US 20140292785A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0292785 A1l

SEGAL et al. 43) Pub. Date: Oct. 2,2014
(54) VIRTUALIZATION METHOD OF (60) Provisional application No. 61/471,154, filed on Apr.
VERTICAL-SYNCHRONIZATION IN 3,2011.
GRAPHICS SYSTEMS
Publication Classification
(71) Applicant: Lucidlogix Software Solutions, Ltd.,
Netanya (IL) (51) Imt.Cl
GO06T 120 (2006.01)
(72) Inventors: Natalya SEGAL, Kfar Netter (IL); Yoel G09G 5/18 (2006.01)
SHOSHAN, Haifa (IL); Guy SELA, (52) US.CL
Tel-Aviv (IL) CPC .. GO6T 1/20 (2013.01); GO9G 5/18 (2013.01);
GO6T 2200/28 (2013.01); GO9IG 2330/021
(21) Appl. No.: 14/302,441 (2013.01)
USPC e 345/522
(22) Filed: Jun. 12,2014
(57) ABSTRACT
Related U.S. Application Data A method for reducing power consumption in graphics sys-
(63) Continuation of application No. 13/437.869, filed on tems includes not displaying at least one frame in a sequence
Apr. 2, 2012, now Pat. No. 8,754,904. of frames.
Assess how
. much of o
display time
(FF) left
Drop frame M0 A\ ter-frame no Display yes Generate
(BF) Y Y dependency this New frame
BF? (BF)
yes l
Generate

shortened frame
(BF with reduced
‘draw calls’)

|

Screen
Available?

»| Display current
4 Frame

A

Queue in
pipeline

[




Patent Application Publication

Oct. 2,2014 Sheet 1 of 20

r(n/dsllp

Apdgip

Apjdsip

Apjdpip

Apjdpip

Apjdsipi

Apjdsip

®
@ v

y

O NOANORNONNONNOARO

Kpjdslp

A

Back buffer
generated

frames (BF)

Front buffer

Tearing Line [

displayed
frames (FF)

Timeline

US 2014/0292785 Al

Fig. 1a. Prior art.
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Fig. 1b. Prior art.
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VIRTUALIZATION METHOD OF
VERTICAL-SYNCHRONIZATION IN
GRAPHICS SYSTEMS

CROSS-REFERENCE TO RELATED CASES

[0001] This application is a continuation application claim-
ing benefit from U.S. patent application Ser. No. 13/437,869
filed 2 Apr. 2012, which claimed priority from US Provisional
Application No. 61/471,154 filed 3 Apr. 2011 and which is
hereby incorporated in its entirety by reference.

FIELD

[0002] The presentinventionrelates generally to the field of
computer graphics rendering, and more particularly, ways of
and means for improving the performance of rendering pro-
cesses supported on GPU-based 3D graphics platforms asso-
ciated with diverse types of computing machinery.

BACKGROUND

[0003] Real-time 3D graphics applications such as video
games have two contradictory needs. On the one hand there is
the requirement for high photorealism; on the other hand a
high frame rate is desired. In the video game industry the
trend is to push the frame rate up to high FPS rates. However,
when this overtakes the screen refresh rate (typically 60 FPS)
a tearing artifact occurs, badly affecting the image quality.
The higher the frame rate, the worse the tearing effect.
Although tearing occurs when the frame feed is not synchro-
nized with the screen refresh rate, it may also occur when FPS
is less than the screen refresh rate. However, it is statistically
more likely to be seen at higher FPS.

[0004] Tearing is a visual artifact in video or 3D rendered
frames (typically in, but not limited to, 3D games) where
information from two or more different frames is shown in a
display device simultaneously in a single screen draw. FIG.
1a shows a series of application-generated back buffer frames
with no v-sync, related to a series of displayed frames. In this
example the application generates frames ata high rate of 120
FPS, while actual frames are displayed at a lower rate of 60
FPS, limited by the screen refresh rate. The back bufter gen-
erated frame (BF) is sent to the display as soon as it is created.
When it is delivered in the middle of an ongoing displayed
frame, the current scan line is discontinued, while the newly
created frame goes on from the discontinued point. If the
frame-to-frame data is different, a tearing effect may happen,
distorting the image.

[0005] Tearing can occur with most common display tech-
nologies and video cards, and is most noticeable on situations
where horizontally-moving visuals are commonly found.
FIG. 156 illustrates tearing artifact in graphics display. This
artifact occurs when the frame feed is not synchronized with
the screen refresh. The common solution adopted by 3D game
developers is v-sync (vertical synchronization), which is an
option to synchronize the displayed frame with the screen
refresh rate. V-sync is found in most computing systems,
wherein the video card is prevented from doing anything
visible to the display memory until after the monitor has
finished its current refresh cycle.

[0006] The method of prior art v-sync is illustrated in FIG.
lc. In graphics display technology the generated image
(frame) is stored first on the back buffer, and then by the
mechanism of double buffering, it is switched to the front
buffer for display on screen. In order to eliminate the tearing
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effect, a newly generated back butfer frame (BF) is prevented
from being displayed on the ongoing front buffer displayed
frame (FF). Consequently, the application frame rate is
slowed down to the screen refresh rate. When vertical syn-
chronization is in use, the frame rate of the rendering engine
will be equal or less than the monitor’s refresh rate, if the
frame rate was originally higher than the refresh rate.
Although this feature normally results in improved video
quality, it is not without trade-offs in some cases. First, ver-
tical synchronization is known to cause input lag, which is
most noticeable when playing video games. Second, when
one wishes to benchmark a video card or rendering engine, it
is generally implied that the hardware and software render the
display as fast as possible, with no regard to the monitor’s
capabilities or the resultant video tearing. Otherwise, the
monitor and video card will throttle the benchmarking pro-
gram, causing it to generate invalid results.

[0007] Video games, which have a wide variety of render-
ing engines, tend to benefit well from vertical synchroniza-
tion, as the rendering engine is normally expected to build
each frame in real time, based on whatever the engine’s
variables specify at the moment a frame is requested. How-
ever, because vertical synchronization causes input lag, it can
interfere with games which require precise timing or fast
reaction times. 3D CAD applications benefit as well from
vertical synchronization. These applications are known for
their slower frame rate due to large amounts of data. Their
tearing effect is typically caused by the screen refresh mecha-
nism, unsynchronized with the slower displayed frames.
[0008] A graphics system without v-sync has the best
responsiveness, as demonstrated in FIG. 1d with two extreme
user input cases. The response is between 0.5 and 1 display
frames. In input case 1, which is the worst case delay, the
response is one display frame, whereas in input case 2, the
best case delay, the delay is 0.5 display frame. The v-sync
input lag occurs due to the blocked generation of back buffer
frames, as shown in FIG. 1e. The back buffer generated frame
(BF) enters a waiting state until the screen becomes available,
completing the currently displayed frame. The worst case is
shown with user input 1, which comes at the beginning of
displayed frame 1, and affects the display in displayed frame
3, causing a lag of 2 frames. The best case is exemplified on
user input 2, initiated just before the start of displayed frame
3, and affects the image in display frame 4, causing a single
frame lag. Single frame lag is considered normal.

[0009] Therefore, the v-sync of prior art solves the tearing
artifacts, however it suffers from two major drawbacks: (i)
performance penalties binding FPS to the screen refresh rate,
and (i) input lag that reduces the application’s responsive-
ness. These two shortfalls are critical in real-time graphics
applications.

SUMMARY

[0010] Vertical synchronization (v-sync) in prior art pre-
vents video tearing artifacts by keeping the frame rate of the
rendering engine equal to the monitor’s refresh rate, if the
frame rate originally tends to be lower or higher. However,
this technique suffers from two substantial shortcomings:
performance limitation and input lag, both of which are criti-
cal drawbacks in real-time applications such as video games.
[0011] The wvirtual vertical-synchronization (Virtual
V-sync) of the present invention removes the performance
shortfall by virtually allowing any frame-per-second rate,
independent of the monitor refresh rate, and eliminates the
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input lag by removing frame blocking. The method is based
on preventing excessive application-generated frames from
being displayed; instead, the unpresented frames are dropped,
or shortened first and then dropped. In order to eliminate
artifacts caused by missing frames, inter-frame dependency is
resolved.

[0012] The virtual vertical-synchronization method of
some embodiments of the invention can work with any off-
the-shelf GPU and computing system, independently of GPU
make, model or size. The virtual vertical-synchronization of
the present invention is the basis for two additional aspects of
the invention: power consumption control of graphics sys-
tems and improved GPU utilization in cloud-based real-time
graphics applications, such as cloud gaming.

[0013] There is provided, in accordance with an embodi-
ment of the present invention, a method for reducing power in
graphic systems including not displaying at least one frame in
a sequence of frames.

[0014] According to an embodiment of the present inven-
tion, the method further includes determining an amount of
time required to finish displaying a rendered frame being
currently displayed in the sequence of frames.

[0015] According to an embodiment of the present inven-
tion, the method further includes determining an amount of
time required to render the at least one frame.

[0016] According to an embodiment of the present inven-
tion, the method further includes not displaying the at least
one frame when a time difference between the amount of time
required to render the at least one frame and the amount of
time required to finish displaying the rendered frame being
currently displayed exceeds a predetermined time.

[0017] According to an embodiment of the present inven-
tion, the method further includes evaluating inter-frame
dependency between the at least one frame and a successive
one or more frames in the sequence of frames.

[0018] According to an embodiment of the present inven-
tion, the method further includes shortening the at least one
frame if inter-frame dependency exists with the successive
one or more frames.

[0019] According to an embodiment of the present inven-
tion, the shortening includes removing from the at least one
frame some rendering commands.

[0020] According to an embodiment of the present inven-
tion, the method further includes shortening the at least one
frame prior to the not displaying.

[0021] According to an embodiment of the present inven-
tion, the not displaying includes removing from the at least
one frame all rendering commands.

[0022] According to an embodiment of the present inven-
tion, the not displaying includes discarding the at least one
frame following its rendering.

[0023] There is provided, in accordance with an embodi-
ment of the present invention, a power-saving computing
device including a CPU (central processing unit) to reduce
power consumption in the device by managing rendering of
frames associated with graphics context and issuing an
instruction to not display at least one frame in a sequence of
frames; and a GPU (graphics processing unit) to render
frames in the sequence of frames.

[0024] According to an embodiment of the present inven-
tion, the CPU determines an amount of time required to finish
displaying a rendered frame being currently displayed.
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[0025] According to an embodiment of the present inven-
tion, the CPU further determines an amount of time required
to render the at least one frame.

[0026] According to an embodiment of the present inven-
tion, the CPU issues the instruction to not display responsive
to a time difference between the amount of time required to
render the at least one frame and the amount of time required
to finish displaying the rendered frame being currently dis-
played exceeding a predetermined time.

[0027] According to an embodiment of the present inven-
tion, the CPU evaluates inter-frame dependency between the
at least one frame and one or more successive frames in said
sequence of frames.

[0028] According to an embodiment of the present inven-
tion, the CPU shortens the at least one frame if inter-frame
dependency exists with the one or more successive frames.
[0029] According to an embodiment of the present inven-
tion, the shortening includes the CPU removing from the at
least one frame some rendering commands.

[0030] According to an embodiment of the present inven-
tion, the CPU shortens the at least one frame prior to issuing
the instruction to not display.

[0031] According to an embodiment of the present inven-
tion, the instruction to not display includes the CPU removing
from the at least one frame all rendering commands.

[0032] According to an embodiment of the present inven-
tion, the instruction to not display includes the CPU discard-
ing the at least one frame following its rendering by the GPU.

BRIEF DESCRIPTION OF DRAWINGS

[0033] For a more complete understanding of practical
applications of the embodiments of the present invention, the
following detailed description of the illustrative embodi-
ments can be read in conjunction with the accompanying
drawings, briefly described below:

[0034] FIG.1A. Prior art. A series of application-generated
back buffer with no v-sync.

[0035] FIG. 15. Prior art. The effect of tearing.
[0036] FIG. 1c. Prior art. The method of v-sync.
[0037] FIG. 1d. Prior art. Responsiveness of graphics sys-

tem without v-sync mechanism.
[0038] FIG. 1e. Prior art. Deteriorated responsiveness to
user input, due to frame blocking by the application.

[0039] FIG. 2a. Flowchart of the ‘basic’ mode of Virtual
Vsync.

[0040] FIG. 2b. Frame sequence of Virtual Vsync.

[0041] FIG. 3a. Flowchart of the ‘hybrid’ mode of Virtual
Vsync.

[0042] FIG. 3b. Frame sequence of the hybrid mode of the
Virtual Vsync.

[0043] FIG. 4a. Flowchart of the ‘concise’ mode of Virtual
Vsync.

[0044] FIG. 4b. The ‘concise’ mode of Virtual Vsync.
[0045] FIG. 4¢. The principle of inter-frame dependency.
[0046] FIG. 4d. Various cases of inter-frame dependency.
[0047] FIG. 5a. Responsiveness of the basic mode of the

Virtual Vsync method.

[0048] FIG. 5b. Comparison chart of responsiveness: prior
art’s standard v-sync vs. one embodiment of present inven-
tion’s Virtual Vsync.

[0049] FIG. 6. Responsiveness of the ‘concise’ mode.
[0050] FIG. 7. Stuttering and its solution.

[0051] FIG. 8. Frame sequence of the cloud mode of Virtual
Vsync.
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[0052] FIG.9.Comparison of power consumption between
native mode and concise mode

[0053] FIG. 10a. Implementation on a discrete GPU sys-
tem.
[0054] FIG. 105 Implementation on a dual GPU system.

DETAILED DESCRIPTION

Modes of Virtual Vertical-Synchronization

[0055] The wvirtual vertical-synchronization (Virtual
V-sync) of the different embodiments of present invention
removes performance shortfalls by virtually allowing any
high rate of frame-per-second, independent of the monitor
refresh rate, and eliminates the input lag by removing the
frame blocking mechanism. The term “monitor refresh rate”
is the number of times in a second that display hardware
draws the data. This is distinct from the measure of “applica-
tion frame rate” of how often the application driving the
graphics system can feed an entire frame of new data to a
display. In case of an application frame rate that is higher than
refresh rate, the “actual frame rate” of the graphics system is
that of monitor refresh rate. In embodiment of present inven-
tion the excessive application frames, above the refresh rate,
are assigned as “to-be-dropped” frames. These frames are
dropped without rendering, or rendered only partly in case of
inter-frame dependency, as explained hereinafter. “Frame
blocking” refers to keeping the rendered frame on hold, until
the display hardware completes displaying the previous
frame. Frame blocking causes input lags, deteriorating graph-
ics system responsiveness.

[0056] There are three embodiments of the present inven-
tion; (i) the basic mode in which the subsequent frame is
generated by the application, then at the time of display it is
displayed or dropped, depending on screen availability. (ii)
the hybrid mode, where the subsequent frame is generated,
butits display depends on the time remaining for the currently
displayed frame, and (iii) the concise-frame mode where the
time remaining for the currently displayed frame is assessed
in advance, and the immediate drop of a fully generated frame
is replaced by creating a concise frame with reduced number
of'draw calls, which is then dropped. In the following descrip-
tion the term BF relates to subsequent back buffer generated
frames, and FF stands for front buffer frames displayed at a
restricted refresh rate.

[0057] FIG. 2a shows a flowchart of the Virtual V-sync
basic mode. In this mode all the BF are unconditionally
generated, as if all are going to be displayed. A frame, when
completed, is either sent to display or dropped without being
displayed, depending on screen availability. No frames are
blocked by the application. Tearing is eliminated because the
undropped frames are never presented to display in the
middle of the current FF; they always start a new screen scan
upon termination of previous one, beginning from starting
point on the screen. Consequently, the FPS performance is
high and at the level of a non-v-sync unlimited frame rate, but
without the tearing artifacts. This is clearly illustrated in FIG.
25, in the case of an application rendering rate of 120 FPS,
while the screen refresh rate is 60 FPS.

[0058] The hybrid mode, based on controlled frame block-
ing, allows higher FPS than the prior art v-sync. It is flow-
charted in FIG. 3a. The subsequent frame (BF) is uncondi-
tionally generated, but its display depends on the required
blocking period. If the screen is available upon completion of
BF, the back buffer is sent for display, otherwise the time
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remaining for the currently displayed FF is assessed. If the
time remaining is below a given threshold, the next BF is
blocked until the current BF goes to display. If the time
remaining is above the given threshold, the BF is dropped and
a new BF starts. In this way the blocking stage is controlled,
allowing higher FPS than the prior art v-sync. FIG. 35 shows
the relation between the BF and FF sequences. For example,
the generation of BF 4 is blocked until BF 3 is presented to
display. Then, after completion of BF 4, the time remaining
for its display is determined to be too long, above the thresh-
old, and consequently BF 4 is dropped. BF 5 starts right away
without blocking, and is switched to the front buffer for
display immediately upon completion.

[0059] The concise frame mode is based on shortening
before dropping or dropping without shortening the undis-
played frames, allowing higher FPS. The screen availability
upon completion of BF is assessed in advance. As shown in
the flowchart of FIG. 4a, the BF is generated in its entirety if
it has a chance to be displayed, otherwise it is shortened by
turning redundant tasks that are not required for subsequent
frames, i.e. no inter-frame dependency, to non-operational.
Frame dependency is a critical issue in this context, and will
be discussed hereinafter. For each newly started BF a timing
assessment is done. If the time remaining for the currently
displayed FF is too long, in event of inter-frame dependency
the BF is generated with a reduced number of draw calls,
creating a concise frame, and dropped, or in event of no
inter-frame dependency the frame in its entirety is dropped. If
a timing match for display is positively assessed, then a full
BF is generated and displayed, if screen is available. Other-
wise it keeps waiting. There is no frame blocking in this
mode. The actual implementation on Graphic Pipeline is that
you can send the “Present” command and continue to the next
frame. The present will be queued in the pipeline and won’t be
blocked. The actual blocking happen usually a few draw-calls
after “present”, when the actual pipeline is full. So, there is no
actual restriction to execute the “present” only if you can
guarantee that the display will take the BF and Switch to FB
almost immediately after the “present” was sent. FIG. 4b
shows the relation between the BF and FF sequences. For
example, the BF 5 and 6 are created as concise frames and
dropped, BF 7 on the other hand is fully generated, including
draw calls, and sent to display.

Resolving Inter-Frame Dependency

[0060] A framebecomes subject to inter-frame dependency
if a graphics entity (e.g. texture resource) created as part of the
frame, by means of a render target task (herein termed shortly
as ‘task’), evoked by a draw call, becomes a source of refer-
ence to successive frames. Inter-frame dependency is illus-
trated in FIG. 4c¢. Task in the first frame creates a render target
for repeated use as a texture in successive frames by task in
frame k+1 and by task, in frame k+2. If task, is purged as part
of the reduction of frame k into a concise frame, this texture
resource will be missing in subsequent frames, causing an
artifact. For example, an image of a mountain reflected in a
fishpond is created only once per multiple frames, but this
image is incorporated in all consecutive frames. The reflected
mountain image is stored as an intermediate render target
(RT). This RT becomes an input resource, a texture, for suc-
ceeding frames. If that draw call is dropped from the refer-
enced frame, the image of the reflected mountain disappears
from successive frames as well, causing an artifact.
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[0061] A frame can be seen as a flow of tasks (T,-T,-T;- .
. Ty), when each task has its input and output resources:
vertex buffer (VB), index buffer (IB), texture, render target
(RT), shaders, and states. An output B of task T, at frame N is
used as an input to task T, of frame N+1. If that input B is
missing, the result is an artifact. For that reason, at the time of
formation, inter-frame dependency between tasks must be
revealed and solved in order to prevent artifacts.
[0062] Practically speaking, there are two different meth-
ods to deal with the inter-frame dependency issue. The simple
one is a “per application” method based on an individual
investigation of each application, making a list of all
resources that ought to be provided by one of the preceding
frames. The tasks that generate those resources shouldn’t be
dropped. However, this is a customization method; it is
manual and expensive. [t requires a human learning curve for
each application. Consequently, an automatic method for
solving inter-frame dependency is needed.
[0063] In one embodiment of the present invention the
automatic method for solving inter-frame dependency is
based on a Dependency Handler software module, respon-
sible for preventing artifacts caused by frame dependency.
For every resource, the module must identify the updating
task. Whenever a dependency exists, it must make sure that
the successive frames received all the required resources.
This is done by keeping the updating task as part of the
concise frame, while other draw calls can be removed. The
resource is then generated, and from this point on the resource
becomes available to all successive frames.
[0064] FIG. 4d shows different cases of inter-frame depen-
dency. Resources of successive frames are shown. A resource
in frame 1 is set by the command Set Render Target. In frame
2 this resource is called up by the command Set Texture. It is
essential to veritfy in frame 2 whether the called up resource is
dependent on the previous frame or not. Case 1 is a simple
example of dependency when the final result in frame 2
depends on the drawn element in the preceding frame. In case
1 a small rectangle was created by the first frame. In the next
frame the dependency disappears only if the rectangle is
completely overdrawn. In case 1 the original rectangle
appears in the final result as well, which makes the second
frame dependent on the first one. In case 2 the triangle over-
writes the rectangle, removing the dependency.
[0065] The difficulty stems from the need to recognize in
real time whether the overwriting was complete or not. In case
3 the answer is made simple because of overwriting by a full
square quad or in case 6 a Clear command, removing any
chance for dependency. In case 4 the full squad is assembled
from a puzzle of smaller polygons, which raises uncertainty.
Ifthe polygons fully cover the texture, no dependency exists.
The occlusion query command, counting the number of
drawn pixels, can help. However, if the texture is not com-
pletely covered, the dependency is questionable: both options
still exist. Case 5 shows an example of incomplete overdraw,
leaving the dependency in place. In the case of uncertainty, we
need to take a “false positive” approach, meaning that we
must assume dependency, in order to eliminate any chance of
artifacts.

Responsiveness

[0066] Some embodiments of the present invention mini-
mize input lags to the level of graphics systems without
v-sync solutions. As mentioned before, input lags deteriorate
the responsiveness of real-time graphics systems, interfering
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with games which require precise timing or fast reaction
times. The high responsiveness of the Virtual v-sync method
of the embodiment of the present invention is illustrated in
FIG. 5a. The basic mode is analyzed, in terms of worse and
best case. Worse case is shown on user input 1, which comes
at the beginning of BF 2, therefore it can be reflected only in
BF 3. However, BF 3 is dropped, therefore its response is
shown only on BF 4 which is displayed as FF 4. The lagis 1.5
frames. The best case is exemplified on user input 2, initiated
just before the start of BF 6, and coming into effect at the end
of BF 6, therefore visible by display frame 6, causing a delay
ofonly 0.5 display frame, equal to the best case of non-v-sync
graphics systems (see FI1G. 1d). It is significantly better than
that of'the prior art’s v-sync (FIG. 1e) in which the worst-case
lag is 2 display frames, and the best case is 1 display frame.
The responsiveness comparison (FIG. 56) between the prior
art’s v-sync method and the Virtual v-sync of the embodiment
of'the present invention is based on real benchmarking. Test-
ing was done on video game applications. FPS (frames per
second) reflects responsiveness. Tests performed and
reported in FIG. 56 indicate improvements on the order of
100% to 250%, but these results are representative only, and
actual improvement may be less than 100% or greater than
250%. The concise mode embodiment of present invention is
even more responsive due to shortening BFs while dropping
draw calls, as shown in FIG. 6. In the worst case the delay is
of'a single display frame, whereas in the best case it is only a
fraction of a display frame, depending on the difference
between FPS and screen refresh rate.

[0067] An additional way to improving responsiveness in
some embodiments is by shortening the queue of driver-
formed frames in the CPU. The frames are queued prior being
sent to the GPU. The typical queue length in a CPU is of three
frames, with no blocking, causing a constant input lag. This
lag can be shortened by decreasing the queue to one or two
driver-formed frames.

[0068] In summary, the different embodiments prevent
video tearing artifacts, performance limitations and input lag
in graphics systems, all of which are critical in real-time
applications.

Eliminating Micro Stuttering

[0069] Micro stuttering is inherent in every technique of
dropping frames in a non-uniform way. Typically, micro stut-
tering is a term used in computing to describe a quality defect
inherent in multi-GPU configurations, using time division
(alternate framerate). It manifests as irregular delays between
frames rendered by the multiple GPUs. This effect may be
apparent when the flow of frames appears to stutter, resulting
in a degraded game play experience in video games, even
though the frame rate seems high enough to provide a smooth
experience.

[0070] In different embodiments, when the shortening and
dropping frames are practiced, a micro stuttering may appear.
It causes two deteriorating effects: (i) a non fluent image
(stuttering image) when the animated contents do not develop
smoothly, and (ii) a non-uniform pace of displaying frames
(stuttering display). The stuttering of an image stems from the
discrepancy caused to the virtual timeline at the animated
application by missing frames from the timely sequence. The
virtual time must then be compensated accordingly, to elimi-
nate image stuttering.

[0071] FIG. 7 shows a stuttering case, including stuttering
image and stuttering display. The way to fix the stuttering
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effect is shown as well. The original sequence of frames is
shown in row 80. There are 4 frames with a time-sensitive
content. Four frames are shown, submitted to the GPU at
11-14 times, and displayed by the GPU due to “present” com-
mands, P1-P4. In row 81 a concise mode is shown, having
dropped the third frame. This drop would result in stuttering.
After the drop, only the frames 1, 2, and 4 remain, with
presents P1, P2, and P4 respectively. The present command
P3 is missing, resulting in stuttering display, due to non-
uniformly spaced present commands. The remedy comes
from changing the times for the frames 2 and 4. The duration
time of frames 2 and 4 compensate for the missing frame.
Both frames are being appended with an additional time of
AT. As shown, the presenting time of frame 2 is shifted from
P2 to P'2, delayed by T+AT, while AT in this example equals
T/2. Frame 2 submitted by the application (CPU) to GPU at
the original time 12, but presented with a AT delay at P'2,
would be incorrect at the time of display, causing a stuttering
image. The resulting image would be incorrect at the time of
present. To fix this, the application should send a frame for
rendering on time, according to its internal clock; frame 2
must be submitted to the GPU at the new time I'2 and sent to
display at P'2, as shown in FIG. 7.

[0072] Insummary, inorder to prevent stuttering of display
as well as of image, the application clock must be controlled
by timely submissions of frames to GPU, and timely presents
to display. Same method should be applied for mouse and
keyboard movements. Mouse and Keyboard movements
should be manipulated to fit the actual presented frames in the
same way as the applications clock was controlled.

Cloud Gaming

[0073] Another embodiment of the present invention
matches the cloud gaming application. Cloud gaming is a
type of online gaming that allows direct and on-demand
streaming of games onto a computer through the use of a thin
client, in which the actual game is stored on the operator’s or
game company’s server and is streamed directly to computers
accessing the server through the client. This makes the capa-
bility of the user’s computer unimportant, as the server is
handling the processing needs. The controls and button
presses from the user are transmitted directly to the server,
where they are recorded, and the server then sends back the
game’s response to the input controls.

[0074] High utilization of the GPU in cloud gaming is of
significant importance. The more applications a GPU can run
simultaneously, the higher its utilization. It is gained by usage
of the concise mode along with the solution of inter-frame
dependency, as described above. FIG. 8 depicts the cloud
mode of Virtual Vsync. In the given example a single GPU
generates simultaneously three independent streams of
frames to three remote clients. Two different types of frames
are generated: a full displayable frame (70), and a shortened
frame with dropped draw calls (71). By cutting down frames,
entirely or partly, without raising the frame rate, more appli-
cations can simultaneously run on a GPU, increasing its uti-
lization.

Power Consumption Control

[0075] The graphics subsystem of a computing system is
typically the largest power consumer. The power dissipated
by a graphics subsystem is proportional to the frame rate:
P=C*FPS, where P is the dissipated power and C is the heat
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capacitance. As FPS changes, the power follows the change in
a linear way. Lowering FPS decreases the power consump-
tion. Unfortunately, this decrease in power consumption
comes at the price of derogated responsiveness, due to a
slower FPS. For that reason a real-time power-performance
tradeoff must be kept. The capability of controlled FPS sug-
gests a dynamic way of doing this: the dynamic FPS scaling
mechanism, whereby the FPS of a graphics subsystem can be
automatically adjusted “on the fly,” either lowered to con-
serve power and reduce the amount of heat generated at the
cost of responsiveness, or increased to improve the respon-
siveness. Such a dynamic FPS scaling would be important in
laptops, tablets and other mobile devices, where energy
comes from a battery and thus is limited. It can also be used in
quiet computing settings that need low noise levels, such as
video editing, sound mixing, home servers, and home theater
PCs. A typical quiet PC uses quiet cooling and storage devices
and energy-efficient parts. Less heat output, in turn, allows
the system cooling fans to be throttled down or turned off,
reducing noise levels and further decreasing power consump-
tion.

[0076] In some embodiments of the present invention, the
capability of altering the FPS is applied to controlling the
power consumption of the system. In concise mode the FPS is
raised by dropping some frames or cutting parts thereof. As a
result, when at a given FPS, the GPU power consumption in
concise mode is compared with the GPU power consumption
in native mode; the consumption at concise mode is appar-
ently lower, saving power. This is evident from the table of
FIG. 9, for the graphics application of the video game Call of
Duty 4. The frame rate of concise mode grows from 138 FPS
to 310 FPS (growth of over 124%), resulting in GPU power
reduction from 84.6 W to 62.4 W, or over 26%. Such a
reduced GPU power should be significant for the overall
computing system, as the GPU typically is the main power
consumer.

[0077] Unfortunately, the total power consumption does
not drop in the same ratio, because of the second largest
power consumer in the system, the CPU. Following the
increased FPS, the CPU needs to work harder, preparing more
frames per time unit for the GPU, resulting in intensified
power consumption. This is evident from FIG. 9; the CPU
power increases from 19.19 W in native mode to 25.7 W in
concise mode, a growth of 31.7%. On the whole, the power
gain of the CPU is balanced by the power loss of GPU, and the
resulting power drop is only 15.6%.

[0078] The way to save the power gain of the GPU is by
artificially reducing the power consumption of the CPU,
without interfering with the CPU’s work on behalf of graph-
ics. Usually, each frame processed by the GPU has to be
pre-processed by the CPU, transferred to the GPU for render-
ing, and finally sent from the GPU to display by the Present
call. The frame rendering period at the GPU overlaps with the
CPU pre-processing of the successive frame. Typically, the
pre-processing time at the CPU is shorter, terminating at some
time before the present call, resulting in a CPU idle period.
According to an embodiment of present invention the CPU is
shut down during that idle period, by an issued Sleep(X MS)
command (also called CPU bubbles). This is shown in FIG. 9,
in the “Concise, sleep (3 ms)” row. In the given example, at all
frames the CPU was sent to sleep for 3 msec. before the
present command. As a result, the saving of CPU power was
improved dramatically; its power consumption dropped over
~28% below the native mode, and ~50% below the concise
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no-sleep mode. Simultaneously the frame rate lowered to 165
FPS, still better than native mode. The aggregated power
savings of GPU and CPU, is —29% of the native power.

Implementation

[0079] The preferred embodiment of Virtual V-sync of the
present invention comprises GPU-related graphics contexts,
and CPU-related tasks to manage the graphics contexts.
There are two graphics contexts:

[0080] (i) The Rendering Context, for rendering the
input data and storing the resulting frame image in the
back buffer, and

[0081] (ii) The Display Context, for transferring the back
buffer to the display device, while the transfer is syn-
chronized with display refresh rate.

[0082] The Rendering Context is managed by a series of
CPU tasks: (i) decision making on dropping frames or short-
ening frames (ii) testing inter-frame dependencies, (iii) modi-
fying frames accordingly, (iv) feeding the GPU with data and
commands, and (v) transferring the final back buffers to pre-
senting frames. A series of tasks are required to manage the
Display Context: (i) receive rendered frames from the render-
ing context. (ii) Managing the back buffers swap chain, and
(iii) controlling the Display Sync.

[0083] FIGS. 10a and 105 demonstrate two preferred sys-
tem embodiments of the present invention, based on off-the-
shelf components, such as multicore chips, CPU and GPU
fusion chips, discrete GPUs, etc. FIG. 104 illustrates a graph-
ics system comprising CPU, discrete GPU and Display. The
display is connected to the GPU. Both graphic contents run on
a single GPU, managed by two CPU threads. Rendering
always is the primary context on a GPU, while rendering
performance is of main concern in real-time graphics appli-
cations. However, in this embodiment the GPU is underuti-
lized in regard to rendering, due to the time spent on the
Display Context. FIG. 105 illustrates a more efficient, dual
GPU system: a hybrid chip having at least one CPU and an
integrated GPU, and a separate discrete GPU. The display
connects to the integrated GPU. The discrete GPU runs the
Rendering Context, undisturbed by the Display Context,
which runs on the integrated GPU. Both contexts are man-
aged by two CPU threads.

What is claimed is:

1. A method for reducing power consumption in graphics
systems comprising not displaying at least one frame in a
sequence of frames.

2. A method according to claim 1 further comprising deter-
mining an amount of time required to finish displaying a
rendered frame being currently displayed in said sequence of
frames.

3. A method according to claim 2 further comprising deter-
mining an amount of time required to render the at least one
frame.

4. A method according to claim 3 further comprising not
displaying the at least one frame when a time difference
between the amount of time required to render the at least one
frame and the amount of time required to finish displaying the
rendered frame being currently displayed exceeds a predeter-
mined time.
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5. A method according to claim 1 further comprising evalu-
ating inter-frame dependency between the at least one frame
and a successive one or more frames in said sequence of
frames.

6. A method according to claim 5 further comprising short-
ening the at least one frame if inter-frame dependency exists
with the successive one or more frames.

7. A method according to claim 6 wherein said shortening
comprises removing from said at least one frame some ren-
dering commands.

8. A method according to claim 7 further comprising short-
ening the at least one frame prior to said not displaying.

9. A method according to claim 1 wherein said not display-
ing comprises removing from said at least one frame all
rendering commands.

10. A method according to claim 1 wherein said not dis-
playing comprises discarding said at least one frame follow-
ing its rendering.

11. A power-saving computing device comprising:

a CPU (central processing unit) to reduce power consump-
tion in the device by managing rendering of frames
associated with graphics context and issuing an instruc-
tion to not display at least one frame in a sequence of
frames; and

a GPU (graphics processing unit) to render frames in said
sequence of frames.

12. A computing device according to claim 11 wherein said
CPU determines an amount of time required to finish display-
ing a rendered frame being currently displayed.

13. A computing device according to claim 12 wherein said
CPU further determines an amount of time required to render
said at least one frame.

14. A computing device according to claim 13 wherein said
CPU issues said instruction to not display responsive to a time
difference between the amount of time required to render said
at least one frame and the amount of time required to finish
displaying the rendered frame being currently displayed
exceeding a predetermined time.

15. A computing device according to claim 11 wherein said
CPU evaluates inter-frame dependency between said at least
one frame and one or more successive frames in said
sequence of frames.

16. A computing device according to claim 15 wherein said
CPU shortens said at least one frame if inter-frame depen-
dency exists with said one or more successive frames.

17. A computing device according to claim 16 wherein said
shortening comprises said CPU removing from said at least
one frame some rendering commands.

18. A computing device according to claim 17 wherein said
CPU shortens said at least one frame prior to issuing said
instruction to not display.

19. A computing device according to claim 11 wherein said
instruction to not display comprises said CPU removing from
said at least one frame all rendering commands.

20. A computing device according to claim 11 wherein said
instruction to not display comprises said CPU discarding said
at least one frame following its rendering by said GPU.
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