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400A

Access a database to retrieve a batch of trajectories including a number of
410 ~/ heuristic-based trajectories and a number of human-driven trajectories

Y

Feed the heuristic-based trajectories to the generator to generate
corresponding human-like trajectories by modifying the driving
characteristics of the heuristic-based on trajectories, wherein the system may

use a loss function to compare the human-like trajectories generated by the
420 ﬁ/ generator to the heuristic-based trajectories to determine loss values and feed
that loss values to the generator to optimize the model parameters of the
generator in a manner that will minimize the loss values

Feed the human-driven trajectories to the discriminator to discriminate these
input trajectories using the current model parameter, wherein the system may
use the loss function for “real” human-driven trajectories to determine the loss
\/ values and feed that loss values to the discriminator to optimize the model
430 o cr e
parameters of the discriminator a manner that will minimize the loss values

Feed the human-like trajectories generated by the generator to the
discriminator to discriminate these human-like trajectories based on the
current model parameters of the discriminator, wherein the system may use

the loss function for the “fake” human-driven trajectories to determine the
440 _\/ loss values and feed these loss values to the discriminator causing the model
parameters of the discriminator to be optimized in a manner that will
minimize the loss values

Feed the loss values as determined by the loss function for the “fake” human-
driven trajectories to the generator to optimize the model parameters of the
450 ﬁ/ generator in a manner that will maximize the loss values as determined by the

loss function for the “fake” human-driven trajectories

FIG. 44
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(O
=
=7

Access sensor data associated with a surrounding environment of a

4 vehicle
510

Generate, based on the sensor data, a first trajectory having one or more
first driving characteristics for navigating the vehicle in the surrounding
520 ﬂ/ environment

Generate a second trajectory having one or more second driving
characteristics by modifying the one or more first driving characteristics
of the first trajectory, wherein the modifying uses adjustment parameters

\/ based on one or more human-driving characteristics of observed human-
530 driven trajectories such that the one or more second driving
characteristics satisfy a similarity threshold relative to the one or more

human-driving characteristics

Determine, based on the second trajectory, vehicle operations to navigate
540 —v the vehicle in the surrounding environment

FIG. 5
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1
USING MACHINE LEARNING MODELS FOR
GENERATING HUMAN-LIKE
TRAJECTORIES

BACKGROUND

Autonomous vehicles (AVs) or manually-driven vehicles
with driver-assistance features may navigate through their
surrounding environment based on the perception data of the
associated surrounding environment. A vehicle typically
perceives its environment using sensors such as cameras,
radars, and LiDARs. A computing system (e.g., an on-board
computer and/or a remote server computer) may then pro-
cess and analyze the sensor data to make operational deci-
sions in response to situations detected in the surrounding
environment. For a particular scenario encountered by an AV
in the driving environment, the AV may algorithmically
generate a robotic trajectory to navigate the vehicle in
accordance with that particular scenario.

However, even though the robotic trajectories may be safe
and technically correct for navigating the VA, they may lead
to unnatural or unpleasant riding experience for passengers.
For example, AV navigated based on robotic trajectories
may have more aggressive acceleration processes than a
human-driving vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example heuristic-based trajectory
used to navigate an autonomous vehicle in a surrounding
environment.

FIG. 1B illustrates an example human-driven trajectory
for navigating a vehicle in a surrounding environment.

FIG. 1C illustrates an example heuristic-based trajectory
and a corresponding human-driven trajectory for navigating
respective vehicles along a swinging road.

FIG. 1D illustrates example velocity distributions of a
heuristic-based trajectory and a human-driven trajectory for
an acceleration and deacceleration process.

FIG. 1E illustrates an example process for generating
human-like trajectories based on heuristic-based trajecto-
ries.

FIG. 1F illustrates an example process using a ML-based
trajectory generator to generate human-like trajectories
based on heuristic-based trajectories.

FIG. 1G illustrates an example process for using a ML-
based trajectory generator to generate human-like trajecto-
ries based on heuristic-based trajectories and related con-
textual data.

FIG. 2A illustrates an example framework for training the
machine-learning-based trajectory generator using an adver-
sarial network (GAN).

FIG. 2B illustrate an example process for training the
machine-learning-based trajectory generator using a super-
vised learning process.

FIG. 3A illustrates an example process for generating
human-like trajectories using a variational autoencoder
(VAE).

FIG. 3B illustrates an example process for training a
variational autoencoder (VAE) to generate human-like tra-
jectories.

FIG. 4A illustrates an example method for training a
ML-based trajectory generator for generating human-like
trajectory based on heuristic-based trajectories

FIG. 4B illustrates an example process for generating and
selecting appropriate trajectories to navigate an autonomous
vehicle.
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2

FIG. 5 illustrates an example method for generating
human-like trajectory based on heuristic-based trajectories.

FIG. 6 illustrates an example block diagram of an algo-
rithmic navigation pipeline.

FIG. 7 illustrates an example computing system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described. In addition, the
embodiments disclosed herein are only examples, and the
scope of this disclosure is not limited to them. Particular
embodiments may include all, some, or none of the com-
ponents, elements, features, functions, operations, or steps
of the embodiments disclosed above. Embodiments accord-
ing to the invention are in particular disclosed in the attached
claims directed to a method, a storage medium, a system and
a computer program product, wherein any feature mentioned
in one claim category, e.g., method, can be claimed in
another claim category, e.g., system, as well. The depen-
dencies or references back in the attached claims are chosen
for formal reasons only. However, any subject matter result-
ing from a deliberate reference back to any previous claims
(in particular multiple dependencies) can be claimed as well,
so that any combination of claims and the features thereof
are disclosed and can be claimed regardless of the depen-
dencies chosen in the attached claims. The subject-matter
which can be claimed comprises not only the combinations
of features as set out in the attached claims but also any other
combination of features in the claims, wherein each feature
mentioned in the claims can be combined with any other
feature or combination of other features in the claims.
Furthermore, any of the embodiments and features described
or depicted herein can be claimed in a separate claim and/or
in any combination with any embodiment or feature
described or depicted herein or with any of the features of
the attached claims.

Existing autonomous vehicles (AVs) may algorithmically
(e.g., using a motion planning algorithm) generate heuristic-
based trajectories based on the perception data of the AV’s
surrounding environment and navigate the AVs using the
heuristic-based trajectories. However, even though the algo-
rithmically generated heuristic-based trajectories are tech-
nically correct and safe to be used for navigating the AVs in
the surrounding environment, they may lead to unnatural or
unpleasant riding experience for passengers. For example,
the AVs navigated based on the heuristic-based trajectories
may have more aggressive acceleration processes than
vehicles that are driven by human drivers and the aggressive
acceleration may negatively impact the riding experience of
the passengers.

To solve this problem, particular embodiments of the
system may use a machine-learning (ML) based trajectory
generator (later referred to as “generator”) to refine heuris-
tic-based trajectories and generate refined trajectories that
are more similar to human-driven trajectories. The ML-
based trajectory generator may be trained using a generative
adversarial network (GAN). For example, the ML -based
trajectory generator may correspond to the generator model
in the GAN framework and may be trained to process
heuristic-based trajectories (denoted by T) and generate
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refined trajectories that are more human-like (these human-
like trajectories, denoted by T, are considered to be a “fake”
human-driven trajectory or “fake” human-driving trajec-
tory). The GAN may include a discriminator which may be
trained to discriminate between real human-driven trajecto-
ries (denoted by H) and fake human-driven trajectories (T").
During training, the generator may first process a number of
heuristic-based trajectories to generate corresponding
human-like trajectories. The discriminator may then be
tasked with discriminating between the human-like trajec-
tories (which are fake human-driven trajectories) and real
human-driven trajectories. The discriminator may be opti-
mized for correctly discriminating the input trajectories as
being fake or real human-driven trajectories. The generator,
on the other hand, may be optimized for fooling the dis-
criminator into incorrectly classifying the human-like tra-
jectories generated by the generator as being real human-
driven trajectories. To ensure the generated human-like
trajectories do not deviate from the heuristic-based trajec-
tories too much (which could lead to unstable driving
experience and cause safety issues), the generator may be
optimized based on a loss function which compares the input
heuristic-based trajectory with the corresponding human-
like trajectory. The discriminator and generator may be
trained sequentially or concurrently.

After the generator has been trained to a level that meets
pre-determined criteria, the generator may be deployed to
AVs to allow the AV to be navigated with more human-like
trajectories. At run time, the system may capture the per-
ception data (e.g., images, LiDAR point cloud) of the AV’s
surrounding environment and generate a heuristic-based AV
navigation trajectory based on the perception data (e.g.,
using a motion planning algorithm) and/or prediction data of
the AV’s surrounding environment. The system may feed the
heuristic-based trajectory to the ML-based trajectory gen-
erator, which generates a corresponding human-like trajec-
tory to be used to navigate the AV. Before adopting the
generated human-like trajectory, the AV may perform a
safety check to ensure that the generated human-like trajec-
tory meets pre-determined safety criteria. When the human-
like trajectory meets the pre-determined safety criteria, the
system may use the human-like trajectory to navigate the
vehicle in the surrounding environment. With the human-
like trajectory generated by the trajectory generator, the AV
may provide better riding experience to passengers. When
the human-like trajectory fails to meet the safety criteria, the
system may use the heuristic-based trajectory to navigate the
vehicle in the surrounding environment to ensure the safety
of the vehicle.

By using GAN to train the ML-based trajectory generator,
the ML-based trajectory generator may be optimized based
on the discrimination results of the discriminator without
directly comparing the generated human-like trajectories to
the real human-driven trajectories. By incrementally opti-
mizing the discriminator based on the loss functions for the
fake/real human-driven trajectories using supervised learn-
ing, the discriminator may get better and better over time for
discriminating the fake/real human-driven trajectories. By
incrementally optimizing the ML-based trajectory generator
to fool the discriminator, the ML -based trajectory generator
may get better and better over time for generating human-
like trajectories that are more similar to real human-driven
trajectories. By using the human-like trajectory to navigate
the vehicle, the AV may provide better riding experience
(e.g., a higher comfort level) that is more similar to vehicle
driven by humans. By evaluating the human-like trajectories
before usage and using the heuristic-based trajectory as

25

40

45

55

4

fallback trajectories, the AV may ensure the safety of the
vehicle when the human-like trajectories fail to meet pre-
determined safety criteria. Furthermore, using the systems,
methods, and processes as described in this disclosure, there
are no limits to the number of human trajectories that can be
used to train the ML, model to get better at generating
human-like trajectories. And, the MLL model may be trained
for different types of scenarios at the granular level (e.g.,
lane changes, lane boundaries, bicyclists, etc.) using
observed human-driving data to get better at replicating
heuristic-based trajectories to human-like trajectories. By
using the large amount human-driving data of different
scenarios to train the ML model, particular embodiments of
the system may provide a scalable solution for generating
human-like trajectories that would otherwise be very chal-
lenging for heuristic-based algorithms.

In particular embodiments, a vehicle trajectory (e.g., a
human-driven trajectory, a human-like trajectory, or a heu-
ristic-based trajectory) may describe the motion of the
vehicle for navigating through a surrounding environment.
A vehicle trajectory may be or include a vehicle moving path
for the vehicle to move from a first point A to a second point
B. The moving path may include or be associated with a
series of spatial-temporal points (X, y, t). Each of the
spatial-temporal point (x, y, t) may indicate a location of the
vehicle along the moving path at a particular time moment.
The whole trajectory may correspond to a particular time
window (e.g., from a start time moment to an end time
moment) and may have a particular point density over time
(e.g., 100 points per 10 seconds). Each of the spatial-
temporal point (x, y, t) may be associated with a number of
trajectory parameters or vehicle parameters including, for
example, but not limited to, a velocity, an acceleration along
the moving path, an acceleration along the lateral direction,
GPS coordinates, a steering angle, a moving direction, a
braking paddle pressure, etc. Each of the associated param-
eter may have a particular distribution over the moving path
of the associated trajectory or/and a particular distribution
over time in the corresponding time window associated with
the trajectory.

In particular embodiments, AVs may use sensors to cap-
ture perception data of the surrounding environment. In
particular embodiments, the sensors used by AVs may
include, for example, but are not limited to, cameras (e.g.,
optical camera, thermal cameras), LiDARs, radars, speed
sensors, steering angle sensors, braking pressure sensors, a
GPS, inertial measurement units (EUs), acceleration sen-
sors, etc. In particular embodiments, the perception data and
the vehicle data that are captured may include, for example,
but are not limited to, environment images, speeds of other
vehicles, acceleration of other vehicles, moving paths of
other vehicles, driving trajectories of other vehicles, loca-
tions of other vehicles, signal status (e.g., on-off state of
turning signals) of other vehicles, braking signal status of
other vehicles, a distance to another vehicle, a relative speed
to another vehicle, a distance to a pedestrian, a relative speed
to a pedestrian, a distance to a traffic signal, a distance to an
intersection, a distance to a road sign, a distance to curb, a
relative position to a road line, positions of other traffic
agents, a road layout, pedestrians, traffic status (e.g., number
of nearby vehicles, number of pedestrians, traffic signals),
time of day (e.g., morning rush hours, evening rush hours,
non-busy hours), types of traffic (e.g., high speed moving
traffic, accident events, slow moving traffic), road conditions
(e.g., constructing zones, school zones, wet surfaces, ice
surfaces), intersections, road signs (e.g., stop signs, road
lines, cross walks), nearby objects (e.g., curbs, light poles,
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billboards), buildings, weather conditions (e.g., raining, fog,
sunny, hot weather, cold weather), etc.

In particular embodiments, the collected perception data
may include camera-based localization data including, for
example, but not limited to, a point cloud, a depth of view,
a two-dimensional profile of environment, a three-dimen-
sional profile of environment, stereo images of a scene, a
relative position (e.g., a distance, an angle) to an environ-
mental object, a relative position (e.g., a distance, an angle)
to road lines, a relative position in the current environment,
a traffic status (e.g., high traffic, low traffic), etc. In particular
embodiments, the perception data may include historical
perception data accessed from a database. For example, the
historical perception data may include map data that are
generated based on previously collected perception data of
the surrounding environment. In particular embodiments,
the AVs may have a perception of the surrounding environ-
ment based on the perception data collected through one or
more sensors in real-time or/and historical perception data
stored in a vehicle database. In particular embodiments, the
AV may include one or more computing systems (e.g., a data
collection device, an on-board computer, a high-perfor-
mance computer, a mobile phone, a tablet, a mobile com-
puter, an embedded computing system) to process the per-
ception data. In particular embodiments, the techniques
described herein may be implemented by the computing
system of the AV and/or a backend computing system. For
example, the backend computing system is capable of run-
ning a simulation based on the techniques described herein

FIG. 1A illustrates an example heuristic-based trajectory
107 used to navigate an autonomous vehicle in a surround-
ing environment 100A. In particular embodiments, the AV
may use a computer algorithm (e.g., a motion planning
algorithm) to algorithmically generate a heuristic-based tra-
jectory based on the perception data captured by one or more
sensors or/and perception data accessed from the database.
As an example and not by way of limitation, the AV 101A
may use one or more sensors to capture the perception data
(e.g., center lanes 105, the driving lane 106A and the
opposite lane 106B, road boundaries 109A and 109B, a
roadside vehicle 103A, a nearby vehicle 103B, etc.) of the
surrounding environment and algorithmically generate a
heuristic-based trajectory 107 to navigate the AV 101A in
accordance with the current scenario of the surrounding
environment. The AV 101A driving in the lane 106A may
normally try to stay in the center of the lane 106 A. When a
roadside vehicle 103 is perceived on the roadside 102 based
on the perception data, the AV 101A may generate the
heuristic-based trajectory 107 and navigate based on the
heuristic-based trajectory 107 to keep a safety distance 104
with respect to the roadside vehicle 103. Using the heuristic-
based trajectory 107, the AV 101A may first steer toward the
center lines 105 and then steer back to the center of the lane
106A to keep the safety distance 104 to the roadside vehicle
103A and avoid potential collisions. In this disclosure, the
term “heuristic-based trajectory” may refer to a trajectory
that is generated by one or more algorithms using one or
more rules (e.g., heuristic rules) for navigating an AV in
accordance with a scenario in the surrounding environment.
As will be described later, a heuristic-based trajectory may
be different from a human-driven trajectory in one or more
aspects. In this disclosure, the term “human-like trajectory”
may refer to trajectories that are generated by modifying the
heuristic-based trajectories to be more similar to the human-
driven trajectories. Traditional AVs may generate these
heuristic-based trajectories and navigate based on these
heuristic-based trajectories (without generating human-like
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trajectories by modifying the driving characteristics of the
heuristic trajectories, as will be discussed later in this
disclosure). In particular embodiments, AVs may generate
heuristic-based trajectories, generate human-like trajectories
by modifying the heuristic-based trajectories and navigate in
the corresponding surrounding environments using the
human-like trajectories.

FIG. 1B illustrates an example human-driven trajectory
108 for navigating a vehicle in a surrounding environment
100B. In this disclosure, the term “human-driven trajectory”
(denoted by H) or “human-generated trajectory” may refer
to observed navigation trajectories of vehicles that are
driven by human drivers. A human-driven trajectory may be
determined based on the human-driving data (e.g., GSP data,
vehicle positions, steering angles, acceleration, velocity,
etc.) of vehicles that are driven by human drivers. As an
example and not by way of limitation, a human-driving
vehicle 111A may navigate in a surrounding environment
100B (which may have the same or similar scenario with
respect to the surrounding environment 100A). The human-
driving vehicle 111 A driving in the lane 106 A may normally
try to stay in the center of the lane 106 A. When the human
driver perceives the roadside vehicle 103 the roadside 102,
the human driver may first steer the vehicle toward the
center lines 105 to keep the safety distance 104 to the
roadside vehicle 103A and avoid potential collisions and
then, steer back to the center of the lane 106A. The moving
path of the human-driving vehicle may be illustrated by the
human-driven trajectory 108.

In particular embodiments, a heuristic-based trajectory for
navigating an AV in accordance with a particular scenario
encountered by the AV in the surrounding environment may
be different in one or more aspects from a human-driven
trajectory for navigating a human-driving vehicle in accor-
dance with the same scenario encountered in the surround-
ing environment. In particular embodiments, the difference
between the heuristic-based trajectory and the correspond-
ing human-driven trajectory may be related to one or more
parameters or one or more parameter distributions related to,
for example but not limited to, a vehicle moving path (e.g.,
of a lane changing process, a merging process, a braking
process, a starting process, a turning process, a yielding
process), a vehicle location at a particular time moment, a
velocity at a particular time moment, a turning radius, a
steering direction, an acceleration along the moving path, an
acceleration along the lateral direction of the moving path,
a parameter distribution over the moving path, a parameter
distribution over time, a lack of acceleration, etc. As an
example and not by way of limitation, the heuristic-based
trajectory 107 may have a more aggressive turning process
(e.g., with a smaller turning radius) when steering the AV
101A toward the center line 105 than the human-driven
trajectory 108. As a result, the heuristic-based trajectory 107
may provide less optimal riding experience for the passen-
gers even though it is technically correct and safe to be used
to navigate the AV in accordance with this scenario. As
another example and not by way of limitation, a heuristic-
based trajectory may have a more aggressive acceleration
process (e.g., greater acceleration values) when starting
from a stop sign or a traffic signal than a corresponding
human-driven trajectory. As another example and not by
way of limitation, a heuristic-based trajectory may have a
more aggressive deacceleration process (e.g., greater deac-
celeration values) when stopping for a stop sign or a traffic
signal than a corresponding human-driven trajectory. As
another example and not by way of limitation, a heuristic-
based trajectory may have a different parameter distribution
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(e.g., an acceleration distribution, a velocity distribution, a
distribution of a distance to a road edge or a center line) over
the moving path of the heuristic-based trajectory with
respect to a corresponding human-driven trajectory. As
another example and not by way of limitation, a heuristic-
based trajectory may have a different parameter distribution
(e.g., an acceleration distribution, a velocity distribution, a
distribution of a distance to a road edge or a center line) over
time in the time window of the heuristic-based trajectory
with respect to a corresponding human-driven trajectory.

FIG. 1C illustrates an example heuristic-based trajectory
127 and a corresponding human-driven trajectory 128 for
navigating respective vehicles along a swinging road. As an
example and not by way of limitation, for navigating along
a zigzag or swinging road 126 (e.g., a one-way S-shape
road), an AV may generate (e.g., using a motion planning
algorithm) a heuristic-based trajectory 127 which tries to
keep the AV at the center line of the swinging road 126 (e.g.,
having approximately equal distances to the two boundaries
of 129A and 129B). In contrast, a human driver may take
some short cuts and navigate the vehicle using the trajectory
128 (instead of keeping the vehicle at the center line of the
swinging road 126). While both trajectories are technically
correct and safe for navigating vehicles in this scenario, the
AV as navigated based on the heuristic-based trajectory 127
may have a greater lateral acceleration and may swing back
and force along the center line of the swinging road 126. As
a result, the AV navigated based on the heuristic-based
trajectory 127 may provide a less optimal riding experience
than the vehicle driven by a human driver as navigated based
on the human-driven trajectory 128.

FIG. 1D illustrates example velocity distributions of a
heuristic-based trajectory and a human-driven trajectory for
an acceleration and deacceleration process. As an example
and not by way of limitation, the heuristic-based trajectory
131 may have a velocity distribution (over time) which is
different from the velocity distribution (over time) of the
human-driven trajectory 132, as shown in FIG. 1D. At the
acceleration stage (e.g., from T5 to T,;,), the human-driven
trajectory 132 may have a higher velocity and a greater
overall acceleration than the heuristic-based trajectory 131.
At the deacceleration stage (e.g., from T, to Ty), the
human-driven trajectory 132 may have a lower velocity and
a smaller overall deacceleration than the heuristic-based
trajectory 131. As a result, the vehicle navigated based on
the human-driven trajectory 132 may have a different
vehicle position at a particular time moment with respect to
the vehicle navigated based on the heuristic-based trajectory.
The vehicle navigated based on the human-driven trajectory
132 may have a more aggressive acceleration process for
starting the vehicle and a smoother deacceleration process
for stopping the vehicle. As a result, the vehicle navigated
based on the human-driven trajectory 132 may provide a
better riding experience than the heuristic-based trajectory
131. It is notable that the velocity, acceleration and vehicle
position parameters are for example purpose only and the
difference between a heuristic-based trajectory and a corre-
sponding human-driven trajectory is not limited thereto. For
example, the difference between a heuristic-based trajectory
and a corresponding human-driven trajectory may be asso-
ciated with any suitable parameters associated with the
vehicle trajectory.

FIG. 1E illustrates an example process 100E for gener-
ating human-like trajectories based on heuristic-based tra-
jectories. In particular embodiments, because AVs navigated
based on heuristic-based trajectories may provide less opti-
mal riding experience than human-driven vehicles, the com-
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puting system of the AV may use a trajectory generator to
generate a human-like trajectory based on a heuristic-based
trajectory to provide better riding experience for passengers.
In particular embodiments, the system may use a computer
algorithm to refine heuristic-based trajectories to make the
heuristic-based trajectories to be more similar to human-
driven trajectories to allow the AV to provide more optimal
riding experience. As an example and not by way of limi-
tation, the system may use a trajectory refining algorithm
142 (also referred to as “human-like trajectory generator” or
“trajectory generator”) to refine a heuristic-based trajectory
141 (denoted by T) to generate a corresponding human-like
trajectory 143 (denoted by T') to provide more optimal
riding experience. The trajectory refining algorithm 142 may
refine the heuristic-based trajectory 141 by adjusting one or
more parameters or one or more parameter distributions of
the heuristic-based trajectory 141 to make it more similar to
human-driven trajectories. The human-like trajectory 143
generated by the trajectory refining algorithm 142 may be
more similar to a corresponding human-driven trajectory
(for navigating vehicles in accordance with the same sce-
nario of the same surrounding environment) than the heu-
ristic-based trajectory 141 and may provide a riding expe-
rience that is more similar to human-driven vehicles than the
AVs navigated based on the heuristic-based trajectory 141.
For example, the human-like trajectory 143 may have a less
aggressive or more aggressive acceleration profile for the
vehicle starting process from a stop sign than the heuristic-
based trajectory 141. As another example, the human-like
trajectory 143 may have a different moving path with respect
to the heuristic-based trajectory 141. As yet another
example, the human-like trajectory 143 may have a different
parameter distribution (over the vehicle moving path or
overtime) with respect to the heuristic-based trajectory 141.

FIG. 1F illustrates an example process 100F using a
ML-based trajectory generator to generate human-like tra-
jectories based on heuristic-based trajectories. In particular
embodiments, the trajectory refining algorithm used to gen-
erate human-like trajectories based on heuristic-based tra-
jectories may be or include ML models (referred to as
“ML-based trajectory generator”) including, for example,
but not limited to, a neural network, a temporal neural
network (e.g., a recurrent neural network), a convolutional
neural network, a deconvolutional neural network, a deep
neural network, a variational autoencoder, etc. As an
example and not by way of limitation, the system may use
a ML-based trajectory generator 152 to generate a human-
like trajectory 153 based on a heuristic-based trajectory 151.
In particular embodiments, the ML-based trajectory genera-
tor 152 may take in the heuristic-based trajectory 151 in a
time-sequence format and output the human-like trajectory
153 in a time-sequence format. The heuristic-based trajec-
tory 151 in the time sequence format may include a series of
data points in time domain. Each data point may be asso-
ciated with a combination of a group of parameters and a
particular time moment. For example, a data point of the
heuristic-based trajectory 151 may be represented by a
vector of (X, y, a, v, t), where x and y are spatial coordinates
of the vehicle position at the time moment t, a is the
acceleration of the vehicle at the time moment t, and v is the
velocity of the vehicle at the time moment t. The ML-based
trajectory generator 152 may receive the sequence of data
points and determine the output sequence of data points for
the human-like trajectory 153. A data point of the human-
like trajectory 153 may be represented by a vector of (X', ',
a', v', t), where x' and y' are spatial coordinates of the vehicle
position at the time moment t, a' is the acceleration of the
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vehicle at the time moment t, and v' is the velocity of the
vehicle at the time moment t.

Alternatively, in particular embodiments, a data point of
the heuristic-based trajectory 151 may be represented by a
vector of (X, y, d, a_lateral, a_longitudinal, 3, t), where x and
y are spatial coordinates of the vehicle position at the time
moment t, d is the vehicle moving direction or heading
direction at the time moment t, a_lateral is the lateral
acceleration of the vehicle at the time moment t, a_longi-
tudinal is the longitudinal acceleration along the moving
path of the vehicle, and f is the steering angle of the vehicle
at the time moment t. The ML -based trajectory generator
152 may receive the sequence of data points and determine
the output sequence of data points for the human-like
trajectory 153. A data point of the human-like trajectory 153
may be represented by a vector of (X', y', d', a'_lateral,
a'_longitudinal, f', t), where x' and y' are spatial coordinates
of the vehicle position at the time moment t, d' is the vehicle
moving direction or heading direction at the time moment t,
a'_lateral is the lateral acceleration of the vehicle at the time
moment t, a'_longitudinal is the longitudinal acceleration
along the moving path of the vehicle, and ' is the steering
angle of the vehicle at the time moment t. It is notable that,
even though the data point of the trajectory time sequence
may be represented by different vectors (including different
parameters), these vectors may include the same information
and the vectors for representing the same data point may be
converted into each other mathematically. In particular
embodiments, the trajectory refining algorithm may be or
include a rule-based computer algorithm. The rule-based
computer algorithm may determine the parameter distribu-
tion of the heuristic-based trajectory, adjust one or more
parameters or parameter distributions of the heuristic-based
trajectory, and generate the corresponding human-like tra-
jectory.

FIG. 1G illustrates an example process 100G for using a
ML-based trajectory generator to generate human-like tra-
jectories based on heuristic-based trajectories and related
contextual data. In particular embodiments, in addition to
receiving the heuristic-based trajectory 165 in a time
sequence format, the ML-based trajectory generator 164
may receive and use contextual information determined
based on perception data of the surrounding environment to
generate the human-like trajectory. As an example and not
by way of limitation, the system may capture the perception
data 161 of the surrounding environment using one or more
sensors or access the perception data 161 of the surrounding
environment from a database. The system may use a feature
extraction algorithm 162 (e.g., a pattern recognition algo-
rithm, an object recognition algorithm) to extract features or
objects 163 of the surrounding environment based on the
perception data 161. The extracted features or objects 163 of
the surrounding environment may be associated with the
moving path of the heuristic-based trajectory and may
include, for example, but are not limited to, a road lane, a
road boundary, a center line, an obstacle, a nearby vehicle,
a pedestrian, a stop sign, a traffic signal, etc.

In particular embodiments, the ML-based trajectory gen-
erator 164 may receive these features 163 and the heuristic-
based trajectory 165 (e.g., in a time sequence format). The
ML-based trajectory generator 164 may adjust one or more
parameters or one or more parameter distributions of the
heuristic-based trajectory 165 based on one or more features
163 to generate the human-like trajectory 166. In particular
embodiments, the perception data 161 of the surrounding
environment may include one or more images (e.g., raster
images, RGB images), LiDAR data, map data, radar data,
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etc. As an example and not by way of limitation, the features
received by the ML-based trajectory generator 164 may
include the boundary lines of the road on which the vehicle
is navigated. The ML-based trajectory generator 164 may
determine the distances of the vehicle to the boundary lines
according to the heuristic-based trajectory 165 and adjust the
distance values of the vehicle to the boundary lines or adjust
the distance distribution (over the moving path or over time)
of the heuristic-based trajectory 165 to generate the human-
like trajectory 166. As a result, the human-like trajectory 166
may have a different moving path with respect to the
heuristic-based trajectory 165 and may provide riding expe-
rience that is more similar to human-driven trajectories. In
particular embodiments, the ML-based trajectory generator
164 may receive heuristic-based trajectories that are repre-
sented by images. As an example and not by way of
limitation, a heuristic-based trajectory may be represented
by one or more raster images including the moving path of
the vehicle including a series of data points. Fach data point
may be associated with a number of parameters (e.g., vehicle
coordinates, vehicle velocity, vehicle acceleration, etc.) and
a time moment. The ML-based trajectory generator 164 may
receive heuristic-based trajectories as represented by the
raster images of the scene and output a sequence of data
points for the corresponding human-like trajectories.

FIG. 2A illustrates an example framework 200A for
training the machine-learning-based trajectory generator
using an adversarial network (GAN). In particular embodi-
ments, the ML-based trajectory generator for generating
human-like trajectories may correspond to the generator 202
(denoted by G) of the GAN framework 200A and may be
trained within the GAN framework 200A. At a high level,
the GAN framework 200A may include two machine-
learning models (e.g., neural networks): the generator 202
(denoted by G) and the discriminator 206 (denoted by D).
The system may use a motion planning algorithm 212 to
generate a heuristic-based trajectory 201 based on the per-
ception data 211 of the surrounding environment. The gen-
erator 202 may generate the human-like trajectory 203 based
on the heuristic-based trajectory 201. In particular embodi-
ments, the generator 202 may generate the human-like
trajectory 203 based on the heuristic-based trajectory 201
and the features or objects of the surrounding environment
determined by the feature extraction algorithm 213 based on
the perception data 211. The discriminator 206 may be
tasked to discriminate human-driven trajectories and non-
human-driven trajectories (e.g., algorithmically generated
heuristic-based trajectories, algorithmically generated
human-like trajectories). In this disclosure, the trajectories
that are generated based on the human-driving data and used
by human drivers to navigate vehicles may be referred to as
“real human-driven trajectories”. The trajectories that are
generated by computer algorithms (e.g., algorithmically
generated heuristic-based trajectories or algorithmically
generated human-like trajectories) based on the perception
data of the surrounding environment may be referred to as
“fake human-driven trajectories”. The discriminator 206
may discriminate real/fake human-driven trajectories by
determining a probability value for each input trajectory
indicating a probability level of that input trajectory to be a
real or fake human-driven trajectory. During the training
process, the generator 202 may be optimized based on: (1)
a first loss function 204 which compares the heuristic-based
trajectory 201 (denoted by T) to the corresponding human-
like trajectory 203 (denoted by T') generated by the genera-
tor 202; and (2) a second loss function 208 associated with
the discriminator 206 for determining the loss values for
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fake human-driven trajectories. The generator 202 may be
optimized to generate human-like trajectories 202 that are
more similar to human-driven trajectories and try to fool the
discriminator 206 to classify the human-like trajectories as
real human-driven trajectories. On the other hand, the dis-
criminator 206 may be optimized based on the loss functions
208 and 209 for fake and real human-driven trajectories,
respectively, to more accurately discriminate real/fake
human-driven trajectories.

In particular embodiments, the discriminator 206 may be
pre-trained using a supervised training process based on
labeled training samples 205. The labeled training samples
205 may include labeled real human-driven trajectories and
labeled fake human-driven trajectories. These real/fake
human-driven trajectories may be associated with different
scenarios that are encountered by vehicles in the surround-
ing environment. The information related to the scenarios
and the surrounding environment may be used to select
trajectories associated with particular scenarios to feed to the
GAN framework for training the discriminator. The infor-
mation related to the scenarios and the surrounding envi-
ronment may include GPS data. During the supervised
training process, the labeled real/fake human trajectories of
the labeled training samples 205 may be fed to the discrimi-
nator 206. The discriminator 206 may discriminate or clas-
sify the input trajectories based on the current model param-
eter values (e.g., neural network weight values). The
discriminator 206 may use the current parameter values
(e.g., neural network weight values) to determine, for each
input trajectory, a first probability value P, indicating a
probability level of that input trajectory to be a real human-
driven trajectory. The discriminator 206 may determine a
second probability value P.=1-P, indicating a probability
level of that input trajectory to be a fake human-driven
trajectory. The discriminator 206 may compare the first
probability value P to a pre-determine threshold (e.g., 0.5)
and may classify the input trajectory as a real human-driven
trajectory when Py, is greater than the pre-determined thresh-
old value (e.g. 0.5). The discriminator 206 may classify the
input trajectory as a fake human-driven trajectory when P,
is smaller than or equal to the pre-determined threshold
value (e.g. 0.5). The discriminator 206 may output a “Real”
or “Fake” label 207 (e.g., 1 for “Real”, O for “Fake”) to be
associated with the input trajectory and use the loss func-
tions 208 and 209 to determine the corresponding loss
values based on the corresponding probability values.

In particular embodiments, the discriminator 206 may use
the loss function 209 to calculate loss values for real
human-driven trajectories (e.g., pre-labeled real human-
driven trajectories included in the labeled training samples
205). The discriminator 206 may use the loss function 209
to calculate the loss value for a prediction or classification
for an input trajectory that is pre-labeled as a real human-
driven trajectory using the following equation:

M

where, Py is the probability value for the input trajectory to
be a real human-driven trajectory as determined by the
discriminator 206 based on the current parameter values,
A; s rear 18 the loss value for this prediction or classifica-
tion. The loss value A, .. ,..; as determined by Equation (1)
may indicate a difference (or an error) between the calcu-
lated probability value P, for the associated trajectory to be
a real human-driven trajectory and the ideal probability
value of 1 which corresponds to a probability of 100%.
Similarly, the loss function 208 used by the discriminator
206 for calculating loss values for pre-labeled or known fake

Aposs rear"1-Pr
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human-driven trajectories may calculate the loss value for a
prediction or classification of an input trajectory that is
pre-labeled as or known to be a fake human-driven trajec-
tory using the following equation:

Aposs Fake=1=Pr=1-(1-Pr)=Pg ()]

where, P is the probability value for the input trajectory to
be a fake human-driven trajectory as determined by the
discriminator 206 based on the current parameter values, P,
is the probability value for the input trajectory to be a real
human-driven trajectory as determined by the discriminator
206 based on the current parameter values, A, . .. is the
loss value for this prediction. The loss value A; .. zuz aS
determined by Equation (2) may indicate a difference (or an
error) between the calculated probability value P, for the
associated trajectory to be a fake human-driven trajectory
and the ideal probability value of 1 which corresponds to a
probability of 100%. In particular embodiments, instead of
using Equations (1) and (2) to calculate the loss values for
corresponding predictions, the system may use a binary
cross-entropy function (e.g., a Log-loss function) as the loss
functions to calculate the loss values for the predictions or
classifications using the following equations:

Al oss rear—10g(1-Pg) 3

Q)

In particular embodiments, during the pre-training pro-
cess for the discriminator 206, the discriminator 206 may
adjust one or more of the model parameters (e.g., ML model
weights) in a way that will minimize the loss values as
determined by the loss functions 208 and 209. For example,
for a particular input trajectory that is pre-labelled as a real
human-driven trajectory, the discriminator 206 may cor-
rectly classify that input trajectory into “real” category or
incorrectly classify that input trajectory into “fake” category
based on the current model parameter values. The discrimi-
nator 206 may calculate the loss value for this prediction or
classification using the loss function 209 (e.g., as described
in Equation (1) or (3)) and feed the calculated loss value
back to the discriminator 206. The discriminator 206 may be
optimized (e.g., by an optimization algorithm) to adjust one
or more of its parameters to minimize the loss value. As
another example, for a particular input trajectory that is
pre-labelled as a fake human-driven trajectory, the discrimi-
nator 206 may correctly classify that input trajectory into the
“fake” category or incorrectly classify that input trajectory
into the “real” category based on the current model param-
eter values. The discriminator 206 may calculate the loss
value for this prediction or classification using the loss
function 208 (e.g., Equation (2) or (4)) and feed the calcu-
lated loss value back to the discriminator 206. The discrimi-
nator 206 may be optimized (e.g., by an optimization
algorithm) to adjust one or more of its parameters to
minimize the loss value. After the discriminator 206 is
pre-trained to a certain level (e.g., the classification correct-
ness rate being higher than a pre-determined threshold), the
discriminator 206 may be used in the GAN framework 200A
to discriminate the human-like trajectories 203 generated by
the generator 202.

In particular embodiments, the generator 202 may gen-
erate the human-like trajectory 203 based on the heuristic-
based trajectory 201 which is generated by the motion
planning algorithm 212 based on the perception data 211.
The generator 202 may refine the heuristic-based trajectory
201 by adjusting one or more parameters or one or more
parameter distributions of the heuristic-based trajectory 201

Aposs Fake=—10g(Pr)
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to make it more similar to human-driven trajectories. In
particular embodiments, the generator 202 may generate the
human-like trajectory 203 based on the heuristic-based
trajectory 201 and one or more features or objects of the
surrounding environment as determined by the feature
extraction algorithm 213 based on the perception data 211.
The generator 202 may refine the heuristic-based trajectory
201 by adjusting one or more parameters or parameter
distributions of the heuristic-based trajectory 201 based on
one or more features (e.g., road lanes, road boundaries, road
signs, traffic signals, etc.) or objects of the surrounding
environment. In particular embodiments, the human-like
trajectory 203 may be different from the heuristic-based
trajectory 201 in one or more aspects related to one or more
parameters or parameter distributions. For example, the
human-like trajectory 203 may have a less aggressive deac-
celeration process when slowing down and stopping the
vehicle for a stop sign. As another example, the human-like
trajectory 203 may have a moving path that is more similar
to a human-driven trajectory than the heuristic-based trajec-
tory 201 (e.g., as illustrated in FIG. 1C).

However, in some scenarios, the human-like trajectory
203 could deviate from the heuristic-based trajectory 201
too far and that would cause some problems. For example,
if the human-driven trajectory 203 has a moving path that
deviates from the moving path of the heuristic-based trajec-
tory 201 and the difference is greater than a pre-determined
threshold range, the human-driven trajectory 203 may not
meet the safety criteria for navigating the vehicle (e.g., by
being too close to an obstacle in the surrounding environ-
ment). As another example, if the generator 202 repeatedly
generates a same or similar human-like trajectory that is
very different from the input heuristic-based trajectories but
can successfully fool the discriminator 206 during the train-
ing process, the generator 202 may appear to have met the
training target (e.g., successfully fooling the discriminator
206) while actually have a modal collapse failure.

To solve these problems, particular embodiments of the
system may use the loss function 204 to apply constraints on
the training process of the generator 202. The constraints
may require the human-like trajectory 203 generated by the
generator 202 to be as close as possible to the corresponding
heuristic-based trajectory 201 being fed to the generator 202.
In particular embodiments, the loss function 204 may deter-
mine the loss value by comparing the human-like trajectory
203 to the corresponding heuristic-based trajectory 201
using the following equation:

=771 ®

where, Tis the heuristic-based trajectory being fed to the
generator 202, T' is the corresponding human-like trajectory
generated by the generator 202. In particular embodiments,
during the training process for training the generator 202
using the GAN framework 200A, the generator 202 may
generate the human-like trajectory 203 by refining the
heuristic-based trajectory 201 and determine the loss value
for this generating process (or may be referred to as a
prediction process) using the loss function 204 as described
by Equation (5). Then, the system may feed the loss value
to the generator 202 which may be optimized (e.g., by an
optimization algorithm) to adjust the values of one or more
of model parameters in a way that will minimize the loss
value.

In particular embodiments, during the process for training
the generator 202 using the GAN framework 200A, the
system may feed the human-like trajectory 203 to the
discriminator 206. The discriminator 206 may classify the
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human-like trajectory 203 based on the current model
parameter values of the discriminator 206. The discriminator
206 may output a “Real” or “Fake” label 107 for the
human-like trajectory 203 based on the current model
parameters values of the discriminator 206. For example, the
discriminator 206 may correctly classify the human-like
trajectory 203 as a fake human-driven trajectory or incor-
rectly classify the human-like trajectory 203 as a real
human-driven trajectory. In either scenario, the discrimina-
tor 206 may determine a probability value P, indicating a
probability level for the input human-like trajectory 203 be
a real human-driven trajectory and a probability value
P=1-P indicating a probability level for the input human-
driven trajectory 203 to be a fake human-driven trajectory.
Since the human-like trajectory 203 is known to be a fake
human-driven trajectory, the discriminator 206 may deter-
mine a loss value for this prediction or classification based
using the loss function 208 for fake human-driven trajectory.
Then, the system may feed the loss value as determined by
the loss function 208 to the generator 202 to optimize the
generator 202. The generator 202 may be optimized (e.g., by
an optimization algorithm) to adjust one or more model
parameters (e.g., neural network weights) in a way that will
maximize the loss value as determined by the loss function
208.

As described in the earlier sections (e.g., Equations (2)
and (4)) of this disclosure, the loss value for fake human-
driven trajectories may equal to or correspond to the prob-
ability value indicating the probability level of the input
human-like trajectory 203 to be a real human-driven trajec-
tory (e.g., Az s rare Pr)s as determined by Equation (2) or
A s Fave——10g(Pz) as determined by Equation (4)). There-
fore, maximizing the loss value for the fake human-driven
trajectory may maximize the probability value for the input
human-like trajectory to be a real human-driven trajectory.
In other words, the loss value as determined by the loss
function 208 of the discriminator 206 may be fed back to the
generator 202 to cause the generator 202 to be optimized by
adjusting one or more model parameters in a way that will
maximize the probability value that the human-like trajec-
tory 203 would be classified as a real human-driven trajec-
tory by the discriminator 206. Therefore, after the param-
eters of the generator 202 have been adjusted in each
iteration of the training process, the generator 202 may
generate subsequent human-like trajectories that would be
more likely to fool the discriminator 206 by causing the
discriminator 206 to classify these human-like trajectories as
real human-driven trajectories.

In particular embodiments, the loss value as determined
by the loss function 208 for the human-like trajectory 203
(which is a fake human-driven trajectory) may be fed back
to the discriminator 206 to cause the discriminator 206 to be
optimized based on this loss value. The discriminator 206
may be optimized (e.g., by an optimization algorithm) to
adjust one or more model parameters (e.g., neural network
weights) in a way that would minimize the loss value for this
prediction or classification as determined by the loss func-
tion 208. In other words, the discriminator 206 may be
optimized to minimize the probability value indicating the
probability level for the human-like trajectory 203 to be a
real human-driven trajectory (because the human-like tra-
jectory 203 is known to be a fake human-driven trajectory).
As a result, the discriminator 206 may be optimized in each
iteration of the training process to more accurately discrimi-
nate real/fake human-driven trajectories.

In particular embodiments, the discriminator 206 may
determine a similarity metric for each input trajectory with
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respect to one or more observed human-driven trajectories
(e.g., stored in a database). The similarity metric may be
determined based on a comparison of: one or more driving
characteristics, one or more trajectory parameter values, one
or more trajectory parameter distributions (e.g., over the
moving path or over time), one or more trajectory parameter
profiles, or a combination of thereof. The discriminator 206
may compare the similarity metric of the input trajectory to
a pre-determined similarity threshold. In response to the
similarity metric satistying the similarity threshold, the
discriminator 206 may identify that input trajectory as a real
human-driven trajectory. In response to the similarity metric
failing to satisfy the similarity threshold, the discriminator
206 may identify that input trajectory as a fake human-
driven trajectory. Since whether the input trajectory (e.g., a
human-like trajectory generated by the generator 202 or a
labeled trajectory from the labeled sample 205) is a real
human-driven trajectory is known to the system, the dis-
crimination result may be compared with that known tra-
jectory status (e.g., real or fake) and may be fed back to the
discriminator 206 through the corresponding loss function to
optimize the discriminator 206.

In particular embodiments, the generator 202 and dis-
criminator 206 may be trained in turn using different training
processes. For example, the system may first train the
discriminator 206 during a supervised learning process
(similar to the pre-training process as described in earlier
sections of this disclosure) using a group of pre-labeled real
and fake human-driven trajectories. Then, the system may
train the generator 202 by feeding a group of heuristic-based
trajectories 201 to the generator 202, causing the generator
202 to generate human-like trajectories 203, adjusting one or
more parameters of the generator 202 based on the loss
function 204, feeding the human-like trajectories 203 to the
discriminator 206, and adjusting one or more parameters of
the generator 202 based on the loss function 208 of the
discriminator 206. The generator 202 may be evaluated to
check whether it meets the criteria of successfully fooling
the discriminator 206. Then, the system may repeat the
supervised learning process for training the discriminator
206 using another group of pre-labeled real and fake human-
driven trajectories and repeat the training process for the
generator 202 using another group of heuristic-based trajec-
tories 201. These training processes may be repeated and the
generator 202 and discriminator 206 may be trained in turn
back and force until the generator 202 meets pre-determined
training criteria.

In particular embodiments, the system may train the
generator 202 and the discriminator 206 simultaneously in
the same training process (e.g., in different sub-steps of the
same process) using a same batch of training samples. For
example, the system may store a large number of heuristic-
based trajectories and a large number of human-driven
trajectories in a database. The heuristic-based trajectories
and the human-driven trajectories may be organized into a
number of batches (also referred to as mini batches). Each
batch of the training samples may include N number of
heuristic-based trajectories (e.g., N=10) and M number of
human-driven trajectories (e.g., M=10). During the training
process, the system may access and retrieve a batch of
training samples from the database and use the M number of
human-driven trajectories to train the discriminator 206
which may be optimized by adjusting one or more model
parameters based on the loss function 209 for real human-
driven trajectories. The model parameters of the discrimi-
nator 206 may be adjusted in a way to minimize the loss
values as determined based on the loss function 209 for the
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real human-driven trajectories. The discriminator 206 with
the adjusted model parameters may discriminate real/fake
human-driven trajectories more accurately (e.g., with a
higher correctness rate).

As the same time, the system may feed the N number of
heuristic-based trajectories of the same batch to the genera-
tor 202. The generator 202 may generate the corresponding
human-like trajectories 203 based on the heuristic-based
trajectories 202 that are fed to the generator 202 (or further
based on the features or objects as determined by the feature
extraction algorithm 213 based on the perception data 211 of
the surrounding environment). The system may optimize the
generator 202 by adjusting its model parameters to minimize
the loss values as determined based on the loss function 204.
Then, the system may feed the human-like trajectories 203
that are generated by the generator 202 to the discriminator
206. The discriminator 206 may classify or discriminate the
input human-like trajectories based on current model param-
eter values and output the “Real” or “Fake” label for each of
these input trajectories. The system may determine the loss
values for this classifications or predictions using the loss
function 208 since these human-like trajectories are known
to be fake human-driven trajectories. Then, the system may
feed the loss values as determined by the loss function 208
to the generator 202 and the discriminator 206. The genera-
tor 202 may be updated by adjusting its model parameters to
maximize the loss values as determined by the loss function
208. And, at the same time, the discriminator 206 may be
updated by adjusting its model parameters to minimize the
loss values as determined by the loss function 208. As a
result, the generator 202 and the discriminator 206 may be
updated simultaneously in the same iteration process using
the same batch of training samples. After both the generator
202 and the discriminator 206 are updated, the system may
access a new batch of training samples and repeat the
training process for another iteration. This training process
may be repeated until the generator 202 meets pre-deter-
mined training objectives. In particular embodiments, using
the GAN framework, the generator 202 and the discrimina-
tor 206 may be trained iteratively and incrementally.

In particular embodiments, the system may store a large
number of human-driven trajectories and a large number of
heuristic-based trajectories in a database as training samples.
The human-driven trajectories and the heuristic-based tra-
jectories may be organized into mini-batches with each
batch including N number of heuristic-based trajectories and
M number of human-driven trajectories. To ensure the
quality of the training samples, the trajectories stored in the
database may cover a number of representative scenarios
that could possibly be encountered by vehicles in the sur-
rounding environment and the human-driven trajectories
that have unwanted characteristics (e.g., harsh braking,
reckless driving, speeding, etc.) may be excluded. In par-
ticular embodiments, the trajectories may be associated with
scenarios including, for example, but not limited to, lane
keeping, lane merging, passing other vehicles, starting from
a stop sign or traffic signal, stopping for a stop sign or a
traffic signal, making a turn, yielding to other traffic, yield-
ing to vehicles in roadside areas, navigating on a zigzag or
swinging road, etc.

In particular embodiments, the MIL-based trajectory gen-
erator may be a general ML model that is trained using
training samples of all scenarios included an operation
design domain. For example, the ML-based trajectory gen-
erator may be trained using training samples of each sce-
nario of the operational design domain and may be evaluated
to determine whether the training objectives are met per
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scenario. The ML-based trajectory generator, once trained,
may process heuristic-based trajectories of any scenarios
included in the operation design domain to generate corre-
sponding human-like trajectories. In particular embodi-
ments, instead of using a general ML-based trajectory gen-
erator for all scenarios, the system may use a number of
ML-based trajectory generators each for a particular sce-
nario (or a combination of multiple scenarios). The system
may train a ML-based trajectory generator for a particular
scenario using the training samples of that particular sce-
narios using the GAN framework. Once all ML-based
trajectory generators meet the training objectives, they may
be deployed to AVs to improve the riding experience. At run
time, an AV with the ML-based trajectory generators may
identify the current scenario that is encountered by the AV
and select corresponding MIL-based trajectory generator
based on the current scenario. The AV may generate a
heuristic-based trajectory and use the selected ML-based
trajectory generator to refine the heuristic-based trajectory
and generate the human-like trajectory to navigate the
vehicle.

It is notable that using the GAN framework to train the
ML-based trajectory generator may provide a number of
advantages with respect to using other methods (e.g., VAE)
to train the ML-based trajectory generator. For example, by
using the GAN framework, the ML-based trajectory gen-
erator may be optimized based on the discrimination results
of the discriminator with no need for directly comparing the
generated human-like trajectories to the real human-driven
trajectories. As another example, the GAN framework may
allow the ML -based trajectory generator and the discrimi-
nator to be trained and optimized incrementally with many
iterations. By incrementally optimizing the discriminator
based on the loss functions for the fake/real human-driven
trajectories, the discriminator may get better and better over
time for discriminating the fake/real human-driven trajecto-
ries. By incrementally optimizing the ML-based trajectory
generator to get better at fooling the discriminator, the
ML-based trajectory generator may get better and better
over time for generating human-like trajectories that are
more similar to real human-driven trajectories. The incre-
mental and iterative training process enabled by the GAN
framework may provide an effective solution for training the
ML-based trajectory generator without limitations on the
amount of training data samples. For example, whenever
new collected human-driving data of specific scenarios is
made available, the data may be supplemented to the GAN
framework to further train and optimize the ML-based
trajectory generator for that scenario.

FIG. 2B illustrate an example process 200B for training
the machine-learning-based trajectory generator using a
supervised learning process. In particular embodiments, the
ML -based trajectory generator (later referred to as “genera-
tor”) for generating human-like trajectory may be trained in
a supervised learning process using pre-generated training
samples (e.g., heuristic-based and human-driven trajectory
pairs). The heuristic-based trajectory and the corresponding
human-driven trajectory in the same trajectory pair may be
for navigating vehicles in accordance with the same scenario
in the same surrounding environment. As an example and
not by way of limitation, the system may access a number
of heuristic-based and human-driven trajectory pairs (de-
noted by T-H pairs) from a database. The system may feed
a heuristic-based trajectory 201 (denoted by T) to the
generator 202 (denoted by D). The generator 202 may refine
the heuristic-based trajectory 201 by adjusting one or more
trajectory parameters or parameter distributions to generate
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the human-like trajectory 203 (denoted by T"). In particular
embodiments, the system may further access the perception
data of the surrounding environment associated with the
heuristic-based trajectory 201, extract features (e.g., road
lanes, traffic signs, etc.) of the surrounding environment and
feed these extracted features to the generator 202. The
generator 202 may refine the heuristic-based trajectory 201
based on the features of the surrounding environment to
generate the human-like trajectory 203. Then, the system
may determine a loss value based on the loss function 224
which may compare the human-like trajectory 203 to the
corresponding human-driven trajectory 224 (e.g., of the
same trajectory pair). The system may feed the loss value as
determined by the loss function 224 to the generator 202 to
cause the generator to be updated and optimized. The
generator 202 may be optimized to adjust one or more model
parameters to minimize the loss value as determined based
on the loss function 224. This training process may be
repeated until the generator 202 is trained to generate
human-like trajectories 203 that meet pre-determined crite-
ria.

In particular embodiments, the system may train the
ML-based trajectory generator for generating human-like
trajectories (later referred to as “generator) using a super-
vised learning process based on the pre-generated heuristic-
based and human-driven trajectory pairs in addition to the
training process using GAN. As an example and not by way
of limitation, the system may access a number of heuristic-
based and human-driven trajectory pairs from a database and
use these trajectory pairs to train the generator 202 using a
supervised learning process. The system may feed the heu-
ristic-based trajectories 201 to the generator 202 to generate
corresponding human-like trajectories 203 which will be fed
to the discriminator 206 (as shown in FIG. 2A). The model
parameters of the generator 202 may be updated or adjusted
to minimize the loss values as determined by the loss
function 224. At the same time, the model parameters of the
generator 202 may be updated or adjusted to minimize the
loss values as determined by the loss function 204 and to
maximize the loss values as determined by the loss function
208, as described in earlier sections of this disclosure.

FIG. 3A illustrates an example process 300A for gener-
ating human-like trajectories using a variational autoencoder
(VAE). In particular embodiments, the system may use a
variational autoencoder (VAE) to refine heuristic-based tra-
jectories and generate corresponding human-like trajecto-
ries. As an example and not by way of limitation, the VAE
310 may include an encoder 311 and a decoder 313. The
system may feed the heuristic-based trajectory 301 to the
encoder 311 of the VAE 310. The encoder 311 may generate
a compressed low dimensional digital representation 312 for
the input heuristic-based trajectory 301. Then, the decoder
313 may generate a reconstructed trajectory based on the
compressed low dimensional digital representation 312. The
reconstructed trajectory may be different from the heuristic-
based trajectory 311 and may be more similar to human-
driven trajectories than the heuristic-based trajectory 301 in
one or more aspects related to one or more trajectory
parameters or parameter distributions. The reconstructed
trajectory may be used as the human-like trajectory 305 for
providing riding experience that is more similar to human-
driven vehicles.

FIG. 3B illustrates an example process 300B for training
a variational autoencoder (VAE) to generate human-like
trajectories. In particular embodiments, the system may train
the VAE using a supervised learning process based on
pre-generated training samples. For example, the system
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may pre-generate a number of heuristic-based and human-
driven trajectory pairs. The heuristic-based trajectory (de-
noted by T) and the corresponding human-driven trajectory
(denoted by H) in the same trajectory pair may be for
navigating vehicles in accordance with the same scenario in
the same surrounding environment. During the training
process, the system may feed the heuristic-based trajectory
311 to the VAE 310 which may generate the human-like
trajectory 313 (denoted by T') based on the heuristic-based
trajectory 311. Then, the system may determine a first loss
value using the loss function 316 which compares the
heuristic-based trajectory 311 to the corresponding human-
like trajectory 313. The system may feed the first loss value
to the VAE 310 to cause the VAE to be optimized by
adjusting one or more parameters to minimize the first loss
value as determined by the loss function 316. At the same
time, the system may determine a second loss value based on
the loss function 314 which compares the human-like tra-
jectory 313 to the corresponding human-driven trajectory
315. The human-driven trajectory 315 may be a trajectory of
a human-driven vehicle navigated in accordance with the
same scenario in the same surrounding environment with the
heuristic-based trajectory 311. Then, the system may feed
the second loss value determined using the loss function 314
to the VAE 310 to cause the VAE 310 to be optimized by
adjusting one or more parameters to minimize the second
loss value determined by the loss function 314. These
training processes may be repeated and the VAE 310 may be
trained to generate human-like trajectories 313 that are more
similar to real human-driven trajectories through these itera-
tive training process.

FIG. 4A illustrates an example method 400A for training
a ML-based trajectory generator for generating human-like
trajectory based on heuristic-based trajectories. In particular
embodiments, the method may begin at step 410, where a
computing system associated with a vehicle and/or a back-
end computing system may access a database to retrieve a
batch of trajectories including a number of heuristic-based
trajectories and a number of human-driven trajectories for
training the generator (e.g., 202 in FIG. 2A) and the dis-
criminator (e.g., 206 in FIG. 2B). The database may include
anumber of batches of trajectories with each batch including
a number of heuristic-based trajectories and a number of
human-driven trajectories. At step 420, the system may feed
the heuristic-based trajectories to the generator which may
generate corresponding human-like trajectories by modify-
ing the driving characteristics of the heuristic-based on
trajectories. The system may use a loss function to compare
the human-like trajectories generated by the generator to the
heuristic-based trajectories that were fed to the generator to
determine loss values and feed that loss values to the
generator to optimize the model parameters of the generator.
The model parameters of the generator may be optimized in
a manner that will minimize the loss values (i.e., minimizing
the difference between the generated human-like trajectories
and the heuristic trajectories fed to the generator).

At step 430, which may be concurrent to the step 420, the
system may feed the human-driven trajectories to the dis-
criminator which may discriminate these input trajectories
using the current model parameters. Since these human-
driven trajectories are known to be “real” human-driven
trajectories, the system may use the loss function for “real”
human-driven trajectories (e.g., loss function 209 in FIG.
2A) to determine the loss values and feed that loss values to
the discriminator to optimize the model parameters of the
discriminator. The model parameters of the discriminator
may be optimized in a manner that will minimize the loss
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values. At step 440, the system may feed the human-like
trajectories generated by the generator to the discriminator
which may discriminate these human-like trajectories based
on the current model parameters of the discriminator. Since
these human-like trajectories are known to be “fake” human-
driven trajectories, the system may use the loss function for
the “fake” human-driven trajectories (e.g., 208 in FIG. 2A)
to determine the loss values and feed these loss values to the
discriminator. The model parameters of the discriminator
may be optimized in a manner that will minimize the loss
values as determined by the loss function for “fake” human-
driven trajectories. At step 450, which may be concurrent to
the step 440, the system may feed the loss values as
determined by the loss function for the “fake” human-driven
trajectories to the generator to optimize the model param-
eters of the generator. The model parameters of the generator
may be optimized in a manner that will maximize the loss
values as determined by the loss function for the “fake”
human-driven trajectories.

Particular embodiments may repeat one or more steps of
the method of FIG. 4A, where appropriate. Although this
disclosure describes and illustrates particular steps of the
method of FIG. 4A as occurring in a particular order, this
disclosure contemplates any suitable steps of the method of
FIG. 4A occurring in any suitable order. Moreover, although
this disclosure describes and illustrates an example method
for training a ML-based trajectory generator for generating
human-like trajectory based on heuristic-based trajectories
including the particular steps of the method of FIG. 4A, this
disclosure contemplates any suitable method for training a
ML-based trajectory generator for generating human-like
trajectory based on heuristic-based trajectories including
any suitable steps, which may include all, some, or none of
the steps of the method of FIG. 4A, where appropriate.
Furthermore, although this disclosure describes and illus-
trates particular components, devices, or systems carrying
out particular steps of the method of FIG. 4A, this disclosure
contemplates any suitable combination of any suitable com-
ponents, devices, or systems carrying out any suitable steps
of the method of FIG. 4A.

FIG. 4B illustrates an example process 400B for gener-
ating and selecting appropriate trajectories to navigate an
autonomous vehicle. In particular embodiments, after the
trajectory generator (e.g., a ML-based trajectory generator, a
VAE, a trajectory refining algorithm) has been trained to
meet pre-determined criteria, the trajectory generator may
be deployed to AVs to improve the riding experience for
passengers. As an example and not by way of limitation, an
AV may use one or more vehicle sensors 401 to capture the
perception data 402 of the surrounding environment. Then,
the AV may use a motion planning algorithm 403 to generate
a heuristic-based trajectory 404. After that, the AV may use
a trajectory generator 405 (e.g., a ML-based trajectory
generator, a VAE, a trajectory refining algorithm) to generate
a human-like trajectory 406 based on the heuristic-based
trajectory 404. In particular embodiments, the system may
use a feature extraction algorithm 413 to determine the
features or objects (e.g., obstacles, road lanes, road bound-
aries, etc.) of the surrounding environment based on the
perception data 402 and feed the extracted features or
objects to the trajectory generator 405. The trajectory gen-
erator 405 may refine the heuristic-based trajectories based
on the features or objects 414 to generate the human-like
trajectory 406. The human-like trajectory 406 may be more
similar to human-driven trajectories than the heuristic-based
trajectory 404.
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In particular embodiments, the human-like trajectory 406
may be different from the heuristic-based trajectory 404 in
one or more aspects related to one or more parameters or
parameter distributions. For example, the human-like tra-
jectory 406 may have a different distance to a road boundary,
a different moving path, a different acceleration distribution
profile, a different velocity distribution profile, a different
steering angle distribution profile, etc. In general, the
human-like trajectory 406, although different from the heu-
ristic-based trajectory 404 in one or more aspects, may
deviate from the heuristic-based trajectory 404 no more than
a pre-determined range. In some scenarios, if difference
between the human-like trajectory 406 and the heuristic-
based trajectory 404 is beyond the pre-determined range, the
human-like trajectory 406 may become unstable for navi-
gating the AV. In particular embodiments, the AV may
evaluate the human-like trajectory 406 using an evaluation
algorithm 407 to determine whether the human-like trajec-
tory 406 meets one or more pre-determined safety criteria.
In particular embodiments, the pre-determine safety criteria
may include, for example, but are not limited to, avoiding
collision with other agents in the surrounding environment,
keeping safety distances to other agents in the surrounding
environment, following the traffic rules, avoiding cross lane
boundaries, keeping vehicles under speed limits, or any
suitable safety-related criteria. For example, the evaluation
algorithm 407 may compare the human-like trajectory 406
to the heuristic-based trajectory 404 to determine a similar
metric based on the similarity level of the human-like
trajectory 406 and the heuristic-based trajectory 404. The
similar metric may be determined based on a matching level
of ono or more parameters or one or more parameter
distributions between the human-like trajectory 406 and the
heuristic-based trajectory 404. The system may determine
that the human-like trajectory 406 meets the safety criteria
if the similar metric is greater than or equal to a pre-
determined threshold. The system may determine that the
human-like trajectory 406 fails to meet the safety criteria if
the similar metric is below the pre-determined threshold. As
another example, the evaluation algorithm 407 may evaluate
the human-like trajectory 406 using one or more pre-
determined safety rules (e.g., the closest distance to an
obstacle being greater than a threshold distance, the maxi-
mum velocity or/fand maximum acceleration being within a
pre-determined range, etc.). The system may determine that
the human-like trajectory 406 meets the safety criteria if the
human-like trajectory 406 satisfies each of the safety rules.
The system may determine that the human-like trajectory
406 fails to meet the safety criteria if the human-like
trajectory 406 fails to meet one or more of these safety rules.
In response to a determination that the human-like trajectory
406 meets the safety criteria, the AV may determine one or
more vehicle operations to navigate based on the human-like
trajectory 406. In response to a determination that the
human-like trajectory fails to the pre-determined safety
criteria, the AV may use the heuristic-based trajectory 404 to
determine one or more vehicle operations to navigate the AV
based on the heuristic-based trajectory 404.

In particular embodiments, the AV may identify a scenario
encountered by the AV in the surrounding environment
based on the sensor data from one or more sensors associ-
ated with the AV. The AV may predict what other agents in
the surrounding environment will do (e.g., positions, mov-
ing trajectories, moving speeds, moving directions, etc.) and
generate potential trajectories for AV to navigate in the
surrounding environment in accordance with the identified
scenario. These potential trajectories may be generated
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based on one or more heuristic rules and the identified
scenario. As discussed in earlier sections of this disclosure,
the heuristic-based trajectories may be different from
human-driven trajectories in one or more aspects (e.g.,
different parameter distribution profiles). In particular
embodiments, a computing system associated with the AV
and/or a backend computing system may use the systems,
methods, and processes as described in this disclosure to
generate human-like trajectories by modifying one or more
driving characteristics of the heuristic-based trajectories.
The human-like trajectories may have a higher similarity
level with respect to the human-driven trajectories than the
heuristic-based trajectories. The human-like trajectories may
have one or more driving characteristic that satisfy a simi-
larity threshold related to the human-driving characteristics
of observed human-driven trajectories.

In particular embodiments, the AV may generate a number
of human-like trajectories that satisfy the similarity thresh-
old and evaluate these human-like trajectories based on their
similarity with respect to human-driven trajectories (in addi-
tion to the safety criteria as discussed above). For example,
the AV may determine, for each human-like trajectory, a
similarity metric with respect to one or more observed
human-driven trajectories. The similarity metric may be
determined based on a comparison of: one or more driving
characteristics, one or more trajectory parameter values, one
or more trajectory parameter distributions (e.g., over the
moving path or over time), one or more trajectory parameter
profiles, or a combination of thereof. The AV may score and
rank the human-like trajectories based on the determined
similarity metric and select the human-like trajectory with
the highest score for determining the vehicle operations. It
is notable that, for a vehicle driving in the surrounding
environment, its observed moving trajectory may be deter-
mined to be a heuristic-based trajectory, that was generated
based on heuristics, or a human-like trajectory, that was
generated using the systems, methods, and processes as
described in this disclosure, by comparing that observed
moving trajectory to observed human-driven trajectories.
For example, a similarity level of an observed vehicle
moving trajectory may be determined based on a compari-
son of one or more driving characteristics, one or more
trajectory parameter values, one or more trajectory param-
eter distributions (e.g., over the moving path or over time),
one or more trajectory parameter profiles, or a combination
of thereof, with respect to observed human-driven trajecto-
ries. The observed vehicle moving trajectory may be iden-
tified to be a human-like trajectory generated using the
systems, methods, and processes as described in this disclo-
sure based on a determination that its corresponding simi-
larity to observed human-driven trajectories satisfying the
pre-determined similarity threshold. In particular embodi-
ments, the pre-determined similarity threshold may be, for
example, but are not limited to, 5%, 1%, etc., and may be
redetermined based on experiential data.

FIG. 5 illustrates an example method 500 for generating
human-like trajectory based on heuristic-based trajectories.
In particular embodiments, the method may begin at step
510, where a computing system associated with a vehicle
may access sensor data associated with a surrounding envi-
ronment of a vehicle. At step 520, the system may generate,
based on the sensor data, a first trajectory having one or
more first driving characteristics for navigating the vehicle
in the surrounding environment. At step 530, the system may
generate a second trajectory having one or more second
driving characteristics by modifying the one or more first
driving characteristics of the first trajectory. The modifying
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may use adjustment parameters based on one or more
human-driving characteristics of observed human-driven
trajectories such that the one or more second driving char-
acteristics satisfy a similarity threshold relative to the one or
more human-driving characteristics. At step 540, the system
may determine, based on the second trajectory, vehicle
operations to navigate the vehicle in the surrounding envi-
ronment. In particular embodiments, the one or more first
driving characteristics may be associated with a first distri-
bution. The second driving characteristics may be associated
with a second distribution. The second distribution may be
more similar than the first distribution to a third distribution
associated with the observed human-driven trajectories.

In particular embodiments, the adjustment parameters
may be generated by a machine-learning model that is
trained based on loss values determined by one or more loss
functions based on human-like trajectories generated by the
machine-learning model during training and the observed
human-driven trajectories. In particular embodiments, the
machine-learning model may be a variational autoencoder
(VAE) trained based on comparisons between human-like
trajectories generated by the VAE with the observed human-
driven trajectories. In particular embodiments, the first tra-
jectory may be a heuristic-based trajectory generated by a
motion planning algorithm. The adjustment parameters may
be optimized based on first loss values determined by a first
loss function by comparing human-like trajectories gener-
ated by a machine-learning model with corresponding heu-
ristic-based trajectories. In particular embodiments, the
machine-learning model may have one or more model
parameters adjusted to minimize the first loss values deter-
mined by the first loss function by comparing the human-
like trajectories generated by the machine-learning model
with the corresponding heuristic-based trajectories. In par-
ticular embodiments, the machine-learning model may cor-
respond to a generator of a generative adversarial network
(GAN). The machine-learning model may be trained based
on second loss values determined by a second loss function
associated with a discriminator of the generative adversarial
network (GAN). In particular embodiments, the machine-
learning model may have one or more parameter adjusted to
maximize the second loss values determined by the second
loss function associated with the discriminator of the gen-
erative adversarial network (GAN).

In particular embodiments, the discriminator may be
trained based on a number of labeled training samples to
discriminate real and fake human-driven trajectories. The
labeled training samples may be associated with a number of
representative scenarios capable of being encountered by the
vehicle in the surrounding environment. In particular
embodiments, the first trajectory may be a heuristic-based
trajectory and the second trajectory may be a human-like
trajectory. The system may generate a number of human-like
trajectories by modifying the one or more first driving
characteristics of a number of heuristic-based trajectories.
The system may select a human-like trajectory from the
number of human-like trajectories based on one or more
pre-determined criteria. The vehicle operations may be
determined based on the selected human-like trajectory. In
particular embodiments, the system may identify a scenario
encountered by the vehicle in the surrounding environment.
The second trajectory may be generated by modifying the
one or more first driving characteristics based on the iden-
tified scenario. The system may compare the one or more
second driving characteristics of the second trajectory to one
or more human-driven profiles associated with the identified
scenario. The one or more second characteristics satisfying
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the similarity threshold relative to the one or more human-
driving characteristics may be determined based on this
above comparison. In particular embodiments, the discrimi-
nator may determine, for the second trajectory, a first prob-
ability value for the second trajectory to be a real human-
driving trajectory or a second probability value for the
second trajectory to be a fake human-driving trajectory.

In particular embodiments, the machine-learning model
may be trained based on data samples originated from a
plurality of data sources comprising one or more of: a
camera, a LiDAR system, or an inertial measurement unit
(IMU). In particular embodiments, prior to generating the
second trajectory, the system may predict, based on the
sensor data, trajectories of one or more objects in the
surrounding environment and generate the first trajectory
based on the sensor data and the predicted trajectories of the
one or more objects in the surrounding environment. In
particular embodiments, the first and second driving char-
acteristics may be associated with a parameter of a plurality
of parameters including one or more of: a distance to a road
boundary, a distance to a center lane, a distance to a road
lane, a distance to a moving agent, an acceleration of the
vehicle, a deacceleration of the vehicle, a velocity of the
vehicle, a moving direction of the vehicle, a steering direc-
tion of the vehicle, a head direction of the vehicle, a position
of the vehicle, a turning radius, a moving path, or a param-
eter distribution. In particular embodiments, the system may
determine, during a training process of a machine-learning
model used for generating the second trajectory, that one or
more human-like trajectories generated by the machine-
learning model satisfy one or more pre-determined training
criteria in response to the one or more human-like trajecto-
ries satisfying the similarity threshold relative to the one or
more human-driving characteristics. In particular embodi-
ments, the system may determine a similarity metric
between the first trajectory and the second trajectory. The
system may determine whether the second trajectory satis-
fies one or more safety criteria for navigating the vehicle in
the surrounding environment based on the similarity metric.
In particular embodiments, the system may, in response to
the second trajectory satisfying the one or more safety
criteria, navigate the vehicle in the surrounding environment
based on the second trajectory. The system may, in response
to the second trajectory failing to satisfy the one or more
safety criteria, navigate the vehicle in the surrounding envi-
ronment based on the first trajectory.

Particular embodiments may repeat one or more steps of
the method of FIG. 5, where appropriate. Although this
disclosure describes and illustrates particular steps of the
method of FIG. 5 as occurring in a particular order, this
disclosure contemplates any suitable steps of the method of
FIG. 5 occurring in any suitable order. Moreover, although
this disclosure describes and illustrates an example method
for generating human-like trajectory based on heuristic-
based trajectories including the particular steps of the
method of FIG. 5, this disclosure contemplates any suitable
method for generating human-like trajectory based on heu-
ristic-based trajectories including any suitable steps, which
may include all, some, or none of the steps of the method of
FIG. 5, where appropriate. Furthermore, although this dis-
closure describes and illustrates particular components,
devices, or systems carrying out particular steps of the
method of FIG. 5, this disclosure contemplates any suitable
combination of any suitable components, devices, or sys-
tems carrying out any suitable steps of the method of FIG.
5.
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FIG. 6 illustrates an example block diagram 600 of an
algorithmic navigation pipeline. In particular embodiments,
an algorithmic navigation pipeline 600 may include a num-
ber of computing modules, such as a sensor data module
605, perception module 610, prediction module 615, plan-
ning module 620, and control module 625. Sensor data
module 605 may obtain and pre-process sensor/telemetry
data that is provided to perception module 610. Such data
may be captured by any suitable sensors of a vehicle. As an
example and not by way of limitation, the vehicle may have
a Light Detection and Ranging (LiDAR) sensor that is
configured to transmit pulsed laser beams in multiple direc-
tions and measure the reflected signal from objects sur-
rounding vehicle. The time of flight of the light signals may
be used to measure the distance or depth of the objects from
the LiDAR. As another example, the vehicle may have
optical cameras pointing in different directions to capture
images of the vehicle’s surrounding. Radars may also be
used by the vehicle for detecting other vehicles and/or
hazards at a distance. As further examples, the vehicle may
be equipped with ultrasound for close range object detec-
tion, e.g., parking and obstacle detection or infrared cameras
for object detection in low-light situations or darkness. In
particular embodiments, sensor data module 605 may sup-
press noise in the sensor data or normalize the sensor data.

Perception module 610 is responsible for correlating and
fusing the data from the different types of sensors of the
sensor module 605 to model the contextual environment of
the vehicle. Perception module 610 may use information
extracted by multiple independent sensors to provide infor-
mation that would not be available from any single type of
sensors. Combining data from multiple sensor types allows
the perception module 610 to leverage the strengths of
different sensors and more accurately and precisely perceive
the environment. As an example and not by way of limita-
tion, image-based object recognition may not work well in
low-light conditions. This may be compensated by sensor
data from LiDAR or radar, which are effective sensors for
measuring distances to targets in low-light conditions. As
another example, image-based object recognition may mis-
takenly determine that an object depicted in a poster is an
actual three-dimensional object in the environment. How-
ever, if depth information from a LiDAR is also available,
the perception module 610 could use that additional infor-
mation to determine that the object in the poster is not, in
fact, a three-dimensional object.

Perception module 610 may process the available data
(e.g., sensor data, data from a high-definition map, etc.) to
derive information about the contextual environment. For
example, perception module 610 may include one or more
agent modelers (e.g., object detectors, object classifiers, or
machine-learning models trained to derive information from
the sensor data) to detect and/or classify agents present in the
environment of the vehicle (e.g., other vehicles, pedestrians,
moving objects). Perception module 610 may also determine
various characteristics of the agents. For example, percep-
tion module 610 may track the velocities, moving directions,
accelerations, trajectories, relative distances, or relative
positions of these agents. In particular embodiments, the
perception module 610 may also leverage information from
a high-definition map. The high-definition map may include
a precise three-dimensional model of the environment,
including buildings, curbs, street signs, traffic lights, and any
stationary fixtures in the environment. Using the vehicle’s
GPS data and/or image-based localization techniques (e.g.,
simultaneous localization and mapping, or SLAM), the
perception module 610 could determine the pose (e.g.,
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position and orientation) of the vehicle or the poses of the
vehicle’s sensors within the high-definition map. The pose
information, in turn, may be used by the perception module
610 to query the high-definition map and determine what
objects are expected to be in the environment.

Perception module 610 may use the sensor data from one
or more types of sensors and/or information derived there-
from to generate a representation of the contextual environ-
ment of the vehicle. As an example and not by way of
limitation, the representation of the external environment
may include objects such as other vehicles, curbs, debris,
objects, and pedestrians. The contextual representation may
be limited to a maximum range of the sensor array (e.g., 50,
100, or 200 meters). The representation of the contextual
environment may include information about the agents and
objects surrounding the vehicle, as well as semantic infor-
mation about the traffic lanes, traffic rules, traffic signs, time
of day, weather, and/or any other suitable information. The
contextual environment may be represented in any suitable
manner. As an example and not by way of limitation, the
contextual representation may be encoded as a vector or
matrix of numerical values, with each value in the vector/
matrix corresponding to a predetermined category of infor-
mation. For example, each agent in the environment may be
represented by a sequence of values, starting with the
agent’s coordinate, classification (e.g., vehicle, pedestrian,
etc.), orientation, velocity, trajectory, and so on. Alterna-
tively, information about the contextual environment may be
represented by a raster image that visually depicts the agent,
semantic information, etc. For example, the raster image
may be a birds-eye view of the vehicle and its surrounding,
up to a predetermined distance. The raster image may
include visual information (e.g., bounding boxes, color-
coded shapes, etc.) that represent various data of interest
(e.g., vehicles, pedestrians, lanes, buildings, etc.).

The representation of the present contextual environment
from the perception module 610 may be consumed by a
prediction module 615 to generate one or more predictions
of the future environment. For example, given a represen-
tation of the contextual environment at time t,, the predic-
tion module 615 may output another contextual representa-
tion for time t,. For instance, if the to contextual
environment is represented by a raster image, the output of
the prediction module 615 may be another raster image (e.g.,
a snapshot of the current environment) that depicts where
the agents would be at time t, (e.g., a snapshot of the future).
In particular embodiments, prediction module 615 may
include a machine-learning model (e.g., a convolutional
neural network, a neural network, a decision tree, support
vector machines, etc.) that may be trained based on previ-
ously recorded contextual and sensor data. For example, one
training sample may be generated based on a sequence of
actual sensor data captured by a vehicle at times t, and t;.
The captured data at times t, and t, may be used to generate,
respectively, a first contextual representation (the training
data) and a second contextual representation (the associated
ground-truth used for training). During training, the
machine-learning model may process the first contextual
representation using the model’s current configuration
parameters and output a predicted contextual representation.
The predicted contextual representation may then be com-
pared to the known second contextual representation (i.e.,
the ground-truth at time t,). The comparison may be quan-
tified by a loss value, computed using a loss function. The
loss value may be used (e.g., via back-propagation tech-
niques) to update the configuration parameters of the
machine-learning model so that the loss would be less if the
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prediction were to be made again. The machine-learning
model may be trained iteratively using a large set of training
samples until a convergence or termination condition is met.
For example, training may terminate when the loss value is
below a predetermined threshold. Once trained, the
machine-learning model may be used to generate predictions
of future contextual representations based on current con-
textual representations.

Planning module 620 may determine the navigation
routes and particular driving operations (e.g., slowing down,
speeding up, stopping, swerving, etc.) of the vehicle based
on the predicted contextual representation generated by the
prediction module 615. In particular embodiments, planning
module 620 may utilize the predicted information encoded
within the predicted contextual representation (e.g., pre-
dicted location or trajectory of agents, semantic data, etc.)
and any other available information (e.g., map data, traffic
data, accident reports, weather reports, target destinations,
and any other suitable information) to determine one or
more goals or navigation instructions for the vehicle. As an
example and not by way of limitation, based on the predicted
behavior of the agents surrounding the vehicle and the traffic
data to a particular destination, planning module 620 may
determine a particular navigation path and associated driv-
ing operations for the vehicle to avoid possible collisions
with one or more agents. In particular embodiments, plan-
ning module 620 may generate, based on a given predicted
contextual presentation, several different plans (e.g., goals or
navigation instructions) for the vehicle. For each plan, the
planning module 620 may compute a score that represents
the desirability of that plan. For example, if the plan would
likely result in the vehicle colliding with an agent at a
predicted location for that agent, as determined based on the
predicted contextual representation, the score for the plan
may be penalized accordingly. Another plan that would
cause the vehicle to violate traffic rules or take a lengthy
detour to avoid possible collisions may also have a score that
is penalized, but the penalty may be less severe than the
penalty applied for the previous plan that would result in
collision. A third plan that causes the vehicle to simply stop
or change lanes to avoid colliding with the agent in the
predicted future may receive the highest score. Based on the
assigned scores for the plans, the planning module 620 may
select the best plan to carry out. While the example above
used collision as an example, the disclosure herein contem-
plates the use of any suitable scoring criteria, such as travel
distance or time, fuel economy, changes to the estimated
time of arrival at the destination, passenger comfort, prox-
imity to other vehicles, the confidence score associated with
the predicted contextual representation, etc.

Based on the plan generated by planning module 620,
which may include one or more navigation path or associ-
ated driving operations, control module 625 may determine
the specific commands to be issued to the actuators of the
vehicle. The actuators of the vehicle are components that are
responsible for moving and controlling the vehicle. The
actuators control driving functions of the vehicle, such as for
example, steering, turn signals, deceleration (braking),
acceleration, gear shift, etc. As an example and not by way
of limitation, control module 625 may transmit commands
to a steering actuator to maintain a particular steering angle
for a particular amount of time to move a vehicle on a
particular trajectory to avoid agents predicted to encroach
into the area of the vehicle. As another example, control
module 625 may transmit commands to an accelerator
actuator to have the vehicle safely avoid agents predicted to
encroach into the area of the vehicle.
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FIG. 7 illustrates an example computer system 700. In
particular embodiments, one or more computer systems 700
perform one or more steps of one or more methods described
or illustrated herein. In particular embodiments, one or more
computer systems 700 provide the functionalities described
or illustrated herein. In particular embodiments, software
running on one or more computer systems 700 performs one
or more steps of one or more methods described or illus-
trated herein or provides the functionalities described or
illustrated herein. Particular embodiments include one or
more portions of one or more computer systems 700. Herein,
a reference to a computer system may encompass a com-
puting device, and vice versa, where appropriate. Moreover,
a reference to a computer system may encompass one or
more computer systems, where appropriate.

This disclosure contemplates any suitable number of
computer systems 700. This disclosure contemplates com-
puter system 700 taking any suitable physical form. As
example and not by way of limitation, computer system 700
may be an embedded computer system, a system-on-chip
(SOC), a single-board computer system (SBC) (such as, for
example, a computer-on-module (COM) or system-on-mod-
ule (SOM)), a desktop computer system, a laptop or note-
book computer system, an interactive kiosk, a mainframe, a
mesh of computer systems, a mobile telephone, a personal
digital assistant (PDA), a server, a tablet computer system,
an augmented/virtual reality device, or a combination of two
or more of these. Where appropriate, computer system 700
may include one or more computer systems 700; be unitary
or distributed; span multiple locations; span multiple
machines; span multiple data centers; or reside in a remote
server computer, which may include one or more remote
server computing components in one or more networks.
Where appropriate, one or more computer systems 700 may
perform without substantial spatial or temporal limitation
one or more steps of one or more methods described or
illustrated herein. As an example and not by way of limita-
tion, one or more computer systems 700 may perform in real
time or in batch mode one or more steps of one or more
methods described or illustrated herein. One or more com-
puter systems 700 may perform at different times or at
different locations one or more steps of one or more methods
described or illustrated herein, where appropriate.

In particular embodiments, computer system 700 includes
a processor 702, memory 704, storage 706, an input/output
(I/0) interface 708, a communication interface 710, and a
bus 712. Although this disclosure describes and illustrates a
particular computer system having a particular number of
particular components in a particular arrangement, this dis-
closure contemplates any suitable computer system having
any suitable number of any suitable components in any
suitable arrangement.

In particular embodiments, processor 702 includes hard-
ware for executing instructions, such as those making up a
computer program. As an example and not by way of
limitation, to execute instructions, processor 702 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 704, or storage 706; decode and
execute them; and then write one or more results to an
internal register, an internal cache, memory 704, or storage
706. In particular embodiments, processor 702 may include
one or more internal caches for data, instructions, or
addresses. This disclosure contemplates processor 702
including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 702 may include one or more instruc-
tion caches, one or more data caches, and one or more
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translation lookaside buffers (TLBs). Instructions in the
instruction caches may be copies of instructions in memory
704 or storage 706, and the instruction caches may speed up
retrieval of those instructions by processor 702. Data in the
data caches may be copies of data in memory 704 or storage
706 that are to be operated on by computer instructions; the
results of previous instructions executed by processor 702
that are accessible to subsequent instructions or for writing
to memory 704 or storage 706; or any other suitable data.
The data caches may speed up read or write operations by
processor 702. The TLBs may speed up virtual-address
translation for processor 702. In particular embodiments,
processor 702 may include one or more internal registers for
data, instructions, or addresses. This disclosure contem-
plates processor 702 including any suitable number of any
suitable internal registers, where appropriate. Where appro-
priate, processor 702 may include one or more arithmetic
logic units (ALUs), be a multi-core processor, or include one
or more processors 702. Although this disclosure describes
and illustrates a particular processor, this disclosure con-
templates any suitable processor.

In particular embodiments, memory 704 includes main
memory for storing instructions for processor 702 to execute
or data for processor 702 to operate on. As an example and
not by way of limitation, computer system 700 may load
instructions from storage 706 or another source (such as
another computer system 700) to memory 704. Processor
702 may then load the instructions from memory 704 to an
internal register or internal cache. To execute the instruc-
tions, processor 702 may retrieve the instructions from the
internal register or internal cache and decode them. During
or after execution of the instructions, processor 702 may
write one or more results (which may be intermediate or
final results) to the internal register or internal cache. Pro-
cessor 702 may then write one or more of those results to
memory 704. In particular embodiments, processor 702
executes only instructions in one or more internal registers
or internal caches or in memory 704 (as opposed to storage
706 or elsewhere) and operates only on data in one or more
internal registers or internal caches or in memory 704 (as
opposed to storage 706 or elsewhere). One or more memory
buses (which may each include an address bus and a data
bus) may couple processor 702 to memory 704. Bus 712
may include one or more memory buses, as described in
further detail below. In particular embodiments, one or more
memory management units (MMUSs) reside between proces-
sor 702 and memory 704 and facilitate accesses to memory
704 requested by processor 702. In particular embodiments,
memory 704 includes random access memory (RAM). This
RAM may be volatile memory, where appropriate. Where
appropriate, this RAM may be dynamic RAM (DRAM) or
static RAM (SRAM). Moreover, where appropriate, this
RAM may be single-ported or multi-ported RAM. This
disclosure contemplates any suitable RAM. Memory 704
may include one or more memories 704, where appropriate.
Although this disclosure describes and illustrates particular
memory, this disclosure contemplates any suitable memory.

In particular embodiments, storage 706 includes mass
storage for data or instructions. As an example and not by
way of limitation, storage 706 may include a hard disk drive
(HDD), a floppy disk drive, flash memory, an optical disc, a
magneto-optical disc, magnetic tape, or a Universal Serial
Bus (USB) drive or a combination of two or more of these.
Storage 706 may include removable or non-removable (or
fixed) media, where appropriate. Storage 706 may be inter-
nal or external to computer system 700, where appropriate.
In particular embodiments, storage 706 is non-volatile,
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solid-state memory. In particular embodiments, storage 706
includes read-only memory (ROM). Where appropriate, this
ROM may be mask-programmed ROM, programmable
ROM (PROM), erasable PROM (EPROM), electrically
erasable PROM (EEPROM), electrically alterable ROM
(EAROM), or flash memory or a combination of two or
more of these. This disclosure contemplates mass storage
706 taking any suitable physical form. Storage 706 may
include one or more storage control units facilitating com-
munication between processor 702 and storage 706, where
appropriate. Where appropriate, storage 706 may include
one or more storages 706. Although this disclosure describes
and illustrates particular storage, this disclosure contem-
plates any suitable storage.

In particular embodiments, /O interface 708 includes
hardware, software, or both, providing one or more inter-
faces for communication between computer system 700 and
one or more 1/O devices. Computer system 700 may include
one or more of these /O devices, where appropriate. One or
more of these /O devices may enable communication
between a person and computer system 700. As an example
and not by way of limitation, an /O device may include a
keyboard, keypad, microphone, monitor, mouse, printer,
scanner, speaker, still camera, stylus, tablet, touch screen,
trackball, video camera, another suitable I/O device or a
combination of two or more of these. An /O device may
include one or more sensors. This disclosure contemplates
any suitable /O devices and any suitable /O interfaces 708
for them. Where appropriate, /O interface 708 may include
one or more device or software drivers enabling processor
702 to drive one or more of these I/O devices. I/O interface
708 may include one or more /O interfaces 708, where
appropriate. Although this disclosure describes and illus-
trates a particular 1/O interface, this disclosure contemplates
any suitable 1/O interface.

In particular embodiments, communication interface 710
includes hardware, software, or both providing one or more
interfaces for communication (such as, for example, packet-
based communication) between computer system 700 and
one or more other computer systems 700 or one or more
networks. As an example and not by way of limitation,
communication interface 710 may include a network inter-
face controller (NIC) or network adapter for communicating
with an Ethernet or any other wire-based network or a
wireless NIC (WNIC) or wireless adapter for communicat-
ing with a wireless network, such as a WI-FI network. This
disclosure contemplates any suitable network and any suit-
able communication interface 710 for it. As an example and
not by way of limitation, computer system 700 may com-
municate with an ad hoc network, a personal area network
(PAN), a local area network (LAN), a wide area network
(WAN), a metropolitan area network (MAN), or one or more
portions of the Internet or a combination of two or more of
these. One or more portions of one or more of these
networks may be wired or wireless. As an example, com-
puter system 700 may communicate with a wireless PAN
(WPAN) (such as, for example, a Bluetooth WPAN), a
WI-FI network, a WI-MAX network, a cellular telephone
network (such as, for example, a Global System for Mobile
Communications (GSM) network), or any other suitable
wireless network or a combination of two or more of these.
Computer system 700 may include any suitable communi-
cation interface 710 for any of these networks, where
appropriate. Communication interface 710 may include one
or more communication interfaces 710, where appropriate.
Although this disclosure describes and illustrates a particular
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communication interface, this disclosure contemplates any
suitable communication interface.

In particular embodiments, bus 712 includes hardware,
software, or both coupling components of computer system
700 to each other. As an example and not by way of
limitation, bus 712 may include an Accelerated Graphics
Port (AGP) or any other graphics bus, an Enhanced Industry
Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Stan-
dard Architecture (ISA) bus, an INFINIBAND interconnect,
a low-pin-count (LLPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Intercon-
nect (PCI) bus, a PCI-Express (PCle) bus, a serial advanced
technology attachment (SATA) bus, a Video Electronics
Standards Association local (VLB) bus, or another suitable
bus or a combination of two or more of these. Bus 712 may
include one or more buses 712, where appropriate. Although
this disclosure describes and illustrates a particular bus, this
disclosure contemplates any suitable bus or interconnect.

Herein, a computer-readable non-transitory storage
medium or media may include one or more semiconductor-
based or other types of integrated circuits (ICs) (such, as for
example, field-programmable gate arrays (FPGAs) or appli-
cation-specific ICs (ASICs)), hard disk drives (HDDs),
hybrid hard drives (HHDs), optical discs, optical disc drives
(ODDs), magneto-optical discs, magneto-optical drives,
floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL
cards or drives, any other suitable computer-readable non-
transitory storage media, or any suitable combination of two
or more of these, where appropriate. A computer-readable
non-transitory storage medium may be volatile, non-vola-
tile, or a combination of volatile and non-volatile, where
appropriate.

Herein, “or” is inclusive and not exclusive, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A or B” means “A, B, or both,”
unless expressly indicated otherwise or indicated otherwise
by context. Moreover, “and” is both joint and several, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A and B” means “A and B,
jointly or severally,” unless expressly indicated otherwise or
indicated otherwise by context.

The scope of this disclosure encompasses all changes,
substitutions, variations, alterations, and modifications to the
example embodiments described or illustrated herein that a
person having ordinary skill in the art would comprehend.
The scope of this disclosure is not limited to the example
embodiments described or illustrated herein. Moreover,
although this disclosure describes and illustrates respective
embodiments herein as including particular components,
elements, feature, functions, operations, or steps, any of
these embodiments may include any combination or permu-
tation of any of the components, elements, features, func-
tions, operations, or steps described or illustrated anywhere
herein that a person having ordinary skill in the art would
comprehend. Furthermore, reference in the appended claims
to an apparatus or system or a component of an apparatus or
system being adapted to, arranged to, capable of, configured
to, enabled to, operable to, or operative to perform a
particular function encompasses that apparatus, system,
component, whether or not it or that particular function is
activated, turned on, or unlocked, as long as that apparatus,
system, or component is so adapted, arranged, capable,
configured, enabled, operable, or operative. Additionally,
although this disclosure describes or illustrates particular
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embodiments as providing particular advantages, particular
embodiments may provide none, some, or all of these
advantages.

What is claimed is:

1. A method comprising, by a computing system:

accessing sensor data associated with a surrounding envi-

ronment of a vehicle;

generating, based on the sensor data and using a heuristic

that is a rule-based algorithm that is not a machine-
learning algorithm, a first trajectory having one or more
first driving characteristics that are not human-like for
navigating the vehicle in the surrounding environment;
generating, using the first trajectory as an input to a
machine-learning generator, a second trajectory having
one or more second driving characteristics by modify-
ing the one or more first driving characteristics of the
first trajectory using adjustment parameters from the
machine- learning generator based on one or more
human-driving characteristics of observed human-
driven trajectories such that the one or more second
driving characteristics satisfy a similarity threshold
relative to the one or more human-driving characteris-
tics, wherein the first trajectory and the second trajec-
tory define separate vehicle moving paths for the
vehicle to move from a first point to a second point and
include a series of spatial-temporal points; and

controlling the vehicle using vehicle operations based on
the second trajectory to navigate the vehicle in the
surrounding environment.

2. The method of claim 1, wherein the one or more first
driving characteristics are associated with a first distribution,
wherein the second driving characteristics are associated
with a second distribution, and wherein the second distri-
bution is more similar than the first distribution to a third
distribution associated with the observed human-driven tra-
jectories.

3. The method of claim 1, wherein the adjustment param-
eters are generated by the machine-learning generator that is
a machine-learning model that is trained based on loss
values determined by one or more loss functions based on
human-like trajectories generated by the machine-learning
model during training and the observed human-driven tra-
jectories.

4. The method of claim 3, wherein the machine-learning
model is a variational autoencoder (VAE) trained based on
comparisons between the human-like trajectories generated
by the VAE with the observed human-driven trajectories.

5. The method of claim 3, wherein the machine-learning
model is trained based on data samples originated from a
plurality of data sources comprising one or more of: a
camera, a LiDAR system, or an inertial measurement unit
amu).

6. The method of claim 1, wherein the first trajectory is a
heuristic- based trajectory generated by the rule-based algo-
rithm that is a motion planning algorithm, and wherein one
or more model parameters of a machine-learning model is
optimized based on first loss values determined by a first loss
function by comparing human-like trajectories generated by
the machine-learning model with corresponding heuristic-
based trajectories.

7. The method of claim 6, wherein the machine-learning
model has one or more model parameters being adjusted to
minimize the first loss values determined by the first loss
function.

8. The method of claim 6, wherein the machine-learning
model corresponds to a generator of a generative adversarial
network (GAN), and wherein the machine-learning model is
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trained based on second loss values determined by a second
loss function associated with a discriminator of the genera-
tive adversarial network (GAN).
9. The method of claim 8, wherein the machine-learning
model has one or more parameters adjusted to maximize the
second loss values determined by the second loss function
associated with the discriminator of the generative adver-
sarial network (GAN).
10. The method of claim 8, wherein the discriminator is
trained based on a plurality of labeled training samples to
discriminate real and fake human-driven trajectories, and
wherein the plurality of labeled training samples are asso-
ciated with a plurality of representative scenarios capable of
being encountered by the vehicle in the surrounding envi-
ronment.
11. The method of claim 10, wherein the first trajectory is
a heuristic-based trajectory and the second trajectory is a
human-like trajectory, and wherein the method further com-
prises:
generating a plurality of heuristic-based trajectories;
generating a plurality of human-like trajectories by modi-
fying the one or more first driving characteristics of the
plurality of heuristic-based trajectories; and
selecting a human-like trajectory from the plurality of
human-like trajectories based on one or more pre-
determined criteria, wherein the vehicle operations
are determined based on the selected human-like
trajectory.
12. The method of claim 10, further comprising:
identifying a scenario encountered by the vehicle in the
surrounding environment, wherein the second trajec-
tory is generated by modifying the one or more first
driving characteristics based on the identified scenario;
and
comparing the one or more second driving characteristics
of the second trajectory to one or more human-driven
profiles associated with the identified scenario, wherein
the one or more second driving characteristics satisfy-
ing the similarity threshold relative to the one or more
human- driving characteristics is determined based on
the comparison.
13. The method of claim 10, wherein the discriminator
determines, for the second trajectory, a first probability value
for the second trajectory to be a real human-driven trajectory
or a second probability value for the second trajectory to be
a fake human-driven trajectory.
14. The method of claim 1, wherein prior to generating the
second trajectory, the method further comprises:
predicting, based on the sensor data, trajectories of one or
more objects in the surrounding environment; and

generating the first trajectory based on the sensor data and
the predicted trajectories of the one or more objects in
the surrounding environment.

15. The method of claim 1, wherein the one or more first
and second driving characteristics are associated with one or
more of: a distance to a road boundary, a distance to a center
lane, a distance to a road lane, a distance to a moving agent,
an acceleration of the vehicle, a deacceleration of the
vehicle, a velocity of the vehicle, a moving direction of the
vehicle, a steering direction of the vehicle, a head direction
of the vehicle, a position of the vehicle, a turning radius, a
moving path, or a parameter distribution.

16. The method of claim 1, further comprising:

determining, during a training process of a machine-

learning model used for generating the second trajec-
tory, that one or more human-like trajectories generated
by the machine- learning model satisfy one or more
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pre-determined training criteria in response to the one
or more human-like trajectories satisfying the similar-
ity threshold relative to the one or more human-driving
characteristics.
17. The method of claim 1, further comprising:
determining a similarity metric between the first trajectory
and the second trajectory; and
determining whether the second trajectory satisfies one or
more safety criteria for navigating the vehicle in accor-
dance with the surrounding environment based on the
similarity metric.
18. The method of claim 17, further comprising:
in response to the second trajectory satisfying the one or
more safety criteria, navigating the vehicle in the
surrounding environment based on the second trajec-
tory; and
in response to the second trajectory failing to satisfy the
one or more safety criteria, navigating the vehicle in the
surrounding environment based on the first trajectory.
19. One or more non-transitory computer-readable stor-
age media including instructions that, when executed by one
or more processors of a computing system, are operable to
cause the one or more processors to:
access sensor data associated with a surrounding envi-
ronment of a vehicle;
generate, based on the sensor data and using a heuristic
that is a rule-based algorithm that is not a machine-
learning algorithm, a first trajectory having one or more
first driving characteristics for navigating the vehicle in
the surrounding environment;
generate, using a machine-learning generator and the first
trajectory, a second trajectory having one or more
second driving characteristics by modifying the one or
more first driving characteristics of the first trajectory
using adjustment parameters from the machine-learn-
ing generator based on one or more human-driving
characteristics of observed human-driven trajectories
such that the one or more second driving characteristics
satisfy a similarity threshold relative to the one or more
human-driving characteristics, wherein the first trajec-
tory and the second trajectory define separate vehicle
moving paths for the vehicle to move from a first point
to a second point and include a series of spatial-
temporal points; and
control the vehicle using vehicle operations based on the
second trajectory to navigate the vehicle in the sur-
rounding environment.
20. A system comprising:
one or more non-transitory computer-readable storage
media including instructions; and
one or more processors coupled to the non-transitory
computer-readable storage media and operable to
execute the instructions to:
access sensor data associated with a surrounding envi-
ronment of a vehicle;
generate, based on the sensor data and using a heuristic
that is a rule-based algorithm that is not a machine-
learning algorithm, a first trajectory having one or
more first driving characteristics for navigating the
vehicle in the surrounding environment;
generate, using a machine-learning generator and the first
trajectory, a second trajectory having one or more
second driving characteristics by modifying the one or
more first driving characteristics of the first trajectory
using adjustment parameters from the machine-learn-
ing generator based on one or more human-driving
characteristics of observed human-driven trajectories
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such that the one or more second driving characteristics
satisfy a similarity threshold relative to the one or more
human-driving characteristics, wherein the first trajec-
tory and the second trajectory define separate vehicle
moving paths for the vehicle to move from a first point 5
to a second point and include a series of spatial-
temporal points; and

control the vehicle using vehicle operations based on the
second trajectory to navigate the vehicle in the sur-
rounding environment. 10
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