Cys 275	Glu	Lys	His	Val	Leu 280	Val	Ile	Leu	Thr	Asp 285	Met	Ser	Ser
Tyr	Ala 290	Glu	Ala	Leu	Arg	Glu 295	Val	Ser	Ala	Ala	Arg 300	Glu	Glu	Val	Pro
Gly 305	Arg	Arg	Gly	Phe	Pro 310	Gly	Tyr	Met	Tyr	Thr 315	Asp	Leu	Ala	Thr	Ile 320
Tyr	Glu	Arg	Ala	Gly 325	Arg	Val	Glu	Gly	Arg 330	Asn	Gly	Ser	Ile	Thr 335	Gln
Ile	Pro	Ile	Leu 340	Thr	Met	Pro	Asn	Asp 345	Asp	Ile	Thr	His	Pro 350	Ile	Pro
Asp	Leu	Thr 355	Gly	Tyr	Ile	Thr	Glu 360	Gly	Gln	Ile	Tyr	Val 365	Asp	Arg	Gln
Leu	His 370	Asn	Arg	Gln	Ile	Tyr 375	Pro	Pro	Val	Asn	Val 380	Leu	Pro	Ser	Leu
Ser 385	Arg	Leu	Met	ГЛа	Ser 390	Ala	Ile	Gly	Glu	Gly 395	Met	Thr	Arg	Lys	Asp 400
His	Ser	Asp	Val	Ser 405	Asn	Gln	Leu	Tyr	Ala 410	Суз	Tyr	Ala	Ile	Gly 415	Lys
Asp	Val	Gln	Ala 420	Met	Lys	Ala	Val	Val 425	Gly	Glu	Glu	Ala	Leu 430	Thr	Pro
Asp	Asp	Leu 435	Leu	Tyr	Leu	Glu	Phe 440	Leu	Thr	Lys	Phe	Glu 445	Lys	Asn	Phe
Ile	Ser 450	Gln	Gly	Asn	Tyr	Glu 455	Asn	Arg	Thr	Val	Phe 460	Glu	Ser	Leu	Asp
Ile 465	Gly	Trp	Gln	Leu	Leu 470	Arg	Ile	Phe	Pro	Lys 475	Glu	Met	Leu	Lys	Arg 480
Ile	Pro	Ala	Ser	Ile 485	Leu	Ala	Glu	Phe	Tyr 490	Pro	Arg	Asp	Ser	Arg 495	His

<210> SEQ ID NO 102 <211> LENGTH: 530 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 102 Met Pro Ala Asn Ile Ile Met Lys Ile Leu Ile Thr Ser Ile Leu Ile Leu Lys Leu Ala Ile His Val Val Pro Gln His Leu Ile Ser Ser Gly Ala Ser Ala Val Glu Ser Lys Pro Val Ser Ala Arg Pro Thr Tyr Glu Asp Tyr Lys Arg Gln Arg Glu Asn Phe Leu Gln Ala Glu Glu Tyr His Phe Leu Gly Ala Asn Val Thr Leu Asn Glu Asn Glu Gln Leu Val Asn Lys Phe Leu Met Arg Leu Lys Leu Glu Glu Met Val Lys Gly Phe Asn Asp Ser Tyr Asn Phe Ile Pro Ala Arg His Ile Phe Glu Val Leu Asp Arg Phe Gly Gln Ser Lys Val Phe Lys Val Ile Gln Arg Leu Pro Lys Gly Gly Val Leu His Ala His Asp Met Ala Leu Gly Ser Thr Asp Leu Ile Val Asn Ala Thr Tyr Arg Glu Asn Leu Trp Gln Lys Gly Asn Phe Gly Val Ser His Gly Pro Gln Phe Lys Phe Ser Lys Glu Lys Pro Gly Lys Glu Trp Ser Leu Val Ser Glu Ile Arg Gln Trp Met Thr Asp Lys Val Tyr Asp Ala Lys Val Gly Glu Ile Phe Ser Leu Tyr Asn Ala Asp Pro Leu Asn Ala Tyr Lys Ser Leu Asp Asp Val Trp Ser Lys Phe Gln Asn Leu Phe Gly Ser Leu Ala Pro Leu Ile Thr Phe Ala Pro Val Trp Arg Gln Tyr Tyr His Asp Ser Leu Lys Gln Phe Tyr Asp Asp His Val Gln Tyr Leu Glu Phe Arg Gly Val Leu Pro Asp Val Tyr Asp Leu Asp 260 265 Gly Lys Ile Tyr Ser Ala Glu Glu Ile Val Gln Met Tyr Tyr Glu Glu Thr Glu Glu Phe Lys Ser Ser His Pro Glu Phe Ile Gly Ala Lys Phe Ile Tyr Ala Pro Gly Arg Phe Ala Thr Asp Asp Glu Phe Leu Lys Ile Ile Asp Thr Ala Lys Arg Leu His Lys Lys Phe Pro Thr Phe Leu Ala Gly Phe Asp Leu Val Gly Gln Glu Asp Pro Gly Arg Ser Leu Leu Glu Phe Ala Pro Ala Leu Leu Lys Leu Pro Ala Ser Ile Asn Phe Phe Phe

					•				
	~	\sim	\mathbf{r}	-		3	1.1	\sim	\sim
_		6 1						_	6.1
	\sim	\sim	т.т.	~	_	**	. u	~	9

His Ala Gly Glu Thr Asn Trp Tyr Gly Met Lys Thr Asp Gln Asn Leu Ile Asp Ala Val Leu Leu Gly Ser Lys Arg Ile Gly His Gly Phe Ala Val Leu Lys His Pro Lys Val Leu Lys Glu Ile Lys Arg Arg Gln Ile Cys Ile Glu Ile Asn Pro Ile Ser Asn Gln Val Leu Lys Leu Val Gln Asp Gln Arg Asn His Pro Ala Ala Leu Leu Phe Ser Asp Asn Tyr Pro Val Val Val Ser Ser Asp Asp Pro Ser Phe Trp Arg Ser Thr Pro Leu Ser His Asp Phe Tyr Val Ala Phe Thr Gly Ile Ala Ser Ala Lys Gln Asp Leu Arg Leu Leu Lys Gln Leu Ala Leu Asn Ser Ile Glu Tyr Ser Ala Met Asn Ser Glu Glu Lys Thr Ser Ala Lys Glu Lys Trp Ser Gln 500 505 510 Ala Trp His Asp Gln Ile Ser Ala Leu Ala Thr Asp Ile Val Ala Gly Ser Val <210> SEQ ID NO 103 <211> LENGTH: 562 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 103 Met Ala Gly Arg Pro Gly Tyr Ser Glu Val Ile Phe Leu Tyr Val Val Ser Val Ala Val Ile Ala Arg Ala Thr Asp Asn Met Pro Val Asn Lys Asp Val Ser Lys Leu Phe Pro Leu Thr Leu Ile His Ile Asn Asp Leu His Ala Arg Phe Glu Glu Thr Asn Met Lys Ser Asn Val Cys Thr Gln Lys Asp Gln Cys Ile Ala Gly Ile Ala Arg Val Tyr Gln Lys Ile Lys 65 70 75 80 Asp Leu Leu Lys Glu Tyr Glu Ser Lys Asn Pro Ile Tyr Leu Asn Ala Gly Asp Asn Phe Gln Gly Thr Leu Trp Tyr Asn Leu Leu Arg Trp Asn Val Thr Ala Asp Phe Ile Lys Lys Leu Lys Pro Ala Ala Met Thr Leu Gly Asn His Glu Phe Asp His Thr Pro Lys Gly Leu Ala Pro Tyr Leu Ala Glu Leu Asn Lys Glu Gly Ile Pro Thr Ile Val Ala Asn Leu Val Met Asn Asn Asp Pro Asp Leu Lys Ser Ser Lys Ile Pro Lys Ser Ile Lys Leu Thr Val Gly Lys Arg Lys Ile Gly Ile Ile Gly Val Leu Tyr

-continued

			180					185					190		
Asp	Lys	Thr 195	His	Glu	Ile	Ala	Gln 200	Thr	Gly	Lys	Val	Thr 205	Leu	Ser	Asn
Ala	Val 210	Glu	Ala	Val	Arg	Arg 215	Glu	Ala	Ala	Ala	Leu 220	Lys	Lys	Asp	Asn
Ile 225	Asp	Ile	Ile	Val	Val 230	Leu	Ser	His	Cys	Ser 235	Tyr	Glu	Glu	Asp	Lys 240
Lys	Ile	Ala	Ala	Glu 245	Ala	Gly	Asp	Asp	Ile 250	Aap	Val	Ile	Val	Gly 255	Ala
His	Ser	His	Ser 260	Phe	Leu	Tyr	Ser	Pro 265	Asp	Ser	ГЛа	Gln	Pro 270	His	Asp
Pro	Lys	Asp 275	Lys	Val	Glu	Gly	Pro 280	Tyr	Pro	Thr	Leu	Val 285	Glu	Ser	LYa
Asn	Lys 290	Arg	Lya	Ile	Pro	Ile 295	Val	Gln	Ala	ГÀа	Ser 300	Phe	Gly	Lya	Tyr
Val 305	Gly	Arg	Leu	Thr	Leu 310	Tyr	Phe	Asp	Glu	Glu 315	Gly	Glu	Val	Lys	Asn 320
Trp	Glu	Gly	Tyr	Pro 325	Val	Phe	Ile	Asp	His 330	Lys	Val	Gln	Gln	Asp 335	Pro
Gln	Ile	Leu	Lys 340	Asp	Leu	Val	Pro	Trp 345	Arg	Ala	Lys	Val	Glu 350	Ala	Ile
Gly	Ser	Thr 355	Val	Val	Gly	Glu	Thr 360	Met	Ile	Glu	Leu	Asp 365	Arg	Asp	Ser
Сүв	Arg 370	Asp	Gln	Glu	Cys	Thr 375	Leu	Gly	Val	Leu	Tyr 380	Ala	Asp	Gly	Phe
Ala 385	Asp	Gln	Tyr	Thr	Asn 390	Asp	Thr	Phe	Arg	Pro 395	Phe	Ala	Ile	Ile	Gln 400
Ala	Gly	Asn	Phe	Arg 405	Asn	Pro	Ile	Lys	Val 410	Gly	Lys	Ile	Thr	Asn 415	Gly
Asp	Ile	Ile	Glu 420	Ala	Ala	Pro	Phe	Gly 425	Ser	Thr	Ala	Asp	Leu 430	Ile	Arg
Leu	Lys	Gly 435	Ala	Asp	Ile	Trp	Asp 440	Val	Ala	Glu	His	Ser 445	Phe	Ala	Leu
Asp	Asp 450	Glu	Gly	Arg	Thr	Asn 455	Сүз	Leu	Gln	Val	Ser 460	Gly	Leu	Arg	Ile
Val 465	Ile	Asp	Ile	Ser	Lys 470	Pro	Val	Arg	Ser	Arg 475	Val	Lys	Lys	Ile	Glu 480
Val	Met	Asp	Tyr	Thr 485	Asn	Pro	Lys	Ser	Asp 490	Lys	Leu	Lys	Pro	Leu 495	Aap
Lys	Glu	Ala	Glu 500	Tyr	Tyr	Ile	Val	Val 505	Pro	Ser	Tyr	Leu	Ala 510	Asp	Gly
Lys	Asp	Gly 515	Phe	Ser	Ala	Met	Lys 520	Arg	Ala	Thr	Ala	Arg 525	Arg	Thr	Gly
Pro	Leu 530	Asp	Ser	Asp	Val	Phe 535	Lys	Asn	Tyr	Val	Glu 540	Lys	Ile	Lys	Lys
Val 545	Asp	Asn	Leu	Lys	Leu 550	Gly	Arg	Val	Ile	Val 555	Cys	Lys	Gly	Ser	Lys 560
Суз	Thr														

<210> SEQ ID NO 104 <211> LENGTH: 572

-continued

<212 <212	2 > T 3 > Of	(PE : RGAN	PRT ISM:	Aed	es a	egypt	ti								
<40)> SI	EQUEI	ICE :	104											
Met 1	Ile	Asp	Gln	Cys 5	Ala	Сүз	Ser	His	Gln 10	Leu	Ser	Ala	Ala	Leu 15	Ser
Thr	Glu	Asp	Met 20	Leu	Arg	Thr	Ser	Ser 25	Ile	Val	Phe	Leu	Thr 30	Суз	Суз
Leu	Thr	Phe 35	Leu	Ile	Glu	Gly	Ser 40	Ser	Phe	Lys	Leu	Lys 45	Ile	Ile	His
Phe	Asn 50	Asp	Ile	His	Ala	Arg 55	Phe	Asp	Glu	Val	Thr 60	Asn	Ser	Ser	Ser
Pro 65	Cys	Ser	Gly	Asn	Gly 70	Glu	Thr	Cys	Val	Ala 75	Gly	Ile	Ala	Arg	Leu 80
Val	Thr	Thr	Ile	Glu 85	ГЛа	Leu	Arg	Lys	Gln 90	Asn	Glu	Asn	His	Leu 95	Val
Leu	Asn	Ala	Gly 100	Aap	Val	Phe	Gln	Gly 105	Thr	Ile	Trp	Tyr	Thr 110	Leu	Leu
Lys	Trp	Asn 115	Val	Ser	Gln	Gln	Phe 120	Met	Asn	Met	Val	Lys 125	Ala	Asp	Ala
Met	Thr 130	Leu	Gly	Asn	His	Glu 135	Phe	Asp	Asp	Ser	Phe 140	Pro	Val	Leu	Ile
Pro 145	Phe	Leu	Glu	Asn	Thr 150	Lys	Asn	Val	Thr	Pro 155	Val	Val	Val	Ser	Asn 160
Leu	Val	Phe	Pro	Lys 165	Gln	Leu	Ser	Arg	Asp 170	Val	Thr	Lys	Phe	Arg 175	Ser
Leu	Ile	Lys	Glu 180	Asp	Pro	Leu	Val	Leu 185	Thr	Val	Gly	Gly	Gln 190	Ser	Ile
Gly	Ile	Ile 195	Gly	Val	Ile	Phe	Asp 200	Glu	Thr	Asp	ГЛЗ	Ile 205	Gly	Asn	Ser
Asp	Pro 210	Leu	Lys	Phe	Гла	Ser 215	Ser	Ile	Glu	Thr	Val 220	Arg	Ile	Ala	Ala
Lys 225	Gln	Leu	Lys	Ser	Lys 230	Gly	Val	Asn	Ile	Ile 235	Ile	Val	Leu	Ser	His 240
Суз	Gly	Val	Phe	Asp 245	Asp	Lys	Lys	Ile	Ala 250	Glu	Gln	Ala	Gly	Glu 255	Asp
Ile	Asp	Ile	Ile 260	Val	Gly	Gly	His	Thr 265	His	Thr	Leu	Leu	Tyr 270	Asn	Gly
Asp	Pro	Pro 275	Ser	ГЛа	His	Ala	Ala 280	Leu	Asp	ГЛа	Tyr	Pro 285	Ile	Val	Val
Glu	Thr 290	Gly	Asn	Asn	His	Lys 295	Val	Leu	Ile	Val	Gln 300	Ala	Phe	Суз	His
Gly 305	His	Tyr	Val	Gly	Asn 310	Ile	Asp	Leu	Thr	Phe 315	Asp	Asp	Glu	Gly	Glu 320
Ile	Thr	Ala	Phe	Glu 325	Gly	Gln	Pro	Ile	Tyr 330	Gln	Glu	Asn	Arg	Ile 335	Glu
Lys	Asn	Ala	Leu 340	Val	Glu	Ala	Arg	Val 345	Arg	Glu	Leu	Arg	Lys 350	Asp	Val
Glu	Val	Lys 355	Ser	Leu	Val	Lys	Val 360	Gly	Glu	Ser	ГЛа	Leu 365	Glu	Leu	Ser
Asn	Asp 370	Cys	Arg	Leu	Lys	Asp 375	Суз	Thr	Phe	Gly	Ser 380	Val	Leu	Ala	Asp

-	С	0	n	t	i	n	u	е	d

Ala Tyr Val Trp His Phe Arg Ser Arg Ser Asn Ala Pro Met Ile Ala Met Ile His Pro Gly Asn Phe Arg Ile Ser Leu Ala Ala Gly Ala Ile Thr Arg Gly Gln Ile Leu Thr Ala Leu Pro Phe Asn Ser Asn Ala Asn Arg Val Thr Val Leu Gly Ser Thr Ile Lys Lys Ala Ile Glu Phe Gly Thr Ser Ile Asn Pro Arg Arg Cys Ser Phe Asn Ala Leu Gln Thr Ala Gly Ile Lys Ile Asp Val Asp Tyr Gly Lys Pro Val Gly Asn Arg Thr Val Ile Leu Leu Lys Thr Gly Gly Lys Tyr Lys Arg Leu Val Glu Ser 485 490 Lys Lys Tyr Asp Ile Leu Val As
n Ser Tyr Val Phe Lys Gly Gly Asp $% \mathbb{C} (\mathbb{C})$ Gly Phe Asp Met Phe Lys His Leu Ala Val Lys Gly Arg Ala Pro Phe Asp Ala Glu Leu Leu Glu Gln Tyr Ile Val Ala Arg Lys Gly Ile Gln Lys Ser Gly Leu Leu Gln Ser Arg Met Asn Val Ser His Val Glu Lys Ala Leu Ser Glu Val Lys Ser Cys Lys Gln Ser Arg <210> SEQ ID NO 105 <211> LENGTH: 418 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 105 Met Cys Ser Thr Gly Phe Cys Leu Val Phe Phe Leu Ala Gln Val Val Phe Gln Met Asn Tyr Ser Glu Gln Gln Thr Thr Val Val Met Glu Asn Gly Ala Ile Ser Glu Ser Glu Ile Asn Val Asp Ile Val Met Glu Gln Tyr Ile Leu Lys Phe Tyr Thr Lys Arg Phe Val Glu Gly Gln Asn Leu Val Val Ala Pro Leu Leu Thr Phe Arg Val Phe Met Ser Leu Tyr Lys Ala Met Asp Ala Ser Ala Lys Phe Asp Leu His Ser Leu Leu Gly Ile Gln Gln Asp Thr Ser Val Glu Lys Met Ser Glu Ile Glu Ala Phe Ala Asn Lys His Thr Leu Pro Val Asp Glu Lys Gln Ile Ser Val Glu Thr Arg Leu Tyr Tyr Asp Lys Ser Ile Gly Asn Ala Arg Ser Val Leu Thr Ala Lys Ser Leu Lys Pro Ile Gly Thr Ser Phe Ser Asp Lys Arg Ala Phe Cys Glu Lys Val Asn Ser Trp Ile Arg Asn Ala Pro Ile Lys Gly

-continued

				165					170					175	
Thr	Asp	Asn	Leu 180	Val	Arg	Asp	Tyr	Asp 185	Leu	Asn	Asn	Glu	Thr 190	Gln	Ala
Phe	Val	Ala 195	Gly	Ala	Leu	Ser	Ile 200	Tyr	Trp	Asn	Thr	Gln 205	Leu	Lys	Ser
Ser	Thr 210	Asp	Gln	Lys	Gly	Phe 215	Gln	Gly	Glu	Asn	Val 220	Lys	Phe	Leu	Glu
Gly 225	Ser	Ile	Ser	Ala	Gly 230	Tyr	Ala	Lys	Leu	Asp 235	Asn	Leu	Lys	Val	Glu 240
Val	Val	Glu	Leu	Ile 245	Ser	Asp	Lys	Val	Asp 250	Gly	Val	Lys	Leu	Trp 255	Leu
Ile	Met	Pro	Asp 260	Arg	Ala	Ser	Ser	Ile 265	Lys	Asp	Phe	Asn	Asp 270	Gln	Leu
Ser	Val	Glu 275	Ser	Ile	Arg	Gln	Ile 280	Glu	Asn	Gly	Leu	Thr 285	Ala	Gln	Lys
Val	Asp 290	Val	Ser	Leu	Ala	Leu 295	Pro	Met	Val	Thr	Ile 300	Glu	Tyr	Asn	Ser
Gln 305	Glu	Asp	Ala	Tyr	Val 310	Thr	Glu	Val	Phe	Glu 315	Val	Phe	Ser	Ser	Leu 320
Phe	Thr	Lys	Pro	Ser 325	Val	Lys	Leu	Val	Asp 330	Gly	Lys	Asp	Asb	Leu 335	Tyr
Val	Ile	Lys	Asn 340	Phe	Leu	Met	Lys	Cys 345	Ile	Leu	Arg	Phe	Val 350	Glu	Ser
Asp	Ala	Ser 355	Ala	Asp	Ser	Lys	Ala 360	Gln	Ser	Thr	Gly	Met 365	Leu	Val	Lys
Phe	Asp 370	Arg	Pro	Phe	Val	Met 375	Met	Met	Leu	Ser	Lys 380	Glu	Gly	Asn	Val
Pro 385	Ile	Leu	Leu	Ala	Asn 390	Tyr	Phe	Ser	Pro	Thr 395	Asp	Lys	Leu	Arg	Ala 400
Leu	Glu	Ala	Lys	Glu 405	Arg	Arg	Leu	Lys	Ala 410	Glu	Ala	Asn	Glu	His 415	Leu
Asp	Leu														
<210 <211 <212)> SH L> LH 2> TY	EQ II ENGTH (PE :	NO I: 41 PRT	106 L7			. 4								
<213	s> Or	GAN	.5M:	Aede	25 at	≥gypt	- 1								
<400 Met	Asn	Leu	Trp	Ile	Ile	Gly	Phe	Cys	Ser	Ile	Tyr	Phe	Ala	Cys 1F	Ser
- Val	Arg	Ser	Gln 20	Phe	Thr	Ser	Val	Pro 25	Val	Ser	Tyr	Asp	Ala 30	Gln	Asn
Asp	His	Asn	Glu	Phe	Ser	Trp	Asn	Ala	Phe	Lys	Lys	Val	Phe	Thr	Asp
Tyr	Lys	35 Glu	Asn	Phe	Val	Met	40 Ser	Pro	Tyr	Ser	Leu	45 Arg	Arg	Leu	Phe
Ser	50 Cys	Phe	Gln	Gly	Val	55 Lys	Leu	Leu	Thr	Ser	60 Ala	Ser	Gly	Thr	Asn
65	-12				70	-1~	_ > ~			75			1		80
Leu	Gln	Gln	Glu	Leu 85	Ser	Asn	Val	Leu	Lys 90	Ile	Val	Pro	Asn	Gln 95	Gln
Pro	Ser	Gly	Gln	Asp	His	Arg	Pro	Tyr	Val	Glu	Gln	Trp	Val	Arg	Tyr

-continued

			100					105					110		
Ser	Ser	Ala 115	Lys	Tyr	Leu	Asn	Arg 120	Thr	Ala	Met	Ala	Val 125	Ala	Ile	Gly
Ser	Glu 130	Lys	Val	Ser	Thr	Val 135	Tyr	Glu	Ser	Ile	Ile 140	Asn	Asn	Суз	Val
Ile 145	Tyr	Thr	Gly	His	Leu 150	Gln	Pro	Ser	Asn	Ala 155	Gln	Arg	Met	Gly	Gln 160
Val	Ile	Asn	Asp	Ala 165	Leu	Lys	Asn	Ile	Thr 170	Asn	Asn	Ala	Val	Gln 175	Ser
Tyr	Leu	Thr	Asp 180	Thr	Asp	Ile	Asn	Pro 185	Asn	Trp	Lys	Phe	Phe 190	Ala	Ile
Asp	Ser	Trp 195	Gln	Phe	Glu	Gly	Leu 200	Trp	Lys	Phe	Lys	Phe 205	Gln	Glu	Glu
Phe	Ser 210	Ala	Thr	Суз	Tyr	Phe 215	Tyr	Ala	Ser	Arg	Glu 220	Lys	Lys	Gly	Leu
Thr 225	Lys	Phe	Leu	Tyr	Leu 230	Glu	Glu	Met	Leu	Lys 235	Tyr	Gly	Asn	Phe	Pro 240
Glu	Trp	Asn	Val	Gln 245	Ala	Val	Glu	Leu	Pro 250	Tyr	His	Aab	Gln	Ser 255	Pro
Leu	Ser	Cys	Leu 260	Leu	Met	Met	Pro	Leu 265	Asp	Gly	Asn	Tyr	Glu 270	Ser	Leu
Ile	His	Ser 275	Met	Asn	Gln	Ser	Arg 280	Phe	Lys	Glu	Val	Leu 285	Ser	Lys	Leu
Asn	Glu 290	Ile	Lys	Thr	Thr	Val 295	Arg	Ile	Pro	Gln	Phe 300	Gly	Leu	Gln	Thr
Thr 305	Val	Pro	Gly	Arg	Gln 310	Leu	Leu	Glu	Ser	Met 315	Gly	Met	Lys	Val	Pro 320
Phe	Asn	Gln	Gly	Val 325	Phe	Lys	Val	Phe	Glu 330	Gln	Gly	Gln	Asp	Val 335	Ala
Leu	Gly	Glu	Ile 340	Val	Gln	Lys	Met	Glu 345	Met	Ser	Ile	Ala	Ala 350	Asp	Gly
Glu	Lys	Gln 355	Ala	Gln	Ser	Phe	Val 360	Asp	ГÀа	Arg	Gln	Asp 365	Lys	Gln	Phe
Thr	Ala 370	His	Gln	Pro	Phe	Leu 375	Phe	Val	Val	Tyr	Asp 380	Arg	Asn	Glu	Leu
Val 385	Pro	Ile	Leu	Val	Gly 390	Phe	Tyr	Leu	Гла	Thr 395	Pro	Pro	Glu	Ala	Ala 400
Met	Gly	Leu	Glu	Asp 405	Lya	Gln	Lys	Суз	Asp 410	Asp	Pro	Pro	Val	Gly 415	Tyr
Gln															
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	EQ II ENGTH PE: RGANI) NO 1: 29 PRT SM:	107 91 Aede	es ae	avot	:i								
<400)> SE	EQUEN	ICE :	107		5725	-								
Met 1	Asn	Arg	Gln	Leu 5	Trp	Ile	Ile	Ile	Phe 10	Ala	Ile	Leu	Сув	Val 15	Ala
Gln	Ala	Glu	Glu 20	Asp	Asn	Pro	Thr	Thr 25	Glu	Lys	Met	Glu	Glu 30	Leu	Gly
Ile	Ala	Thr	Ile	Asn	Asn	Phe	Thr	Arg	Glu	Phe	Tyr	Ser	Tyr	Val	Glu

-continued

		35					40					45			
Ala	Val 50	Ser	Gln	Val	Leu	Ala 55	Asp	Leu	Glu	Leu	Thr 60	Thr	Thr	Ala	Ser
Ile 65	Thr	Gln	Ile	Lys	His 70	Arg	Ile	Lys	His	Leu 75	Leu	Gln	Glu	Lys	Суз 80
Asn	Leu	Cys	Ser	Ala 85	Lys	Ala	Glu	Gly	Pro 90	Ala	Leu	Asp	Gln	Gly 95	Tyr
Val	Thr	Thr	Ser 100	Asn	Gly	Ser	Val	Ile 105	Pro	Val	Ser	Tyr	Glu 110	Gln	Thr
Arg	Phe	Gly 115	Gly	Gly	Trp	Ile	Val 120	Leu	Met	Gln	Arg	Tyr 125	Asp	Gly	Thr
Val	Arg 130	Phe	Asn	Arg	Ser	Trp 135	Ala	Glu	Tyr	Arg	Asp 140	Gly	Phe	Gly	Met
Val 145	Gly	His	Glu	Phe	Trp 150	Leu	Gly	Leu	Glu	Arg 155	Ile	His	Gln	Met	Thr 160
Lys	Asp	Ala	Glu	Tyr 165	Glu	Leu	Met	Ile	Glu 170	Met	Gln	Asp	Phe	Glu 175	Gly
Asn	Tyr	Lys	Tyr 180	Ala	Gly	Tyr	Asp	Ala 185	Phe	Ala	Val	Gly	Pro 190	Glu	Glu
Glu	Arg	Tyr 195	Pro	Leu	Ala	Lys	Val 200	Gly	Lys	Phe	Asn	Lys 205	Thr	Ala	Tyr
Val	Asp 210	Ser	Phe	Gly	Lys	His 215	Arg	Gly	Tyr	Gly	Phe 220	Ser	Thr	Tyr	Азр
Asn 225	Asp	Asp	Asn	Gly	Cys 230	Ser	Asn	Gln	Tyr	Gly 235	Arg	Gly	Gly	Trp	Trp 240
Tyr	Tyr	Arg	Lys	Ser 245	Суз	Phe	Gly	Ala	Ser 250	Leu	Thr	Gly	Ile	Trp 255	Gln
Asn	Lys	Gln	Asp 260	Trp	Lys	Ser	Ile	Ser 265	Trp	Val	Trp	Phe	Ser 270	Thr	Glu
Lys	Lys	Gln 275	Val	Pro	Leu	Lys	Phe 280	Ala	Arg	Met	Met	Met 285	Arg	Leu	Lys
Thr	Ala 290	Glu													
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	Q II INGTH IPE : IGANI) NO I: 29 PRT SM:	108 90 Aede	es ae	egypt	:i								
<400)> SE	QUEN	ICE :	108											
Met 1	Ile	Leu	Gln	Phe 5	Trp	Phe	Val	Thr	Phe 10	Ser	Val	Leu	Phe	Ala 15	Ala
Arg	Ala	Asp	Glu 20	Asn	His	Ser	Ile	Leu 25	Ile	Lys	Leu	Asn	Aap 30	Leu	Asp
His	Arg	Phe 35	Thr	Gln	Met	Phe	Ser 40	Gln	Gln	Phe	Tyr	Arg 45	His	Thr	Arg
Glu	Val 50	Thr	Asp	Arg	Val	Ser 55	Ala	Leu	Lys	Ala	Ser 60	Ile	Asp	Thr	Asn
Leu 65	Leu	Glu	Leu	Asp	Gln 70	Gln	Ile	Gln	Gln	Ala 75	Leu	Asp	Gly	Ile	Gln 80
Ser	Asn	Glu	Ser	Ser 85	Ser	Ser	Thr	Ser	Ala 90	Thr	Lys	Ser	Ser	Gly 95	Leu

-	С	0	n	t	i	n	u	е	d	

Th	ır									_		_	_	_	_	
Ar		Thr	Ile	Pro 100	Ile	Gly	Ser	Glu	Pro 105	Arg	Val	Pro	Ala	Leu 110	Tyr	Glu
	g	Glu	Arg	Tyr	Gly	Gly	Asp	Trp	Leu	Val	Val	Met	His	Arg	Tyr	Asp
~ -		G ()	115	T		N	B.c.	120	m	N 7 -	d1	m	125	3	d1 -	Dk -
Gl	чy	Ser 130	Val	гла	Phe	Asb	Arg 135	Thr	Trp	Ala	GLU	Tyr 140	Arg	Aab	GIY	Phe
G1 14	ly 15	Met	Val	Gly	Gln	Glu 150	Phe	Trp	Tyr	Gly	Leu 155	Glu	Arg	Leu	His	Gln 160
Le	eu	Thr	Lys	Glu	Lys	Ser	Tyr	Glu	Leu	Met	Val	Glu	Met	Glu	Asp	Phe
Δa	m	Glv	Asn	Leu	165 Lvg	Tvr	Ale	Trr	Tvr	170 Asp	Lve	Phe	Val	Val	175 Glv	Pro
no	- • •	y		180	-12	- 7 -		P	185	P	-10		* 41	190	σrγ	
Gl	Lu	Glu	Gln 195	Arg	Tyr	Ala	Leu	Val 200	Glu	Leu	Gly	Thr	Phe 205	Asn	Gly	Thr
Th	ır	Asp	Gly	Asp	Ser	Leu	Lys 215	Pro	His	Lys	Gly	Ser	Gly	Phe	Ser	Thr
Tν	/r	Asp	Asn	Asp	Asp	Phe	215 Glv	Cys	Ser	Asn	Lys	220 Tyr	Ala	Lys	Glv	Glv
22	25	· Ľ		• F	• r	230	1	-12			235	- 1 -		-12	1	240
Tr	p:	Trp	Tyr	Tyr	Ser 245	Gly	ГЛа	Cys	Tyr	Gly 250	Ser	Ser	Leu	Thr	Gly 255	Ile
Tr	rp:	Lys	Asn	Glu	Leu	Ala	Tyr	Ser	Ser 265	Ile	Val	Trp	Val	Lys 270	Phe	Ser
As	qra	Val	Ser	∠ou Asn	Thr	Pro	Leu	Lys	∠05 Leu	Val	Ara	Met	Met	∠/U Ile	Ara	Pro
	Ľ		275					280					285		9	•
Ьγ	/S	Asn 290														
<2 <2	210)> SH L> LH	EQ II ENGTH	о NO Н: 33	109 12											
<2 <2 <2 <2	210 211 212 213	0> SH L> LH 2> TY 3> OH	EQ II ENGTH (PE : RGANI	D NO H: 3: PRT ISM:	109 12 Aede	es a	egypt	:i								
<2 <2 <2 <2 <4	210 211 212 213	0> SH L> LH 2> TY 3> OF 0> SH	EQ II ENGTH (PE : RGANI EQUEI	D NO H: 3: PRT ISM: NCE:	109 12 Aede 109	es a	egypt	=i								
<2 <2 <2 <2 <2 <4 Me	210 211 212 213 400)> SH L> LH 2> TY 3> OH 0> SH Ser	EQ II ENGTH (PE : RGAN] EQUE Pro) NO H: 3: PRT ISM: NCE: Ser	109 12 Aede 109 Asn 5	ев а LYs	egyp1 Ile	i Leu	Val	Leu 10	Leu	Leu	Phe	Pro	Ile 15	Leu
<2 <2 <2 <2 <4 Me 1	210 211 212 213 400 +00	0> SH L> LH 2> TY 3> OH 0> SH Ser Val	EQ II ENGTH (PE: RGAN) EQUEN Pro Ser	NO H: 3: PRT ISM: NCE: Ser Ser	109 12 Aede 109 Asn 5 His	es a Lys Pro	egypt Ile Ile	Leu Pro	Val	Leu 10 Glu	Leu Asp	Leu Pro	Phe Ala	Pro	Ile 15 Gln	Leu Cys
<2 <2 <2 <2 <4 Me 1 Le	210 211 212 213 400 et	D> SH L> LH 2> TY 3> OF D> SH Ser Val	EQ II ENGTH (PE: RGAN) EQUEN Pro Ser	D NO H: 3: PRT ISM: NCE: Ser Ser 20	109 12 Aede 109 Asn 5 His	es a Lys Pro	egypt Ile Ile	Leu Pro	Val Ala 25	Leu 10 Glu	Leu Asp	Leu Pro	Phe Ala	Pro Lys 30	Ile 15 Gln	Leu Cys
<2 <2 <2 <4 Me 1 Le	210 211 212 213 400 et	D> SH L> LH 2> TY 3> OF D> SH Ser Val Leu	EQ II ENGTH (PE: RGAN] EQUEN Pro Ser Ser 35	D NO H: 3: PRT ISM: NCE: Ser 20 Glu	109 12 Aede 109 Asn 5 His Asp	es a Lys Pro Asp	egypt Ile Ile Leu	Leu Pro Thr 40	Val Ala 25 Lys	Leu 10 Glu Leu	Leu Asp Lys	Leu Pro Ala	Phe Ala Ala 45	Pro Lys 30 Ile	Ile 15 Gln Ser	Leu Cys Gly
<2 <2 <2 <2 <4 Me 1 Le As	210 211 212 213 213 200 et eu	D> SH L> LH 2> TY 3> OF D> SH Ser Val Leu Ser 50	EQ II ENGTH (PE: RGAN) EQUEN Pro Ser Ser 35 Ser	D NO H: 3: PRT ISM: NCE: Ser 20 Glu Ala	109 12 Aede 109 Asn 5 His Asp Lys	es a Lys Pro Asp Ala	egyp1 Ile Ile Leu Ala 55	Leu Pro Thr 40 Asn	Val Ala 25 Lys Glu	Leu 10 Glu Leu Asp	Leu Asp Lys Ile	Leu Pro Ala Leu 60	Phe Ala Ala 45 Pro	Pro Lys 30 Ile Asn	Ile 15 Gln Ser Thr	Leu Cys Gly Thr
<2	210 211 212 213 400 et sn	<pre>>> SE >> LE 2> TY 3> OF Ser Val Leu Ser 50 Ala</pre>	EQ III ENGTH (PE: CGAN: GQUEN Pro Ser Ser 35 Ser Ala	D NO H: 3 PRT ISM: MCE: Ser 20 Glu Ala Cys	109 12 Aedd 109 Asn 5 His Asp Lys Pro	es a Lys Pro Asp Ala Met	Ile Ile Leu Ala 55 Leu	Leu Pro Thr 40 Asn Lys	Val Ala 25 Lys Glu Asn	Leu 10 Glu Leu Asp Phe	Leu Asp Lys Ile Thr	Leu Pro Ala Leu 60 Glu	Phe Ala Ala 45 Pro Met	Pro Lys 30 Ile Asn Leu	Ile 15 Gln Ser Thr Lys	Leu Cys Gly Thr
<22 <2 <2 <2 <2 <2 <2 <4 Mee 1 Lee A1 Lee 65	210 211 212 212 213 212 213 200 et eu	<pre>>> SE >> L> LE >> TY >> OF >> OF Ser Val Leu Ser 50 Ala</pre>	EQ III ENGTH (PE: CQUEI Pro Ser Ser Ser Ser Ala	D NO H: 3. PRT ISM: Ser 20 Glu Ala Cys	109 12 Aedd 109 Asn 5 His Asp Lys Pro	es a Lys Pro Asp Ala Met 70	egyp1 Ile Ile Leu Ala 55 Leu	Leu Pro Thr 40 Asn Lys	Val Ala 25 Lys Glu Asn	Leu 10 Glu Leu Asp Phe	Leu Asp Lys Ile Thr 75	Leu Pro Ala Leu 60 Glu	Phe Ala Ala 45 Pro Met	Pro Lys 30 Ile Asn Leu	Ile 15 Gln Ser Thr Lys	Leu Cys Gly Thr S0
<22 <22 <22 <24 Me 1 Lee A1 Le65 Va	210 211 212 213 212 213 400 et eu La	<pre>>> SI >> L> LH 2> TY 3> OF O>> SF Ser Val Leu Ser 50 Ala Ala</pre>	EQ III ENGTH (PE: CGAN: GQUEN Pro Ser Ser 35 Ser Ala Thr	D NO H: 3 PRT ISM: Ser 20 Glu Ala Cys Asp	109 12 Aeda 109 Asn 5 His Asp Lys Pro Met 85	es a Lys Pro Asp Ala Met 70 Glu	egyp1 Ile Leu Ala 55 Leu Val	Leu Pro Thr 40 Asn Lys Leu	Val Ala 25 Glu Asn Lys	Leu 10 Glu Leu Asp Phe Thr 90	Leu Asp Lys Ile Thr 75 Gln	Leu Pro Ala Leu 60 Glu Gly	Phe Ala Ala 45 Pro Met Val	Pro Lys 30 Ile Asn Leu Ser	Ile 15 Gln Ser Thr Lys Asn 95	Leu Cys Gly Thr Thr 80 Met
<22 <22 <22 <24 Mee 1 Lee 65 Va G1	210 211 212 213 400 et eu al	<pre>>> SEL >> LE 2> TY 3> OF >> SE Ser Val Leu Ser 50 Ala Ala Val</pre>	EQ III ENGTH (PE: CRAN: EQUEI Pro Ser 35 Ser Ala Thr Gln	D NO H: 3: PRT ISM: Ser: Ser 20 Glu Ala Cys Asp Leu	109 12 Aedd 109 Asn 5 His Asp Lys Pro Met 85 Leu	es a Lys Pro Asp Ala Met 70 Glu Arg	Ile Ile Leu Ala 55 Leu Val Glu	Leu Pro Thr 40 Asn Lys Leu Ser	Val Ala 25 Glu Asn Lys Phe 105	Leu 10 Glu Leu Asp Phe Thr 90 Glu	Leu Asp Lys Ile Thr 75 Gln Glu	Leu Pro Ala Glu Gly Lys	Phe Ala Ala 45 Pro Met Val Leu	Pro Lys 30 Ile Asn Leu Ser Asn	Ile 15 Gln Ser Thr Lys Asn 95 Asp	Leu Cys Gly Thr Thr Nor Leu
<22 <22 <22 <24 Mee 1 Lee As A1 Le65 Va G1 A1	210 211 212 213 400 et eu al	<pre>>> SEL >> LE 2> TY 3> OF Ser Val Leu Ser 50 Ala Ala Val Lvs</pre>	EQ III ENGTH (PE: CGAN: EQUEL Pro Ser 35 Ser Ala Thr Gln Asn	O NO H: 32 PRT PRT ISM: Ser Ser 20 Glu Ala Cys Asp Leu 100 Lvs	109 12 Aedd 109 Asn 5 His Asp Lys Pro Met 85 Leu Asp	es a Lys Pro Asp Ala Met 70 Glu Arg Ile	Ile Ile Leu Ala 55 Leu Val Glu	Leu Pro Thr 40 Asn Lys Leu Ser Glu	Val Ala 25 Lys Glu Asn Lys Phe 105 Arg	Leu 10 Glu Leu Asp Phe Thr 90 Glu Glu	Leu Asp Lys Ile Thr 75 Gln Glu Ala	Leu Pro Ala Leu Glu Lys Asp	Phe Ala Ala 45 Pro Met Val Leu Gln	Pro Lys 30 Ile Asn Leu Ser Asn 110 Asp	Ile 15 Gln Ser Thr Lys Asn 95 Asp Thr	Leu Cys Gly Thr Thr So Met Leu Ser
<22<22<22<24 Metal Lee Ass Al Leo Gl Gl	210 211 212 213 400 et eu al	<pre>>> SEL >> LF >> TY >> OF >> OF >> SE Ser Val Leu Ser 50 Ala Ala Val Lys</pre>	2Q III ENGTH (PE: CGAN: 2QUEI Pro Ser 35 Ser Ala Thr Gln Asn 115	O NO H: 32 PRT ISM: Ser 20 Glu Ala Cys Asp Leu 100 Lys	109 12 Aedd 109 Asn 5 His Asp Lys Pro Met 85 Leu Asp	es a Lys Pro Asp Ala Met 70 Glu Arg Ile	egyp1 Ile Ile Leu Ala 55 Leu Val Glu Phe	Leu Pro Thr 40 Asn Lys Leu Ser Glu 120	Val Ala 25 Glu Asn Lys Phe 105 Arg	Leu 10 Glu Leu Asp Phe Thr 90 Glu Gln	Leu Asp Lys Ile Thr 75 Gln Glu Ala	Leu Pro Ala Leu Glu Lys Asn	Phe Ala Ala Pro Met Val Leu Gln 125	Pro Lys 30 Asn Leu Ser Asn 110 Asp	Ile 15 Gln Ser Thr Lys Asn 95 Asp Thr	Leu Cys Gly Thr Thr So Met Leu Ser
<pre><2 <2 <2 <2 <4 Me 1 Le As Al Le 65 Va Gl Al Ly</pre>	210 211 212 213 400 et eu al la la	<pre>>> SE1 >> LL 2> TY 3> OF Ser Val Leu Ser 50 Ala Ala Val Lys Ala 130</pre>	EQ III ENGTH (PE: CGAN: EQUEN Pro Ser 35 Ser Ala Thr Gln L15 Glu	O NO H: 32 PRT ISM: Ser Ser 20 Glu Ala Cys Asp Leu 100 Lys Gly	109 12 Aedd 109 Asn 5 His Asp Lys Pro Met 85 Leu Asp Glu	es a Lys Pro Asp Ala Met Ile Met	Ile Ile Leu Ala 55 Leu Val Glu Phe Val 135	Leu Pro Thr 40 Asn Lys Leu Ser Glu 120 Glu	Val 25 Lys Glu Asn Lys Phe 105 Arg Lys	Leu 10 Glu Leu Asp Phe Thr 90 Glu Gln Ile	Leu Asp Lys Ile Thr 75 Gln Glu Ala Asn	Leu Pro Ala Glu Gly Lys Asn Lys 140	Phe Ala Ala 45 Pro Met Val Leu Gln 125 Leu	Pro Lys 30 Ile Asn Leu Ser Asn 110 Asp Gln	Ile 15 Gln Ser Thr Lys Asn 95 Asp Thr Leu	Leu Cys Gly Thr Thr Not Leu Ser Glu
<pre><2 <2 <2 <2 <2 <2 <4 Me 1 Lee Ass All Le 65 Va Gl Al Ly Me </pre>	2102211 2122213 400 et eu en la eu en la	<pre>>> SEL >> LE >> TY >> OF Ser Val Leu Ser 50 Ala Ala Lys Ala 130 Ala</pre>	EQ III ENGTH (PE: CAN: EQUEL Pro Ser Ser Ala Thr Gln Lys	O NO H: 32 PRT ISM: Ser Ser 20 Glu Ala Cys Asp Leu 100 Lys Gly Leu	109 12 Aedd 109 Asn 5 His Asp Lys Pro Met 85 Leu Asp Glu	es a Lys Pro Asp Ala Met 70 Glu Arg Ile Met Glu	egyp1 Ile Ile Leu Ala 55 Leu Val Glu Phe Val 135 Glu	Leu Pro Thr 40 Asn Lys Leu Ser Glu 120 Glu Ile	Val Ala 25 Glu Asn Lys Phe 105 Arg Lys Glu	Leu 10 Glu Leu Asp Phe Thr 90 Glu Glu Ile	Leu Asp Lys Ile Thr 75 Gln Glu Ala Asn Gln	Leu Pro Ala Leu Glu Lys Lys Lys Lys 140	Phe Ala Ala 45 Pro Met Val Leu Gln 125 Leu Lys	Pro Lys 30 Ile Asn Leu Ser Asn 110 Asp Gln Gln	Ile 15 Gln Ser Thr Lys Asn 95 Asp Thr Leu Met	Leu Cys Gly Thr Thr Sor Leu Ser Glu Tyr

				•				
	\sim	$\sim \infty$	-		\mathbf{r}	1.1	\sim	\sim
_				_			_	
	~~ ~			- 4-4		u.	<u>ل</u>	~
	-		_	_		_	_	_

Val Asp Met Ile Glu Tyr Ile Phe Glu Arg Leu Lys Met Asn Asp Thr Glu Ala Ile Asp Ser Tyr Ala Gln Ile Val Met Lys Thr Lys Met His Glu Leu Ile Met Lys Leu Lys Thr Asp Arg Leu Val Leu Trp Glu Met Val Lys Tyr Val Glu Gly Lys Lys Asn Lys Trp Val Gly Arg Lys Val Leu Asn Thr Ile Leu Asp Gln Val Asn Lys Leu Lys Leu Tyr Lys Pro Glu Glu Val Glu Ile Gly Lys Asn Ser Leu Val Val Val Trp Cys Trp Lys Phe Asn Ser Glu Thr Val Tyr Gly Thr Thr Asp Glu Asp Gln Lys 260 265 Ser Phe His Leu Ala Lys Leu Phe Phe Pro Lys Glu Lys Gly Cys Lys Glu Cys Ala Asn Val Lys Ser Arg Thr Met Cys Asn Asn Asp Tyr Pro Lys Val Met Val Lys Ala Phe Gly <210> SEQ ID NO 110 <211> LENGTH: 321 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 110 Met Lys Leu Pro Leu Leu Leu Ala Ile Val Thr Thr Phe Ser Val Val 1 5 10 15 Ala Ser Thr Gly Pro Phe Asp Pro Glu Glu Met Leu Phe Thr Phe Thr Arg Cys Met Glu Asp Asn Leu Glu Asp Gly Pro Asn Arg Leu Pro Met Leu Ala Lys Trp Lys Glu Trp Ile Asn Glu Pro Val Asp Ser Pro Ala Thr Gln Cys Phe Gly Lys Cys Val Leu Val Arg Thr Gly Leu Tyr Asp 65 70 75 80 Pro Val Ala Gln Lys Phe Asp Ala Ser Val Ile Gln Glu Gln Phe Lys Ala Tyr Pro Ser Leu Gly Glu Lys Ser Lys Val Glu Ala Tyr Ala Asn Ala Val Gln Gln Leu Pro Ser Thr Asn Asn Asp Cys Ala Ala Val Phe Lys Ala Tyr Asp Pro Val His Lys Ala His Lys Asp Thr Ser Lys Asn Leu Phe His Gly Asn Lys Glu Leu Thr Lys Gly Leu Tyr Glu Lys Leu Gly Lys Asp Ile Arg Gln Lys Lys Gln Ser Tyr Phe Glu Phe Cys Glu Asn Lys Tyr Tyr Pro Ala Gly Ser Asp Lys Arg Gln Gln Leu Cys Lys Ile Arg Gln Tyr Thr Val Leu Asp Asp Ala Leu Phe Lys Glu His Thr

-continued

		195					200					205			
Asp	Cys 210	Val	Met	Lys	Gly	Ile 215	Arg	Tyr	Ile	Thr	Lys 220	Asn	Asn	Glu	Leu
Asp 225	Ala	Glu	Glu	Val	Lys 230	Arg	Asp	Phe	Met	Gln 235	Val	Asn	Lys	Asp	Thr 240
Lys	Ala	Leu	Glu	Lys 245	Val	Leu	Asn	Asp	Суз 250	Lys	Ser	Lys	Glu	Pro 255	Ser
Asn	Ala	Gly	Glu 260	Lys	Ser	Trp	His	Tyr 265	Tyr	Lys	Cys	Leu	Val 270	Glu	Ser
Ser	Val	Lys 275	Asp	Asp	Phe	Гла	Glu 280	Ala	Phe	Asp	Tyr	Arg 285	Glu	Val	Arg
Ser	Gln 290	Ile	Tyr	Ala	Phe	Asn 295	Leu	Pro	ГЛа	Lys	Gln 300	Val	Tyr	Ser	Lya
Pro 305	Ala	Val	Gln	Ser	Gln 310	Val	Met	Glu	Ile	Asp 315	Gly	ГЛа	Gln	Суа	Pro 320
Gln															
<21 <21 <21 <21	0> SH L> LH 2> TY 3> OH	EQ II ENGTH PE : RGANI) NO 1: 33 PRT [SM:	111 32 Aede	es a	egypt	ti								
< 40)> SH	QUEI	ICE :	111											
Met 1	His	Ser	Pro	Lys 5	Ser	Phe	Leu	Leu	Leu 10	Ala	Val	Val	Phe	Val 15	Ala
Leu	Arg	Val	Thr 20	Ala	Ala	Pro	Leu	Trp 25	Asn	Ala	Гла	Asn	Pro 30	Glu	Gln
Leu	Gln	Tyr 35	Ile	Ala	Ala	Arg	Cys 40	Met	Glu	Glu	Trp	Ser 45	Pro	Lys	Ala
ГÀа	Asp 50	Pro	Lys	Ala	Ala	Leu 55	Lys	Asn	Trp	Met	Glu 60	Trp	Lys	Leu	Gln
Pro 65	Ser	Asn	Glu	Glu	Ala 70	Thr	Gln	Суз	Tyr	Thr 75	ГЛа	СЛа	Met	Leu	Glu 80
Asn	Ile	Gly	Tyr	Tyr 85	Glu	Pro	Gly	Glu	Lys 90	Arg	Leu	ГЛа	Gly	Val 95	Arg
Val	Met	Gln	Gln 100	Trp	Glu	Thr	Phe	Asn 105	Arg	Tyr	Gln	Ser	Ala 110	Asp	Arg
Asn	Lys	Val 115	His	Asp	Leu	Thr	Asp 120	Thr	Phe	Asp	Phe	Ile 125	Lys	Pro	Leu
Lys	Ser 130	Ser	Ser	Сүз	Ser	Asp 135	Val	Phe	Asn	Ala	Tyr 140	Lys	Asp	Val	His
Ala 145	Lys	His	Leu	Glu	Thr 150	Ile	Lys	Ala	Ile	Leu 155	Phe	СЛа	Asp	Gly	Lys 160
Ser	Ala	Glu	Lys	Tyr 165	Tyr	Lys	Asp	Lys	Gly 170	Lys	Asn	Val	Lys	Gln 175	Lys
Gly	Glu	Ser	Ile 180	Phe	Val	His	Сүз	Glu 185	Glu	Ile	His	Tyr	Pro 190	Val	Gly
Ser	Pro	Gln 195	Arg	Asn	Glu	Leu	Сув 200	Гла	Val	Arg	ГЛа	Tyr 205	Glu	Leu	Gly
Thr	Gly 210	Lys	Pro	Phe	Glu	Asn 215	Leu	Met	Glu	Суз	Ile 220	Phe	Lys	Gly	Val
Ara	Tyr	Phe	Asn	Asp	Lys	Asn	Glu	Leu	Asn	Ile	Asp	Glu	Ile	Ala	Arg

-continued

225					230					235					240
Asp Ph	ne	Thr	Gln	Val 245	Gly	Lys	Lys	Pro	Asp 250	Ala	Val	ГЛа	Ala	Ala 255	Met
Glu As	sn	Cys	Lys 260	Ser	Lys	Thr	Lys	Glu 265	Thr	Asp	Pro	Gly	Lys 270	Lys	Ala
Val Gl	lu	Tyr 275	Tyr	Lys	Суз	Leu	Leu 280	Ala	Asp	Ser	Lys	Val 285	Lys	Lys	Asp
Phe Me 29	∍t 90	Glu	Ala	Phe	Asp	Tyr 295	Arg	Glu	Ile	Arg	Ser 300	Lys	Aab	Tyr	Tyr
Ala Gl 305	ln	Ile	Thr	Gly	Lys 310	Leu	Lys	Pro	Tyr	Ser 315	Ala	Ser	Aab	Val	Arg 320
Lys Gl	lu	Val	Asn	Asp 325	Ile	Asp	Ser	Asn	Lys 330	Cys	Val				
<210> <211> <212> <213>	SE LE TY OR	Q II NGTH PE : GANJ) NO H: 50 PRT SM:	112 58 Aede	es a	egypt	ti								
<400>	SE	QUEN	ICE :	112											
Met Ly 1	γs	Leu	Lys	Val 5	Tyr	Ile	Суз	Gln	Val 10	Ile	Phe	Ser	Phe	Leu 15	Ala
Val Se	∍r	Val	Phe 20	Сув	Glu	Glu	Asn	Суз 25	Asn	Ile	Pro	Glu	Ser 30	Glu	Leu
Ser Ly	4a	Ile 35	Asp	His	Val	Leu	Arg 40	His	Met	Glu	Lys	Pro 45	Ile	Tyr	Ser
Glu Gl 50	lu)	Gln	Phe	Ala	Ser	Asp 55	Asn	Glu	Glu	Суз	Thr 60	Asn	Leu	Leu	Asn
Gly Il 65	le	His	Ala	Gln	Leu 70	Arg	Arg	Leu	Thr	Gln 75	Arg	Tyr	Lys	Leu	Met 80
Asn Ly	វទ	Gly	Tyr	Val 85	Lys	Val	Glu	Glu	Tyr 90	Gln	Arg	Met	Ala	Asp 95	Asp
Tyr Gl	lu	Lys	Gln 100	Leu	Lys	Thr	Leu	Asn 105	Asp	Glu	Leu	Val	Glu 110	Leu	Gln
Gln Hi	is	Thr 115	Ser	Glu	Lys	Ala	Ser 120	Ala	Thr	Ile	Ala	Lys 125	Leu	Lys	Glu
Asp Il 13	le 30	Lys	Lys	Leu	Asp	Glu 135	Glu	Val	Gly	Thr	Leu 140	His	Glu	Lys	Leu
Lys G] 145	ly	Ile	ГЛа	Gln	Asp 150	Phe	Glu	Lys	Val	Lys 155	Arg	Asp	Leu	Суз	Val 160
Thr Ty	ŗr	Leu	Asn	Ser 165	Asn	Gln	Met	Ser	Lys 170	Ala	Lys	Ala	Lys	Leu 175	Lys
Glu Me	∍t	Ala	Ser 180	Thr	Tyr	Leu	Ile	Glu 185	Ile	Val	Gln	Gln	Gln 190	Leu	Asn
Lys Se	∍r	Asn 195	Ala	Asn	Ile	Met	Pro 200	Met	Leu	Glu	Phe	Ser 205	Ala	Ala	Ile
Pro As 21	ар 10	Leu	Asp	Asp	Met	Gly 215	Glu	Ala	Tyr	Lys	Glu 220	Ile	Tyr	Lys	Phe
Leu Gl	lu	Glu	Gln	Lys	Arg	Leu	Glu	Gly	Glu	Asp 235	Ser	Val	Leu	Leu	Glu 240
Ala Th	nr	Val	Leu	Lys	Met	Asn	Ala	Ser	Leu	Lys	Glu	Gly	Ser	Asn	Ile
				245					250					255	

	~	γm	÷		n	11	\sim	\sim
_	Lι	211	ч.	-1-	11	u	-	u
			_	_		_	_	_

											-	con	tin	ued				
Thr	Asp	Glu	Arg 260	Arg	Thr	Gln	Ile	Glu 265	Gly	Leu	Leu	LÀa	Asp 270	Leu	Ala	a	 	
Thr	Lys	Ser 275	Thr	Ile	Val	Phe	Ser 280	Thr	Trp	Thr	Lys	Glu 285	Leu	Lys	Гуз	S		
Ile	Asn 290	Asp	Ala	Val	Val	Ile 295	Гла	Asn	Ala	Leu	Asp 300	His	Met	Phe	Val	1		
Ser 305	Gln	Met	Lys	Val	Phe 310	Gly	Ala	Leu	Val	Gly 315	Asp	Thr	Ser	Asp	Phe 320	.е 0		
Gly	Ser	Ile	Arg	Asn 325	Phe	Val	Гла	Leu	Thr 330	Val	Val	Суз	Asn	Asn 335	Tyr	r		
Tyr	Гла	Val	Ala 340	Ala	Tyr	ГЛа	Glu	Leu 345	Ile	Asp	Arg	ГЛа	Ile 350	Gly	Asn	n		
Ala	Leu	Gly 355	Thr	Ile	Met	Phe	Asp 360	Leu	Leu	Thr	Leu	Glu 365	Val	Asn	Glu	u		
Met	Lys 370	Phe	Asp	Pro	His	Val 375	Pro	Asp	Glu	Ile	Pro 380	Lys	Leu	Phe	Glu	u		
Ala 385	Thr	Leu	Ser	Ser	Leu 390	Pro	Asn	Ser	Leu	Thr 395	Glu	Leu	Arg	Thr	Cys 400	່ອ 0		
Leu	Gly	Lys	Val	Gln 405	Ile	Tyr	Asn	Lys	Lys 410	Thr	Asn	Гла	Суз	Val 415	Val	.1		
Ala	Thr	Gly	Asn 420	Asp	Phe	Asp	Val	His 425	Lys	Asp	ГЛЗ	Leu	Gly 430	Asp	Phe	.e		
Tyr	Arg	Val 435	Val	Val	Ala	Asp	Tyr 440	Gly	Cys	Thr	Ser	Phe 445	Arg	Leu	Glu	u		
Ala	Ser 450	Gly	Asp	Lys	Ala	Ser 455	Val	Arg	Ile	Val	Thr 460	Pro	Ser	Gly	Asn	n		
Pro 465	Met	Ser	Asn	Val	Asn 470	Leu	His	Leu	Glu	Gly 475	Asn	Ser	Leu	His	Asn 480	n 0		
Tyr	Val	Ala	Thr	Pro 485	Lys	Ser	Asn	Lys	Pro 490	Asp	Arg	Thr	Pro	Ser 495	Ser	r		
Ser	Asp	Glu	Trp 500	Ile	Leu	Asp	Ala	Asn 505	Tyr	Asn	Asn	Asp	Thr 510	Ile	Lys	S		
Ile	Glu	Ser 515	Gln	Phe	Ser	Asp	Tyr 520	Lys	Thr	Lys	ГЛЗ	Thr 525	Glu	Val	Asp	р		
His	Leu 530	Leu	Val	Arg	Asp	Ile 535	Asn	His	Leu	Pro	His 540	Val	Leu	Val	Ala	a		
Arg 545	Tyr	Gly	Phe	Met	Gly 550	Leu	Lys	Asn	Ser	Asp 555	Ala	Lys	Asp	Thr	Ile 560	e 0		
Glu	Trp	Asn	Leu	Lys 565	Суа	Gly	Ser											
<210)> SI	EQ II	D NO	113														
<211 <212 <213	L> LI 2> T 3> OH	ENGTI PE : RGAN	H: 3 PRT ISM:	16 Aed	es a	egypi	ti											
<400)> SI	EQUE	NCE:	113														
Met 1	Glu	Thr	Ser	Leu 5	Pro	Ile	Thr	Val	Val 10	Phe	Leu	Ile	Val	Leu 15	Ile	е		
Thr	Gly	Ala	Gln 20	Thr	Гла	Pro	Thr	Gln 25	Gly	Ser	Суа	Thr	Leu 30	Thr	Asp	р		
Glu	Asp	Ile 35	Ser	Asp	Ile	Lys	Ser 40	Ala	Val	Gln	Lys	Ala 45	Ser	Lys	Ala	a		
							- 0											

Ala Val Asn Asp Ile Val Leu Asp Pro Thr Leu Ile Asp Lys Cys Pro Met Leu Glu Lys Ile Thr Ala Ser Leu Lys Ser Val Ala Thr Glu Ile Val Gln Met Arg Asp Ser Ala Ile Ser Thr Asp Gln Val Asp Gln Leu Lys Gln Asn Phe Glu Asp Gln Val Asn Gln Ile Val Lys Ser Arg Asp Ile Phe Glu Lys Gln Ser Gly Thr Gln Ala Thr Lys Glu His Gly Glu Met Leu Glu Arg Met Thr Ala Leu Gln Val Lys Val Thr Glu Leu Glu Gln Gln Ile Ala Lys Gln Thr Ala Ser Met Tyr Glu Asp Met Ala Glu 150 155 Leu Ile Phe Gln Arg Leu Gln Met Asn Ser Thr Glu Ser Val Arg Ser Tyr Thr Lys His Met Met Glu Glu Lys Leu Glu Glu Leu Met Asn Lys Leu Glu Thr Asn Tyr Arg Ile Tyr Leu Gly Ala Leu Arg Phe Leu Asn His Met Asn Asp Gln Glu Leu Ile Gly Lys Val Phe Asp Gly Ile Leu Lys Arg Leu Gly Asp Met Lys Ala Asp Ser Asp Asp Val Lys Glu Asn Gly Arg Asn Leu Leu Val Asn Leu Leu Cys Trp Thr Val Asn Asn Asp Phe Leu Gly Lys Lys Tyr Lys Glu Arg Gln Val Asp Leu Tyr Arg Met Ala Leu Lys Phe Tyr Pro Lys Thr Tyr Glu Lys Ala Ala Asn Glu Ala Asp Val Arg Ser Arg Gln Phe Cys Glu Glu Asn Phe Pro Ala Asn Leu Ile Thr Trp Phe Ala Val Ser Trp Asn Asp Arg Gly <210> SEQ ID NO 114 <211> LENGTH: 215 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 114 Met Lys Tyr Leu Leu Thr Phe Leu Met Ala Leu Ser Leu Val Asn Leu Met Leu Thr Arg Pro Thr Pro Glu Asp Asp Gly Gly Thr Ser Glu Glu Pro Gln Thr Gln Glu Thr Thr Gly Ser Asp Glu Lys Asn Gly Ala Ser Glu Glu Pro Asn Ala Asp Asp Ala Ser Lys Pro Asp Asp Val Glu Glu Lys Gly Asp Asp Asp Thr Ala Lys Lys Glu Asp Asp Gly Glu Ser Lys Asp Gly Glu Gly Ser Glu Lys Ser Asp Lys Glu Lys Gly Glu Pro Lys

-continued

				85					90					95	
Asn	Asp	Pro	Arg 100	Glu	Thr	Tyr	Asn	Lys 105	Val	Ile	Glu	Gln	Leu 110	Asp	Gln
Ile	Lys	Val 115	Asp	Asn	Val	Glu	Asp 120	Gly	His	Glu	Arg	Ser 125	Glu	Leu	Ala
Ala	Asp 130	Ile	Gln	Arg	Tyr	Leu 135	Arg	Asn	Pro	Ile	Val 140	Asp	Val	Ile	Gly
Ser 145	Ala	Gly	Asp	Phe	Ser 150	Lys	Ile	Ala	Lys	Cys 155	Phe	ГЛа	Ser	Met	Val 160
Gly	Asp	Ala	Lys	Lys 165	Ala	Ile	Glu	Glu	Asp 170	Val	Lys	Gly	Phe	Lys 175	Glu
Cys	Thr	Ala	Lys 180	Lys	Asp	Ser	Asn	Ala 185	Tyr	Gln	Cys	Ser	Gln 190	Asp	Arg
Ser	Thr	Val 195	Gln	Asp	Lys	Ile	Ala 200	Lys	Met	Ser	Ser	Lys 205	Ile	Ala	Ser
Сүз	Val 210	Ala	Ser	Asn	Arg	Ser 215									
<210 <211 <212 <213)> SH L> LH 2> TY 3> OH	EQ II ENGTH ZPE : RGANI) NO H: 18 PRT [SM:	115 33 Aede	es ae	∋gypt	=i								
<400)> SI	EQUEN	ICE :	115											
Met 1	His	Ser	Leu	Lys 5	Ser	Ser	Pro	Leu	Leu 10	Ala	Ala	Val	Phe	Leu 15	Ala
Leu	His	Val	Thr 20	Gly	Ala	Pro	Phe	Trp 25	Asn	Ala	Lys	Asn	Pro 30	Asp	Glu
Leu	Gln	Ser 35	Ile	Ala	Ala	Arg	Суз 40	Met	Asp	Glu	Trp	Ser 45	Pro	Lys	Ala
Lys	Asp 50	Pro	Lys	Ala	Ala	Leu 55	Lys	Asn	Trp	Lys	Glu 60	Trp	Arg	Leu	Gln
Pro 65	Ser	Asn	Asp	Glu	Ala 70	Thr	Lys	Суз	Tyr	Thr 75	ГÀа	Суз	Met	Leu	Glu 80
Asn	Ile	Gly	Phe	Tyr 85	Glu	Pro	Ala	Glu	Lys 90	Arg	Leu	Lys	Gly	Val 95	Arg
Ile	Met	Gln	Gln 100	Trp	Glu	Thr	Phe	Ser 105	Arg	Tyr	Gln	Ser	Ala 110	Asp	Arg
Glu	Lys	Val 115	His	Asp	Leu	Thr	Asp 120	Thr	Phe	Asn	Phe	Ile 125	Arg	Pro	Leu
Lys	Ser 130	Ser	Ser	Сүз	Thr	Asp 135	Val	Phe	Asn	Ala	Tyr 140	Lys	Asp	Val	His
Ala 145	Arg	His	Leu	Glu	Thr 150	Ile	Lys	Ala	Ile	Leu 155	Phe	Сүз	Asp	Gly	Lys 160
Ser	Ala	Glu	Lys	Tyr 165	Tyr	Lys	Asp	Lys	Gly 170	Lys	Thr	Ser	Lys	Gln 175	Lys
Lys	Val	Leu	Cys 180	Thr	Gly	Ser									
< 2.10)> SI	to ti	NO NO	116											
011		~	 	~											

<211> LENGTH: 322 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti

-continued

<400)> SI	EQUEI	ICE :	116											
Met 1	Lys	Thr	Ser	Leu 5	Pro	Ile	Val	Val	Leu 10	Leu	Thr	Ala	Val	Ile 15	Ser
Gly	Val	His	Pro 20	Asn	Pro	Thr	Pro	Lys 25	Ser	Cys	Thr	Val	Ser 30	Glu	Glu
Asp	Leu	Thr 35	Thr	Ile	Arg	Asn	Ala 40	Ile	Gln	Lys	Ala	Ser 45	Arg	Ala	Ser
Leu	Asp 50	Aab	Val	Asn	Leu	Asp 55	Glu	Asp	Leu	Ile	Ala 60	Lys	Cys	Pro	Leu
Leu 65	Lys	Thr	Ile	Thr	Ala 70	Ser	Leu	Lys	Ser	Val 75	Ala	Ser	Glu	Ile	Ala 80
Thr	Leu	Lys	Aab	Thr 85	Gly	Ile	Ser	Glu	Glu 90	Gln	Val	Asp	Glu	Leu 95	Lys
Gln	Ser	Tyr	Glu 100	Gln	Gln	Val	Asn	Glu 105	Ile	Val	Lys	Ser	Arg 110	Aab	Ile
Phe	Glu	Lys 115	Gln	Ser	Gly	Gly	Asp 120	Val	Met	Lys	Glu	Gln 125	Gly	Ala	Met
Ile	Asn 130	Arg	Met	Thr	Glu	Leu 135	Gln	Val	Gln	Val	Ala 140	Gln	Leu	Gln	Gln
Gln 145	Ile	Gly	Glu	Gln	Thr 150	Ser	Arg	Met	Tyr	Asp 155	Asp	Met	Ala	Glu	Leu 160
Ile	Phe	Gln	Arg	Leu 165	Ala	Met	Asn	Ser	Thr 170	Asp	Ser	Ile	Arg	Asn 175	Tyr
Thr	Ala	His	Met 180	Met	Glu	Gln	Lys	Leu 185	His	Thr	Leu	Met	Thr 190	Lys	Leu
Glu	Thr	Asn 195	Tyr	Arg	Ile	Phe	Leu 200	Gly	Ala	Leu	Arg	Tyr 205	Leu	Asp	His
Leu	Gly 210	Asp	Gln	Pro	Leu	Ile 215	Asp	Lys	Val	Phe	Asp 220	Gly	Ile	Leu	Lys
Arg 225	Leu	Asp	Glu	Met	Ser 230	Leu	Glu	Thr	Asn	Lys 235	Glu	Arg	Glu	Asn	Gly 240
Lys	Tyr	Val	Leu	Val 245	Asn	Leu	Leu	Суз	Trp 250	Thr	Val	Asn	Asn	Arg 255	Phe
Leu	Thr	Glu	Lys 260	Tyr	Arg	Lys	Гла	Gln 265	Leu	Glu	Leu	Phe	Arg 270	Ile	Ala
Leu	Lys	Phe 275	Tyr	Pro	Lys	Thr	Gly 280	Asn	Lys	Glu	Ala	Asn 285	Glu	Ala	Asp
Ile	Arg 290	Gly	Arg	Gln	Phe	Cys 295	Asp	Ala	Asn	Phe	Pro 300	Val	Asn	Val	Ile
Thr 305	Trp	Phe	Ala	Val	Ser 310	Arg	Ala	Ala	Glu	Gly 315	Trp	Gly	Leu	Arg	Gly 320
Thr	Leu														
<210 <211 <212 <213)> SI L> LI 2> T 3> OF	EQ II ENGTH YPE : RGANI	D NO H: 61 PRT ISM:	117 14 Aede	es ae	egypt	ti								
<400)> SI	equei	ICE :	117											
Met 1	Ser	Thr	Leu	Lуя 5	Гла	Ile	Ser	Asp	Glu 10	Asp	Arg	Glu	Ser	Lys 15	Phe
Gly	Tyr	Val	Phe	Ala	Val	Ser	Gly	Pro	Val	Val	Thr	Ala	Glu	Arg	Met

a 0 m	+	in	114	5.0
- 001	ιL	ΤΠ	.ue	Ξū

			20					25					30		
Ser	Gly	Ser 35	Ala	Met	Tyr	Glu	Leu 40	Val	Arg	Val	Gly	Tyr 45	Tyr	Glu	Leu
Val	Gly 50	Glu	Ile	Ile	Arg	Leu 55	Glu	Gly	Asp	Met	Ala 60	Thr	Ile	Gln	Val
Tyr 65	Glu	Glu	Thr	Ser	Gly 70	Val	Thr	Val	Gly	Asp 75	Pro	Val	Leu	Arg	Thr 80
Gly	Lys	Pro	Leu	Ser 85	Val	Glu	Leu	Gly	Pro 90	Gly	Ile	Met	Gly	Ser 95	Ile
Phe	Asp	Gly	Ile 100	Gln	Arg	Pro	Leu	Lys 105	Asp	Ile	Asn	Glu	Leu 110	Thr	Ser
Ser	Ile	Tyr 115	Ile	Pro	Lys	Gly	Val 120	Asn	Ile	Pro	Cys	Leu 125	Ser	Arg	Thr
Gln	Ser 130	Trp	Gly	Phe	Asn	Pro 135	Leu	Asn	Val	Lys	Val 140	Gly	Ser	His	Ile
Thr 145	Gly	Gly	Aap	Leu	Tyr 150	Gly	Leu	Val	His	Glu 155	Asn	Thr	Leu	Val	Lys 160
His	Lys	Leu	Leu	Val 165	Pro	Pro	Arg	Ala	Lys 170	Gly	Thr	Val	Arg	Tyr 175	Ile
Ala	Pro	Pro	Gly 180	Asn	Tyr	Thr	Val	Asp 185	Asp	Ile	Ile	Leu	Glu 190	Thr	Glu
Phe	Asp	Gly 195	Glu	Ile	Asn	Lys	Trp 200	Ser	Met	Leu	Gln	Val 205	Trp	Pro	Val
Arg	Gln 210	Pro	Arg	Pro	Val	Thr 215	Glu	Lys	Leu	Pro	Ala 220	Asn	His	Pro	Leu
Leu 225	Thr	Gly	Gln	Arg	Val 230	Leu	Asp	Ser	Leu	Phe 235	Pro	Суз	Val	Gln	Gly 240
Gly	Thr	Thr	Ala	Ile 245	Pro	Gly	Ala	Phe	Gly 250	Суз	Gly	Lys	Thr	Val 255	Ile
Ser	Gln	Ala	Leu 260	Ser	Lys	Tyr	Ser	Asn 265	Ser	Aap	Val	Ile	Ile 270	Tyr	Val
Gly	Суз	Gly 275	Glu	Arg	Gly	Asn	Glu 280	Met	Ser	Glu	Val	Leu 285	Arg	Asp	Phe
Pro	Glu 290	Leu	Ser	Val	Glu	Ile 295	Asp	Gly	Val	Thr	Glu 300	Ser	Ile	Met	Lys
Arg 305	Thr	Ala	Leu	Val	Ala 310	Asn	Thr	Ser	Asn	Met 315	Pro	Val	Ala	Ala	Arg 320
Glu	Ala	Ser	Ile	Tyr 325	Thr	Gly	Ile	Thr	Leu 330	Ser	Glu	Tyr	Phe	Arg 335	Asp
Met	Gly	Tyr	Asn 340	Val	Ser	Met	Met	Ala 345	Asp	Ser	Thr	Ser	Arg 350	Trp	Ala
Glu	Ala	Leu 355	Arg	Glu	Ile	Ser	Gly 360	Arg	Leu	Ala	Glu	Met 365	Pro	Ala	Asp
Ser	Gly 370	Tyr	Pro	Ala	Tyr	Leu 375	Gly	Ala	Arg	Leu	Ala 380	Ser	Phe	Tyr	Glu
Arg 385	Ala	Gly	Arg	Val	Lys 390	Суа	Leu	Gly	Asn	Pro 395	Glu	Arg	Glu	Gly	Ser 400
Val	Ser	Ile	Val	Gly 405	Ala	Val	Ser	Pro	Pro 410	Gly	Gly	Asp	Phe	Ser 415	Asp
Pro	Val	Thr	Ser 420	Ala	Thr	Leu	Gly	Ile 425	Val	Gln	Val	Phe	Trp 430	Gly	Leu

-	CO	nt	in	ue	d

Asp Lys Lys Leu Ala Gln Arg Lys His Phe Pro Ser Ile Asn Trp Leu Ile Ser Tyr Ser Lys Tyr Met Arg Ala Leu Asp Asp Phe Tyr Asp Lys Asn Phe Gln Glu Phe Val Pro Leu Arg Thr Lys Val Lys Glu Ile Leu Gln Glu Glu Asp Leu Ser Glu Ile Val Gln Leu Val Gly Lys Ala 485 490 Ser Leu Ala Glu Thr Asp Lys Ile Thr Leu Glu Val Ala Lys Leu Leu Lys Asp Asp Phe Leu Gln Gln Asn Ser Tyr Ser Ala Tyr Asp Arg Phe Cys Pro Phe Tyr Lys Thr Val Gly Met Leu Arg Asn Met Ile Gly Phe Tyr Asp Met Ala Arg His Ala Val Glu Thr Thr Ala Gln Ser Glu Asn Lys Ile Thr Trp Asn Val Ile Arg Asp Ser Met Gly Asn Ile Leu Tyr Gln Leu Ser Ser Met Lys Phe Lys Asp Pro Val Lys Asp Gly Glu Ala Lys Ile Lys Ala Asp Phe Asp Gln Leu Tyr Glu Asp Leu Gln Gln Ala Phe Arg Asn Leu Glu Asp <210> SEQ ID NO 118 <211> LENGTH: 564 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 118 Met Ala Gly Lys Pro Gly Ile Gln Leu Phe Val Ile Phe Ile Leu Leu Ser Ser Phe Ala Ala Val Val Trp Thr Thr Asp Asn Met Pro Ala Asp Lys Asp Val Ser Lys Leu Phe Pro Leu Thr Leu Ile His Ile Asn Asp Leu His Ala Arg Phe Asp Glu Thr Asn Met Lys Ser Asn Ala Cys Thr Ala Lys Asp Gln Cys Ile Ala Gly Ile Ala Arg Val Tyr Gln Lys Ile Gln Asp Leu Leu Lys Glu Tyr Lys Ser Lys Asn Ala Ile Tyr Leu Asn Ala Gly As
p Asn Phe Gln Gly Thr Leu Tr
p Tyr Asn Leu Leu Arg Tr
p $% \left({{\mathbb{F}}_{{\mathbb{F}}}} \right)$ Gln Val Thr Ala Asp Phe Ile Thr Lys Leu Lys Pro Thr Ala Met Thr Leu Gly Asn His Glu Phe Asp His Thr Pro Lys Gly Leu Ala Pro Tyr Leu Ala Glu Leu Asp Lys Ala Gly Ile Pro Thr Leu Val Ala Asn Leu Val Met Asn Asp Asp Pro Asp Leu Lys Ser Ser Lys Ile Gln Lys Ser

CO	nt	in	ue	Ċ
	со	cont	contin	continue

				165					170					175	
Ile	Lys	Val	Thr 180	Val	Gly	Gly	Lys	Thr 185	Ile	Gly	Ile	Ile	Gly 190	Val	Leu
Tyr	Asp	Lys 195	Thr	His	Glu	Ile	Ala 200	Gln	Thr	Gly	ГЛа	Val 205	Thr	Leu	Ser
Asn	Ala 210	Val	Glu	Thr	Val	Lys 215	Arg	Glu	Ala	Ala	Ala 220	Leu	Lys	Lys	Asp
Lys 225	Val	Asp	Ile	Ile	Val 230	Val	Leu	Ser	His	Cys 235	Ser	Tyr	Asp	Glu	Asp 240
LÀa	Lys	Ile	Ala	Lys 245	Glu	Ala	Gly	Gln	Asp 250	Ile	Asp	Val	Ile	Val 255	Gly
Ala	His	Ser	His 260	Ser	Phe	Leu	Tyr	Ser 265	Lys	Glu	Ser	Asn	Lys 270	Pro	Tyr
Asp	Gln	Lys 275	Asp	Lys	Ile	Glu	Gly 280	Pro	Tyr	Pro	Thr	Ile 285	Val	Glu	Ser
Asn	Asn 290	Lys	Arg	ГЛа	Ile	Pro 295	Ile	Val	Gln	Ala	Lүа 300	Ser	Phe	Gly	Lys
Tyr 305	Val	Gly	Arg	Leu	Thr 310	Leu	Tyr	Phe	Asp	Asn 315	Glu	Gly	Glu	Val	Lys 320
His	Trp	Glu	Gly	Tyr 325	Pro	Glu	Phe	Ile	Asp 330	Asn	ГЛа	Val	Lys	Gln 335	Asp
Pro	Lys	Ile	Leu 340	Glu	Ala	Leu	Ile	Pro 345	Trp	Arg	LYs	ГЛа	Val 350	Gln	Glu
Ile	Gly	Ser 355	Thr	L'Aa	Val	Gly	Glu 360	Thr	Thr	Ile	Glu	Leu 365	Aab	Arg	Asp
Ser	Cys 370	Arg	Asp	Lys	Glu	Cys 375	Thr	Leu	Gly	Val	Leu 380	Tyr	Ala	Asp	Ala
Phe 385	Ala	Asp	His	Tyr	Thr 390	Asn	Ser	Ser	Phe	Arg 395	Pro	Phe	Ala	Ile	Ile 400
Gln	Ala	Gly	Asn	Phe 405	Arg	Asn	Pro	Ile	Lys 410	Val	Gly	Lys	Ile	Thr 415	Asn
Gly	Asp	Ile	Ile 420	Glu	Ala	Ala	Pro	Phe 425	Gly	Ser	Thr	Ala	Asp 430	Leu	Ile
Arg	Leu	Lys 435	Gly	Asp	Ser	Leu	Trp 440	Ala	Val	Ala	Glu	His 445	Ser	Phe	Ala
Leu	Asp 450	Asp	Glu	Asn	Arg	Thr 455	Asn	Суз	Leu	Gln	Val 460	Ser	Gly	Leu	Arg
Ile 465	Val	Ile	Asp	Pro	Ser 470	Lys	Lys	Ile	Gly	Ser 475	Arg	Val	Val	Lys	Ile 480
Asp	Val	Met	Asp	Asn 485	Arg	Asn	Pro	Lys	Ser 490	Glu	Asp	Leu	Lys	Pro 495	Leu
Asp	Lys	Asn	Ala 500	Glu	Tyr	Phe	Ile	Ala 505	Leu	Pro	Ser	Tyr	Leu 510	Ala	Asp
Gly	Lys	Asp 515	Gly	Phe	Ser	Ala	Met 520	Lys	Lys	Ala	Thr	Ala 525	Arg	Trp	Thr
Gly	Pro 530	Leu	Asp	Ser	Asp	Val 535	Phe	Lys	Ser	Tyr	Val 540	Glu	Lys	Ile	Lys
Lys 545	Val	Asp	Lys	Leu	Lys 550	Trp	Gly	Arg	Val	Ile 555	Val	Суз	Lys	Ala	Gly 560
Ser	Pro	Cys	Thr												

<210> SEQ ID NO 119 <211> LENGTH: 567 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti <400> SEQUENCE: 119 Met Lys Trp Ser Val Tyr Ile Ala Leu Leu Val Phe Ala Phe Leu Thr Ser Pro Val Phe Ser Glu Glu Asn Cys Asn Ile Pro Glu Ser Glu Leu Ser Lys Ile Asp Asp Val Leu Arg His Met Glu Lys Pro Ile Tyr Ser Glu Asp His Tyr Thr Ser Asn Asn Glu Glu Cys Thr Asn Leu Leu Asn Gly Ile His Ala Gln Leu Arg Arg Leu Thr Gln Arg Tyr Lys Leu Met Asn Lys Gly Tyr Val Lys Val Glu Glu Tyr Lys Arg Met Ala Glu Asp Tyr Glu Asn Gln Leu Lys Thr Leu Asn Ala Glu Leu Leu Glu Leu Gln Glu His Thr Ser Asp Lys Ala Asn Ala Ala Ile Ala Lys Leu Lys Glu Asp Ile Lys Lys Leu Asp Glu Asp Val Asp Thr Leu His Asn Lys Leu Lys Gly Ile Lys Gln Asp Phe Glu Lys Val Lys Arg Asp Leu Cys Leu Thr Tyr Leu Asn Ser Asn Gln Met Ser Asn Ala Lys Ala Lys Val Lys Glu Met Ala Ser Thr Tyr Leu Ile Glu Ile Ile Gln Gln Arg Leu Asn Thr Lys Tyr Ala Asn Ile Ile Pro Met Leu Asp Phe Ser Thr Ala Ile Pro Asp Leu Asp Asp Arg Gly Glu Ala Tyr Lys Glu Ile Tyr Lys Phe Ile Glu Thr His Glu Arg Leu Asp Gly Glu Asp Ala Val Leu Leu Glu Ala Ser Leu Leu Lys Met Asn Ala Thr Leu Lys Glu Gly Ser Asn Ile Thr Asp Glu Arg Arg Thr Glu Ile Glu Lys Met Leu Lys Glu Leu Ala Glu Lys Ser Ala Val Val Phe Lys Thr Trp Ser Thr Glu Leu Lys Gly Ile Glu Asp Thr Ile Ile Lys Tyr Ala Leu Asp His Leu Phe Val Asn Gln Met Lys Val Phe Gly Gly Ile Val Gly Asp Thr Phe Glu Phe Ala Pro Ile Arg His Leu Leu Lys Leu Leu Val Val Cys Asn Asn Tyr Tyr Lys Val Ala Ala Tyr Lys Glu Leu Ile Asp Arg Lys Ile Gly Asn Val Leu Gly Thr Ile Met Phe Asp Leu Thr Thr Leu Glu Ala Asn Glu Met

-conti	inued

Ser	Phe 370	Asp	Leu	His	Val	Pro 375	Asp	Glu	Ile	Pro	Lүз 380	Leu	Phe	Asn	Ala
Thr 385	Leu	Gly	Ser	Leu	Pro 390	Asn	Ser	Leu	Thr	Gln 395	Leu	Leu	Pro	СЛа	Leu 400
Asn	Lys	Val	His	Val 405	Tyr	Asn	Ala	Lys	Thr 410	Asn	Met	Сүз	Ile	Val 415	Ala
Pro	Glu	Asp	Arg 420	Phe	Asp	Val	Gln	Gln 425	Glu	ГЛа	Leu	Thr	Asp 430	Phe	His
Arg	Val	Val 435	Leu	Ala	Lys	Tyr	Gly 440	Сүз	Thr	Ala	Phe	Arg 445	Leu	Glu	Ser
Ser	Pro 450	Asn	Lys	Ala	Ser	Val 455	Lys	Phe	Val	Lys	Pro 460	Ser	Gly	Asn	Ala
Leu 465	Ser	Ser	Ile	Asn	Leu 470	Gln	Leu	Glu	Asn	Asp 475	Gln	Trp	His	Ser	His 480
Val	Gly	Thr	Pro	Thr 485	Ala	Asn	Lys	Pro	Asp 490	Arg	ГЛа	Pro	Ser	Ser 495	Ser
Aap	Glu	Trp	Ile 500	Leu	Aap	Ala	Asn	Tyr 505	Val	Asn	Aap	Thr	Val 510	Lys	Ile
Gln	Ser	Glu 515	Phe	Asn	Glu	Tyr	Lys 520	Ala	Ser	Gln	Ala	Glu 525	Val	Asp	His
Leu	Leu 530	Val	Met	Asp	Val	Lys 535	Tyr	Leu	Pro	His	Val 540	Val	Val	Gly	Arg
Tyr 545	Gly	Val	Arg	Gly	Leu 550	Lys	Arg	Ser	Ser	Ala 555	Lys	Asp	Thr	Ile	Glu 560
Trn	Tyr	Leu	Lys	Суз	Ala	Ser									
пр	-			565											
ΠÞ	-			565											
<210 <211)> SE .> LE	EQ II ENGTH) NO 1: 25	565 120 56											
<210 <211 <212 <213)> SE _> LE 2> TY 3> OF	EQ II ENGTH PE : RGANI) NO 1: 25 PRT SM:	565 120 56 Aede	es ae	egypt	i								
<210 <211 <212 <213 <400)> SE _> LE !> TY !> OF)> SE	EQ II ENGTH (PE : RGANJ EQUEN) NO H: 25 PRT ISM: ICE:	565 120 56 Aede 120	es ae	egypt	i								
<210 <211 <212 <213 <400 Met 1)> SE .> LE :> TY :> OF)> SE Ala	EQ II ENGTH PE: CGANI EQUEN Phe) NO H: 25 PRT SM: NCE: Asn	565 120 56 Aede 120 Gly 5	es ae Ile	egypt Ala	i Leu	Leu	Ile 10	Thr	Ala	Thr	Ile	Phe 15	Ile
<210 <211 <212 <213 <400 Met 1 Gly)> SE -> LE -> TY -> OF 	EQ II ENGTH PE: CQUEN Phe Cys	O NO H: 25 PRT SM: ICE: Asn Tyr 20	565 120 6 Aede 120 Gly 5 Ala	es ae Ile Asn	egypt Ala Tyr	i Leu Cys	Leu Asp 25	Ile 10 Ser	Thr Ser	Ala Leu	Thr Cys	Ile Arg 30	Phe 15 Gln	Ile Gly
<210 <211 <212 <213 <400 Met 1 Gly Pro)> SE > LE > TY > OF > SE Ala Ser His	EQ II ENGTH (PE: CQUEN Phe Cys Val 35) NO H: 25 PRT SM: NCE: Asn Tyr 20 Ala	565 120 6 120 120 Gly 5 Ala Cys	es ac Ile Asn Asn	egypt Ala Tyr Ala	Leu Cys Pro 40	Leu Asp 25 Gln	Ile 10 Ser Gln	Thr Ser Phe	Ala Leu Gly	Thr Cys Pro 45	Ile Arg 30 Ala	Phe 15 Gln Cys	Ile Gly Gly
<210 <211 <212 <213 <400 Met 1 Gly Pro Asn)> SE .> LE .> TY .> OF 	EQ II ENGTH (PE: CGANJ EQUEN Phe Cys Val 35 Arg) NO I: 25 PRT CSM: JCE: Asn Tyr 20 Ala Lys	565 120 66 120 Gly 5 Ala Cys Phe	Ile Asn Asn Val	egypt Ala Tyr Ala Pro 55	i Leu Cys Pro 40 Met	Leu Asp 25 Gln Asp	Ile 10 Ser Gln Ser	Thr Ser Phe Lys	Ala Leu Gly Leu 60	Thr Cys Pro 45 Lys	Ile Arg 30 Ala Thr	Phe 15 Gln Cys Ile	Ile Gly Gly Ile
<pre><210 <211 <212 <212 <213 <400 Met 1 Gly Pro Asn Leu 65</pre>)> SE >> LF >> OF >> OF Ala Ser His Asn 50 Asn	EQ II ENGTH (PE: CQUEN Phe Cys Val 35 Arg Thr) NO H: 25 PRT SM: JCE: Asn Tyr 20 Ala Lys His	565 120 6 Aede 120 Gly 5 Ala Cys Phe Asn	Ile Asn Val Lys 70	egypt Ala Tyr Ala Pro 55 Leu	ii Leu Cys Pro 40 Met Arg	Leu Asp 25 Gln Asp Ala	Ile 10 Ser Gln Ser Glu	Thr Ser Phe Lys Ile 75	Ala Leu Gly Leu 60 Ala	Thr Cys Pro 45 Lys Asn	Ile Arg 30 Ala Thr Gly	Phe 15 Gln Cys Ile Met	Ile Gly Gly Ile His 80
<pre><210 <211 <212 <212 <212 <400 Met 1 Gly Pro Asn Leu 65 Gly</pre>)> SE > LE > TY >> OF Ala Ser His Asn 50 Asn Phe	EQ II ENGTH (PE: CQUEN Phe Cys Val 35 Arg Thr Pro) NO I: 25 PRT SM: JCE: Asn Tyr 20 Ala Lys His Gln	565 120 66 120 Gly 5 Ala Cys Phe Asn Ala 85	Ile Asn Val Lys 70 Ala	egypt Ala Tyr Ala Pro 55 Leu Arg	ii Leu Cys Pro 40 Met Arg Met	Leu Asp 25 Gln Asp Ala Pro	Ile 10 Ser Gln Ser Glu Thr 90	Thr Ser Phe Lys Ile 75 Leu	Ala Leu Gly Leu 60 Ala Val	Thr Cys Pro 45 Lys Asn Trp	Ile Arg 30 Ala Thr Gly Asp	Phe 15 Gln Cys Ile Met Asp 95	Ile Gly Gly Ile His 80 Glu
<pre><210 <211 <212 <213 <400 Met 1 Gly Pro Asn Leu 65 Gly Leu</pre>)> SE > LE > TY >> OF Ala Ser His Asn 50 Asn Phe Ala	Cy II ENGTH (PE: CQUEN Phe Cys Val 35 Arg Thr Pro His) NO H: 25 PRT ISM: UCE: Asn Tyr 20 Ala Lys Gln Ile 100	565 120 Gly 5 Ala Cys Phe Asn Ala 85 Ala	Ile Asn Asn Val Lys 70 Ala Ser	egypt Ala Tyr Ala Pro 55 Leu Arg Phe	:i Leu Cys Pro 40 Met Arg Met Asn	Leu Asp 25 Gln Asp Ala Pro Ala 105	Ile 10 Ser Gln Ser Glu Thr 90 Arg	Thr Ser Phe Lys Ile 75 Leu Lys	Ala Leu Gly Leu 60 Ala Val Cys	Thr Cys Pro 45 Lys Asn Trp Ile	Ile Arg 30 Ala Thr Gly Asp Phe 110	Phe 15 Gln Cys Ile Met Asp 95 Ala	Ile Gly Gly Ile His 80 Glu His
<pre><210 <211 <211 <212 <213 <400 Met 1 Gly Pro Asn Leu 65 Gly Leu Asp</pre>	<pre>>> SE >> LE >> TY >> OF Ala Ser His Asn 50 Asn Phe Ala Lys</pre>	Cys Phe Cys Val 35 Arg Thr Pro His Cys 115) NO H: 25 PRT SM: JCE: Asn Tyr 20 Ala Lys Gln Ile 100 Arg	565 120 S6 120 Gly 5 Ala Cys Phe Asn Ala 85 Ala Asn	Ile Asn Asn Val Lys 70 Ala Ser Thr	egypt Ala Tyr Ala Pro 55 Leu Arg Phe Arg	:i Leu Cys Pro 40 Met Arg Met Asn Gln 120	Leu Asp 25 Gln Asp Ala Pro Ala 105 Phe	Ile 10 Ser Gln Ser Glu Thr 90 Arg Lys	Thr Ser Phe Lys Leu Lys Phe	Ala Leu Gly Leu 60 Ala Val Cys Ser	Thr Cys Pro 45 Lys Asn Trp Ile Gly 125	Ile Arg 30 Ala Thr Gly Asp Phe 110 Gln	Phe 15 Gln Cys Ile Met Asp 95 Ala Asn	Ile Gly Gly Ile His Glu His Leu
<pre><210 <211 <211 <211 <211 <211 <211 <10 </pre>)> SE > LE > TY > OF >> SE Ala Ser His Asn 50 Asn Phe Ala Lys Ile 130	2Q II ENGTH (PE: CQAN) 3CQUEN Phe Cys Val 35 Arg Thr Pro His Cys 115 Thr) NO H: 25 PRT SM: UCE: Asn Tyr 20 Ala Lys Gln Ile 100 Arg Thr	565 120 Gly Cys Phe Asn Ala 85 Ala Asn Phe	Ile Asn Asn Val Lys 70 Ala Ser Thr Tyr	egypt Ala Tyr Ala Pro 55 Leu Arg Phe Arg Gly 135	Leu Cys Pro 40 Met Arg Met Asn Gln 120 Phe	Leu Asp 25 Gln Asp Ala Pro Ala 105 Phe Asn	Ile 10 Ser Gln Ser Glu Thr 90 Arg Lys Phe	Thr Ser Phe Lys Ile Lys Leu Lys Phe Gln	Ala Leu Gly Leu 60 Ala Val Cys Ser Ala 140	Thr Cys Pro 45 Lys Asn Trp Ile Gly 125 Gly	Ile Arg 30 Ala Thr Gly Asp Phe 110 Gln Asp	Phe 15 Gln Cys Ile Met Asp 95 Ala Asn Arg	Ile Gly Gly Ile His 80 Glu His Leu Ala

-continued

145					150					155					160
Ser	Tyr	Val	Asp	Ala 165	Tyr	Pro	Ser	Ser	His 170	Arg	Gly	Pro	Gln	Ile 175	Gly
His	Phe	Thr	Gln 180	Leu	Val	Asn	Asp	Arg 185	Thr	Trp	Lys	Val	Gly 190	Суз	Ser
Met	Met	His 195	Tyr	Ile	Thr	Asn	Gly 200	Lys	Met	Ile	Asn	Tyr 205	Tyr	Leu	Val
Суз	Asn 210	Tyr	Thr	Met	Thr	Asn 215	Met	Ile	Gly	Glu	Pro 220	Ile	Tyr	Thr	Lys
Gly 225	Arg	Thr	Gly	Ser	Lys 230	Суз	Glu	Thr	Gly	Gln 235	Asn	Pro	Gln	Phe	Lys 240
Gly	Leu	Суз	Ser	Pro 245	Arg	Glu	Lys	Val	Lys 250	Ser	Glu	Ser	Tyr	Asn 255	Gly
<21 <21 <21 <21	0> S 1> L 2> T 3> O	EQ II ENGTI YPE : RGAN:	D NO H: 4: PRT ISM:	121 22 Aed	es a	egyp:	ti								
<40	0> S	EQUEI	NCE :	121											
Met 1	Cys	Ser	Thr	Gly 5	Leu	Сүз	Leu	Val	Phe 10	Phe	Ile	Ala	Gln	Ala 15	Val
Phe	Leu	Met	Asn 20	Tyr	Ser	Glu	Gln	Gln 25	Thr	Thr	Val	Val	Met 30	Glu	Asn
Gly	Ala	Ile 35	Ser	Glu	Lys	Glu	Thr 40	Asn	Val	Asp	Glu	Val 45	Met	Thr	Gln
Phe	Ile 50	Met	Lys	Phe	Tyr	Thr 55	Lys	Arg	Phe	Val	Glu 60	Gly	Gln	Asn	Leu
Val 65	Val	Ala	Pro	Leu	Leu 70	Ile	Phe	Arg	Val	Phe 75	Met	Ser	Met	Tyr	Gly 80
Glu	Met	Aap	Ala	Ser 85	Ala	Lys	Phe	Asp	Leu 90	His	Ser	Leu	Val	Gly 95	Ile
Pro	Gln	Glu	Ala 100	Ser	Ala	Glu	Lys	Met 105	Ser	Glu	Phe	Glu	Ala 110	Phe	Ala
Asn	Lys	Tyr 115	Ala	Leu	Pro	Val	Gly 120	Val	Gln	Arg	Asn	Leu 125	Val	Glu	Thr
Arg	Leu 130	Tyr	Tyr	Asp	Lys	Ser 135	Ile	Gly	Lys	Ile	Arg 140	Ser	Ser	Leu	Glu
Ala 145	Lys	Ser	Leu	Lys	Pro 150	Phe	Pro	Thr	Asn	Phe 155	Ala	Aap	Lys	Gln	Thr 160
Phe	Cys	Asn	Glu	Val 165	Asn	Thr	Trp	Ile	Arg 170	Asn	Thr	Pro	Ile	Asn 175	Gly
Thr	Aap	Asp	Leu 180	Val	His	Aap	Tyr	Tyr 185	Leu	Asn	Asn	Glu	Thr 190	Ala	Ala
Phe	Val	Ala 195	Gly	Ala	Leu	Ser	Ile 200	Asp	Trp	Asn	Met	Gln 205	Leu	Гла	Thr
Ser	Ser 210	Asp	Val	Lys	Ala	Phe 215	Glu	Gly	Glu	Asn	Val 220	Lys	Phe	Leu	Glu
Gly 225	Ser	Ile	Ser	Thr	Arg 230	Tyr	Ala	ГЛа	Leu	Asp 235	Asn	Leu	Lys	Val	Glu 240
Val	Val	Glu	Met	Val 245	Thr	Asp	Asn	Leu	Ser 250	Gly	Val	Lys	Leu	Trp 255	Leu

	\sim	\sim	n	÷	п.	n	11	\frown	\sim
_	<u> </u>	~	11		-1-	11	u	-	<u> </u>

_																
Ι	le	Met	Pro	Asp 260	Glu	Ala	Ser	Ser	Ile 265	Lys	Lys	Phe	Asn	Asp 270	Gln	Leu
S	er	Ile	Ala 275	Ser	Ile	Arg	Gln	Ile 280	Glu	Lys	Gly	Leu	Thr 285	Ala	Leu	Gln
L	ys	Glu 290	Asp	Val	Ala	Leu	Thr 295	Val	Pro	Met	Val	Thr 300	Ile	Glu	Tyr	Asn
S 3	er 05	Gln	Glu	Asp	Ala	Tyr 310	Val	Thr	Glu	Val	Phe 315	Glu	Val	Phe	Ser	Ser 320
L	eu	Phe	Ser	Lys	Pro 325	Ala	Val	Гла	Pro	Trp 330	Phe	Arg	Val	Ser	Val 335	Lys
A	ab	Asp	Leu	Tyr 340	Ala	Val	Lys	Asn	Phe 345	Leu	Met	Lya	СЛа	Ile 350	Leu	Arg
P	he	Val	Gly 355	Ser	Asp	Ala	Pro	Ala 360	Asp	Ser	Lys	Gly	Gln 365	Ser	Thr	Glu
L	ya	Ala 370	Val	Ser	Phe	Asn	Arg 375	Pro	Phe	Val	Met	Met 380	Ile	Leu	Ser	Lys
G 3	lu 85	Ser	Asn	Val	Pro	Ile 390	Leu	Leu	Ala	Asn	Tyr 395	Phe	Ser	Pro	ràa	Asp 400
L	ya	Leu	Arg	Ala	Leu 405	Glu	Ala	Lys	Glu	Arg 410	His	Leu	Arg	Met	Lys 415	Ala
L	ya	Glu	His	Leu 420	Asp	Leu										
< < <	212 213 400	> T) > OF > SE	PE : RGANI EQUEI	PRT ISM: NCE:	Aed 122	es a	egypi	ti								
< M	400 let	'> SE Lys	Ile	Leu	Leu	Ala	Val	Val	Phe	Val	Leu	Asn	Leu	Thr	Asn	Leu
A	la	Val	Pro	Gln	- His	Leu	Ile	Thr	Ser	Ser	Pro	Ser	Leu	Pro	15 Glu	Ser
L	ya	Pro	Val	20 Gly	Arg	Arg	Pro	Thr	25 Tyr	Glu	Glu	Tyr	Lys	30 Gln	Gln	Arg
G	lu	Ser	35 Phe	Leu	Gln	Thr	Glu	40 Asp	His	His	Leu	Leu	45 Gly	Ala	Asn	Val
Т	'hr	50 Leu	Thr	Glu	Asn	Glu	55 Gln	Leu	Val	Asn	Lys	60 Phe	Ile	Met	Gln	Met
6 L	ya Na	Leu	Asp	Glu	Met	70 Glu	Lys	Gly	Phe	Asn	75 Asp	Ser	Tyr	Asn	Phe	80 Ile
P	ro	Ala	Arg	His	85 Ile	Phe	Glu	Val	Leu	90 Asp	Arg	Phe	Gly	Gln	95 Ser	Lys
v				100					105					110		
	al	Phe	Asn	Val	Ile	Arg	Arg	Leu	Pro	Lys	Gly	Gly	Val	Leu	His	Ala
Н	'al lis	Phe Asp	Asn 115 Met	Val Ala	Ile Leu	Arg Gly	Arg Ser	Leu 120 Thr	Pro	Lys Leu	Gly Ile	Gly Val	Val 125 Asn	Leu Ala	His Thr	Ala Tyr
н	al lis	Phe Asp 130	Asn 115 Met	Val Ala	Ile Leu	Arg Gly	Arg Ser 135	Leu 120 Thr	Pro Asp	Lys Leu Pho	Gly Ile	Gly Val 140	Val 125 Asn	Leu Ala	His Thr	Ala Tyr
H L 1	al (is eu .45	Phe Asp 130 Glu	Asn 115 Met Asn	Val Ala Leu	Ile Leu Trp	Arg Gly Gln 150	Arg Ser 135 Lys	Leu 120 Thr Gly	Pro Asp Asn	Lys Leu Phe	Gly Ile Gly 155	Gly Val 140 Leu	Val 125 Asn Asn	Leu Ala His	His Thr Gly	Ala Tyr Pro 160
H L G	al is eu 45	Phe Asp 130 Glu Phe	Asn 115 Met Asn Lys	Val Ala Leu Phe	Ile Leu Trp Ser 165	Arg Gly Gln 150 Arg	Arg Ser 135 Lys Glu	Leu 120 Thr Gly Arg	Pro Asp Asn Pro	Lys Leu Phe Gly 170	Gly Ile Gly 155 Lys	Gly Val 140 Leu Glu	Val 125 Asn Asn Trp	Leu Ala His Ser	His Thr Gly Leu 175	Ala Tyr Pro 160 Val

-	СО	nt	in	ue	d

Ala Glu Val Phe Ser Leu Tyr Asn Ala Asp Pro Leu Asn Ala Tyr Lys Ser Leu Asp Asn Val Trp Ser Lys Phe Gln Asn Leu Phe Ala Cys Leu Ala Pro Leu Ile Thr Phe Ala Pro Val Trp Arg Gln Tyr Tyr His Asp Ser Leu Lys Gln Phe Tyr Asp Asp His Val Gln Tyr Leu Glu Phe Arg Gly Val Leu Pro Glu Val Tyr Asp Leu Asp Gly Lys Val Tyr Ser Ala 260 265 270 Glu Glu Ile Val Gln Leu Tyr Tyr Glu Glu Thr Glu Gln Phe Lys Ala Lys Tyr Pro Asp Phe Ile Gly Val Lys Phe Ile Tyr Ala Pro Gly Arg 290 295 Tyr Ala Ser Asp Glu Glu Phe Gln Lys Leu Leu Asp Thr Thr Asn Arg Leu His Lys Lys Phe Pro Asn Phe Leu Ala Gly Phe Asp Leu Val Gly Gln Glu Asp Pro Gly Arg Ser Leu Phe Glu Phe Ala Pro Ala Leu Leu Lys Leu Pro Ala Ser Ile Asn Phe Phe Phe His Ala Gly Glu Thr Asn Trp Tyr Gly Met Lys Thr Asp Gln Asn Leu Val Asp Ala Val Leu Leu Gly Thr Lys Arg Ile Gly His Gly Phe Ala Val Leu Lys His Pro Lys Val Leu Lys Glu Ile Lys Arg Arg Gln Ile Cys Ile Glu Ile Asn Pro Ile Ser Asn Gln Val Leu Lys Leu Val Gln Asp Gln Arg Asn His Pro Ala Ala Leu Leu Phe Ser Asp Asn Tyr Pro Val Val Val Ser Ser Asp Asp Pro Ser Phe Gly Arg Ser Thr Pro Leu Ser His Asp Phe Tyr Val Ala Phe Thr Gly Ile Ala Ser Ala Lys Gln Asp Trp Arg Trp Leu Lys Gln Leu Ala Leu Asn Ser Ile Glu Tyr Ser Ala Met Asn Ser Glu Glu Lys Thr Val Ala Lys Glu Lys Trp Asn Gln Ala Trp Asp His Gln Phe Ser Arg Leu Ala Val Asp Phe Val Ala Gly Lys Ile Leu Glu Asn Trp Ile Met Lys Ile Val <210> SEQ ID NO 123 <211> LENGTH: 389 <212> TYPE: PRT <213> ORGANISM: Aedes aegypti

<400> SEQUENCE: 123

Met Gln Pro Arg Ile Leu His Leu Thr Val Leu Ala Thr Ile Ile Gly

	~ ~	$\sim n$	- -		n	11	\sim	\sim
-	<u> </u>			-1-	11	u	-	u

1				5					10					15	
Val	Ala	Leu	Thr 20	Ala	Asn	Val	Pro	Ser 25	Thr	Pro	Gly	Arg	Lys 30	Leu	Asn
Ile	Pro	Ala 35	Phe	Ser	Asn	Ala	Gly 40	Lys	Thr	Lys	Gly	Ile 45	Glu	Ile	Trp
Arg	Ile 50	Glu	Asn	Phe	Gln	Pro 55	Val	Ala	Val	Pro	Lys 60	Ala	Glu	Tyr	Gly
Lys 65	Phe	Tyr	Thr	Gly	Asp 70	Ser	Tyr	Leu	Val	Leu 75	Asn	Thr	Asn	Glu	Asp 80
Lys	Asn	Lys	Lys	Lys 85	Ser	Tyr	Asp	Val	His 90	Phe	Trp	Leu	Gly	Leu 95	ГЛа
Thr	Thr	Gln	Asp 100	Glu	Ala	Gly	Ser	Ala 105	Ala	Ile	Leu	Thr	Val 110	Gln	Leu
Asp	Asp	Leu 115	Leu	Gly	Gly	Gly	Pro 120	Val	Gln	His	Arg	Glu 125	Val	Glu	Gly
Ser	Glu 130	Ser	Aap	Leu	Phe	Leu 135	Ser	Tyr	Phe	ГÀа	Gly 140	Gly	Ile	Arg	Tyr
Leu 145	Glu	Gly	Gly	Val	Ala 150	Ser	Gly	Phe	Lys	His 155	Val	Gln	Thr	Asn	Ala 160
Ala	His	Pro	Lys	Arg 165	Leu	Phe	His	Val	Lys 170	Gly	Ala	Lys	Asn	Ile 175	Arg
Leu	Arg	Gln	Val 180	Glu	Leu	Ala	Val	Ser 185	Ala	Met	Asn	Lys	Gly 190	Asp	Сув
Phe	Ile	Leu 195	Asp	Ser	Asp	Arg	Asp 200	Val	Phe	Val	Trp	Val 205	Gly	Pro	Lys
Ala	Asn 210	Arg	Val	Glu	Lys	Leu 215	Lys	Ala	Ile	Asn	Val 220	Ala	Asn	Asp	Ile
Arg 225	Asp	Arg	Asp	His	Asn 230	Gly	Arg	Ala	Thr	Val 235	His	Ile	Val	Asp	Glu 240
Phe	Ser	Thr	Leu	Ser 245	Asp	Gln	Glu	Ser	Phe 250	Phe	Lys	Ser	Leu	Gly 255	Ser
Gly	Ser	Pro	Ser 260	Thr	Val	Pro	Asp	Gln 265	Ser	Thr	Ala	Lys	Glu 270	Asp	Ala
Ala	Phe	Glu 275	Lys	Ala	Asp	Ala	Ala 280	Arg	Val	Glu	Leu	Tyr 285	Lys	Val	Thr
Asp	Ser 290	Lys	Ala	Gly	Lya	Leu 295	Ala	Val	Glu	Pro	Ile 300	Thr	Gln	Lys	Pro
Leu 305	Гла	Gln	Glu	Met	Leu 310	Lys	Pro	Asp	Asp	Ala 315	Phe	Ile	Leu	Asp	Thr 320
Gly	Ser	Gly	Leu	Tyr 325	Val	Trp	Ile	Gly	Lys 330	Ser	Ala	Thr	Gln	Gln 335	Glu
Lys	Thr	Gln	Ser 340	Leu	Val	Lys	Ala	Gln 345	Glu	Phe	Ile	Lys	Asn 350	Lys	Lys
Tyr	Pro	Ala 355	Trp	Thr	Pro	Val	Glu 360	Arg	Ile	Val	Gln	Asn 365	Ala	Glu	Thr
Ala	Pro 370	Phe	Lys	His	Phe	Phe 375	Gln	Thr	Trp	Arg	Asp 380	Ala	Gly	Ser	Thr
Gly 385	Ser	Arg	Leu	Val											

-cont	inued
-------	-------

<211> LENGTH: 259															
<212> TYPE: PRT <213> ORGANISM: Aedes aegypti															
<400)> SH	EQUEI	ICE :	124											
Met 1	Lys	Ser	Ile	Val 5	Ser	Ile	Thr	Ile	Thr 10	Val	Leu	Ala	Ile	Ile 15	СЛа
Glu	Gly	Gln	Ala 20	Thr	Asn	Tyr	Суз	Asp 25	Pro	Ser	Leu	Суз	Ala 30	Arg	Gly
Thr	Pro	His 35	Ile	Ala	Суз	Asn	Gly 40	Leu	Ser	Thr	Leu	Ser 45	Arg	Thr	Суз
Gly	Ala 50	Gly	Ser	Phe	Glu	Val 55	Ala	Leu	Asn	Arg	Ala 60	Asp	Gln	Gln	Leu
Ile 65	Val	Asp	Leu	His	Asn 70	Гла	Leu	Arg	Ser	Lys 75	Val	Ala	Met	Gly	Gln 80
Gln	Lys	Asn	Ser	Ala 85	Gly	Gln	Arg	Phe	Gln 90	Gln	Ala	Суз	Arg	Met 95	Ala
Thr	Leu	Gln	Trp 100	Asp	Pro	Glu	Leu	Ala 105	His	Ile	Ala	Ala	Thr 110	Asn	Ala
Arg	Arg	Cys 115	Val	Tyr	Gly	His	Asp 120	Thr	Cys	Arg	Asn	Thr 125	Ala	Ser	Met
Lys	Phe 130	Ala	Gly	Gln	Asn	Ile 135	Ala	Ile	Lys	Tyr	Tyr 140	Tyr	Gly	Met	Thr
Phe 145	Thr	Asn	Glu	Gln	Leu 150	Leu	Thr	Gly	Phe	Ile 155	Asn	Ser	Trp	Phe	Ser 160
Glu	Phe	Lys	Asp	Ala 165	Thr	Pro	Gln	Gln	Ile 170	Ala	Arg	Tyr	Pro	Ala 175	Asn
Tyr	Arg	Gly	Pro 180	Ala	Ile	Gly	His	Phe 185	Thr	Gln	Ile	Val	Ser 190	Asp	Arg
Thr	Ser	Arg 195	Ile	Gly	Суз	Ser	Met 200	Val	Ser	Tyr	Asn	Lys 205	Asn	Gly	Phe
Ile	Asn 210	Lys	Leu	Phe	Val	Cys 215	Asn	Tyr	Gly	Leu	Thr 220	Asn	Ile	Ile	Asn
Gln 225	Pro	Val	Tyr	Val	Ala 230	Gly	Asn	Val	Суз	Ser 235	Gly	Сүз	Thr	Thr	Gly 240
Сүз	Asn	Lys	Val	Phe 245	Pro	Gly	Leu	Сүз	Asn 250	Thr	Ala	Glu	Arg	Val 255	Ser
Asn	Asn	Pro													
<210> SEQ ID NO 125															
<212 <213	2> TY 3> OF	PE : RGAN	PRT ISM:	Aede	es a	∋gypt	ti								
<400> SEQUENCE: 125															
Met	Lys	Val	Tyr	Ile	Cys	Gln	Val	Ile	Phe	Ser	Phe	Leu	Ala	Val	Ser
1	-			5					10					15	
Val	Phe	Суз	Glu 20	Glu	Asn	Сүз	Asn	Ile 25	Pro	Glu	Ser	Glu	Leu 30	Ser	Lys
Ile	Asp	His 35	Val	Leu	Arg	His	Met 40	Glu	Гλа	Pro	Ile	Tyr 45	Ser	Glu	Glu
Gln	Phe 50	Ala	Ser	Asp	Asn	Glu 55	Glu	Сув	Thr	Asn	Leu 60	Leu	Asn	Gly	Ile

-continued

His 65	Ala	Gln	Leu	Arg	Arg 70	Leu	Thr	Gln	Arg	Tyr 75	Lys	Leu	Met	Asn	Lүв 80
Gly	Tyr	Val	Lys	Val 85	Glu	Glu	Tyr	Gln	Arg 90	Met	Ala	Asp	Asn	Tyr 95	Glu
ГÀа	Gln	Leu	Lys 100	Thr	Leu	Asn	Asp	Glu 105	Leu	Val	Glu	Leu	Gln 110	Gln	His
Thr	Ser	Glu 115	Lys	Ala	Ser	Ala	Thr 120	Ile	Ala	Lys	Leu	Lys 125	Glu	Asp	Ile
Lys	Lys 130	Leu	Asp	Glu	Glu	Val 135	Gly	Thr	Leu	His	Glu 140	ГÀа	Leu	Lys	Gly
Ile 145	Lys	Gln	Asp	Phe	Glu 150	Lys	Val	Lys	Arg	Asp 155	Leu	Суз	Val	Thr	Tyr 160
Leu	Asn	Ser	Asn	Gln 165	Met	Ser	Lys	Ala	Lys 170	Ala	Lys	Leu	Lys	Glu 175	Met
Ala	Ser	Thr	Tyr	Leu	Ile	Glu	Ile	Val	Gln	Gln	Gln	Leu	Asn	Lys	Ser
Asn	Ala	Asn	Ile	Met	Pro	Met	Leu	Glu	Phe	Ser	Ala	Ala	Ile	Pro	Asp
Leu	Asp	T92	Met	Gly	Glu	Ala	200 Tyr	Lys	Glu	Ile	Tyr	205 Lys	Phe	Leu	Glu
Glu	210 Gln	Lys	Arg	Leu	Glu	215 Gly	Glu	Asp	Ser	Val	220 Leu	Leu	Glu	Ala	Thr
225 Val	Leu	Lys	Met	Asn	230 Ala	Ser	Leu	Lys	Glu	235 Gly	Ser	Asn	Ile	Thr	240 Asp
Glu	Ara	Ara	Thr	245 Glp	, 110	Glu	Glv	Len	250 Leu	Ive	Asn	Len	م اھ	255 Thr	LVS
C.c.	y		260	Dhe		оти т	Сту П	265	Iter	су.»	1.55	Leu I	270	тл.	
ser	Inr	11e 275	val	Phe	ser	Thr	280	Tnr	гда	GIU	ьеи	цуя 285	гда	цте	Asn
Asp	Ala 290	Val	Val	Ile	Lys	Asn 295	Ala	Leu	Asp	His	Met 300	Phe	Val	Ser	Gln
Met 305	Lys	Val	Phe	Gly	Ala 310	Leu	Val	Gly	Asp	Thr 315	Ser	Asp	Phe	Gly	Ser 320
Ile	Arg	Asn	Phe	Val 325	Lys	Leu	Thr	Ile	Val 330	Сүз	Asn	Asn	Tyr	Tyr 335	Lys
Val	Ala	Ala	Tyr 340	Lys	Glu	Leu	Ile	Asp 345	Arg	Lys	Ile	Gly	Asn 350	Ala	Leu
Gly	Thr	Ile 355	Met	Phe	Asp	Leu	Leu 360	Thr	Leu	Glu	Val	Asn 365	Glu	Met	Lys
Phe	Asp 370	Pro	His	Val	Pro	Asp 375	Glu	Ile	Pro	Lys	Leu 380	Phe	Glu	Ala	Thr
Leu 385	Ser	Ser	Leu	Pro	Asn 390	Ser	Leu	Thr	Glu	Leu 395	Arg	Thr	Суа	Leu	Gly 400
Lys	Val	Gln	Ile	Tyr	Asn	Lys	Lys	Thr	Asn 410	Lys	Суз	Val	Val	Ala 415	Thr
Gly	Asn	Asp	Phe	Asp	Val	His	Lys	Asp	тла ГЛа	Leu	Gly	Asp	Phe	415 Tyr	Arg
Val	Val	Val	420 Ala	Asp	Tvr	Gly	Cys	425 Thr	Ser	Phe	Ara	Leu	430 Glu	Ala	Ser
		435		~r	-1-	1	440				3	445			
чту	Asp 450	гла	Ala	Ser	Val	Arg 455	шe	Val	Thr	Pro	Ser 460	GТХ	Asn	Pro	Met
Ser	Asn	Val	Asn	Leu	His	Leu	Glu	Gly	Asn	Ser	Leu	His	Asn	Tyr	Val

-continued

465	470	475 4	80						
Ala Thr Pro Lys Ser 485	Asn Lys Pro Asp Arg 490	Thr Pro Ser Ser Ser 495	ab						
Glu Trp Ile Leu Asp 500	Ala Asn Tyr Asn Asn 505	Asp Thr Ile Lys Ile C 510	lu						
Ser Gln Phe Ser Asp 515	Tyr Lys Thr Lys Lys 520	Thr Glu Val Asp His I 525	eu						
Leu Val Arg Asp Ile 530	Asn His Leu Pro His 535	Val Leu Val Ala Arg 7 540	yr						
Gly Phe Met Gly Leu 545	Lys Asn Ser Asp Ala 550	Lys Asp Thr Ile Glu 7 555 5	rp 60						
Asn Leu Lys Cys Gly 565	Ser								
<210> SEQ ID NO 126 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer									
<400> SEQUENCE: 126									
taatacgact cactataggg gatggacaga tgtctcttcg tg 42									
<pre><210> SEQ ID NO 127 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer <400> SECUENCE: 127</pre>									
taatacgact cactatag	gg ccaaatccaa tccatc	gaaa	40						
<pre><210> SEQ ID NO 128 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <220> OTHER INFORMATION: PCR primer</pre>									
<400> SEQUENCE: 128									
taatacgact cactataggg gtgagcaagg gcgaggag 38									
<pre><210> SEQ ID NO 129 <211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer</pre>									
<400> SEQUENCE: 129									
taatacgact cactatag	gg catgatatag acgttgi	tggc tgtt	44						

1. A composition comprising two or more polypeptides, wherein said two or more polypeptides are selected from the group consisting of LOC5573204, LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

2. A composition comprising a nucleic acid molecule or two or more nucleic acid molecules encoding two or more polypeptides, wherein said two or more polypeptides are selected from the group consisting of LOC5573204, LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

3.-9. (canceled)

10. The composition of claim **2**, wherein the two or more polypeptides comprise (i) LOC5573204 Bacteria-Responsive Protein 1 (AgBR1) or a fragment, derivative or variant thereof and (ii) LOC5578631 Neutrophil Stimulating Factor 1 (NetSt1) or a fragment, derivative or variant thereof.

11. The composition of claim **10**, wherein the LOC5573204 polypeptide comprises the sequence SEQ ID NO: 1.

12.-13. (canceled)

14. The composition of claim **10**, wherein the LOC5573204 polypeptide fragment comprises the sequence selected from SEQ ID NOS: 6-13.

15.-20. (canceled)

21. The composition of claim **10**, wherein the LOC5578631 polypeptide comprises the sequence SEQ ID NO: 3.

22.-23. (canceled)

24. The composition of claim **10**, wherein the LOC5578631 polypeptide fragment comprises the sequence selected from SEQ ID NOS: 22-29.

25.-54. (canceled)

55. The composition of claim **2**, further comprising a carrier or excipient.

56. The composition of claim 2, further comprising an adjuvant.

57. (canceled)

58. A method of preventing or treating a disease in a subject in need thereof, wherein the disease is associated

with a mosquito-borne infectious agent, said method comprising administering to said subject an effective amount of the composition of claim 2.

59. The method of claim **58**, wherein the mosquito is *Aedes aegypti*.

60. The method of claim **58**, wherein the mosquito-borne infectious agent is a mosquito-borne virus.

61. The method of claim **60**, wherein the mosquito-borne virus is a flavivirus.

62. (canceled)

63. The method of claim **61**, wherein the flavivirus is Zika virus.

64. The method of claim **61**, wherein the flavivirus is West Nile virus.

65. The method of claim **60**, wherein the mosquito-borne virus is an alphavirus.

66. (canceled)

67. The method of claim 58, wherein the subject is human.

68. A method of preventing or treating a disease in a subject in need thereof, wherein the disease is associated with a mosquito-borne infectious agent, said method comprising administering to said subject an effective amount of the composition of claim **1**.

69. A method of preventing or treating a disease in a subject in need thereof, wherein the disease is associated with a mosquito-borne infectious agent, said method comprising administering to said subject an effective amount of two or more polypeptides, wherein said two or more polypeptides are selected from the group consisting of LOC5573204, LOC5578630, LOC5578631, LOC5567956, LOC556038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

70. A method of preventing or treating a disease in a subject in need thereof, wherein the disease is associated with a mosquito-borne infectious agent, said method comprising administering to said subject an effective amount of two or more nucleic acid molecules encoding polypeptides selected from the group consisting of LOC5573204, LOC5578630, LOC5578631, LOC5567956, LOC5580038, LOC5566287, LOC5567958, LOC5568702, LOC110675548, and fragments, derivatives or variants thereof.

* * * * *