
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0210053 A1

US 20160210.053A1

FRANK et al. (43) Pub. Date: Jul. 21, 2016

(54) DISTRIBUTED INDEX FOR FAULT (52) U.S. Cl.
TOLERANT OBJECT MEMORY FABRIC CPC G06F 3/0604 (2013.01); H04L 67/1097

(2013.01); G06F 3/0644 (2013.01); G06F
(71) Applicant: ULTRATA LLC, VIENNA, VA (US) 3/0659 (2013.01); G06F 3/067 (2013.01)

(72) Inventors: STEVEN FRANK, BOULDER, CO (57) ABSTRACT
(US); LARRY REBACK, VIENNA, VA
(US) Embodiments of the invention provide systems and methods

for managing processing, memory, storage, network, and
(73) Assignee: ULTRATA LLC, VIENNA, VA (US) cloud computing to significantly improve the efficiency and

performance of processing nodes. Embodiments can imple
(21) Appl. No.: 15/001,451 ment an object memory fabric including object memory mod

ules storing memory objects created natively within the
(22) Filed: Jan. 20, 2016 object memory module and may be a managed at a memory

layer. The memory module object directory may index all
Related U.S. Application Data memory objects within the object memory module. A hierar

(60) Provisional application No. 62/105,602, filed on Jan. chy of object routers communicatively coupling the object
20, 2015. memory modules may each include a router object directory

that indexes all memory objects and portions contained in
Publication Classification object memory modules below the object router in the hier

archy. The hierarchy of object routers may behave in aggre
(51) Int. Cl. gate as a single object directory communicatively coupled to

G06F 3/06 (2006.01) all object memory modules and to process requests based on
H04L 29/08 (2006.01) the router object directories.

Se
OAABASE
24

CPONEN
222

COMPONENT COPONENT
28 220

SERVER
212

NETWORK(s)

- 200
Se
DAAASE
216

206

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 1 of 23 Patent Application Publication

- ·ësedelea “uone?uese.Ideº ddw
|

ddwyddwy· · · · · · · · ·|day

(eue?^^) Kuopoeu?G ddv | ddw & & & & & & & & & &ddwy

---------J?AføS Á??pouuuuoOJæAuæS Á??pouuuuoo

Patent Application Publication Jul. 21, 2016 Sheet 2 of 23 US 2016/0210.053 A1

DATABASE DATABASE
214 26

COPCNEN COMPONEN
28 220

COMPONEN
222

NErwORKs)
20

FIG. 2

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 3 of 23 Patent Application Publication

?NISSBOOxid gnS ET ET

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 4 of 23 Patent Application Publication

Patent Application Publication Jul. 21, 2016 Sheet 5 of 23

s S-1 :
tas O. 2

k

V

R v, -s.
, , 7.3

? x /
M r X---------------------------- v

US 2016/0210.053 A1

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 6 of 23 Patent Application Publication

089,

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 7 of 23 Patent Application Publication

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 9 of 23 Patent Application Publication

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 10 of 23 Patent Application Publication

WW O |O|

Xapu] [qO 990N + WO

080 ? 980 ||

Xepu] [qO ?pON HWNO

Xepu|[qO ?pON – WO

<NJ000 ||

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 12 of 23 Patent Application Publication

C
cy

w

| #72 ||

983 | 90Z, Á??A??ov? puno 16×oeg 40 GOZI ?senbe», JOSS3OOud V

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 13 of 23 Patent Application Publication

||||||||||||||||||||||||||||||||||||||
| 0 || 8 ||

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 14 of 23 Patent Application Publication

f7!, "SDH

9 | 17 j.

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 15 of 23 Patent Application Publication

|×

xoola apoN LIO?<– – – – –)

US 2016/0210.053 A1

?fl|{2/\TI {..

Jul. 21, 2016 Sheet 16 of 23 Patent Application Publication

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 17 of 23 Patent Application Publication

NEM

|

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 18 of 23 Patent Application Publication

-- 02/ | (?oedS Sseuppy

*NQ00/ l.

Jul. 21, 2016 Sheet 19 of 23

99/ l.

Patent Application Publication

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 20 of 23 Patent Application Publication

Patent Application Publication Jul. 21, 2016 Sheet 21 of 23 US 2016/0210.053 A1

S.
-

epoo euely

S.
4.

Patent Application Publication Jul. 21, 2016 Sheet 22 of 23 US 2016/0210.053 A1

s
4.

US 2016/0210.053 A1 Jul. 21, 2016 Sheet 23 of 23 Patent Application Publication

uO?SIÐA IÐHeled

p+q =X, ppe q (e)dy, peOI
90 || ? uo?SuÐA <NJ00 || ?

US 2016/0210.053 A1

DISTRIBUTED INDEX FOR FAULT
TOLERANT OBJECT MEMORY FABRIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims benefit under 35
USC 119(e) of U.S. Provisional Application No. 62/105,602,
filed on Jan. 20, 2015, by Frank et al. and entitled “Infinite
Memory Fabric Data Types and Metadata Architecture of
which the entire disclosure is incorporated herein by refer
ence for all purposes.
0002 The present application is also related to the follow
ing co-pending and commonly assigned U.S. Patent Applica
tions:
0003 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967319 (0.00100US)) filed concur
rent herewith by Frank and entitled “Object Based Memory
Fabric;
0004 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967320 (0.00110US)) filed concur
rent herewith by Frank and entitled “Trans-Cloud Object
Based Memory;”
0005 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967321 (0.00120US)) filed concur
rent herewith by Frank and entitled “Universal Single Level
Object Memory Address Space.”
0006 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967322 (000130US)) filed concur
rent herewith by Frank and entitled “Object Memory Fabric
Performance Acceleration:
0007 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967324 (000210US)) filed concur
rent herewith by Frank and entitled “Implementation of an
Object Memory Centric Cloud.”
0008 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967325 (0.00220US)) filed concur
rent herewith by Frank and entitled “Managing Meta-Data in
an Object Memory Fabric;”
0009 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967326 (0.00230US)) filed concur
rent herewith by Frank and entitled “Utilization of a Distrib
uted Index to Provide Object Memory Fabric Coherency;”
0010 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967327 (000300US)) filed concur
rent herewith by Frank and entitled "Object Memory Data
Flow Instruction Execution:
0011 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967329 (000310US)) filed concur
rent herewith by Frank and entitled "Object Memory Data
Flow Triggers; and
0012 U.S. patent application Ser. No. (Attorney
Docket Number 097704-0967328 (000320US)) filed concur
rent herewith by Frank and entitled "Object Memory Instruc
tion Set, of which the entire disclosure of each is incorpo
rated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

0013 Embodiments of the present invention relate gener
ally to methods and systems for improving performance of
processing nodes in a fabric and more particularly to chang
ing the way in which processing, memory, storage, network,
and cloud computing, are managed to significantly improve
the efficiency and performance of commodity hardware.

Jul. 21, 2016

0014. As the size and complexity of data and the processes
performed thereon continually increases, computer hardware
is challenged to meet these demands. Current commodity
hardware and software solutions from established server, net
work and storage providers are unable to meet the demands of
Cloud Computing and Big Data environments. This is due, at
least in part, to the way in which processing, memory, and
storage are managed by those systems. Specifically, process
ing is separated from memory which is turn is separated from
storage in current systems and each of processing, memory,
and storage is managed separately by Software. Each server
and other computing device (referred to hereinas a node) is in
turn separated from other nodes by a physical computer net
work, managed separately by Software and in turn the sepa
rate processing, memory, and storage associated with each
node are managed by Software on that node.
0015 FIG. 1 is a block diagram illustrating an example of
the separation data storage, memory, and processing within
prior art commodity servers and network components. This
example illustrates a system 100 in which commodity servers
105 and 110 are communicatively coupled with each other via
a physical network 115 and network software 155 as known in
the art. Also as known in the art, the servers can each execute
any number of one or more applications 120a, 120b, 120c of
any variety. As known in the art, each application 120a, 120b,
120c executes on a processor (not shown) and memory (not
shown) of the server 105 and 110 using data stored in physical
storage 150. Each server 105 and 110 maintains a directory
125 mapping the location of the data used by the applications
120a, 120b, 120c. Additionally, each server implements for
each executing application 120a, 120b, 120c a software stack
which includes an application representation 130 of the data,
a database representation 135, a file system representation
140, and a storage representation 145.
0016 While effective, there are three reasons that such
implementations on current commodity hardware and soft
ware solutions from established server, network and storage
providers are unable to meet the increasing demands of Cloud
Computing and Big Data environments. One reason for the
shortcomings of these implementations is their complexity.
The Software stack must be in place and every application
must manage the separation of storage, memory, and process
ing as well as applying parallel server resources. Each appli
cation must trade-offalgorithm parallelism, data organization
and data movement which is extremely challenging to get
correct, let alone considerations of performance and econom
ics. This tends to lead to implementation of more batch ori
ented Solutions in the applications, rather than the integrated
real-time solutions preferred by most businesses. Addition
ally, separation of storage, memory, and processing, in Such
implementations also creates significant inefficiency for each
layer of the Software stack to find, move, and access a block of
data due to the required instruction execution and latencies of
each layer of the software stack and between the layers.
Furthermore, this inefficiency limits the economic scaling
possible and limits the data-size for all but the most extremely
parallel algorithms. The reason for the latter is that the effi
ciency with which servers (processors or threads) can interact
limits the amount of parallelism due to Amdahl's law. Hence,
there is a need for improved methods and systems for man
aging processing, memory, and storage to significantly
improve the performance of processing nodes.

US 2016/0210.053 A1

BRIEF SUMMARY OF THE INVENTION

0017 Embodiments of the invention provide systems and
methods for managing processing, memory, and storage to
significantly improve the performance of processing nodes.
Certain embodiments may include an object memory fabric
distributed object memory and index. With the distributed
index, individual nodes may index local objects and blocks of
objects on a per-object basis. Certain embodiments of object
memory fabric distributed object memory and index may be
based at least in part on overlaying an independent local index
function on top of a fat-tree hierarchical network.
0018. In one aspect, an object memory fabric is disclosed.
The object memory fabric may include a plurality of object
memory modules, each object memory module including
object storage storing one or more memory objects, memory
object meta-data, and a memory module object directory.
Each memory object and/or portion of memory objects may
be created natively within the object memory module and
may be a managed by the object memory module at a memory
layer. The memory module object directory may index all
memory objects and/orportions of memory objects within the
object memory module. The object memory fabric may
include a hierarchy of object routers communicatively cou
pling the plurality of object memory modules. Each object
router of the hierarchy of object routers may include a router
object directory. The router object directory may index all
memory objects and/orportions of memory objects contained
in object memory modules below the object router along a
line of descent in the hierarchy stemming from the object
router. The hierarchy of object routers, based at least in part
on the router object directories, may be adapted to behave in
aggregate as a single object directory communicatively
coupled to all object memory modules and to process requests
based at least in part on the router object directories.
0019. The hierarchy of object routers may operate accord
ing to a hierarchical tree network. The object memory mod
ules below the object router along the line of descent in the
hierarchy Stemming from the object router may include
object memory modules directly communicatively coupled to
the respective object router toward a leaf of the hierarchical
tree network. Toward the leaf of the hierarchical tree network
may correspond to a most direct path between the object
router away from a root of the hierarchical tree network and
an object memory module at the leaf of the hierarchical tree
network.
0020. The behaving in aggregate as the single object direc
tory communicatively coupled to all the object memory mod
ules and the processing the requests may include: responsive
to each request of the requests, at least one of the object
routers looking up an object corresponding to the request with
a respective router object directory, and: consequent to iden
tifying a reference to the object in the respective router object
directory, forwarding the object toward a leaf in the hierarchy:
consequent to identifying the reference to the object is not in
the respective router object directory, forwarding the first
request toward a root in the hierarchy.
0021. At least one of the requests may be received from an
application layer. Each object memory module may further
include an object index tree that indexes local memory
objects. The object index tree may include node blocks and
leaf blocks each differentiated by a type attribute, where one
or more of the leaf blocks point to locations of the local
memory objects in persistent memory and/or faster memory.
The object index tree may include a pointer to a per object

Jul. 21, 2016

index tree for each local memory object, where the per object
index tree for each local memory object indexes, on a block
basis, memory object data and memory object meta-data
locally present for the local memory object. The per object
index tree may include node blocks and leaf blocks each
differentiated by a type attribute, where one or more of the
leaf blocks point to locations of the memory object data and
memory object meta-data in persistent memory and/or faster
memory. The hierarchy of object routers adapted to behave in
aggregate as the single object directory may be used to man
age at least one memory object across multiple object
memory modules of the plurality of object memory modules
where a single object memory module of the multiple object
memory modules does not have storage space required to
store all blocks of the at least one memory object.
0022. In another aspect, a hardware-based processing
node is disclosed. The hardware-based processing node may
include an object memory module including object storage
storing one or more memory objects, memory object meta
data, and a memory module object directory. Each memory
object and/or portion of memory objects may be created
natively within the object memory module and may be a
managed by the object memory module at a memory layer.
The memory module object directory may index all memory
objects and/or portions of memory objects within the object
memory module. The object memory module may process
one or more requests based at least in part on the one or more
object directories.
0023 The processing the one or more requests may
include: processing an object identifier corresponding to a
first request of the one or more requests; determining whether
at least one object of the one or more memory objects corre
sponds to the object identifier, and consequent to a determi
nation that at least one of the one or more memory objects
does correspond to the object identifier, generating a response
to the first request based at least in part on the at least one
object. An object router may be communicatively coupled to
the object memory module that, consequent to a determina
tion that at least one of the one or more memory objects does
not correspond to the object identifier, routes the first request
to an additional node. The routing the first request to the
additional node may be based at least in part on the object
router determining a location of a memory object correspond
ing to the object identifier. The routing the first request to the
additional node may be based at least in part on the object
router determining that a location of a memory object corre
sponding to the object identifier is unknown. The first request
may be directed toward a root node. After the routing the first
request to the additional node, the memory module may gen
erate a response to the first request based at least in part on a
received response from the additional node. The object
memory module may further include an object index tree that
indexes local memory objects. The object index tree may
include node blocks and leaf blocks each differentiated by a
type attribute, where one or more of the leaf blocks point to
locations of the local memory objects in persistent memory
and/or faster memory. The object index tree may include a
pointer to a per object index tree for each local memory
object, where the per object index tree for each local memory
object indexes, on a block basis, memory object data and
memory object meta-data locally present for the local
memory object. The per object index tree may include node
blocks and leaf blocks each differentiated by a type attribute,
where one or more of the leaf blocks point to locations of the

US 2016/0210.053 A1

memory object data and memory object meta-data in persis
tent memory and/or faster memory. At least one of the one or
more requests may be received from an application layer. At
least one of the one or more requests may be received from
one or more additional nodes. The node may be configured to
utilize a set of algorithms to operatively couple to one or more
additional nodes to operate as a set of nodes independently of
a scale of the set of nodes, where the set of nodes operates so
that all memory objects of the set of nodes are accessible by
any node of the set of nodes.
0024. In yet another aspect, a method for storing and man
aging one or more memory objects in an object memory
fabric is disclosed. The method may include any one or com
bination of the following. One or more memory objects,
memory object meta-data, and a memory module object
directory may be stored in object storage of an object memory
module. Each memory object and/or portion of memory
objects may be created natively within the object memory
module and may be managed by the object memory module at
a memory layer. The memory module object directory may
index all memory objects and/or portions of memory objects
within the object memory module. The object memory mod
ule may process one or more requests based at least in part on
the one or more object directories.
0025. The processing the one or more requests may
include: processing an object identifier corresponding to a
first request of the one or more requests; determining whether
at least one object of the one or more memory objects corre
sponds to the object identifier; and consequent to a determi
nation that at least one of the one or more memory objects
does correspond to the object identifier, generating a response
to the first request based at least in part on the at least one
object. The processing the one or more requests may include,
consequent to a determination that at least one of the one or
more memory objects does not correspond to the object iden
tifier, routing, by an object router communicatively coupled
to the object memory module, the first request to an additional
node.

BRIEF DESCRIPTION OF THE DRAWINGS

0026 FIG. 1 is a block diagram illustrating an example of
the separation data storage, memory, and processing within
prior art commodity servers and network components.
0027 FIG. 2 is a block diagram illustrating components of
an exemplary distributed system in which various embodi
ments of the present invention may be implemented.
0028 FIG. 3 is a block diagram illustrating an exemplary
computer system in which embodiments of the present inven
tion may be implemented.
0029 FIG. 4 is a block diagram illustrating an exemplary
Infinite Object memory fabric (object memory fabric) archi
tecture according to one embodiment of the present invention.
0030 FIG. 5 is a block diagram illustrating an exemplary
object memory fabric object memory according to one
embodiment of the present invention.
0031 FIG. 6 is a block diagram illustrating an exemplary
object memory dynamics and physical organization accord
ing to one embodiment of the present invention.
0032 FIG. 7 is a block diagram illustrating aspects of
object memory fabric hierarchy of object memory, which
localizes working sets and allows for virtually unlimited Scal
ability, according to one embodiment of the present inven
tion.

Jul. 21, 2016

0033 FIG. 8 is a block diagram illustrating aspects of an
example relationship between object address space, virtual
address, and physical address, according to one embodiment
of the present invention.
0034 FIG. 9 is a block diagram illustrating aspects of an
example relationship between object sizes and object address
space pointers, according to one embodiment of the present
invention.
0035 FIG. 10 is a block diagram illustrating aspects of an
example object memory fabric distributed object memory and
index structure, according to one embodiment of the present
invention.
0036 FIG. 11 illustrates aspects of an object memory hit
case that executes completely within the object memory,
according to one embodiment of the present invention.
0037 FIG. 12 illustrates aspects of an object memory miss
case and the distributed nature of the object memory and
object index, according to one embodiment of the present
invention.
0038 FIG. 13 is a block diagram illustrating aspects of an
example of leaf level object memory in view of the object
memory fabric distributed object memory and index struc
ture, according to one embodiment of the present invention.
0039 FIG. 14 is a block diagram illustrating aspects of an
example of object memory fabric router object index struc
ture, according to one embodiment of the present invention.
0040 FIGS. 15A and 15B are block diagrams illustrating
aspects of example index tree structures, including node
index tree structure and leaf index tree, according to one
embodiment of the present invention.
0041 FIG. 16 is a block diagram illustrating aspects of an
example physical memory organization, according to one
embodiment of the present invention.
0042 FIG. 17A is a block diagram illustrating aspects of
example object addressing, according to one embodiment of
the present invention.
0043 FIG. 17B is a block diagram illustrating aspects of
example object memory fabric pointer and blockaddressing,
according to one embodiment of the present invention.
0044 FIG. 18 is a block diagram illustrating aspects of
example object metadata, according to one embodiment of
the present invention.
0045 FIG. 19 is a block diagram illustrating aspects of an
example micro-thread model, according to one embodiment
of the present invention.
0046 FIG. 20 is a block diagram illustrating aspects of an
example relationship of code, frame, and object, according to
one embodiment of the present invention.
0047 FIG. 21 is a block diagram illustrating aspects of an
example of micro-thread concurrency, according to one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0048. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of various embodiments of
the present invention. It will be apparent, however, to one
skilled in the art that embodiments of the present invention
may be practiced without some of these specific details. In
other instances, well-known structures and devices are shown
in block diagram form.
0049. The ensuing description provides exemplary
embodiments only, and is not intended to limit the Scope,
applicability, or configuration of the disclosure. Rather, the

US 2016/0210.053 A1

ensuing description of the exemplary embodiments will pro
vide those skilled in the art with an enabling description for
implementing an exemplary embodiment. It should be under
stood that various changes may be made in the function and
arrangement of elements without departing from the spirit
and Scope of the invention as set forth in the appended claims.
0050 Specific details are given in the following descrip
tion to provide a thorough understanding of the embodiments.
However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these
specific details. For example, circuits, systems, networks,
processes, and other components may be shown as compo
nents in block diagram form in order not to obscure the
embodiments in unnecessary detail. In other instances, well
known circuits, processes, algorithms, structures, and tech
niques may be shown without unnecessary detail in order to
avoid obscuring the embodiments.
0051. Also, it is noted that individual embodiments may
be described as a process which is depicted as a flowchart, a
flow diagram, a data flow diagram, a structure diagram, or a
block diagram. Although a flowchart may describe the opera
tions as a sequential process, many of the operations can be
performed in parallel or concurrently. In addition, the order of
the operations may be re-arranged. A process is terminated
when its operations are completed, but could have additional
steps not included in a figure. A process may correspond to a
method, a function, a procedure, a Subroutine, a Subprogram,
etc. When a process corresponds to a function, its termination
can correspond to a return of the function to the calling
function or the main function.

0.052 The term “machine-readable medium' includes, but
is not limited to portable or fixed storage devices, optical
storage devices, wireless channels and various other medi
ums capable of storing, containing or carrying instruction(s)
and/or data. A code segment or machine-executable instruc
tions may represent a procedure, a function, a Subprogram, a
program, a routine, a Subroutine, a module, a Software pack
age, a class, or any combination of instructions, data struc
tures, or program statements. A code segment may be coupled
to another code segment or a hardware circuit by passing
and/or receiving information, data, arguments, parameters, or
memory contents. Information, arguments, parameters, data,
etc. may be passed, forwarded, or transmitted via any Suitable
means including memory sharing, message passing, token
passing, network transmission, etc. Various other terms used
herein are now defined for the sake of clarity.
0053 Virtual memory is a memory management tech
nique that gives the illusion to each Software process that
memory is as large as the virtual address space. The operating
system in conjunction with differing degrees of hardware
manages the physical memory as a cache of the virtual
address space, which is placed in secondary storage and
accessible through Input/Output instructions. Virtual
memory is separate from, but can interact with, a file system.
0054. A single level store is an extension of virtual
memory in which there are no files, only persistent objects or
segments which are mapped into a processes address space
using virtual memory techniques. The entire storage of the
computing system is thought of as a segment and address
within a segment. Thus at least three separate address spaces,
i.e., physical memory address/node, virtual address/process,
and secondary storage address/disk, are managed by Soft
Wa.

Jul. 21, 2016

0055 Object storage refers to the way units of storage
called objects are organized. Every object consists of a con
tainer that holds three things: actual data; expandable meta
data; and a globally unique identifier referred to herein as the
object address. The metadata of the object is used to define
contextual information about the data and how it should be
used and managed including relationship to other objects.
0056. The object address space is managed by software
over storage devices, nodes, and network to find an object
without knowing its physical location. Object storage is sepa
rate from virtual memory and single level store, but can
certainly inter-operate through software.
0057 Block storage consists of evenly sized blocks of data
with an address based on a physical location and without
metadata.
0.058 A network address is a physical address of a node
within an IP network that is associated with a physical loca
tion.
0059 A node or processing node is a physical unit of
computing delineated by a shared physical memory that be
addressed by any processor within the node.
0060 Object memory is an object store directly accessible
as memory by processor memory reference instructions and
without implicit or explicit software or Input/Output instruc
tions required. Object capabilities are directly provided
within the object memory to processing through memory
reference instructions.
0061 An object memory fabric connects object memory
modules and nodes into a single object memory where any
object is local to any object memory module by direct man
agement, in hardware, of object data, meta-data and object
address.
0062 An object router routes objects orportions of objects
in an object memory fabric based on an object address. This is
distinct from a conventional router which forwards data pack
ets to appropriate part of a network based on a network
address.
0063 Embodiments may be implemented by hardware,
Software, firmware, middleware, microcode, hardware
description languages, or any combination thereof. When
implemented in Software, firmware, middleware or micro
code, the program code or code segments to perform the
necessary tasks may be stored in a machine readable medium.
A processor(s) may perform the necessary tasks.
0064. Embodiments of the invention provide systems and
methods for managing processing, memory, storage, net
work, and cloud computing to significantly improve the effi
ciency and performance of processing nodes. Embodiments
described herein can be implemented in a set of hardware
components that, in essence, change the way in which pro
cessing, memory, and storage, network, and cloud computing
are managed by breaking down the artificial distinctions
between processing, memory, storage and networking in
today's commodity Solutions to significantly improve the
efficiency and performance of commodity hardware. For
example, the hardware elements can include a standard for
mat memory module, such as a (DIMM) and a set of one or
more object routers. The memory module can be added to
commodity or “off-the-shelf hardware such a server node
and acts as a big data accelerator within that node. Object
routers can be used to interconnect two or more servers or
other nodes adapted with the memory modules and help to
manage processing, memory, and storage across these differ
ent servers. Nodes can be physically close or far apart.

US 2016/0210.053 A1

Together, these hardware components can be used with com
modity servers or other types of computing nodes in any
combination to implement the embodiments described
herein.
0065 According to one embodiment, such hardware com
ponents can implement an object-based memory which man
ages the objects within the memory and at the memory layer
rather than in the application layer. That is, the objects and
associated properties are implemented and managed natively
in memory enabling the object memory system to provide
increased functionality without any Software and increasing
performance by dynamically managing object characteristics
including, but not limited to persistence, location and pro
cessing. Object properties can also propagate up to higher
application levels.
0066 Such hardware components can also eliminate the
distinction between memory (temporary) and storage (persis
tent) by implementing and managing both within the objects.
These components can eliminate the distinction between
local and remote memory by transparently managing the
location of objects (or portions of objects) So all objects
appear simultaneously local to all nodes. These components
can also eliminate the distinction between processing and
memory through methods of the objects to place the process
ing within the memory itself.
0067. According to one embodiment, such hardware com
ponents can eliminate typical size constraints on memory
space of the commodity servers imposed by address sizes.
Rather, physical addressing can be managed within the
memory objects themselves and the objects can in turn be
accessed and managed through the object name space.
0068 Embodiment described herein can provide transpar
ent and dynamic performance acceleration, especially with
big data or other memory intensive applications by reducing
or eliminating overhead typically associated with memory
management, storage management, networking and data
directories. Rather, management of the memory objects at the
memory level can significantly shorten the pathways between
storage and memory and between memory and processing,
thereby eliminating the associated overhead between each.
Various additional details of embodiments of the present
invention will be described below with reference to the fig
U.S.

0069 FIG. 2 is a block diagram illustrating components of
an exemplary distributed system in which various embodi
ments of the present invention may be implemented. In the
illustrated embodiment, distributed system 200 includes one
or more client computing devices 202, 204, 206, and 208,
which are configured to execute and operate a client applica
tion such as a web browser, proprietary client, or the like over
one or more network(s) 210. Server 212 may be communica
tively coupled with remote client computing devices 202,
204, 206, and 208 via network 210.
0070. In various embodiments, server 212 may be adapted
to run one or more services or software applications provided
by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or
cloud services or under a Software as a Service (SaaS) model
to the users of client computing devices 202, 204, 206, and/or
208. Users operating client computing devices 202,204, 206,
and/or 208 may in turn utilize one or more client applications
to interact with server 212 to utilize the services provided by
these components. For the sake of clarity, it should be noted
that server 212 and database 214, 216 can correspond to

Jul. 21, 2016

server 105 described above with reference to FIG.1. Network
210 can be part of or an extension to physical network 115. It
should also be understood that there can be any number of
client computing devices 202,204, 206, 208 and servers 212,
each with one or more databases 214, 216.
0071. In the configuration depicted in the figure, the soft
ware components 218, 220 and 222 of system 200 are shown
as being implemented on server 212. In other embodiments,
one or more of the components of system 200 and/or the
services provided by these components may also be imple
mented by one or more of the client computing devices 202,
204, 206, and/or 208. Users operating the client computing
devices may then utilize one or more client applications to use
the services provided by these components. These compo
nents may be implemented in hardware, firmware, Software,
or combinations thereof. It should be appreciated that various
different system configurations are possible, which may be
different from distributed system 200. The embodiment
shown in the figure is thus one example of a distributed
system for implementing an embodiment system and is not
intended to be limiting.
(0072 Client computing devices 202, 204, 206, and/or 208
may be portable handheld devices (e.g., an iPhone(R), cellular
telephone, an iPadR), computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass(R)
head mounted display), running software such as Microsoft
Windows MobileR), and/or a variety of mobile operating sys
tems such as iOS, Windows Phone, Android, BlackBerry 10,
Palm OS, and the like, and being Internet, e-mail, short mes
sage service (SMS), Blackberry(R), or other communication
protocol enabled. The client computing devices can be gen
eral purpose personal computers including, by way of
example, personal computers and/or laptop computers run
ning various versions of Microsoft Windows.(R), Apple Macin
tosh R, and/or Linux operating systems. The client computing
devices can be workstation computers running any of a vari
ety of commercially-available UNIX(R) or UNIX-like operat
ing systems, including without limitation the variety of GNU/
Linux operating systems, such as for example, Google
Chrome OS. Alternatively, or in addition, client computing
devices 202, 204, 206, and 208 may be any other electronic
device. Such as a thin-client computer, an Internet-enabled
gaming system (e.g., a Microsoft Xbox gaming console with
or without a Kinect(R) gesture input device), and/or a personal
messaging device, capable of communicating over network
(s) 210.
0073. Although exemplary distributed system 200 is
shown with four client computing devices, any number of
client computing devices may be supported. Other devices,
Such as devices with sensors, etc., may interact with server
212.

(0074 Network(s) 210 in distributed system 200 may be
any type of network familiar to those skilled in the art that can
Support data communications using any of a variety of com
mercially-available protocols, including without limitation
TCP/IP (Transmission Control Protocol/Internet Protocol),
SNA (Systems Network Architecture), IPX (Internet Packet
Exchange), AppleTalk, and the like. Merely by way of
example, network(s) 210 can be a Local Area Network
(LAN), such as one based on Ethernet, Token-Ring and/or the
like. Network(s) 210 can be a wide-area network and the
Internet. It can include a virtual network, including without
limitation a Virtual Private Network (VPN), an intranet, an
extranet, a Public Switched Telephone Network (PSTN), an

US 2016/0210.053 A1

infra-red network, a wireless network (e.g., a network oper
ating under any of the Institute of Electrical and Electronics
(IEEE) 802.11 suite of protocols, Bluetooth R, and/or any
other wireless protocol); and/or any combination of these
and/or other networks. Elements of such networks can have
an arbitrary distance, i.e., can be remote or co-located. Soft
ware Defined Networks (SDNs) can be implemented with a
combination of dumb routers and Software running on serv
CS.

0075 Server 212 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, Personal Computer (PC) servers, UNIX(R)
servers, mid-range servers, mainframe computers, rack
mounted servers, etc.), server farms, server clusters, or any
other appropriate arrangement and/or combination. In vari
ous embodiments, server 212 may be adapted to run one or
more services or software applications described in the fore
going disclosure. For example, server 212 may correspond to
a server for performing processing described above according
to an embodiment of the present disclosure.
0076 Server 212 may run an operating system including
any of those discussed above, as well as any commercially
available server operating system. Server 212 may also run
any of a variety of additional server applications and/or mid
tier applications, including HyperText Transport Protocol
(HTTP) servers, File Transfer Protocol (FTP) servers, Com
mon Gateway Interface (CGI) servers, JAVAR servers, data
base servers, and the like. Exemplary database servers
include without limitation those commercially available from
Oracle, Microsoft, Sybase, International Business Machines
(IBM), and the like.
0077. In some implementations, server 212 may include
one or more applications to analyze and consolidate data
feeds and/or event updates received from users of client com
puting devices 202, 204, 206, and 208. As an example, data
feeds and/or event updates may include, but are not limited to,
TwitterR) feeds, Facebook(R) updates or real-time updates
received from one or more third party information sources
and continuous data streams, which may include real-time
events related to sensor data applications, financial tickers,
network performance measuring tools (e.g., network moni
toring and traffic management applications), clickstream
analysis tools, automobile traffic monitoring, and the like.
Server 212 may also include one or more applications to
display the data feeds and/or real-time events via one or more
display devices of client computing devices 202, 204, 206,
and 208.

0078 Distributed system 200 may also include one or
more databases 214 and 216. Databases 214 and 216 may
reside in a variety of locations. By way of example, one or
more of databases 214 and 216 may reside on a non-transitory
storage medium local to (and/or resident in) server 212. Alter
natively, databases 214 and 216 may be remote from server
212 and in communication with server 212 via a network
based or dedicated connection. In one set of embodiments,
databases 214 and 216 may reside in a Storage-Area Network
(SAN). Similarly, any necessary files for performing the func
tions attributed to server 212 may be stored locally on server
212 and/or remotely, as appropriate. In one set of embodi
ments, databases 214 and 216 may include relational data
bases that are adapted to store, update, and retrieve data in
response to commands, e.g., MySQL-formatted commands.
Additionally or alternatively, server 212 can provide and Sup
port big data processing on unstructured data including but

Jul. 21, 2016

not limited to Hadoop processing, NoSQL databases, graph
databases etc. In yet other implementations, server 212 may
perform non-database types of bog data applications includ
ing but not limited to machine learning.
007.9 FIG. 3 is a block diagram illustrating an exemplary
computer system in which embodiments of the present inven
tion may be implemented. The system 300 may be used to
implement any of the computer systems described above. As
shown in the figure, computer system 300 includes a process
ing unit 304 that communicates with a number of peripheral
subsystems via a bus subsystem 302. These peripheral sub
systems may include a processing acceleration unit 306, an
I/O subsystem 308, a storage subsystem 318 and a commu
nications subsystem 324. Storage subsystem 318 includes
tangible computer-readable storage media 322 and a system
memory 310.
0080 Bus subsystem 302 provides a mechanism for let
ting the various components and Subsystems of computer
system 300 communicate with each other as intended.
Although bus subsystem 302 is shown schematically as a
single bus, alternative embodiments of the bus Subsystem
may utilize multiple buses. Bus subsystem 302 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any
of a variety of bus architectures. For example, such architec
tures may include an Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, Peripheral Component Interconnect (PCI)
bus, which can be implemented as a Mezzanine bus manu
factured to the IEEE P1386.1 standard, or PCI enhanced
(PCIe) bus.
I0081 Processing unit 304, which can be implemented as
one or more integrated circuits (e.g., a conventional micro
processor or microcontroller), controls the operation of com
puter system 300. One or more processors may be included in
processing unit 304. These processors may include single
core or multicore processors. In certain embodiments, pro
cessing unit 304 may be implemented as one or more inde
pendent processing units 332 and/or 334 with single or mul
ticore processors included in each processing unit. In other
embodiments, processing unit 304 may also be implemented
as a quad-core processing unit formed by integrating two
dual-core processors into a single chip.
I0082 In various embodiments, processing unit 304 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time. Some or all of the program
code to be executed can be resident in processor(s)304 and/or
in storage Subsystem 318. Through Suitable programming,
processor(s) 304 can provide various functionalities
described above. Computer system 300 may additionally
include a processing acceleration unit 306, which can include
a Digital Signal Processor (DSP), a special-purpose proces
sor, and/or the like.
I0083 I/O subsystem 308 may include user interface input
devices and user interface output devices. User interface input
devices may include a keyboard, pointing devices Such as a
mouse or trackball, a touchpad or touch screen incorporated
into a display, a scroll wheel, a click wheel, a dial, a button, a
Switch, a keypad, audio input devices with Voice command
recognition systems, microphones, and other types of input
devices. User interface input devices may include, for
example, motion sensing and/or gesture recognition devices

US 2016/0210.053 A1

such as the Microsoft Kinect(R) motion sensor that enables
users to control and interact with an input device, Such as the
Microsoft Xbox R360 game controller, through a natural user
interface using gestures and spoken commands. User inter
face input devices may also include eye gesture recognition
devices such as the Google Glass(R blink detector that detects
eye activity (e.g., blinking while taking pictures and/or mak
ing a menu selection) from users and transforms the eye
gestures as input into an input device (e.g., Google Glass(R).
Additionally, user interface input devices may include Voice
recognition sensing devices that enable users to interact with
Voice recognition systems (e.g., Siri(R) navigator), through
Voice commands.

0084. User interface input devices may also include, with
out limitation, three dimensional (3D) mice, joysticks or
pointing Sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital cam
corders, portable media players, webcams, image scanners,
fingerprint Scanners, barcode reader 3D scanners, 3D print
ers, laser rangefinders, and eye gaze tracking devices. Addi
tionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter
face input devices may also include, for example, audio input
devices such as MIDI keyboards, digital musical instruments
and the like.

0085 User interface output devices may include a display
Subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display Subsystem may be a
Cathode Ray Tube (CRT), a flat-panel device, such as that
using a Liquid Crystal Display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general, use
of the term “output device' is intended to include all possible
types of devices and mechanisms for outputting information
from computer system 300 to a user or other computer. For
example, user interface output devices may include, without
limitation, a variety of display devices that visually convey
text, graphics and audio/video information Such as monitors,
printers, speakers, headphones, automotive navigation sys
tems, plotters, Voice output devices, and modems.
I0086 Computer system 300 may comprise a storage sub
system 318that comprises software elements, shown as being
currently located within a system memory 310. System
memory 310 may store program instructions that are loadable
and executable on processing unit 304, as well as data gener
ated during the execution of these programs.
0087 Depending on the configuration and type of com
puter system 300, system memory 310 may be volatile (such
as Random Access Memory (RAM)) and/or non-volatile
(such as Read-Only Memory (ROM), flash memory, etc.) The
RAM typically contains data and/or program modules that
are immediately accessible to and/or presently being operated
and executed by processing unit 304. In some cases, system
memory 310 can comprise one or more Double Data Rate
fourth generation (DDR4) Dual Inline Memory Modules
(DIMMs). In some implementations, system memory 310
may include multiple different types of memory, such as
Static Random Access Memory (SRAM) or Dynamic Ran
dom. Access Memory (DRAM). In some implementations, a
Basic Input/Output System (BIOS), containing the basic rou
tines that help to transfer information between elements
within computer system 300. Such as during start-up, may
typically be stored in the ROM. By way of example, and not

Jul. 21, 2016

limitation, System memory 310 also illustrates application
programs 312, which may include client applications, Web
browsers, mid-tier applications, Relational Database Man
agement Systems (RDBMS), etc., program data 314, and an
operating system 316. By way of example, operating system
316 may include various versions of Microsoft Windows.(R),
Apple Macintosh R, and/or Linux operating systems, a vari
ety of commercially-available UNIX(R) or UNIX-like operat
ing systems (including without limitation the variety of GNU/
Linux operating systems, the Google Chrome ROS, and the
like) and/or mobile operating systems such as iOS, Win
dows(R Phone, AndroidR OS, BlackBerry(R) 10 OS, and
PalmR OS operating systems.
I0088 Storage subsystem 318 may also provide a tangible
computer-readable storage medium for storing the basic pro
gramming and data constructs that provide the functionality
of some embodiments. Software (programs, code modules,
instructions) that when executed by a processor provide the
functionality described above may be stored in storage sub
system 318. These software modules or instructions may be
executed by processing unit 304. Storage subsystem 318 may
also provide a repository for storing data used in accordance
with the present invention.
I0089 Storage subsystem 300 may also include a com
puter-readable storage media reader 320 that can further be
connected to computer-readable storage media 322. Together
and, optionally, in combination with system memory 310,
computer-readable storage media 322 may comprehensively
represent remote, local, fixed, and/or removable storage
devices plus storage media for temporarily and/or more per
manently containing, storing, transmitting, and retrieving
computer-readable information.
0090 Computer-readable storage media 322 containing
code, or portions of code, can also include any appropriate
media known or used in the art, including Storage media and
communication media, Such as but not limited to, Volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage and/or trans
mission of information. This can include tangible computer
readable storage media such as RAM, ROM, Electronically
Erasable Programmable ROM (EEPROM), flash memory or
other memory technology, CD-ROM, Digital Versatile Disk
(DVD), or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or other tangible computer readable media. This can also
include nontangible computer-readable media, such as data
signals, data transmissions, or any other medium which can
be used to transmit the desired information and which can be
accessed by computing system 300.
0091. By way of example, computer-readable storage
media 322 may include a hard disk drive that reads from or
writes to non-removable, nonvolatile magnetic media, a mag
netic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such as
a CD ROM, DVD, and Blu-Ray(R) disk, or other optical
media. Computer-readable storage media 322 may include,
but is not limited to, Zip(R) drives, flash memory cards, Uni
versal Serial Bus (USB) flash drives, Secure Digital (SD)
cards, DVD disks, digital video tape, and the like. Computer
readable storage media 322 may also include, Solid-State
Drives (SSD) based on non-volatile memory such as flash
memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as

US 2016/0210.053 A1

solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, Magnetoresistive RAM (MRAM) SSDs, and hybrid
SSDs that use a combination of DRAM and flash memory
based SSDs. The disk drives and their associated computer
readable media may provide non-volatile storage of com
puter-readable instructions, data structures, program mod
ules, and other data for computer system 300.
0092 Communications subsystem 324 provides an inter
face to other computer systems and networks. Communica
tions Subsystem 324 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 300. For example, communications subsystem 324
may enable computer system 300 to connect to one or more
devices via the Internet. In some embodiments communica
tions subsystem324 can include Radio Frequency (RF) trans
ceiver components for accessing wireless voice and/or data
networks (e.g., using cellular telephone technology,
advanced data network technology, such as 3G, 4G or
Enhanced Data rates for Global Evolution (EDGE), WiFi
(IEEE 802.11 family standards, or other mobile communica
tion technologies, or any combination thereof), Global Posi
tioning System (GPS) receiver components, and/or other
components. In some embodiments communications Sub
system 324 can provide wired network connectivity (e.g.,
Ethernet) in addition to or instead of a wireless interface. In
Some cases, communications Subsystem 324 can be imple
mented in whole or in part as one or more PCIe cards.
0093. In some embodiments, communications subsystem
324 may also receive input communication in the form of
structured and/or unstructured data feeds 326, event streams
328, event updates 330, and the like on behalf of one or more
users who may use computer system 300.
0094. By way of example, communications subsystem
324 may be configured to receive data feeds 326 in real-time
from users of Social networks and/or other communication
services such as Twitter(R) feeds, Facebook(R) updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or real
time updates from one or more third party information
SOUCS.

0095 Additionally, communications subsystem 324 may
also be configured to receive data in the form of continuous
data streams, which may include event streams 328 of real
time events and/or event updates 330, that may be continuous
or unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
traffic management applications), clickstream analysis tools,
automobile traffic monitoring, and the like.
0096 Communications subsystem 324 may also be con
figured to output the structured and/or unstructured data feeds
326, event streams 328, event updates 330, and the like to one
or more databases that may be in communication with one or
more streaming data source computers coupled to computer
system 300.
0097. Computer system 300 can be one of various types,
including a handheld portable device (e.g., an iPhone(R) cel
lular phone, an iPadR computing tablet, a PDA), a wearable
device (e.g., a Google Glass(R head mounted display), a PC,
a workstation, a mainframe, a kiosk, a server rack, or any
other data processing system.
0098. Due to the ever-changing nature of computers and
networks, the description of computer system 300 depicted in
the figure is intended only as a specific example. Many other

Jul. 21, 2016

configurations having more or fewer components than the
system depicted in the figure are possible. For example, cus
tomized hardware might also be used and/or particular ele
ments might be implemented inhardware, firmware, Software
(including applets), or a combination. Further, connection to
other computing devices, such as network input/output
devices, may be employed. Based on the disclosure and
teachings provided herein, a person of ordinary skill in the art
will appreciate other ways and/or methods to implement the
various embodiments.

0099. As introduced above, embodiments of the invention
provide systems and methods for managing processing,
memory, storage, network, and cloud computing to signifi
cantly improve the efficiency and performance of processing
nodes Such as any of the servers or other computers or com
puting devices described above. Embodiments described
herein can be implemented in a set of hardware components
that, in essence, change the way in which processing,
memory, storage, network, and cloud are managed by break
ing down the artificial distinctions between processing,
memory, storage and networking in today's commodity solu
tions to significantly improve the performance of commodity
hardware. For example, the hardware elements can include a
standard format memory module, such as a Dual Inline
Memory Module (DIMM), which can be added to any of the
computer systems described above. For example, the memory
module can be added to commodity or “off-the-shelf hard
ware such a server node and acts as a big data accelerator
within that node. The components can also include one or
more object routers. Object routers can include, for example,
a PCI express card added to the server node along with the
memory module and one or more external object routers such
as rack mounted routers, for example. Object routers can be
used to interconnect two or more servers or other nodes
adapted with the memory modules and help to manage pro
cessing, memory, and storage across these different servers
Object routers can forward objects or portions of objects
based on object addresses and participate in operation of the
object memory fabric. Together, these hardware components
can be used with commodity servers or other types of com
puting nodes in any combination to implement an object
memory fabric architecture.
0100 FIG. 4 is a block diagram illustrating an exemplary
object memory fabric architecture according to one embodi
ment of the present invention. As illustrated here, the archi
tecture 400 comprises an object memory fabric 405 support
ing any number of applications 410a-g. As will be described
in greater detail below, this object memory fabric 405 can
comprise any number of processing nodes such as one or
more servers having installed one or more memory modules
as described herein. These nodes can be interconnected by
one or more internal and/or external object routers as
described herein. While described as comprising one or more
servers, it should be noted that the processing nodes of the
object memory fabric 405 can comprise any of a variety of
different computers and/or computing devices adapted to
operate within the object memory fabric 405 as described
herein.

0101. According to one embodiment, the object memory
fabric 405 provides an object-based memory which manages
memory objects within the memory of the nodes of the object
memory fabric 405 and at the memory layer rather than in the
application layer. That is, the objects and associated proper
ties can be implemented and managed natively in the nodes of

US 2016/0210.053 A1

the object memory fabric 405 to provide increased function
ality without any software and increasing efficiency and per
formance by dynamically managing object characteristics
including, but not limited to persistence, location and pro
cessing. Object properties can also propagate to the applica
tions 410a-g. The memory objects of the object memory
fabric 405 can be used to eliminate typical size constraints on
memory space of the commodity servers or other nodes
imposed by address sizes. Rather, physical addressing can be
managed within the memory objects themselves and the
objects can in turn be accessed and managed through the
object name space. The memory objects of the object memory
fabric 405 can also be used to eliminate the distinction
between memory (temporary) and storage (persistent) by
implementing and managing both within the objects. The
object memory fabric 405 can also eliminate the distinction
between local and remote memory by transparently manag
ing the location of objects (or portions of objects) So all
objects appear simultaneously local to all nodes. The memory
objects can also eliminate the distinction between processing
and memory through methods of the objects to place the
processing within the memory itself. In other words, embodi
ments of the present invention provide a single-level memory
that puts the computes with the storage and the storage with
the computes, directly and thereby eliminating numerous lev
els of software overhead communicating across these levels
and the artificial overhead of moving data to be processed.
0102. In these ways, embodiments of the object memory
fabric 405 and components thereofas described herein can
provide transparent and dynamic performance acceleration,
especially with big data or other memory intensive applica
tions by reducing or eliminating overhead typically associ
ated with memory management, storage management, net
working, data directories, and data buffers at both the system
and application Software layers. Rather, management of the
memory objects at the memory level can significantly shorten
the pathways between storage and memory and between
memory and processing, thereby eliminating the associated
overhead between each.

0103 Embodiments provide coherent, hardware-based,
infinite memory managed as memory objects with perfor
mance accelerated in-memory, spanning all nodes, and Scal
able across all nodes. This enables transparent dynamic per
formance acceleration based on the object and end
application. Using an architecture according to embodiments
of the present invention, applications and system software can
be treated the same and as simple as a single, standard server
but additionally allowing memory fabric objects to capture
heuristics. Embodiments provide multiple dimensions of
accelerated performance including locality acceleration.
According to one embodiment, object memory fabric meta
data associated with the memory objects can include triggers
which enable the object memory fabric architecture to local
ize and move data to fast dram memory ahead of use. Triggers
can be a fundamental generalization that enables the memory
system to execute arbitrary functions based on memory
access. Various embodiments can also include an instruction
set which can provide a unique instruction model for the
object memory fabric based on the triggers defined in the
metadata associated with each memory object and that Sup
ports core operations and optimizations and allows the
memory intensive portion of applications to be more effi
ciently executed in a highly parallel manner within IMF.

Jul. 21, 2016

0104 Embodiments can also decrease software path
length by Substituting a small number of memory references
for a complex application, storage and network Stack. This
can be accomplished when memory and storage is directly
addressable as memory under embodiments of the present
invention. Embodiments can additionally provide accelerated
performance of high level memory operations. For many
cases, embodiments of the object memory fabric architecture
can eliminate the need to move data to the processor and back
to memory, which is extremely inefficient for today's modern
processors with three or more levels of caches.
0105 FIG. 5 is a block diagram illustrating an exemplary
memory fabric object memory according to one embodiment
of the present invention. More specifically, this example illus
trates an application view of how memory fabric object
memory can be organized. Memory fabric object address
space 500 can be a 128 bit linear address space where the
object ID corresponds to the start of the addressable object.
Objects 510 can be variable size from 2° to 2 bytes. The
address space 500 can efficiently be utilized sparsely within
and across objects as object storage is allocated on a per block
basis. The size of the object space 500 is meant to be large
enough that garbage collection is not necessary and to enable
disjoint systems to be easily combined.
0106 Object metadata 505 associated with each object
510 can be transparent with respect to the object address
space 500 and can utilize the object memory fabric to manage
objects and blocks within objects and can be accessible at
appropriate privilege by applications 515a-g through Appli
cation Program Interfaces (APIs) of the object memory fab
ric. This API provides functions for applications to set up and
maintain the object memory fabric, for example by using
modified Linux libc. With a small amount of additional effort
applications such as a SQL database or graph database can
utilize the API to create memory objects and provide and/or
augment object metadata to allow the object memory fabric to
better manage objects. Object metadata 505 can include
object methods, which enable performance optimization
through dynamic object-based processing, distribution, and
parallelization. Metadata can enable each object to have a
definable security policy and access encapsulation within an
object.
0107 According to embodiments of the present invention,
applications 515a-g can now access a single object that cap
tures it’s working and/or persistent data (such as App0515a)
or multiple objects for finer granularity (such as App1515b).
Applications can also share objects. Object memory 500
according to these embodiments can physically achieves this
powerfully simple application view with a combination of
physical organization, which will be described in greater
detail below with reference to FIG. 6, and object memory
dynamics. Generally speaking, the object memory 500 can be
organized as a distributed hierarchy that creates hierarchical
neighborhoods for object storage and applications 515a-g.
Object memory dynamics interact and leverage the hierarchal
organization to dynamically create locals of objects and
applications (object methods) that operate on objects. Since
object methods can be associated with memory objects, as
objects migrate and replicate on the memory fabric, object
methods naturally gain increased parallelism as object size
warrants. The hierarchy in conjunction with object dynamics
can further create neighborhoods of neighborhoods based on
the size and dynamics of the object methods.

US 2016/0210.053 A1

0108 FIG. 6 is a block diagram illustrating an exemplary
object memory dynamics and physical organization accord
ing to one embodiment of the present invention. As illustrated
in this example, an object memory fabric 600 as described
above can include any number of processing nodes 605 and
610 communicatively coupled via one or more external object
routers 615. Each node 605 and 610 can also include an
internal object router 620 and one or more memory modules.
Each memory module 625 can include a node object memory
635 supporting any number of applications 515a-g. Generally
speaking, the memory module 625, node object router 620
and inter-node object router 615 can all share a common
functionality with respect to the object memory 635 and index
thereof. In other words, the underlying design objects can be
reused in all three providing a common design adaptable to
hardware of any of a variety of different form factors and
types in addition to those implementations described here by
way of example.
0109 More specifically, a node can comprise a single node
object router 620 and one or more memory modules 625 and
630. According to one embodiment, a node 605 can comprise
a commodity or “off-the-shelf server, the memory module
625 can comprise a standard format memory card Such as a
Dual-Inline Memory Module (DIMM) card, and the node
object router 620 can similarly comprise a standard format
card Such as a Peripheral Component Interconnect express
(PCIe) card. The node object router 620 can implement an
object index covering the objects/blocks held within the
object memory(s) 635 of the memory modules 625 and 630
within the same node 605. Each memory module 625 and 630
can hold the actual objects and blocks within objects, corre
sponding object meta-data, and object index covering objects
currently stored local to that memory module. Each memory
module 625 and 630 can independently manage both dram
memory (fast and relatively expensive) and flash memory
(not as fast, but much less expensive) in a manner that the
processor (not shown) of the node 605 thinks that there is the
flash amount of fast dram. The memory modules 625 and 630
and the node object router 620 can both manage free storage
through a free storage index implemented in the same manner
as for other indexes. Memory modules 625 and 630 can be
directly accessed over the standard DDR memory bus by
processor caches and processor memory reference instruc
tions. In this way, the memory objects of the memory modules
625 and 630 can be accessed using only conventional
memory reference instructions and without implicit or
explicit Input/Output (I/O) instructions.
0110 Objects within the object memory 635 of each node
625 can be created and maintained through an object memory
fabric API (not shown). The node object router 620 can com
municate with the API through a modified object memory
fabric version of libc and an object memory fabric driver (not
shown). The node object router 620 can then update a local
object index, send commands toward a root, i.e., towards the
inter-node object router 615, as required and communicate
with the appropriate memory module 625 or 630 to complete
the API command locally. The memory module 625 or 630
can communicate administrative requests back to the node
object router 620 which can handle them appropriately.
0111. According to one embodiment, the internal archi
tecture of the node object router 620 can be very similar to the
memory module 625 with the differences related to routing
functionality Such as managing a node memory object index
and routing appropriate packets to and from the memory

Jul. 21, 2016

modules 625 and 630 and the inter-node object router 615.
That is, the node object router 620 can have additional routing
functionality but does not need to actually store memory
objects.
0112 The inter-node object router 615 can be considered
analogous to an IP router. However, the first difference is the
addressing model used. IP routers utilize a fixed static address
per each node and routes based on the destination IP address
to a fixed physical node. However, the inter-node object
router 615 of the object memory fabric 600 utilizes a memory
fabric object address (OA) which specifies the object and
specific block of the object. Objects and blocks can dynami
cally reside at any node. The inter-node object router 615 can
route OA packages based on the dynamic location(s) of
objects and blocks and track object/block location dynami
cally in real time. The second difference is that the object
router can implement the object memory fabric distributed
protocol which provides the dynamic nature of object/block
location and object functions, for example including, but not
limited, to triggers. The inter-node object router 615 can be
implemented as a scaled up version of node object router 620
with increased object index storage capacity, processing rate
and overall routing bandwidth. Also, instead of connecting to
a single PCIe or other bus or channel to connect to memory
modules, inter-node object router 615 can connect to multiple
node object routers and/or multiple other inter-node object
routers. According to one embodiment, a node object router
620 can communicate with the memory modules 625 and 630
with direct memory access over PCIe and the memory bus
(not shown) of the node 605. Node object routers of different
nodes 605 and 610 can in turn connect with one or more
inter-node object routers 615 over a high-speed network (not
shown) such as 25/100GE fiber that uses several layers of
Gigabit Ethernet protocol or object memory fabric protocol
tunneled through standard IP. for example. Multiple inter
node object routers can connect with the same network.
0113. In operation, the memory fabric object memory can
physically achieve its powerfully simple application view
described above with reference to FIGS. 4 and 5 with a
combination of physical organization and object memory
dynamics. According to one embodiment and as introduced
above with reference to FIG. 5, the memory fabric object
memory can be organized as a distributed hierarchy that cre
ates hierarchical neighborhoods for object storage and appli
cations 515a-g. The node object routers can keep track of
which objects and portions of objects are local to a neighbor
hood. The actual object memory can be located on nodes 605
or 610 close to applications 515a-g and memory fabric object
methods.
0114. Also as introduced above, object memory dynamics
can interact and leverage the hierarchal organization to
dynamically create locals of objects and applications (object
methods) that operate on objects. Since object methods can be
associated with objects as objects migrate and replicate
across nodes, object methods naturally gain increased paral
lelism as object size warrants. This object hierarchy, in con
junction with object dynamics, can in turn create neighbor
hoods of neighborhoods based on the size and dynamics of
the object methods.
0115 For example, App0 515a spans multiple memory
modules 625 and 630 within a single level object memory
fabric neighborhood, in this case node 605. Object movement
can stay within that neighborhood and its node object router
620 without requiring any other communication links or rout

US 2016/0210.053 A1

ers. The self-organizing nature along the hierarchy defined
neighborhoods provides efficiency from a performance and
minimum bandwidth perspective. In another example, App1
(A1) 515b can have the same characteristic but in a different
neighborhood, i.e., in node 610. App2 (A2) 515c can be a
parallel application across a two-level hierarchy neighbor
hood, i.e., nodes 605 and 610. Interactions can be self-con
tained in the respective neighborhood.
0116. As noted above, certain embodiments may include a
data types and metadata architecture certain embodiments
can also include a data types and metadata architecture that
facilitate multiple advantages of the present invention. With
respect to the architecture, the following description discloses
various aspects of object memory fabric address spaces; an
object memory fabric coherent object address space; an
object memory fabric distributed object memory and index;
an object memory fabric index; object memory fabric objects;
and an extended instruction execution model. Various
embodiments may include any one or combination of Such
aspects.
0117 FIG. 7 is a block diagram illustrating an aspect of
object memory fabric hierarchy of object memory, which
localizes working sets and allows for virtually unlimited Scal
ability, according to one embodiment of the present inven
tion. As disclosed herein, certain embodiments may include
core organization and data types that enable the object
memory fabric to dynamically operate to provide the object
memory application view. The core organization and data
types facilitate the fractal-like characteristics of the system
which allow the system to behave identically in a scale
independent fashion. In the depicted example, an object
memory fabric 700 as disclosed herein can include any num
ber of processing nodes 705 and 710 communicatively
coupled at higher levels via one or more external object rout
ers, such as object router 715, which may in turn be coupled
to one or more higher level object routers.
0118 Specifically, the system may be a fat-tree built from
nodes, from leaf nodes to root node(s). According to certain
embodiments, each node may just understand whether its
Scope encompasses an object and based on that whether to
route a request/response toward the root or leaf. Putting these
nodes together enables a system to dynamically scale to any
capacity, without impacting the operation or perspective of
any node. In some embodiments, the leaf node may be a
DIMM built from standard memory chips, plus object
memory fabric 700 implemented within an FPGA. In some
embodiments, standard memory chips could have object
memory fabric 700 imbedded. In various embodiments,
implementations may have remote nodes such as mobile
phones, drones, cars, internet of things components, and/or
the like.
0119) To facilitate various advantageous properties of
object memory fabric 700, certain embodiments may employ
coherent object memory fabric address spaces. Table 1 below
identifies non-limiting examples of various aspects of address
spaces, in accordance with certain embodiments of the
present disclosure. All nodes that are connected to a single
object memory fabric 700, local or distributed, can be con
sidered part of a single system environment according to
certain embodiments. As indicated in Table 1, object memory
fabric 700 can provide a coherent object address space. In
Some embodiments, a 128-bit object address space may be
provided. However, other embodiments are possible. There
are several reasons for a large object address space, including

Jul. 21, 2016

the following. The object address space is to directly uniquely
address and manage all memory, storage across all nodes
within an object memory fabric system, and provide a unique
address for conventional storage outside of an object memory
fabric system. The object address space can allow an address
to be used once and never garbage collect, which is a major
efficiency. The object address space can allow a distinction
between allocating address space and allocating storage. In
other words, the object address space can be used sparsely as
an effective technique for simplicity, performance, and flex
ibility.
0.120. As further indicated in Table 1, the object memory
fabric 700 can directly support per-process virtual address
spaces and physical address spaces. With some embodiments,
the per-process virtual address spaces and physical address
spaces may be compatible with x86-64 architecture. In cer
tain embodiments, the span of a single virtual address space
may be within a single instance of Linux OS, and may be
usually coincident with a single node. The object memory
fabric 700 may enable the same virtual address space to span
more than a single node. The physical address space may be
the actual physical memory addressing (e.g., within an x86
64 node in some embodiments).

TABLE 1

Address Spaces

Object
memory
fabric Object Virtual Physical

Parameter Address Space Address Address

Description Object Process address Cache of
memory fabric handle to object object memory
address memory fabric fabric

address
Scope Global Per process, Per node

can be shared
Size 2128 2 (2' Haswell) 2' (Haswell)
Object Yes, object Yes, page Yes, object
Support memory fabric tables memory fabric

object index metadata
tree and per
object index

Object 2: 122113039.48.5764}
Sizes
Address Sparse - with Sparse - with Sparse - page
Space or without or without
Allocation storage, object storage, object

units units
Storage Object or Based on object Page
Allocation block (page) memory fabric
Security Through virtual Operating system Operating system
(Access) address, operating object memory

system, and file fabric
system

I0121 FIG. 8 is a block diagram illustrating an example
relationship 800 between object address space 805, virtual
addresses 810, and physical addresses 815, in accordance
with certain embodiments of the present disclosure. With
object address space 805, a single object can range in size. By
way of example without limitation, a single object can range
in size from 2 megabytes (2) to 16 petabytes (2). Other
ranges are possible. Within the object memory fabric 700,
object address space 805 may be allocated on an object granu
larity basis in Some embodiments. In some embodiments,
storage may be allocated on a 4kbyte block basis (e.g., blocks
806, 807). Thus, the object address space block 806, 807 in

US 2016/0210.053 A1

Some embodiments may correspond to the 4kbyte page size
within x86-64 architecture. When the object address space
805 is created, only the address space and object metadata
may exist. When storage is allocated on a per block basis,
there can be data stored in the corresponding block of the
object. Block storage can be allocated in a sparse or non
sparse manner and pre and/or demand allocated. For example,
in Some embodiments, Software can use an object as a hash
function and only allocate physical storage for the valid
hashes.

0122 Referring to the example of FIG. 8, within a node
820, 825, which could be a conventional server in some
embodiments, physical pages corresponding to physical
addresses 815 may be allocated on a dynamic basis corre
sponding to the virtual addresses 810. Since object memory
fabric 700 actually provides the physical memory within a
node 820, 825by way of the object memory fabric DIMM,
when a virtual address segment 811, 812,813, 814 is allo
cated, an object address space 805 object which corresponds
to the particular segment 811, 812, 813, 814 can also be
created. This enables the same or a different virtual address
810 across nodes 820, 825 to address and access the same
object. The actual physical address 815 at which a block/page
within an object resides within a node 820, 825 can vary over
time within or across nodes 820, 825, transparently to appli
cation Software.

0123 Certain embodiments of the object memory fabric
700 may provide key advantages: embodiments of object
memory fabric 700 may provide integrated addressing,
objects with transparent invariant pointers (no Swizzling
required), and methods to access a large address space across
nodes—a with certain embodiments being compatible with
X84-64, Linux, and applications. Normally, systems have
numerous different addresses (e.g., for memory address with
separate address space, sectors, cylinders, physical disks,
database systems, file systems, etc.), which requires signifi
cant Software overhead for converting, buffering, and moving
objects and blocks between different layers of addresses.
Using integrated addressing to address objects, and blocks
within objects, and using the object namespace eliminates
layers of software by having single-level addressing invariant
across all nodes/systems. With a sufficiently large address
space, one address system is not invariant with particular
database application and all these systems working together.
0124 Thus, a node may include a memory module may
store and manage one or more memory objects, where physi
cal address of memory and storage is managed with each of
the one or more memory objects based at least in part on an
object address space that is allocated on a per-object basis
with a single-level object addressing scheme. The node may
be configured to utilize the object addressing scheme to
operatively couple to one or more additional nodes to operate
as a set of nodes of an object memory fabric, where the set of
nodes operates so that all memory objects of the set of nodes
are accessible based at least in part on the object addressing
scheme, the object addressing scheme defining invariant
object addresses for the one or more memory objects that are
invariant with respect to physical memory storage locations
and storage location changes of the one or more memory
objects within the memory module and across all modules
interfacing the object memory fabric. Accordingly, the object
addresses are invariant within a module and across all mod
ules that interface to object memory fabric, regardless of
whether the objects are in a single server or not. Even though

Jul. 21, 2016

the objects can be stored on any or all modules, the object
addresses are still invariant no matter at which physical
memory locations the objects are currently or will be stored.
The following provides details of certain embodiments that
may provide Such advantages through the object address
space and object address space pointers.
(0.125 Certain embodiments of object memory fabric 700
may support multiple, various pointer formats. FIG. 9 is a
block diagram illustrating an example relationship 900
between object sizes 905 and object address space pointers
910, in accordance with certain embodiments of the present
disclosure. Table 1 Table 2 below identifies non-limiting
examples of aspects of the object address space pointer 910,
in accordance with certain embodiments of the present dis
closure. As indicated by Table 1 Table 2, some example
embodiments can Support three pointer formats. The object
address space format may be an object memory fabric native
128 bit format and can provide a single pointer with full
addressability for any object and offset within object. Object
memory fabric 700 can support additional formats, for
example, two additional formats in 64 bit format to enable
direct compatibility with x86-64 virtual memory and virtual
address. Once a relationship between an object memory fab
ric object and a virtual address segment is established by
object memory fabric API (which can be handled transpar
ently to the application in Linux libc, in Some embodiments),
standard x86 Linux programs can directly reference data
within an object (x86 segment) efficiently and transparently
utilizing the X86-64 addressing mechanisms.

TABLE 2

Obiect Address Space Pointer Formats

Object Object Trans
memory Address formation Virtual

Pointer fabric Space to Virtual Address
Type Pointer Generation Address Format

Object 128 bit Direct None None
memory Storage
fabric
Address
Object Offset ObjStart + None virtual
Relative (64 bit) ObjOffset address base +

offset address
mode

Object Offset ObjStart + Add virtual 48 bit virtual
Virtual (64 bit) ObjOffset address base address with
Address to offset 64 bit data type

(0.126 Table 1Table 2Table 3 below identifies non-limiting
examples of aspects of the object address space pointers in
relation to object sizes, in accordance with certain embodi
ments of the present disclosure. Embodiments of object
address space can Supports multiple segment sizes, for
example, six segment sizes from 2' to 2 as illustrated in
Table 1 Table 2Table 3 below. The object sizes correspond to
the X86-64 virtual memory segment and large page sizes.
Objects can start on a modulo 0 object size boundary. Object
address space pointers 910 may be broken into ObjStart and
ObjCffset fields, the sizes of which are dependent on the
object size as shown in the example below. The ObjStart field
corresponds to the object address space start of the object and
also the ObjectID. The Obi Offset is an unsigned value in a
range from Zero to (ObjectSize-1) with specifies the offset
within an object. Object metadata can specify the object size
and object memory fabric interpretation of the object address

US 2016/0210.053 A1

space pointer 910. Objects of arbitrary size and sparseness
can be specified by only allocating storage for blocks of
interest within an object.
0127. Because of the nature of most applications and
object nature of object memory fabric 700, most addressing
can be relative to an object. In some embodiments, all the
object memory fabric address pointerformats can be natively
stored and loaded by the processor. Object Relative and
Object Virtual Address can work directly with x86-64
addressing modes in Some embodiments. Object Virtual
Address pointer can be or include a process virtual address
that works within the X86-64 segment and corresponding
object memory fabric object. Object memory fabric object
address space can be calculated by using the Object Virtual
Address as an object offset. Object Relative pointer can be or
include an offset into an x86-64 virtual address segment, thus
base plus index addressing mode works perfectly. Object
memory fabric object address space can be calculated by
using the Object Relative as an object offset. Table 3 below
identifies non-limiting examples of details of generating a
128 bit object address space from an Object Virtual Address
or Object Relative pointer as a function of object size, in
accordance with certain embodiments of the present disclo
SUC.

TABLE 3

Obiect Address Space Generation

Object Object Address Space Generation from Object
Size Relative and Object Virtual Address Pointers

221 IA127:00) = (ObjBase 127:21, zero 20:0) +
(zero127:21), ObjOffset 20,0)

230 IA127:00) = (ObjBase 127:30), Zero(29:Ol) +
(zero127:30), ObjOffset29,0)

239 IA127:00) = (ObjBase 127:39), zero.38:Ol) +
(zero127:39), ObjOffset 38,0)

248 IA127:00) = (ObjBase 127:48, zero47:Ol) +
(zero127:48), ObjOffset47,0)

257 IA127:00) = (ObjBase 127:57, zero56:Ol) +
(zero127:57), ObjOffset 56,0)

264 IA127:00) = (ObjBase 127:21, zero 20:0) +
(zero127:21), ObjOffset 20,0)

0128. As disclosed herein, certain embodiments may
include an object memory fabric distributed object memory
and index. With the distributed index, individual nodes may
index local objects and blocks of objects on aper-object basis.
Certain embodiments of object memory fabric distributed
object memory and index may be based at least in part on an
intersection concept of cellular automata and fat trees. Prior
distributed hardware and software systems with real-time
dynamic indices used two approaches: a centralized index or
a distributed single conceptual index. Embodiments of object
memory fabric may use a new approach which overlays an
independent local index function on top of a fat-tree hierar
chical network.

0129 FIG. 10 is a block diagram illustrating an example
object memory fabric distributed object memory and index
structure 1000, in accordance with certain embodiments of
the present disclosure. At leaves of the structure 1000 are any
number of processing nodes 1005 and 1010 object memories
1035. These object memories 1035 may each have an object
index that describes the objects and portions of objects cur
rently stored locally in the object memories 1035. A number
of object memories 1035, which in some embodiments may

Jul. 21, 2016

be DDR4-DIMM interface compatible cards within a single
node are logically connected with an object memory fabric
node object index 1040. The object memory fabric node
object indices 1040 may each have an object index that
describes the objects and portions of objects currently stored
locally and/or currently stored in the object memories 1035.
In some embodiments, the object memory fabric node object
index 1040 can be instantiated as a PCIe card. With some
embodiments, the object memory fabric object memory
DDR4-DIMM and object memory fabric node object index
PCIe card can communicate over PCIe and memory bus.
0.130. In some embodiments, the object memory fabric
node object index 1040 works identically to the object index
within the object memory 1035, except that the object
memory fabric node object index 1040 tracks all objects and
portions of objects that are within any of the connected object
memories 1035 and maps the objects and portions of objects
to particular object memory 1035. The next level up in the tree
is an node object router object index 1020 that may be pro
vided by an object memory fabric router that performs the
same object index function for all the object memory fabric
node object indices 1040 to which it is connected. The node
object router object indices 1020 may each have an object
index that describes the objects and portions of objects cur
rently stored locally in lower levels (e.g., at 1040, 1035).
Thus, according to some embodiments, router modules may
have directory and router functions, whereas memory mod
ules may have directory and router functions, as well as
memory functions to store memory objects. However, other
embodiments are possible, and, in alternative embodiments,
the router modules may additionally have memory functions
to store memory objects.
I0131 The pattern may illustrated by the structure 1000
may continue to another higher level inter-node object router
object index 1015 that may be provided by an object memory
fabric router that performs the same object index function for
all the object memory fabric node object indices to which it is
connected, and so on to the root of the tree. Thus, in certain
embodiments, each object index and each level may perform
the same function, independently, but, the aggregate of object
indices and levels as a tree network may provide a real time
dynamic distributed index, with great Scalability properties,
that efficiently tracks and localizes memory objects and
blocks. An additional property may be that the combination of
tree, distributed indices, and caching enable a significant
reduction in bandwidth requirements. This may be illustrated
by the hierarchically indicated neighborhoods that are delin
eated by object memory fabric router to leafs (down in this
case). As the level of the defined hierarchy increases, so does
the aggregate object memory caching capacity. So, as an
application working set fits within the aggregate capacity of a
given level, the bandwidth requirement at the level toward the
root may go to Zero.
0.132. As disclosed herein, each processing node is con
figured to utilize a set of algorithms to operatively couple to
one or more additional processing nodes to operate as a set of
processing nodes independently of a scale of the set of pro
cessing nodes. The set of nodes may operate so that all
memory objects of the set of nodes are accessible by any node
of the processing set of nodes. At the processing nodes, object
memory modules may store and manage memory objects,
each instantiated natively therein and managed at a memory
layer, and object directories that index the memory objects
and blocks thereof on a per-object basis. A memory module

US 2016/0210.053 A1

may process requests based at least in part on the one or more
object directories, which requests may be received from an
application layer. In some case, the requests may be received
from one or more additional processing nodes. Responsive to
the requests, a given memory module may process an object
identifier corresponding to a given requestand may determine
whether the memory module has requested object data. If the
memory module has the requested object data, the memory
module may generate a response to the request based at least
in part on the requested object data. If the memory module
does not have the requested object data, an object routing
module may routes the first request to another node in the tree.
The routing of the request may be based at least in part on the
object routing module making a determination about a loca
tion of object data responsive to the request. If the object
routing module identifies the location based at least in part on
the object routing module’s directory function, the object
routing module may rout the request down toward the loca
tion (i.e., a lower level node possessing the requested object
data). However, if the object routing module determines that
the location is unknown, the object routing module may rout
the request toward a root node (i.e., to one or more higher
level object routers inter-node object routers) for further
determinations at each level until the requested object is
located, accessed, and returned to the original memory mod
ule.

0133. In addition, as disclosed herein, triggers may be
defined for objects and/or blocks within objects in object
metadata. The object-based triggers may predict what opera
tions will be needed and may provide acceleration by per
forming the operations ahead of time. When a node receives
a request that specifies an object (e.g., with a 128-bit object
address), the node uses an object directory to determine if the
node has any part of the object. If so, the object directory
points to a per-object tree (a separate one, where the size is
based on the size of the object) which may be used to locate
local the blocks of interest. There could be additional trigger
metadata that indicates, for the particular blocks of interest, to
interpret the particular addresses in a predefined manner as
the blocks are transferred to/through the memory module.
The triggers may specify one or more pre-defined hardware
and/or software actions on a per-block basis with respect to
one or more data blocks within an object (e.g., fetch a par
ticular address, run a more complicated trigger program, per
form pre-fetching, calculate these other three blocks and send
signal to Software, etc.). Triggers may correspond to a hard
ware way to dynamically move data and/or perform other
actions ahead of when Such actions are needed as objects flow
through any memory module of the object memory fabric.
Accordingly, Such actions may be effected when a particular
memory object having one or more trigger is located at a
respective memory module and accessed as part of the respec
tive memory module processing one or more other requests.
0134 FIGS. 11 and 12 are block diagrams illustrating
examples at a logical level of how the distributed nature of the
object index operates and interoperates with the object
memory fabric protocol layering, in accordance with certain
embodiments of the present disclosure. Certain embodiments
of object memory fabric protocol layering may be similar to,
but have important differences from, a conventional layered
communication protocol. A communications protocol may be
essentially stateless, but embodiments of the object memory

Jul. 21, 2016

fabric protocol may maintain object state and directly enable
distributed and parallel execution—all without any central
ized coordination.

I0135 FIG. 11 illustrates an object memory hit case 1100
that executes completely within the object memory 1135, in
accordance with certain embodiments of the present disclo
sure. Object memory 1135 may receive a processor request
1105 or background triggeractivity 1106. The object memory
1135 may manage the local DRAM memory as a cache 1130,
based on processor physical address. The most frequent case
may be that the requested physical address is present and it
gets immediately returned to the processor, as indicated at
1110. The object memory 1135 may use triggers to transpar
ently move data from slower flash memory into the fast
DRAM memory, as indicated at 1115.
0.136 For the case of a miss 1115 or background trigger
activity 1106, Some embodiments may include one or a com
bination of the following. In some embodiments, an object
memory fabric object address may be generated from the
physical address, as indicated by block 1140. The object
index may generate the location in local flash memory from
the object address space, as indicated by block 1145. Object
index lookup can be accelerated by two methods: (1) a hard
ware-based assist for index lookup; and (2) results of the
object index lookup being locally cached. Object memory
fabric cache coherency may be used to determine whether the
local state is sufficient of the intended operation, as indicated
by block 1150. Based on the index, a lookup may be per
formed to determine whether the object and/or block within
object are local, as indicated by block 1155. In the case of a hit
1160, the data corresponding to request 1105 or trigger activ
ity 1106 may be transferred, as indicated by 1165. And, in
Some embodiments, when the cache State is sufficient, a deci
sion may be made to cache the block into DRAM.
0.137 FIG. 12 illustrates an object memory miss case 1200
and the distributed nature of the object memory and object
index, in accordance with certain embodiments of the present
disclosure. The object memory 1235 may go through steps
described previously, but the routing/decision stage 125 may
determine that the object and/or block is not local. As a result,
the algorithm may involve the request traversing 1270 up the
tree toward the root, until the object/block is found. Any
number of levels and corresponding node elements may be
traversed until the object/block is found. In some embodi
ments, at each step along the path, the same or similar process
steps may be followed to independently determine the next
step on the path. No central coordination is required. Addi
tionally, as disclosed herein, object memory fabric API and
triggers normally get executed in the leafs, but can be
executed in a distributed manner at any index.
0.138. As a simplified example, in the case depicted the
request traverses 1270 up from the object memory fabric node
object index 1240 corresponding to object memory 1235 to
the object router 1220. The object router 1220, with its an
object router object index, may identify the request object/
block as being down the branch toward object memory fabric
node object index 1241. Hence, at the index of object router
1220, the request may then be routed 1275 toward the leaf(s)
that can supply the object/block. In the example depicted, the
object memory 1236 can supply the object/block. At the
object memory 1236, memory access/caching 1241 may be
performed (which may include previously described process
steps for a hit case being performed), and the object/block
may be returned 1280 back to the original requesting leaf

US 2016/0210.053 A1

1235 for the ultimate return 1290. Again, in some embodi
ments, at each step along the path, the same or similar process
steps may be followed to independently determine the next
step on the path. For example, the original requesting leaf
1235 may perform previously described process steps 1285
for a hit case, and then return 1290 the requested data.
0.139. As disclosed herein, the operation of a single object
memory fabric index structure, the object memory fabric
index structure may be based on several layers of the same
tree implementation. Certain embodiments employing tree
structure may have several uses within object memory fabric
as described in Table 4 below. However, various other
embodiments are possible.

TABLE 4

Tree Structure Uses

Node Object
Object Object Memory

Use Memory Index Fabric Router

Determine local location of Yes
objects and blocks comprising
objects as function of object
address space
Determine which children hold Yes Yes
objects, and blocks comprising
objects, as a function of object
address space
Generate object address space Yes
as function of local physical
address (single level)
Object virtual address to object Yes
address space
Application defined Yes

0140 FIG. 13 is a block diagram illustrating an example of
leaf level object memory structure 1300 in view of the object
memory fabric distributed object memory and index struc
ture, in accordance with certain embodiments of the present
disclosure. In some embodiments, the leaf level object
memory structure 1300 may include a nested set of B-trees.
The root tree may be the object index tree (OIT) 1305, which
may index objects locally present. The index for the object
index tree 1305 may be the object memory fabric object
address, since objects start at object size modulo Zero. There
may be one object index tree 1305 for each object that has at
least a single block stored locally within the object memory.
0141. The object index tree 1305 may provide one or more
pointers (e.g., local pointers) to one or more per object index
trees (POIT) 1310. For example, every local object may have
a per object index tree 1310. A per object index tree 1310 may
index object metadata and blocks belonging to the object that
are locally present. The per object index tree 1310 leaves
point to the corresponding metadata and blocks (e.g., based
on offset within object) in DRAM 1315 and flash 1320. A leaf
for a specific block can point to both DRAM 1315 and flash
1320, as in the case of leaf 1325, for example. Organization of
object metadata and data is disclosed further herein.
0142. The tree structure utilized may be a modified B-tree
that is copy-on-write (COW) friendly. COW is an optimiza
tion strategy that enables multiple tasks to share information
efficiently without duplicating all storage where most of the
data is not modified. COW stores modified blocks in a new
location which works well for flash memory and caching. In
certain embodiments, the tree structure utilized may be simi
lar to that of the open source Linux file system btrfs, with

Jul. 21, 2016

major differences being utilization for a single object/
memory space, hardware acceleration, and the ability of inde
pendent local indices to aggregate as described previously. By
utilizing multiple layers of B-trees, there can be a higher
degree of sharing and less rippling of changes. Applications,
Such as file systems and database storage managers, can ulti
lize this underlying efficient mechanism for higher level
operation.
0.143 FIG. 14 is a block diagram illustrating an example of
object memory fabric router object index structure 1400, in
accordance with certain embodiments of the present disclo
sure. With some embodiments, the object memory fabric
router object index and the node object index may use an
almost identical structure of object index trees 1405 and per
object index trees 1410 for each object. The object index trees
1405 may index objects locally present. Each object
described in an object index tree 1405 may have a per object
index tree 1410. The per object index trees 1410 may index
blocks and segments that are locally present.
0144. The object memory fabric router object index and
the node object index may index objects and blocks within
objects that are present in the children 1415 within the tree
structure 1400, namely child router(s) or leaf object memory.
An entry within a leaf in the per object index tree 1410 has the
ability to represent multiple blocks within the object. Since
blocks of an object may tend to cluster together naturally and
due to background housekeeping, each object tends be rep
resented much more compactly in object indices that are
closer to the tree root. The object index trees 1405 and per
object index trees 1410 may enable reduplication at the object
and block level, since multiple leafs can point to the same
blocks, as in the case of leaves 1425 and 1430, for example.
Index Copy-On-Write (COW) support enables, for example,
only modified blocks to be updated for an object.
(0145 FIGS. 15A and 15B are block diagrams illustrating
non-limiting examples of index tree structures, including
node index tree structure 1500 and leaf index tree 1550, in
accordance with certain embodiments of the present disclo
Sure. Further non-limiting examples of various aspects of
index tree fields are identified in Table 5 below. Other
embodiments are possible. An individual index tree may
include node blocks and leaf blocks. Each node or leaf block
may include of a variable number of entries based on the type
and size. Type specifies type of node, node block, leaf, and/or
leaf block.

TABLE 5

index Tree Fields

Name Description Size

NSize Encoded node size field. Single value for OIT 3
node. Multiple values for POIT node based on
object size corresponding to POIT index. Implies
he size of NValue field.

ObjSize Encoded Obiect Size 3
ObjectID Maximum size object ID 107
Object 4k block Based on Object size corresponding to 52
Offset POIT index (9-52)
LPointer References local 4kblock in flash or dram. 32
(LP) includes 32 bits of pointer and a single bit

specifying dram address space.
LParent Local Parent references the local 4kblock of 33
(LPt) he parent node in flash or dram. Includes 32

bits of pointer and a single bit specifying
dram address space.

US 2016/0210.053 A1

TABLE 5-continued

Index Tree Fields

Name Description Size

LSize Encoded leaf LValue size. 3
Otype Type of OIT Leaf 2
Ptype Type of POIT Leaf 2
Etype Type of OIT or POIT Entry Node 3
Rtype Type of reserved Leaf 3
ill May be utilized to increase the size of data O

that the leaf specifies to increase the efficiency
of index tree and storage device. Values may
include:
1 block
4 blocks (flash page)
512 blocks (minimum size object, 2 Mbyte)

Children Specifies a remote device number 32
Block State Encoding of 4k block cache coherency state 8

Block referenced count (unsigned) 7
Modified - Indicates that the block has been 1
modified with respect to persistent store.
Only valid for blocks while they are present
in volatile memory.

DS State DownStream State 15:0 - Enumerates the state 128
15:0) of for the block within object specified by

Object Offset for each of 16 devices.

0146 Size specifies independently the size of the LPointer
and Index Val (or object offset). Within a balanced tree, a
single block may point to all node blocks or all leaf blocks. In
order to deliver highest performance, the tree may become
un-balanced, such as for example where the number of levels
for all paths through the tree are equivalent. Node blocks and
leafblocks may provide fields to supportun-balanced trees. A
background activity may re-balance the trees that are part of
other background operations. For example, an interior node
(non-leaf) in OIT may include L. Pointer and NValue fields.
NValue may include object size and object ID. Object ID
requires 107 (128-21) bits to specify the smallest possible
object. Each LPointer may point to the next level of interior
node or a leaf node. LPointer may require enough bits to
represent all the blocks within its local storage (approxi
mately 32 bits representing 16 terabytes). For a node in the
POIT, the NValue may consist of the object offset based on
object size. The object size may be encoded within the NSize
field. The size field may enable a node to hold the maximum
number of LPointer and NValue fields based on usage. An
index tree root node may be stored at multiple locations on
multiple flash devices to achieve reliable cold boot of the OIT.
Tree root block updates may be alternated among mirrors to
provide wear leveling.
0147 By default, each POIT Leaf entry may point to the
location of a single block (e.g., 4k bytes). POIT Leaf OM
entry and POIT Leaf Router entry may contain a field to
enable Support beyond single block to enable more com
pressed index trees, higher resulting index tree performance
and higher persistent storage performance by being able to
match the page size for persistent storage.
0148 Nodes and leafs may be differentiated by the Type
field at the start of each 4kblock. The NNize field may encode
the size of NValue field within a node, and LSize field may
encode the size of the LValue field within a leaf. The size of
the LPointerfield may be determined by the physical address
ing of local storage is fixed for a single devices (e.g., RDIMM,
node router, or router). The LPointer may be only valid within
a single device and not across devices. The LPointer may
specify whether the corresponding block is stored in persis

Jul. 21, 2016

tent memory (e.g., flash) or faster memory (e.g., DRAM).
Blocks that are stored in DRAM may also have storage allo
cated within persistent memory, so that two entries are
present to indicate the two storage locations for a block, node
or leaf. Within a single block type, all NValue and/or LValue
fields may be a single size.
0149. The OITNode may include several node level fields
(Type, NSize, and LParent) and entries including OIT Node
Entry or OIT Leaf Entry. Since an index tree can be un
balanced at times a node can include both node and leaf
entries. The POIT Node may include one or more node level
fields (e.g., Type, NSize, and/or LParent) and entries includ
ing OIT Leaf Entry. OIT Leaf types may be differentiated by
the otype field. OIT Leaf (Object Index Table Leaf) may point
to the head of a POIT (Per Object Index Table) that specifies
object blocks and object metadata. OIT Leaf R may point to
a remote head ofan POIT. This may be utilized to reference an
object that is residing on a remote device across a network.
This leaf may enable the remote device to manage the object.
(O150 POIT Leaf types may be differentiated by the ptype
field. POIT Leaf OM may point to a block of object memory
or metadata. The Object offset field may be one bit greater
than the number of bits to specify the offset for a specific
object size to specify metadata. For example, for 2 object
size 10 bits may be required (9 plus 1 bits). The implemen
tation can choose to represent the offset in two’s complement
form (signed form, first block metadata is -1), or in one's
complement where the additional bit indicates metadata (first
block of metadata is represented by 1, with metadata bit set).
0151. POIT Leaf Remote may point to an block of object
memory or metadata that is remote from the local DIMM.
This may be used to reference a block that is residing on a
remote device across a network through the stream package
interface. For example, this device could be a mobile device.
This leaf may enable object memory fabric hardware to man
age coherence on a block basis for the remote device.
0152 POIT Leaf Router may be utilized within node
object routers and inter-node object routers to specify the
state of the corresponding object memory fabric Block Object
Address for each of up to 16 downstream nodes. If within a
node object router, up to 16 DIMMs may be specified in some
embodiments (or more in other embodiments). If within an
inter-node object router up to 16 downstream routers or node
object routers (e.g., server nodes) may be specified in some
embodiments (or more in other embodiments). The Block
Object Address can be present in one or more downstream
devices based on valid State combinations.
0153 Index lookups, index COW updates, and index
caching may be directly supported in object memory fabric
hardware in Object Memory, node object index, and object
memory fabric Router. In addition to the node formats for
object memory fabric indices, application-defined indices
may be supported. These may be initialized through the
object memory fabric API. An advantage of application-de
fined indices may be that object memory fabric hardware
based index lookup, COW update, index caching, and paral
lelism may be supported
0154 Various embodiments may provide for background
operations and garbage collection. As each DIMM and
Router within object memory fabric may maintain its own
directory and storage locally, background operations and gar
bage collection may be accomplished locally and indepen
dently. Each DIMM or Router may have a memory hierarchy
for storing index trees and data blocks, that may include

US 2016/0210.053 A1

on-chip cache, fast memory (e.g., DDR4 or HMC DRAM)
and slower nonvolatile memory (e.g., flash) that it can man
age, as well as index trees.
(O155 Each level within the hierarchy may perform the
following operations: (1) Tree balancing to optimize lookup
time; (2) Reference count and aging to determine when
blocks are moved between different storage; (3) Free list
updating for each local level of hierarchy as well as keeping a
parameters of fill level of the major levels of the local hierar
chy; (4) Delivering periodic fill levels to the next level of
hierarchy to enable load balancing of storage between
DIMMs on a local server and between levels of object
memory fabric hierarchy; (5) Ifa Router, then load balancing
between child nodes.
0156 Block reference count may be utilized object
memory fabric to indicate the relative frequency of access.
Higher value may indicate more frequent use overtime, lower
less frequent use. When block reference count is associated
with a block in persistent memory, blocks which have lowest
values may be candidates to move to another DIMM or node
that has more available space. Each time a block is acceler
ated into volatile memory, the reference count may be incre
mented. Low frequency background Scanning may decre
ment the value if it is not in Volatile memory and increments
the value if it is involatile memory. It may be expected that the
scanning algorithm may evolve over time to increment or
decrement based or reference value to provide appropriate
hysteresis. Blocks that are frequently accelerated into or
present in volatile memory may have higher reference count
values.
O157. When a block reference count is associated with a
block in volatile memory, blocks which have lowest values
may be candidates to move back to persistent memory or
memory within another DIMM or node. When a block moves
into Volatile memory, reference count may be initialized
based on the instruction or use case that initiated the move
ment. For example, a demand miss may set the value to a
midpoint, and a speculative fetch may set it to a quarter point.
Single use may set it to below the quarter point. Moderate
frequency background scanning may decrement the refer
enced value. Thus, demand fetches may be initially weighted
higher than speculative fetches. If a speculative fetch is not
utilized, it may quickly fall to the lower referenced values that
may be replaced first. Single use may be weighted low to be
candidate for replacement sooner than other blocks. Thus,
single use and speculative blocks may not replace other fre
quently accessed blocks.
0158 FIG. 16 is a block diagrams illustrating an aspect of
example physical memory organization 1600, in accordance
with certain embodiments of the present disclosure. Object
memory fabric may provide multiple methods to access
objects and blocks. For example, a direct method may be
based on execution units within object memory fabric or
devices that can directly generate full 128-bit memory fabric
addresses may have full direct access.
0159. An associated method may consider conventional
servers having limited virtual address and physical address
spaces. Object memory fabric may provide an API to dynami
cally associate objects (e.g., segments) and blocks (e.g.,
pages) with the larger object memory fabric 128-bit memory
fabric address. The associations provided by AssocObi and
AssocBlk operations may be utilized by object memory fab
ric driver (e.g., Linux driver) and object memory fabric sys
tem library (Syslib) interfacing with the standard processor

Jul. 21, 2016

memory management to enable object memory fabric to
behave transparently to both the operating system and appli
cations. Object memory fabric may provide: (a) an API to
associate a processor segment and its range of virtual
addresses with an object memory fabric object thus ensuring
seamless pointer and virtual addressing compatibility; (b) an
API to associate a page of virtual address space and the
corresponding object memory fabric block with a page/block
of local physical memory within an object memory fabric
DIMM (which may ensure processor memory management
and physical addressing compatibility); and/or (c) local
physical memory divided into standard conventional server
DIMMslots, with 512Gbytes (2 bytes) per DIMMslot. On
a per slot basis, object memory fabric may keep an additional
directory indexed by physical address of the object memory
fabric address of each block that has been associated with the
corresponding physical address as illustrated in the following
diagram.
0160 FIG. 16 is a block diagram illustrating an example
physical memory organization 1600, in accordance with cer
tain embodiments of the present disclosure. A physical
memory directory 1605 for physical memory 1630 may
include: object memory fabric object block address 1610;
object size 1615; reference count 1620; a modified field 1625
which may indicate whether the block has been modified with
respect to persistent memory; and/or write enable 1630 which
may indicate whether local block cache state is sufficient for
writing. For example, if the cache state were copy, writes may
be blocked, and object memory fabric would may with suffi
cient state for writing. The physical address range may be
assigned to each by system BIOS on boot based object
memory fabric DIMMSPD (Serial Presence Detect) configu
ration.

0.161 FIG. 17A is a block diagram illustrating an example
object addressing 1700, in accordance with certain embodi
ments of the present disclosure. FIG. 17B is a block diagram
illustrating example aspects of object memory fabric pointer
and block addressing 1750, in accordance with certain
embodiments of the present disclosure. Object memory fab
ric objects 1705 may include object data 1710 and metadata
1715, both divided into 4k blocks in some embodiments as
one unit of storage allocation, referenced by the object
memory fabric address space 1720. The object starting
address may be the ObjectID 1755. Data 1710 may be
accessed as a positive offset from ObjectID 1755. The largest
offset may be based on ObjectSize 1760.
0162. Object metadata 1715 may be accessed as a negative
offset from ObjectStart 1725 (ObjectID). Metadata 1715 can
be also referenced by an object memory fabric address in the
top /16th of object address space 1720. The start of a specific
objects metadata may be 2'-2' +ObjStart/16. This
arrangement may enable the POIT to compactly represent
metadata 1715 and the metadata 1715 to have an object
address space So it can be managed coherently just like data.
Although the full object address space may be allocated for
object data 1710 and metadata 1715, storage may be sparsely
allocated on a block basis. At a minimum, an object 1705 has
a single block of storage allocated for the first block of meta
data 1715, in some embodiments. Object access privilege
may be determined through object memory fabric Filesystem
ACL or the like. Since object memory fabric manages objects
in units of 4k blocks, addressing within the object memory
fabric object memory are block addresses, called Block
Object Address 1765 (BOA), which corresponds to object

US 2016/0210.053 A1

address space 127:12. BOA 11:0) may be utilized by the
object memory for ObjectSize (BOA7:0) and object meta
data indication (BOA2:0)
0163 FIG. 18 is a block diagram illustrating example
aspects 1800 of object metadata 1805, in accordance with
certain embodiments of the present disclosure. Table 6 below
indicates metadata of the first block 1810 of metadata 1805
per certain embodiments. In some embodiments, the first
block 1810 of metadata 1805 may hold metadata for an object
as depicted.

TABLE 6

Metadata First Block

Name Description Size

Object address Object ID. Number of significant bits 16
Space determined by object size
Object size Object Size
CRC Reserved for optional object crc 16
Parity pointer Pointer to pages used for optional object 16

block parity
Compression OID of compression object 16
Flags
Encryption OID of encryption object 16
Flags
System Defined Reserved for software defined OS functions 256
Application Reserved for software defined owning 256
Defined application functions
Others 432
Remote Object Specifies Objects accessible from this object. 1024
Table Specifies 64 OIDs (128 bit). The Zero entry is

used to specify object or metadata within this
Triggers Triggers or Trigger B-Tree root 2048

4096

0164 System-defined metadata may include any Linux
related data to coordinate use of certain objects seamlessly
across servers. Application-defined metadata may include
application related data from a file system or database storage
manager to enable searches and/or relationships between
objects that are managed by the application.
0.165 For an object with a small number of triggers, base
triggers may be stored within the first block; otherwise, a
trigger B-tree root may reference metadata expansion area for
the corresponding object. Trigger B-tree leaf may specify
base triggers. A base trigger may be a single trigger action.
When greater than a single action is required, a trigger pro
gram may be invoked. When trigger programs are invoked,
they may reside in the expansion area. The remote object table
may specify objects that are accessible from this object by the
extended instruction set.
0166 Certain embodiments may provide for an extended
instruction execution model. One goal of the extended execu
tion model may be to provide a lightweight dynamic mecha
nism to provide memory and execution parallelism. The
dynamic mechanism enables a dataflow method of execution
that enables a high degree of parallelism combined with tol
erance of variation in access delay of portion of objects. Work
may be accomplished based on the actual dependencies, nota
single access delay holding up the computation.
0167 Various embodiments may include one or a combi
nation of the following. Loads and memory references may
be split transactions, with separate request and response so
that the thread and memory path are not utilized during the
entire transaction. Each thread and execution unit may be able
to issue multiple loads into object memory fabric (local and

Jul. 21, 2016

remote) prior to receiving a response. Object memory fabric
may be a pipeline to handle multiple requests and responses
from multiple sources so that memory resources can be fully
utilized. The execution unit may be able to accept responses
in a different order from that the requests were issued. Execu
tion units can switch to different threads to be fully utilized.
Object memory fabric can implement policies to dynamically
determine when to move objects or portions of objects versus
moving a thread versus creating a thread.
0168 FIG. 19 is a block diagram illustrating aspects of an
example micro-thread model 1900, in accordance with cer
tain embodiments of the present disclosure. A thread may be
the basic unit of execution. A thread may be defined at least in
part by an instruction pointer (IP) and a frame pointer (FP).
The instruction pointer may specify the current instruction
that is being executed. The frame pointer may specify the
location of the current execution state of the thread.
0169. A thread can include multiple micro-threads. In the
example depicted, the thread 1905 include micro-threads
1906 and 1907. However, a thread can include greater num
bers of micro-threads. The micro-threads of a particular
thread may share the same frame pointer but have different
instruction pointers. In the example depicted, frame pointers
1905-1 and 1905-2 specify the same location, but instruction
pointers 1910 and 1911 specify different instructions.
0170. One purpose of micro-threads may be to enable
data-flow like operation within a thread by enabling multiple
asynchronous pending memory operations. Micro-threads
may be created by a version of the fork instruction and may be
rejoined by the join instruction. The extended instruction set
may treat the frame pointer as a top of stack or register set by
performing operations on offsets from the frame pointer.
Load and store instructions may move data between the frame
and the object.
0171 FIG. 20 is a block diagram illustrating aspects of an
example relationship 2000 of code, frame, and object, in
accordance with certain embodiments of the present disclo
sure. Specifically, FIG. 20 illustrates how object data 2005 is
referenced through the frame 2010. The default may be for
load and store instructions to reference the object 2005 within
local scope. Access to object 2005 beyond local scope can be
given in a secure manner by access control and security poli
cies. Once this access is given, objects 2005 within local and
non-local scope can be accessed with equal efficiency. Object
memory fabric encourages strong security by encouraging
efficient object encapsulation. By sharing the frame, micro
threads provide a very lightweight mechanism to achieve
dynamic and data-flow memory and execution parallelism,
for example, on the order of 10-20 micro-threads or more.
The multiple threads enable virtually unlimited memory
based parallelism.
0172 FIG. 21 is a block diagram illustrating aspects of an
example of micro-thread concurrency 2100, in accordance
with certain embodiments of the present disclosure. Specifi
cally, FIG. 21 illustrates the parallel data-flow concurrency
for a simple example of Summing several randomly located
values. A serial version 2105 and a parallel version 2110 are
juxtaposed, in accordance with certain embodiments of the
present disclosure. The parallel version 2110 can be almost in
times faster since loads are overlapped in parallel.
0173 Referring again to FIG. 20, the approach can be
extended to interactive and recursive approaches in a dynamic
manner. The advantages of prefetching ahead can now be
achieved in cases with minimal locality without using

US 2016/0210.053 A1

prefetch. When an object is created, a single default thread
2015 (single micro-thread 2020 is created) may be waiting to
start with a start message to the default thread 2015. The
default thread 2015 then can create micro-threads with the
thread or use a version of the fork instruction to create a new
thread.
0.174. In some embodiments, both the instruction pointer
and the frame pointer may be restricted to the expansion
metadata region 1815 starting at block two and extending to
SegSize/16. As the number of objects, object size, and object
capacity increase, the thread and micro-thread parallelism
may increase. Since threads and micro-threads may be tied to
objects, as objects move and distribute so may the threads and
micro-threads. Embodiments of object memory fabric may
have the dynamic choice of moving objects or portions of
objects to threads or distributing threads to the object(s). This
may be facilitated by the encapsulated object methods imple
mented by the extended execution model.
0.175. In the foregoing description, for the purposes of
illustration, methods were described in a particular order. It
should be appreciated that in alternate embodiments, the
methods may be performed in a different order than that
described. It should also be appreciated that the methods
described above may be performed by hardware components
or may be embodied in sequences of machine-executable
instructions, which may be used to cause a machine. Such as
a general-purpose or special-purpose processor or logic cir
cuits programmed with the instructions to perform the meth
ods. These machine-executable instructions may be stored on
one or more machine readable mediums, such as CD-ROMs
or other type of optical disks, floppy diskettes, ROMs, RAMs.
EPROMs, EEPROMs, magnetic or optical cards, flash
memory, or other types of machine-readable mediums Suit
able for storing electronic instructions. Alternatively, the
methods may be performed by a combination of hardware and
software.
0176 While illustrative and presently preferred embodi
ments of the invention have been described in detail herein, it
is to be understood that the inventive concepts may be other
wise variously embodied and employed, and that the
appended claims are intended to be construed to include Such
variations, except as limited by the prior art.
What is claimed is:
1. An object memory fabric comprising:
a plurality of object memory modules, each object memory
module comprising object storage storing one or more
memory objects, memory object meta-data, and a
memory module object directory, wherein:
each memory object and/orportion of memory objects is

created natively within the object memory module
and is a managed by the object memory module at a
memory layer, and

the memory module object directory indexes all
memory objects and/or portions of memory objects
within the object memory module; and

a hierarchy of object routers communicatively coupling the
plurality of object memory modules, where:
each object router of the hierarchy of object routers

comprises a router object directory, wherein the router
object directory indexes all memory objects and/or
portions of memory objects contained in object
memory modules below the object router along a line
of descent in the hierarchy Stemming from the object
router; and

Jul. 21, 2016

the hierarchy of object routers, based at least in part on
the router object directories, is adapted to behave in
aggregate as a single object directory communica
tively coupled to all object memory modules and to
process requests based at least in part on the router
object directories.

2. The object memory fabric of claim 1, wherein the hier
archy of object routers operates according to a hierarchical
tree network.

3. The object memory fabric of claim 2, wherein the object
memory modules below the object router along the line of
descent in the hierarchy stemming from the object router
comprises object memory modules directly communicatively
coupled to the respective object router toward a leaf of the
hierarchical tree network.

4. The object memory fabric of claim3, wherein toward the
leaf of the hierarchical tree network corresponds to a most
direct path between the object router away from a root of the
hierarchical tree network and an object memory module at the
leaf of the hierarchical tree network.

5. The object memory fabric of claim 1, wherein the behav
ing in aggregate as the single object directory communica
tively coupled to all the object memory modules and the
processing the requests comprises:

responsive to each request of the requests, at least one of
the object routers looking up an object corresponding to
the request with a respective router object directory, and:
consequent to identifying a reference to the object in the

respective router object directory, forwarding the
object toward a leaf in the hierarchy:

consequent to identifying the reference to the object is
not in the respective router object directory, forward
ing the first request toward a root in the hierarchy.

6. The object memory fabric of claim 1, wherein at least
one of the requests is received from an application layer.

7. The object memory fabric of claim 1, wherein each
object memory module further comprises an object index tree
that indexes local memory objects.

8. The object memory fabric of claim 7, wherein the object
index tree comprises node blocks and leaf blocks each differ
entiated by a type attribute, wherein one or more of the leaf
blocks point to locations of the local memory objects in
persistent memory and/or faster memory.

9. The object memory fabric of claim 7, wherein the object
index tree comprises a pointer to a per object index tree for
each local memory object, where the per object index tree for
each local memory object indexes, on a block basis, memory
object data and memory object meta-data locally present for
the local memory object.

10. The object memory fabric of claim 9, wherein the per
object index tree comprises node blocks and leaf blocks each
differentiated by a type attribute, wherein one or more of the
leaf blocks point to locations of the memory object data and
memory object meta-data in persistent memory and/or faster
memory.

11. The object memory fabric of claim 1, wherein the
hierarchy of object routers adapted to behave in aggregate as
the single object directory is used to manage at least one
memory object across multiple object memory modules of
the plurality of object memory modules where a single object
memory module of the multiple object memory modules does
not have storage space required to store all blocks of the at
least one memory object.

US 2016/0210.053 A1

12. A hardware-based processing node comprising:
an object memory module comprising object storage Stor

ing one or more memory objects, memory object meta
data, and a memory module object directory, wherein:
each memory object and/orportion of memory objects is

created natively within the object memory module
and is a managed by the object memory module at a
memory layer, and

the memory module object directory indexes all
memory objects and/or portions of memory objects
within the object memory module; and

the object memory module to process one or more requests
based at least in part on the one or more object directo
ries.

13. The hardware-based processing node of claim 12,
wherein the processing the one or more requests comprises:

processing an object identifier corresponding to a first
request of the one or more requests;

determining whether at least one object of the one or more
memory objects corresponds to the object identifier, and

consequent to a determination that at least one of the one or
more memory objects does correspond to the object
identifier, generating a response to the first request based
at least in part on the at least one object.

14. The hardware-based processing node of claim 13, fur
ther comprising:

an object router communicatively coupled to the object
memory module that, consequent to a determination that
at least one of the one or more memory objects does not
correspond to the object identifier, routes the first
request to an additional node.

15. The hardware-based processing node of claim 14,
wherein the routing the first request to the additional node is
based at least in part on the object router determining a loca
tion of a memory object corresponding to the object identifier.

16. The hardware-based processing node of claim 14,
wherein:

the routing the first request to the additional node is based
at least in part on the object router determining that a
location of a memory object corresponding to the object
identifier is unknown; and

the first request is directed toward a root node.
17. The hardware-based processing node of claim 14, after

the routing the first request to the additional node, the
memory module generates a response to the first request
based at least in part on a received response from the addi
tional node.

18. The hardware-based processing node of claim 12,
wherein the object memory module further comprises an
object index tree that indexes local memory objects.

19. The hardware-based processing node of claim 18,
wherein the object index tree comprises node blocks and leaf
blocks each differentiated by a type attribute, wherein one or
more of the leaf blocks point to locations of the local memory
objects in persistent memory and/or faster memory.

20. The hardware-based processing node of claim 18,
wherein the object index tree comprises a pointer to a per

20
Jul. 21, 2016

object index tree for each local memory object, where the per
object index tree for each local memory object indexes, on a
block basis, memory object data and memory object meta
data locally present for the local memory object.

21. The hardware-based processing node of claim 20,
wherein the per object index tree comprises node blocks and
leaf blocks each differentiated by a type attribute, wherein
one or more of the leaf blocks point to locations of the
memory object data and memory object meta-data in persis
tent memory and/or faster memory.

22. The hardware-based processing node of claim 12,
wherein at least one of the one or more requests is received
from an application layer.

23. The hardware-based processing node of claim 12,
wherein at least one of the one or more requests is received
from one or more additional nodes.

24. The hardware-based processing node of claim 12,
wherein the node is configured to utilize a set of algorithms to
operatively couple to one or more additional nodes to operate
as a set of nodes independently of a scale of the set of nodes,
wherein the set of nodes operates so that all memory objects
of the set of nodes are accessible by any node of the set of
nodes.

25. A method for storing and managing one or more
memory objects in an object memory fabric, the method
comprising:

storing one or more memory objects, memory object meta
data, and a memory module object directory in object
storage of an object memory module, wherein:
each memory object and/orportion of memory objects is

created natively within the object memory module
and is managed by the object memory module at a
memory layer, and

the memory module object directory indexes all
memory objects and/or portions of memory objects
within the object memory module; and

processing by the object memory module one or more
requests based at least in part on the one or more object
directories.

26. The method of claim 25, wherein the processing the one
or more requests comprises:

processing an object identifier corresponding to a first
request of the one or more requests;

determining whether at least one object of the one or more
memory objects corresponds to the object identifier, and

consequent to a determination that at least one of the one or
more memory objects does correspond to the object
identifier, generating a response to the first request based
at least in part on the at least one object.

27. The method of claim 26, wherein the processing the one
or more requests comprises:

consequent to a determination that at least one of the one or
more memory objects does not correspond to the object
identifier, routing, by an object router communicatively
coupled to the object memory module, the first request to
an additional node.

k k k k k

