a9y United States

Kim et al.

US 20190196533A1

12y Patent Application Publication o) Pub. No.: US 2019/0196533 A1

43) Pub. Date: Jun. 27, 2019

(54) TIMING CONTROLLER BASED ON HEAP

SORTING, MODEM CHIP INCLUDING THE

SAME, AND INTEGRATED CIRCUIT
INCLUDING THE TIMING CONTROLLER

(71) Applicant: SAMSUNG ELECTRONICS CO.,

LTD., Suwon-si (KR)

(72) Inventors: Kyung-Min Kim, Hwaseong-si (KR);

Won-Seok Jeong, Suwon-si (KR);

IL-Muk Choi, Suwon-si (KR); Jun-Ho

Lee, Seoul (KR); Sung-Chul Han,
Yongin-si (KR); Ki-Joon Hong,

Hwaseong-si (KR); Seung-Joong

Hwang, Suwon-si (KR)

(21) Appl. No.: 16/231,684

(22) Filed: Dec. 24, 2018
(30) Foreign Application Priority

Dec. 26, 2017 (KR)
Oct. 10, 2018 (KR)

/11

Data

0

PROCESSOR

10-2017-0180039
10-2018-0120607

Publication Classification

(51) Int. CL
GOGF 1/14 (2006.01)
GOGF 3/06 (2006.01)
(52) US.CL
CPC oo GOGF 1/14 (2013.01); GOGF 3/0679
(2013.01); GOGF 3/0611 (2013.01)
(57) ABSTRACT

A modem chip includes a processor configured to generate
instructions, a timing controller configured to respectively
generate control signals corresponding to the instructions at
the execution times of the instructions, and a plurality of
intellectual property blocks, each configured to operate in
response to a corresponding control signal of the control
signals. The timing controller includes a heap sorting circuit
configured to sort the instructions according to execution
orders of the instructions based on heap sorting using the
execution times, a reference counter configured to generate
a reference time, and a signal generator configured to
generate a control signal corresponding to a current instruc-
tion when the reference time matches the execution time of
the current instruction having a highest execution order
among the instructions.

100

160

SYSTEM
MEMORY

170

120

1 ~
TIMING

CONTROLLER

50

HEAP SORTING

140 150

IP1

IP2

ctri

CIRCUIT

ctrl2

130

L

TC
MEMORY

Patent Application Publication Jun. 27,2019 Sheet 1 of 17 US 2019/0196533 A1

FIG. 1

/110

PROCESSOR

L

SYSTEM
MEMORY

170

120 140 150

TIMING
CONTROLLER IP1 IP2
50

HEAP SORTING ctri1
CIRCUIT ctri2

130

L

TC
MEMORY

Patent Application Publication Jun. 27,2019 Sheet 2 of 17 US 2019/0196533 A1

FIG. 2
130
TC From Processor
MEMORY IS
(D_IS) 120
SIS 50 TIMING CONTROLLER
51 10 30
HEAP Retrl | REFERENCE
SORTING LOGIC INTERFACE COUNTER SCLK
1
OFND 1 52 ® 20 " 40
pa ~ <
MEMORY NSSQ PREQ SIGNAL gm; s
- |P2
CONTROLLER [s BUFFER | Pis _| GENERATOR :
ctrim —IPn

Patent Application Publication Jun. 27,2019 Sheet 3 of 17 US 2019/0196533 A1

FIG. 3
200
MODEM
210 240 250
cPU CTRLs 24 paad
ENCODER DECODER
7 20 242 b o5
TIMING ctrl
CONTROLLER o2 MODULATOR DEMODULATOR
s 221 ctrl3 P 243 ‘ Z 253
HEAP SORTING : RESOURCE CHANNEL
CIRCUIT MAPPER ESTIMATOR
ctrim 544] 254
230 £
C TxFILTER RxFILTER
MEMORY | il ;
D_Tx D_Rx

RF CHIP 260

Patent Application Publication Jun. 27,2019 Sheet 4 of 17 US 2019/0196533 A1

FIG. 4
. Tframe
| | Frame | |
“SF0 [ST [oF2 | [SF8 | SF9 |
570 T 5] -
100CLK
—

ctrl

J0CK 750K]
ctrl2

| 700CLK I '
ctrl3

1
[T—

! 1000CLK

1
-y

Patent Application Publication Jun. 27,2019 Sheet S of 17 US 2019/0196533 A1

FIG. 5

PN

CN1 CN2

Patent Application Publication Jun. 27,2019 Sheet 6 of 17 US 2019/0196533 A1

FIG. 6A

1S ET ID
1S1 20 ID1
152 50 ID2
1S3 100 ID3
1S4 200 ID2

Patent Application Publication Jun. 27,2019 Sheet 7 of 17 US 2019/0196533 A1

—
=

6B

FIG.

Patent Application Publication Jun. 27,2019 Sheet 8 of 17 US 2019/0196533 A1

FIG. 7A

1S ET ID
1S1 20 ID1
152 50 ID2
1S3 100 ID3
1S4 200 ID2
IS5 25 ID6
1S6 250 ID5

Patent Application Publication Jun. 27,2019 Sheet 9 of 17 US 2019/0196533 A1

FIG. 7B

Patent Application Publication Jun. 27,2019 Sheet 10 of 17 US 2019/0196533 A1l

N

FIG. 8 { 10}
N

N2 N3
N4 5 NG N7

U

N1

Patent Application Publication Jun. 27,2019 Sheet 11 of 17 US 2019/0196533 A1l

FIG. 9A

20

BUFFER

3) NREQ

Rec s B D
o1 ? 2) PIS
1

-

R4 1S7 100 ID6
4)IS R5 1S9 200 D2
IS10 | 300 ID4 R6 IS8 250 ID6

1) PREQ

Patent Application Publication Jun. 27,2019 Sheet 12 of 17 US 2019/0196533 A1l

FIG. 9B

BUFFER

RO 1S4

o ——— -

R3 1S7 100 ID6
R4 1S9 200 D2
R5 IS8 250 ID6
R6 IS10 300 ID4

Patent Application Publication Jun. 27,2019 Sheet 13 of 17 US 2019/0196533 A1l

FIG. 10A

20

BUFFER

REG 1S ET ID
RO 1S3 10 ID1
R1 1S4 20 ID2
R2 1S2 25 ID3
R3 1S5 50 ID2

From INTERFACE R4 1S7 100 ID6

IS10 | 150 ID3 R5 1S9 200 ID2

R6 IS8 250 ID6

———————

Patent Application Publication Jun. 27,2019 Sheet 14 of 17 US 2019/0196533 A1l

FIG. 10B
20
BUFFER
REG | IS | ET | ID

RO 1S3 10 ID1
R1 1S4 20 D2

To HEAP
SORTING = IS8 250 ID6

CIRCUIT

Patent Application Publication Jun. 27,2019 Sheet 15 of 17 US 2019/0196533 A1l

FIG. 11

From Processor

S
(D_IS) 1202
~_50a TIMING CONTROLLER
PR 10 30
BUFFER? INTERFACE [t FEFERCREE SOLK
SIS IS RT
51 20a 40
. Z
sorT|- HREg I O Y B
HEAP SORTIN P2
LOGIC s | BUFFERT | PIS _| GENERATOR :
ctrim - 1PN

Patent Application Publication Jun. 27,2019 Sheet 16 of 17 US 2019/0196533 A1l

FIG. 12

From Processor

IS
(D_IS) 120b
TIMING CONTROLLER
10 30
INTERFACE ~ |—Potfl) REFERCICE SCLK
IS 50b AT
54 51 40
L z
SIS SORTING PREY SIGNAL 3312 ~ 1P
HEAP SORTIN — P2
BUFFER LOGIC PIS__| GENERATOR :
ctrim —IPn

Patent Application Publication Jun. 27,2019 Sheet 17 of 17 US 2019/0196533 A1l

FIG. 13

345

External
Memory

I

310 330 340 AP

L

Memory
| CPU ROM Controller ,

320 350

D|Sp|ay Modem
Controller 361

RAM

Timing
Controller

355

Display RF Chip }—365
Device

US 2019/0196533 Al

TIMING CONTROLLER BASED ON HEAP
SORTING, MODEM CHIP INCLUDING THE
SAME, AND INTEGRATED CIRCUIT
INCLUDING THE TIMING CONTROLLER

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority under 35 U.S.C. §
119 to Korean Patent Application No. 10-2017-0180039
filed on Dec. 26, 2017, and Korean Patent Application No.
10-2018-0120607 filed on Oct. 10, 2018, the disclosures of
which are incorporated by reference herein in their entire-
ties.

TECHNICAL FIELD

[0002] Exemplary embodiments of the inventive concept
relate to a semiconductor integrated circuit, and more par-
ticularly, to a real-time timing controller based on heap
sorting, a modem chip including the same, and an integrated
circuit including the real-time timing controller.

DISCUSSION OF THE RELATED ART

[0003] Digital chipsets such as modem chips include a
timing controller that controls pieces of internal hardware at
an accurate time.

[0004] Although a timing controller operating based on a
time difference (e.g., a delta time) between events occurring
in the pieces of internal hardware may have a simple circuit
configuration, a processor (e.g., a central processing unit
(CPU)) that provides instructions to the timing controller
typically has a complicated circuit configuration that collects
and sorts the events, generates instructions corresponding to
the events, and sequentially provides the generated instruc-
tions to the timing controller according to execution orders.
Due to the complicated circuit configuration of the proces-
sor, the working load and power consumption of the pro-
cessor are large.

[0005] Alternatively, a timing controller operating based
on an absolute time of each event (as opposed to a delta
time) stores instructions in an internal register thereof, and
an execution time of each of the instructions is compared
with a reference time, thereby causing an increase in the
circuit complexity and occupied area of the timing control-
ler.

SUMMARY

[0006] Exemplary embodiments of the present inventive
concept provide a timing controller, a modem chip including
the same, and an integrated circuit including the timing
controller, whereby a working load of a processor is reduced
and the complexity of hardware is decreased.

[0007] According to an exemplary embodiment of the
present inventive concept, a modem chip includes a proces-
sor configured to generate instructions including different
execution times, a timing controller configured to receive
the instructions and respectively generate control signals
corresponding to the instructions at the execution times of
the instructions, and a plurality of intellectual property (IP)
blocks, each configured to operate in response to a corre-
sponding control signal of the control signals. The timing
controller includes a heap sorting circuit configured to sort
the instructions according to execution orders of the instruc-
tions based on heap sorting using the execution times, a

Jun. 27,2019

reference counter configured to generate a reference time by
counting a clock signal, and a signal generator configured to
compare the reference time with an execution time of a
current instruction having a highest execution order among
the instructions, and generate a control signal corresponding
to the current instruction when the reference time matches
the execution time of the current instruction.

[0008] According to an exemplary embodiment of the
present inventive concept, an integrated circuit includes a
processor, a timing controller including a heap sorting
circuit, and a plurality of function blocks. The processor is
configured to output a plurality of instructions at different
times, each instruction including an execution time. The
heap sorting circuit is configured to sort the plurality of
instructions received from the processor at different times in
an order from an earliest execution time to a latest execution
time. When a reference time reaches an execution time of an
instruction having an earliest execution time among the
plurality of instructions, the timing controller is configured
to generate at least one control signal corresponding to the
instruction. Each of the plurality of function blocks is
configured to operate in response to a corresponding control
signal of the control signals generated by the timing con-
troller.

[0009] According to an exemplary embodiment of the
present inventive concept, a timing controller includes an
interface circuit, an instruction buffer, a heap sorting circuit,
a reference counter, and a signal generator. The interface
circuit is configured to sequentially receive a plurality of
instructions from a processor, each instruction including an
execution time. The instruction buffer is configured to store
one or more instructions having a relatively early execution
time of the plurality of instructions. The heap sorting circuit
is configured to sort instructions except the one or more
instructions of the plurality of instructions according to
execution orders based on heap sorting using the execution
time, and store the sorted instructions in a storage area. The
reference counter is configured to generate a reference time
by counting a clock signal. The signal generator is config-
ured to receive an instruction having an earliest execution
time of the one or more instructions as a current instruction
from the instruction buffer, and when the reference time
reaches an execution time of the current instruction, generate
a control signal representing an operation time of a function
block corresponding to the current instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The above and other features of the present inven-
tive concept will become more apparent by describing in
detail exemplary embodiments thereof with reference to the
accompanying drawings, in which:

[0011] FIG. 1 is a block diagram illustrating an integrated
circuit according to an exemplary embodiment of the present
inventive concept.

[0012] FIG. 2 is a block diagram illustrating a timing
controller according to an exemplary embodiment of the
present inventive concept.

[0013] FIG. 3 is a block diagram illustrating a modem
according to an exemplary embodiment of the present
inventive concept.

[0014] FIG. 4 is a diagram illustrating an example in
which control signals are generated in a sub-frame period,
and illustrating an example of a structure of a signal trans-

US 2019/0196533 Al

mitted over a wireless network, according to an exemplary
embodiment of the present inventive concept.

[0015] FIG. 5 is a diagram for describing heap sorting
according to an exemplary embodiment of the present
inventive concept.

[0016] FIGS. 6A and 6B are diagrams for describing a
heap sorting method according to an exemplary embodiment
of the present inventive concept.

[0017] FIGS. 7A and 7B are diagrams for describing a
heap sorting method according to an exemplary embodiment
of the present inventive concept.

[0018] FIG. 8 is a diagram for describing a heap sorting
method according to an exemplary embodiment of the
present inventive concept.

[0019] FIGS. 9A and 9B are diagrams for describing an
operation of a buffer of FIG. 2 according to an exemplary
embodiment of the present inventive concept.

[0020] FIGS. 10A and 10B are diagrams for describing an
operation of a buffer of FIG. 2 according to an exemplary
embodiment of the present inventive concept.

[0021] FIG. 11 is a block diagram illustrating a timing
controller according to an exemplary embodiment of the
present inventive concept.

[0022] FIG. 12 is a block diagram illustrating a timing
controller according to an exemplary embodiment of the
present inventive concept.

[0023] FIG. 13 is a block diagram illustrating an imple-
mentation example of an application processor into which
functions performed by a modem according to an exemplary
embodiment of the present inventive concept are integrated.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

[0024] Exemplary embodiments of the present inventive
concept will be described more fully hereinafter with refer-
ence to the accompanying drawings. Like reference numer-
als may refer to like elements throughout the accompanying
drawings.

[0025] It should be understood that descriptions of fea-
tures or aspects within each exemplary embodiment should
typically be considered as available for other similar features
or aspects in other exemplary embodiments, unless the
context clearly indicates otherwise.

[0026] It will be understood that the terms “first,” “sec-
ond,” “third,” etc. are used herein to distinguish one element
from another, and the elements are not limited by these
terms. Thus, a “first” element in an exemplary embodiment
may be described as a “second” element in another exem-
plary embodiment.

[0027] It will be understood that when a component is
referred to as being “connected to” (e.g., electrically con-
nected to) another component, it can be directly connected
to the other component, or intervening components may be
present.

[0028] As is traditional in the field of the present inventive
concept, exemplary embodiments are described, and illus-
trated in the drawings, in terms of functional blocks, units
and/or modules.

[0029] Those skilled in the art will appreciate that these
blocks, units and/or modules are physically implemented by
electronic (or optical) circuits such as logic circuits, discrete
components, microprocessors, hard-wired circuits, memory
elements, wiring connections, etc., which may be formed
using semiconductor-based fabrication techniques or other

Jun. 27,2019

manufacturing technologies. In the case of the blocks, units
and/or modules being implemented by microprocessors or
similar, they may be programmed using software (e.g.,
microcode) to perform various functions discussed herein
and may optionally be driven by firmware and/or software.

[0030] FIG. 1 is a block diagram illustrating an integrated
circuit 100 according to an exemplary embodiment of the
present inventive concept.

[0031] The integrated circuit 100 of FIG. 1 may be imple-
mented, for example, as a digital signal processing system of
various types, and may make up the entirety or just a portion
of a computing system. As a nonrestrictive example, the
integrated circuit 100 may be equipped in electronic devices
such as laptop computers, smart televisions (TVs), smart-
phones, tablet personal computers (PCs), personal digital
assistants (PDAs), enterprise digital assistants (EDAs), digi-
tal cameras, portable multimedia players (PMPs), portable
navigation devices (PNDs), handheld game consoles,
mobile Internet devices (MIDs), multimedia devices, wear-
able computers, Internet of Things (IoT) devices, Internet of
Everything (IoE) devices, e-books, etc. In an exemplary
embodiment, the integrated circuit 100 may be a modem
included in a wireless communication device.

[0032] Referring to FIG. 1, the integrated circuit 100 may
include a processor 110, a system memory 160, a timing
controller (also referred to as a timing controller circuit) 120,
a timing control memory 130, and a plurality of intellectual
property (IP) blocks. For example, the integrated circuit may
include a first IP block (IP1) 140 and a second IP block (IP2)
150. The elements (for example, the processor 110, the
system memory 160, the timing controller 120, the timing
control memory 130, and the plurality of IP blocks) of the
integrated circuit 100 may transmit or receive data through
a bus 170. In FIG. 1, the integrated circuit 100 is illustrated
as including two IP blocks (e.g., the first IP block (IP1) 140
and the second IP block (IP2) 150), however, this is for
convenience of description and exemplary embodiments are
not limited thereto. For example, in exemplary embodi-
ments, the integrated circuit 100 may include three or more
IP blocks.

[0033] The processor 110 may control an overall operation
of the integrated circuit 100 and may be implemented as, for
example, a central processing unit (CPU), a microprocessor,
a digital signal processor, etc. In an exemplary embodiment,
the processor 110 may be implemented as a multi-core
processor such as, for example, a dual-core processor or a
quad-core processor.

[0034] The processor 110 may generate a plurality of
instructions IS used to schedule the occurrences of events of
the plurality of IP blocks. For example, the first IP block 140
and the second IP block 150 may transmit the plurality of
instructions IS to the timing controller 120. The plurality of
instructions IS may include a command to generate control
signals used to control operations (e.g., operation times) of
the first IP block 140 and the second IP block 150. The
plurality of instructions IS may be generated and transmitted
at different times. In an exemplary embodiment, each of the
plurality of instructions IS may include an execution time
and an identification (ID). The execution time may represent
an absolute time when a corresponding instruction is
executed, and the ID may represent a control signal gener-
ated based on execution of the corresponding instruction
and/or an IP block to which the control signal is transmitted.

US 2019/0196533 Al

[0035] In an exemplary embodiment, the processor 110
may transmit instruction data corresponding to each of the
plurality of instructions IS to the timing controller 120
through the bus 170. The protocol of the bus 170 may be an
advanced microcontroller bus architecture (AMBA) proto-
col such as, for example, advanced high-performance bus
(AHB), advanced peripheral bus (APB), advanced eXten-
sible interface (AXI), AXI4, or AXI coherency extensions
(ACE), and in addition, may use a protocol such as uNet-
work, core connect, or open core protocol of OCP-IP. The
processor 110 may generate an instruction having a format
based on the protocol of the bus 170, and may transmit the
generated instruction to the timing controller 120 through
the bus 170.

[0036] The system memory 160 may operate according to
control by the processor 110 and may be used, for example,
as a working memory, a buffer memory, a cache memory,
etc. For example, the system memory 160 may be imple-
mented as a volatile memory, such as dynamic random
access memory (DRAM) or static random access memory
(SRAM), or a non-volatile memory such as phase change
random access memory (PRAM), magnetic random access
memory (MRAM), ferroelectric random access memory
(FeRAM), resistive random access memory (ReRAM), or
flash memory.

[0037] The plurality of IP blocks (e.g., the first IP block
140 and the second IP block 150) may be functional blocks
that perform separate functions or various functions associ-
ated with one another. For example, when the integrated
circuit 100 is implemented as a modem, the first IP block
140 and the second IP block 150 may be hardware blocks
that configure a transmission circuit to process transmission
data or configure a reception circuit to process reception
data.

[0038] Each of the plurality of IP blocks may operate at a
corresponding time, and the timing controller 120 may
schedule operation times of the plurality of IP blocks. The
timing controller 120 may receive the plurality of instruc-
tions IS from the processor 110 and may execute each of the
plurality of instructions IS at a corresponding execution
time, thereby generating control signals (for example, a first
control signal ctrll and a second control signal ctrl2) pro-
vided to the plurality of IP blocks. The first IP block 140 may
operate at a certain time in response to the first control signal
ctrll, and the second IP block 150 may operate at another
certain time in response to the second control signal ctrl2. In
an exemplary embodiment, a plurality of control signals
may be received by one IP block. In this manner, the timing
controller 120 may generate the first control signal ctrll and
the second control signal ctrl2, which are to be provided to
the plurality of IP blocks, based on the plurality of instruc-
tions IS received by the timing controller 120. As a result,
each of the plurality of IP blocks may be controlled by the
timing controller 120 to operate at a certain time.

[0039] For example, the timing controller 120 may gen-
erate a reference time, and when the reference time reaches
an execution time of an instruction having a highest execu-
tion order from among the plurality of instructions IS, the
timing controller 120 may execute the instruction to gener-
ate a control signal. In an exemplary embodiment, a plurality
of control signals corresponding to the same IP block or
different IP blocks may be generated by executing one
instruction.

Jun. 27,2019

[0040] The plurality of instructions IS may be received at
different times, and execution times when the plurality of
instructions IS are executed may differ. The orders in which
the plurality of instructions IS are received may not match
the execution orders of the plurality of instructions IS. For
example, an execution time of an early-received instruction
IS may be later than an execution time of a late-received
instruction IS (wherein the early-received instruction IS is
received before the late-received instruction). The timing
controller 120 may include a heap sorting circuit 50 that
sorts the plurality of instructions IS according to execution
orders.

[0041] The heap sorting circuit 50 may sort the plurality of
instructions IS according to execution orders based on a
heap sorting algorithm. The heap sorting circuit 50 may
execute the heap sorting algorithm based on the execution
time of each of the plurality of instructions IS, and thus, may
sequentially sort the plurality of instructions IS from an
instruction having a highest execution order to an instruction
having a lowest execution order.

[0042] The heap sorting circuit 50 may store the sorted
plurality of instructions IS in the timing control memory
(hereinafter referred to as a memory) 130. In an exemplary
embodiment, the memory 130 may be a dedicated memory
of the timing controller 120. The memory 130 may store the
plurality of instructions IS and may output the sorted plu-
rality of instructions IS to the timing controller 120. For
example, the memory 130 may be implemented as a volatile
memory such as DRAM or SRAM, but is not limited thereto.
In exemplary embodiments, the memory 130 may be imple-
mented as a non-volatile memory such as NAND flash
memory, PRAM, ReRAM, or MRAM. In an exemplary
embodiment, the heap sorting circuit 50 may store the sorted
plurality of instructions IS in an internal storage area.
[0043] When a new instruction IS is received, the heap
sorting circuit 50 may re-sort the newly received instruction
IS and pre-sorted instructions IS in real time. The heap
sorting circuit 50 may read instructions IS, which are
pre-sorted and stored in the memory 130, from the memory
130, and may perform the heap sorting algorithm on the
sorted instructions IS, thereby re-sorting the plurality of
instructions IS.

[0044] In an integrated circuit equipped with a timing
controller according to a comparative example, in which the
timing controller controls events occurring in IP blocks
based on a time difference (e.g., a delta time) between the
events, a processor generates all instructions representing
events which are to be performed later, sorts the instructions
in a time order, and transmits the sorted instructions to the
timing controller. The timing controller according to the
comparative example executes one instruction and then
executes another instruction after a predetermined delta
time, thereby generating control signals. According to an
operation of the timing controller according to the compara-
tive example based on the delta time, while instructions
previously provided to the timing controller are being
executed, another instruction may be difficult to additionally
execute. Also, since the timing controller according to the
exemplary embodiment operates based on the delta time,
when there is no instruction which is to be performed after
a last instruction is executed, the timing controller cannot
perform any operation. That is, since there is no continuity
between events, time recovery is needed. Therefore, the
processor collects events as long as possible, and when the

US 2019/0196533 Al

collection is completed, the processor sorts instructions
corresponding to the events in a time order and provides the
sorted instructions to the timing controller before a next
period starts (for example, before a next sub-frame starts
when the integrated circuit is a modem). Accordingly, a
working load and processing power of the processor may be
large, causing a reduction in performance of the integrated
circuit.

[0045] However, in the integrated circuit 100 according to
an exemplary embodiment of the present inventive concept,
since the timing controller 120 executes the plurality of
instructions IS based on an absolute time, the processor 110
may generate instructions IS each including an execution
time which is an absolute time. The timing controller 120
may sort the plurality of instructions IS according to an
execution time (e.g., an execution order), and thus, since the
processor 110 does not sort the instructions IS, a working
load and processing power of the processor 110 may be
reduced. Also, the timing controller 120 may sort received
instructions in real time based on the heap sorting algorithm.
As a result, in an exemplary embodiment, the processor 110
does not generate instructions in order based on an execution
time, thereby enhancing a degree of availability of the
processor 110 to perform other tasks.

[0046] FIG. 2 is a block diagram illustrating a timing
controller 120 according to an exemplary embodiment of the
present inventive concept.

[0047] Referring to FIG. 2, the timing controller 120 may
include an interface 10, a buffer 20, a reference counter (also
referred to as a reference counter circuit) 30, a signal
generator (also referred to as a signal generator circuit) 40,
and a heap sorting circuit 50.

[0048] The interface 10 may transmit or receive data to or
from a processor (e.g., processor 110 of FIG. 1) through a
bus (e.g., bus 170 of FIG. 1). The interface 10 may receive
a plurality of instructions IS from the processor 110. The
interface 10 may receive an instruction (for example,
instruction data D_IS) having a format based on a protocol
of the bus 70, and may change a format of the instruction
data D_IS, thereby generating an instruction IS based on a
data protocol of the timing controller 120.

[0049] The timing controller 120 may provide the instruc-
tion IS to the buffer 20. The instruction IS may include a
command to generate at least one control signal correspond-
ing to one of a plurality of IP blocks IP1 to IPn. As described
above with reference to FIG. 1, the instruction IS may
include an execution time that represents an absolute time
when the instruction IS is executed, and at least one control
signal generated by executing the instruction IS and/or an ID
representing at least one IP block to which the at least one
control signal is transmitted.

[0050] In an exemplary embodiment, the instruction data
D_IS may include a control instruction that controls the
internal elements (for example, the interface 10, the buffer
20, the reference counter 30, the signal generator 40, and the
heap sorting circuit 50) of the timing controller 120, and the
interface 10 may generate control signals that control the
internal elements of the timing controller 120 based on the
control instruction. For example, the interface 10 may
generate a reference counter control signal Retrl based on
the control instruction corresponding to the reference coun-
ter 30, and may provide the reference counter control signal

Jun. 27,2019

Retrl to the reference counter 30. The reference counter 30
may change a configuration in response to the reference
counter control signal Retrl.

[0051] The reference counter 30 may count a system clock
signal SCLK to generate a reference time RT. For example,
the reference counter 30 may generate a count value based
on the counting of the system clock signal SCLK, and may
output the count value as the reference time RT. In an
exemplary embodiment, when an integrated circuit (e.g.,
integrated circuit 100 of FIG. 1) including the timing con-
troller 120 is a modem, the reference counter 30 may count
the system clock signal SCLK in a period of a sub-frame,
thereby generating the reference time RT at every sub-frame.

[0052] In an exemplary embodiment, the reference coun-
ter 30 may operate M (where M is an integer equal to or
greater than two) times faster than an operation speed of the
integrated circuit 100, and may increase the count value at
a speed which is M times faster than the operation speed of
the integrated circuit 100. For example, when it is assumed
that the operation speed of the integrated circuit 100 is 1.28
megachips per second (Mcps) and the reference counter 30
operates eight times faster than the operation speed of the
integrated circuit 100, the operation speed of the reference
counter 30 is 10.24 megahertz (MHz), and the reference
counter 30 increases the count value by one at every 1
second/10.24 MHz.

[0053] When the reference time RT reaches an execution
time of an instruction (e.g., an instruction (hereinafter
referred to as a current instruction) PIS which is to be
executed currently) having a highest execution order of the
plurality of instructions IS received from the processor 110,
the signal generator 40 may generate a control signal cor-
responding to the current instruction PIS. The generated
control signal may be output to a corresponding IP block of
the plurality of IP blocks IP1 to IN. In the exemplary
embodiment illustrated in FIG. 2, n is an integer greater than
or equal to three. However, exemplary embodiments are not
limited thereto. For example, in exemplary embodiments, n
may be an integer greater than or equal to one.

[0054] For example, the signal generator 40 may transmit
a current instruction request PREQ to the buffer 20 and may
receive the current instruction PIS from the buffer 20. The
current instruction PIS may be an instruction IS which is not
yet executed and has an earliest execution time of instruc-
tions IS (e.g., the plurality of instructions IS received from
the processor 110) stored in the buffer 20 and the memory
130.

[0055] The signal generator 40 may compare an execution
time of the current instruction PIS with the reference time
RT. In an exemplary embodiment, the signal generator 40
includes a single comparator used to perform the compari-
son. When the execution time matches the reference time
RT, the signal generator 40 may execute the current instruc-
tion PIS to generate a control signal corresponding to the
current instruction PIS. For example, the signal generator 40
may generate at least one control signal based on an ID
included in the current instruction PIS, and may transmit the
generated control signal to a corresponding IP block of the
plurality of IP blocks IP1 to IPn.

[0056] After the signal generator 40 generates the at least
one control signal, the signal generator 40 may transmit the
current instruction request PREQ to the buffer 20. The signal

US 2019/0196533 Al

generator 40 may receive an instruction, which is to be
executed next, as the current instruction PIS from the buffer
20.

[0057] The buffer 20 may receive an instruction IS from
the interface 10 and may store the received instruction IS in
an internal register thereof. The buffer 20 may be referred to
as an instruction buffer. In an exemplary embodiment, the
buffer 20 may include N (where N is an integer equal to or
greater than one) number of registers, and the buffer 20 may
store N instructions IS, having relatively early execution
times, of a plurality of instructions IS which is received from
the interface 10 at the same time or different times. The
buffer 20 may compare the execution times of the N instruc-
tions IS, and may respectively store the N instructions IS in
the N registers according to execution orders based on a
result of the comparison.

[0058] The buffer 20 may provide the heap sorting circuit
50 with instructions IS, having relatively late execution
times, of the plurality of instructions IS. The buffer 20 may
provide the heap sorting circuit 50 with a write enable signal
EN along with an instruction IS.

[0059] In a state in which the N instructions IS are stored
in the N registers, when a new instruction IS is received from
the interface 10, the buffer 20 may compare an execution
time of the received instruction IS with the execution time
of each of the N instructions IS, and may update the N
instructions IS stored in the N registers based on a result of
the comparison.

[0060] When the buffer 20 receives the current instruction
request PREQ from the signal generator 40, the buffer 20
may provide an instruction, which is stored in a first register
of the N registers and has an earliest execution time, as a
current instruction PIS to the signal generator 40. The buffer
20 may shift one instruction each time among N-1 number
of instructions stored in second to N? registers to store the
N-1 instructions in the first to N-1? registers. The buffer 20
may transmit a new instruction request NREQ to the heap
sorting circuit 50, and then, when an instruction IS is
received from the heap sorting circuit 50, the buffer 20 may
store the received instruction IS in the N register.

[0061] The heap sorting circuit 50 may sort instructions IS
received from the buffer 20 according to execution orders
based on heap sorting using an execution time, and may
store sorted instructions SIS in the memory 130.

[0062] When the new instruction request NREQ is
received from the buffer 20, the heap sorting circuit 50 may
read an instruction IS (e.g., an instruction IS having an
earliest execution time) having a highest execution order of
the sorted instructions IS stored in the memory 130, and may
provide the read instructions IS to the buffer 20.

[0063] The heap sorting circuit 50 may include heap
sorting logic 51 and a memory controller 52. The memory
controller 52 may control the heap sorting logic 51 and the
timing control memory 130 so that instructions IS received
from the buffer 20 are sorted in ascending power based on
an execution time, and the sorted instructions SIS are stored
in the memory 130.

[0064] When the write enable signal EN and an instruction
IS are received from the buffer 20, the memory controller 52
may transmit the received instruction IS and an operation
mode signal OPMD representing a write operation to the
heap sorting logic 51. The operation mode signal OPMD
may be provided to the memory 130. Also, when a new
instruction request NREQ is received from the buffer 20, the

Jun. 27,2019

memory controller 52 may transmit the operation mode
signal OPMD, which represents a read operation, to the heap
sorting logic 51 and/or the memory 130. When an instruc-
tion IS having an earliest execution time is read from the
memory 130 and is received by the memory controller 52,
the memory controller 52 may transmit the instruction IS
read from the memory 130 to the buffer 20.

[0065] In a case in which the heap sorting logic 51 stores
an instruction IS in the memory 130 or reads the instruction
IS from the memory 130, the heap sorting logic 51 may sort
instructions IS based on heap sorting. The heap sorting logic
51 may be implemented based on the heap sorting algorithm
configuring a minimum heap tree. The heap sorting logic 51
may sort the instructions IS in real time. An operation (e.g.,
a sorting method based on the heap sorting algorithm) of the
heap sorting logic 51 will be described below with reference
to FIGS. 5 to 8.

[0066] In a case in which the heap sorting logic 51 sorts a
maximum of K (where K is an integer equal to or greater
than two) instructions, log(K) number of clocks of a clock
signal (e.g., the system clock signal SCLK) are utilized. In
order for the heap sorting logic 51 to sort instructions IS in
real time, the heap sorting logic 51 may operate at a speed
which is log(K) or more times an operation speed of the
reference counter 30.

[0067] As described above, in the timing controller 120
according to an exemplary embodiment of the present
inventive concept, when an instruction is added, the heap
sorting circuit 50 may sort instructions in real time accord-
ing to execution orders based on heap sorting. Accordingly,
a working load of the processor 110 which generates an
instruction may be reduced, and a degree of availability of
the processor 110 may increase.

[0068] When the reference time RT reaches an execution
time of each of the instructions, the instructions may be
executed. In a case in which the reference time RT is
compared with the execution time of each of the instructions
so as to determine whether the reference time RT reaches the
execution time of each of the instructions, a number of
comparators corresponding to the number of instructions
may be utilized. Accordingly, the complexity of a timing
controller according to a comparative example may be high,
and an area thereof may be large.

[0069] However, as described above, in the timing con-
troller 120 according to an exemplary embodiment of the
present inventive concept, the signal generator 40 may
compare the reference time RT with an execution time of an
instruction which is to be executed earliest, and when the
reference time RT reaches the execution time, the signal
generator 40 may execute the instruction and may compare
the reference time RT with an execution time of an instruc-
tion which is to be executed next. In this manner, the signal
generator 40 may sequentially compare the reference time
RT with execution times of instructions according to execu-
tion orders of the instructions, and thus, in an exemplary
embodiment, only one comparator is sufficient. Therefore,
the complexity and area of the timing controller 120 may be
reduced. Also, instructions IS sorted by the heap sorting
circuit 50 may be stored in the memory 130 instead of a
large-size register, and thus, the area of the timing controller
120 may be reduced.

[0070] FIG. 3 is a block diagram illustrating a modem 200
according to an exemplary embodiment of the present
inventive concept.

US 2019/0196533 Al

[0071] Referring to FIG. 3, the modem 200 may include a
CPU 210, a timing controller 220, a memory 230, a trans-
mission circuit 240, and a reception circuit 250. The trans-
mission circuit 240 may include an encoder 241, a modu-
lator 242, a resource mapper 243, and a transmission filter
244. The reception circuit 250 may include a decoder 251,
a demodulator 252, a channel estimator 253, and a reception
filter 254. The timing controller 220 may include a heap
sorting circuit 221. A configuration and an operation of the
heap sorting circuit 221 may be the same as the configura-
tion and operation of the heap sorting circuit 50 described
above with reference to FIG. 2. Thus, for convenience of
explanation, a further description thereof is omitted. In
addition to the transmission circuit 240 and the reception
circuit 250, the modem 200 may further include other
elements. The elements of each of the transmission circuit
240 and the reception circuit 250 may be implemented with
hardware or a combination of software and hardware. The
modem 200 may be implemented as one block of a system
on chip (SoC), or may be implemented as one semiconduc-
tor chip (for example, a modem chip).

[0072] The CPU 210 may control an overall operation of
the modem 200. The CPU 210 may provide the transmission
circuit 240 and the reception circuit 250 with configuration
control signals CTRLs that control configurations of the
elements of each of the transmission circuit 240 and the
reception circuit 250. The CPU 210 may generate a plurality
of instructions IS that control operation times of the ele-
ments of each of the transmission circuit 240 and the
reception circuit 250, and may transmit the plurality of
instructions IS to the timing controller 220. The plurality of
instructions IS may be generated and transmitted at different
times.

[0073] A description of the timing controller 120 given
above with reference to FIG. 2 may be applied to the timing
controller 220 of FIG. 3. The timing controller 220 may sort
the plurality of instructions IS in real time according to
execution orders of the instructions IS based on heap sorting.
The sorted instructions IS may be stored in the memory 230.
The sorted instructions IS may be read from the memory 230
and may be used to generate control signals (for example,
first to m™ control signals) ctrll to ctrlm. In the exemplary
embodiment illustrated in FIG. 3, m is an integer greater
than or equal to four. However, exemplary embodiments are
not limited thereto. For example, in exemplary embodi-
ments, m may be an integer greater than or equal to one. A
configuration and an operation of the timing controller 220
are the same as the configuration and operation of the timing
controller 120 described above with reference to FIG. 2.
Thus, for convenience of explanation, a further description
thereof is omitted.

[0074] The transmission circuit 240 may process a trans-
mission signal to generate transmission data D_Tx corre-
sponding to a baseband signal. The transmission data D_Tx
output from the transmission circuit 240 may be transmitted
to a radio frequency (RF) chip 260, and the RF chip 260 may
convert the transmission data D_Tx into an RF transmission
signal and may output the RF transmission signal to a
wireless network. An RF reception signal received over the
wireless network may be converted into reception data
D_Rx corresponding to a baseband signal by using the RF
chip 260, and the reception data D_Rx may be transmitted
to the reception circuit 250. The reception circuit 250 may
process the reception data D_Rx to obtain a reception signal.

Jun. 27,2019

[0075] The wireless network may be a cellular network
such as, for example, a 3’/ generation (3G) network, a 5%
generation wireless (5G) network, a long term evolution
(LTE) network, an LTE-advanced network, a code division
multiple access (CDMA) network, or a global system for
mobile communications (GSM) network, or a wireless net-
work such as a wireless local area network (WLAN).
However, the wireless network is not limited thereto.
[0076] The control signals ctrll to ctrlm generated by the
timing controller 220 may be provided to the elements (for
example, the encoder 241, the modulator 242, the resource
mapper 243, and the transmission filter 244) of the trans-
mission circuit 240 and the elements (for example, the
decoder 251, the demodulator 252, the channel estimator
253, and the reception filter 254) of the reception circuit 250.
Each of the elements of the transmission circuit 240 and the
reception circuit 250 may operate at a certain time in
response to a corresponding control signal. In an exemplary
embodiment, at least one control signal (for example, the
m? control signal ctrlm) generated by the timing controller
120 may be provided to the RF chip 260. The RF chip 260
may operate based on the m™ control signal ctrlm. The RF
chip 260 may operate in synchronization with the transmis-
sion circuit 240 and the reception circuit 250 of the modem
200 based on the m” control signal ctrlm.

[0077] FIG. 4 is a diagram illustrating an example in
which control signals are generated in a sub-frame period,
and illustrating an example of a structure of a signal trans-
mitted over a wireless network, according to an exemplary
embodiment of the present inventive concept.

[0078] Referring to FIG. 4, a signal transmitted over the
wireless network may include a plurality of frames, and one
frame (referred to as a radio frame) may include a plurality
of sub-frames SF0 to SF9. In FIG. 4, one frame is illustrated
as including ten sub-frames SF0 to SF9. However, exem-
plary embodiments are not limited thereto. For example, in
exemplary embodiments, the number of sub-frames may
vary depending on the type of wireless network.

[0079] A plurality of control signals (for example, first to
third control signals) ctrll to ctrl3 may be generated at
different times in one period of a sub-frame. In this case, the
plurality of control signals ctrll to ctrl3 being generated may
denote that rising edges or falling edges of the plurality of
control signals ctrll to ctrl3 are generated. Thus, levels of
the plurality of control signals ctrll to ctrl3 are shifted or
pulses of the plurality of control signals ctrll to ctrl3 are
generated. IP blocks (for example, the elements of each of
the transmission circuit 240 and the reception circuit 250 of
FIG. 3) corresponding to the plurality of control signals ctrll
to ctrl3 and the RF chip 260 may operate in response to the
falling edge or rising edge and the level shift or pulse of each
of the plurality of control signals ctrll to ctrl3.

[0080] Referring to FIGS. 2 and 4, the plurality of control
signals ctrll to ctrl3 may be generated by a timing controller
(e.g., the timing controller 120 of FIG. 2). The plurality of
control signals ctrll to ctrl3 may be generated based on
different instructions. For example, a period in which the
reference counter 30 outputs a count value of 1,000 clocks
as the reference time RT may be defined as one period of a
sub-frame. When the reference counter 30 outputs a count
value of 100 clocks, the signal generator 40 may execute an
instruction having an execution time which corresponds to
100 clocks, thereby generating the first control signal ctrll.
The signal generator 40 may generate the first control signal

US 2019/0196533 Al

ctrll having an active level (for example, a high level) at a
time when the reference time RT corresponds to 100 clocks.

[0081] Similarly, when the reference counter 30 outputs a
count value of 300 clocks, a count value of 700 clocks, and
a count value of 750 clocks, the signal generator 40 may
execute instructions having respective execution times
which correspond to 100 clocks, 300 clocks, 700 clocks, and
750 clocks, thereby generating the second control signal
ctrl2 and the third control signal ctrl3.

[0082] FIG. 5 is a diagram for describing heap sorting
according to an exemplary embodiment of the present
inventive concept.

[0083] Referring to FIG. 5, heap sorting may be a method
in which pieces of data are configured in a binary tree
structure (hereinafter referred to as a heap tree structure)
called a heap, and are sorted. In the heap tree structure, two
lower nodes (e.g., two child nodes) CN1 and CN2 may be
connected to a parent node PN, which is an upper node. For
example, each of nodes may have two child nodes. The
parent node PN may be compared with each of the two child
nodes CN1 and CN2, and thus, a sorting state may be
maintained. According to a maximum sorting method, a
value (data) of the parent node PN may be greater than a
value of each of the child nodes CN1 and CN2. According
to a minimum sorting method, the value (data) of the parent
node PN may be less than the value of each of the child
nodes CN1 and CN2.

[0084] When a new value is input or a value of an
uppermost node is output, a small number of arithmetic
operations may be performed through a process of re-sorting
only branches of a corresponding node, thereby maintaining
the heap tree structure.

[0085] FIGS. 6A and 6B are diagrams for describing a
heap sorting method according to an exemplary embodiment
of the present inventive concept.

[0086] FIG. 6A illustrates instructions IS received by heap
sorting logic (for example, heap sorting logic 51 of FIG. 2).
FIG. 6B illustrates a method of configuring, by using heap
sorting logic (for example, heap sorting logic 51 of FIG. 2),
a minimum heap tree. FIGS. 6A and 6B illustrate an inser-
tion operation in which an instruction (e.g., a value of a
node) is added.

[0087] Referring to FIG. 6A, an instruction IS may include
an execution time ET and an ID. Received instructions IS1
to IS5 may be sorted based on an execution time of each of
the instructions IS1 to IS5.

[0088] Referring to FIGS. 6A and 6B, values of nodes
(e.g., first to fifth nodes N1 to N5) of a heap tree structure
may correspond to execution times ET of the instructions
(for example, first to fifth instructions) IS1 to IS5. In a state
in which the first to fourth instructions IS1 to IS4 are
received, the execution times ET of the first to fourth
instructions IS1 to IS4 may respectively correspond to
values of the first to fourth nodes N1 to N4. Subsequently,
when the fifth instruction IS5 is received, 25, which is the
execution time ET of the fifth instruction IS5, may be
connected to the second node N2 as a value of the fifth node
N5. In this case, 50, which is a value of the second node N2
corresponding to a parent node, is greater than 25, which is
a value of the fifth node N5 corresponding to a child node.
Therefore, a value of the second node N2 and a value of the
fourth node N4 may be swapped. Accordingly, the minimum
heap tree may be maintained.

Jun. 27,2019

[0089] The first to fifth instructions IS1 to IS5 may be
sorted according to execution orders thereof based on the
heap sorting method illustrated in FIG. 6B. The sorted first
to fifth instructions IS1 to IS5 may be stored in a memory
(for example, the memory 130 of FIG. 2).

[0090] FIGS. 7A and 7B are diagrams for describing a
heap sorting method according to an exemplary embodiment
of the present inventive concept.

[0091] FIG. 7A illustrates instructions IS received by heap
sorting logic (for example, heap sorting logic 51 of FIG. 2).
FIG. 7B illustrates a method of configuring a minimum heap
tree. FIGS. 7A and 7B illustrate an insertion operation in
which an instruction (e.g., a value of a node) is added.

[0092] Referring to FIGS. 7A and 7B, in a state in which
first to sixth instructions IS1 to IS6 are received, execution
times ET of the first to sixth instructions IS1 to IS6 may
respectively correspond to values of the first to sixth nodes
N1 to N6. Subsequently, when a seventh instruction IS7 is
received, 10, which is an execution time ET of the seventh
instruction IS7, may be connected to the third node N3 as a
value of a seventh node N7. In this case, 100, which is a
value of the third node N3 corresponding to a parent node,
is greater than 10, which is a value of the seventh node N7
corresponding to a child node. Therefore, a value of the third
node N3 and a value of the seventh node N7 may be
swapped.

[0093] After the value of the third node N3 and the value
of the seventh node N7 are swapped, 20, which is a value of
the first node N1 corresponding to a parent node, is greater
than 10, which is a value of the third node N3 corresponding
to a child node. Therefore, a value of the first node N1 and
a value of the third node N3 may be swapped. Accordingly,
the minimum heap tree may be maintained.

[0094] The first to seventh instructions IS1 to IS7 may be
sorted according to execution orders thereof based on the
heap sorting method illustrated in FIG. 7B. The sorted first
to seventh instructions IS1 to IS7 may be stored in a memory
(for example, the memory 130 of FIG. 2).

[0095] FIG. 8 is a diagram for describing a heap sorting
method according to an exemplary embodiment of the
present inventive concept.

[0096] FIG. 8 illustrates a deletion operation in which a
value of an uppermost node is deleted from a minimum heap
tree structure. For example, as described above, when an
instruction (e.g., an instruction corresponding to an upper-
most node of a heap tree structure) having a highest execu-
tion order among instructions sorted and stored according to
execution orders based on the heap sorting method is output,
the uppermost node (e.g., a value of a first node N1) may be
deleted.

[0097] Referring to FIG. 8, when the value of the first node
N1 is deleted, the smaller value of values of second and third
nodes N2 and N3 corresponding to child nodes of the first
node N1 may move to the first node N1. Therefore, 20,
which is the value of the third node N3, may move to the first
node N1. Subsequently, the smaller value of values of sixth
and seventh nodes N6 and N7 corresponding to child nodes
of the third node N3 may move to the third node N3.
Therefore, 100, which is the value of the seventh node N7,
may move to the third node N3. Accordingly, the minimum
heap tree may be maintained. Instructions respectively cor-
responding to nodes may be re-sorted and stored based on
the minimum heap tree structure.

US 2019/0196533 Al

[0098] FIGS. 9A and 9B are diagrams for describing an
operation of the buffer 20 of FIG. 2 according to an
exemplary embodiment of the present inventive concept.
[0099] FIGS. 9A and 9B are diagrams for describing an
operation of providing, by using the buffer 20 of FIG. 1, the
signal generator 40 of FIG. 1 with an instruction having a
highest execution order among stored instructions according
to a request of the signal generator 40.

[0100] Referring to FIGS. 2 and 9A, the buffer 20 may
include a plurality of registers (for example, first to seventh
registers) R0 to R6. In FIG. 9A, the buffer 20 is illustrated
as including seven registers. However, exemplary embodi-
ments are not limited thereto. For example, in exemplary
embodiments, the buffer 20 may include one register or two
or more registers.

[0101] Seven instructions may be stored in the first to
seventh registers R0 to R6. Each of the instructions may
include an execution time ET and an ID. The seven instruc-
tions may be stored in the first to seventh registers R0 to R6
according to execution orders determined based on execu-
tion times ET. A third instruction IS3 having a highest
execution order may be stored in the first register R0, and an
eighth instruction IS8 having a lowest execution order may
be stored in the seventh register R6.

[0102] When a current instruction request PREQ is
received from the signal generator 40, the buffer 20 may
provide an instruction (for example, the third instruction 1S3
stored in the first register RO) having a highest execution
order as a current instruction PIS to the signal generator 40.
[0103] When the third instruction 1S3 is output, the buffer
20 may move the instructions stored in the second to seventh
registers R1 to R6 to the first to sixth registers R0 to R5.
Therefore, the seventh register R6 may be empty. The buffer
20 may transmit a new instruction request NREQ to the heap
sorting circuit 50. In response to the new instruction request
NREQ), the heap sorting circuit 50 may transmit an instruc-
tion (for example, a tenth instruction IS10) having a highest
execution order among instructions stored in the memory
130. As illustrated in FIG. 9B, the buffer 20 may store the
transmitted tenth instruction IS10 in the seventh register R6.
[0104] FIGS. 10A and 10B are diagrams for describing an
operation of the buffer 20 of FIG. 2 according to an
exemplary embodiment of the present inventive concept.
[0105] For example, FIGS. 10A and 10B are diagrams for
describing an operation of receiving, by using the buffer 20
of FIG. 2, a new instruction from the interface 10 of FIG. 2.
[0106] Referring to FIGS. 2 and 10A, seven instructions
may be stored in first to seventh registers R0 to R6 of the
buffer 20 according to execution orders. When a new
instruction (for example, a tenth instruction IS10) is
received from the interface 10, the buffer 20 may compare
an execution time ET of the tenth instruction IS10 with each
of execution times ET of the stored seven instructions. The
execution time ET of the tenth instruction IS10 may be 150,
which is earlier than 200, which is an execution time ET of
a ninth instruction IS9 stored in the sixth register R5.
Therefore, as illustrated in FIG. 10B, the buffer 20 may store
the ninth instruction IS9 stored in the sixth register RS in the
seventh register R6, and may store the tenth instruction IS10
in the sixth register R5. After this process, as shown in FIG.
10B, an eighth instruction IS8 previously stored in the
seventh register R6 is not stored in the buffer 20. Therefore,
the buffer 20 may transmit a write enable signal EN and the
eighth instruction IS8 to the heap sorting circuit 50. The

Jun. 27,2019

heap sorting circuit 50 may re-sort instructions pre-stored in
the memory 130 and the transmitted eighth instruction IS8
based on heap sorting, and may store sorted instructions SIS
in the memory 130.

[0107] FIG. 11 is a block diagram illustrating a timing
controller 120a according to an exemplary embodiment of
the present inventive concept.

[0108] Referring to FIG. 11, the timing controller 120a
may include an interface 10, a reference counter 30, a first
buffer 20q, a signal generator 40, and a heap sorting circuit
50a. Operations of the interface 10, the reference counter 30,
the first buffer 20q, and the signal generator 40 of FIG. 11
are the same as those of the interface 10, the reference
counter 30, the buffer 20, and the signal generator 40 of FIG.
2. Thus, for convenience of explanation, a further descrip-
tion thereof is omitted.

[0109] In the exemplary embodiment illustrated in FIG.
11, the heap sorting circuit 50a may include heap sorting
logic 51 and a second buffer 53. The second buffer 53 may
include more registers than the first buffer 20a. The heap
sorting circuit 50a may sort instructions IS received from the
first buffer 20a according to execution orders based on heap
sorting, and may store sorted instructions SIS in the second
buffer 53.

[0110] FIG. 12 is a block diagram illustrating a timing
controller 1205 according to an exemplary embodiment of
the present inventive concept.

[0111] Referring to FIG. 12, the timing controller 1205
may include an interface 10, a reference counter 30, a signal
generator 40, and a heap sorting circuit 505. Operations of
the interface 10, the reference counter 30, and the signal
generator 40 of FIG. 12 are the same as those of the interface
10, the reference counter 30, and the signal generator 40 of
FIG. 2. Thus, for convenience of explanation, a further
description thereof is omitted.

[0112] In the exemplary embodiment of FIG. 12, the heap
sorting circuit 505 may include heap sorting logic 51 and a
buffer 54. The buffer 54 may include a plurality of registers.
The heap sorting circuit 506 may sort instructions IS
received from the interface 10 according to execution orders
based on heap sorting, and may store sorted instructions SIS
in the buffer 54. When a current instruction request PREQ is
received from the signal generator 40, the heap sorting logic
51 may provide an instruction (for example, an instruction
corresponding to an uppermost node in a minimum heap tree
structure) having a highest execution order among instruc-
tions stored in the buffer 54 as a current instruction PIS to
the signal generator 40. The heap sorting logic 51 may
re-sort the other instructions stored in the buffer 54 based on
the heap sorting method described above with reference to
FIG. 8, and may store sorted instructions SIS in the buffer
54.

[0113] FIG. 13 is a block diagram illustrating an imple-
mentation example of an application processor into which
functions performed by a modem according to an exemplary
embodiment of the present inventive concept are integrated.
A function of a modem may be integrated into the applica-
tion processor of FIG. 13, and thus, the application processor
of FIG. 13 may be referred to as ModAP.

[0114] Referring to FIG. 13, an application processor 300
may be implemented as an SoC and may include a CPU 310,
a RAM 320, a read-only memory (ROM) 330, a memory
controller 340, a display controller 350, and a modem 360.

US 2019/0196533 Al

The modem 360 may include a timing controller 361 which
operates based on an absolute time.

[0115] The CPU 310 may process or execute programs
and/or data stored in the ROM 330 and/or the RAM 320.
According to an exemplary embodiment, the CPU 310 may
execute the programs stored in the ROM 330 and/or the
RAM 320 to control a function of the modem 360. The ROM
330 may non-volatilely store the programs and/or the data
and may be implemented as, for example, an erasable
programmable read-only memory (EPROM) or an electri-
cally erasable programmable read-only memory (EE-
PROM). The RAM 320 may be implemented as, for
example, a memory such as a DRAM or an SRAM.
[0116] The memory controller 340 may access an external
memory 345, and based on a data access request, the
memory controller 340 may control the external memory
345 to write or read data. The display controller 350 may
provide image data to a display device 355 and may control
an image display operation of the display device 355.
[0117] The modem 360 may transmit transmission data to
an external RF chip 365 and may receive reception data from
the external RF chip 365. The modem 360 may include a
timing controller 361 which operates based on an absolute
time. The timing controller 361 may sort received instruc-
tions in real time based on heap sorting. The timing con-
troller 361 may store sorted instructions in a memory, and to
execute the instructions, the timing controller 361 may
sequentially compare a reference time with instructions in
descending execution order. Accordingly, the hardware
complexity and area of each of the timing controller 361 and
the modem 360 may be reduced.

[0118] All elements (for example, the ModAP 300, the
external memory 345, the display device 355, and the
external RF chip 365 illustrated in FIG. 13 may correspond
to an implementation example of a communication system.
The communication system may correspond to various
terminals, and a communication system according to an
exemplary embodiment may include the ModAP 300 and a
plurality of elements connected to the ModAP 300.

[0119] While the present inventive concept has been par-
ticularly shown and described with reference to exemplary
embodiments thereof, it will be understood that various
changes in form and detail may be made therein without
departing from the spirit and scope of the present inventive
concept as defined by the following claims.

What is claimed is:

1. A modem chip, comprising:

a processor configured to generate instructions compris-
ing different execution times;

a timing controller configured to receive the instructions
and respectively generate control signals corresponding
to the instructions at the execution times of the instruc-
tions; and

a plurality of intellectual property (IP) blocks, wherein
each IP block is configured to operate in response to a
corresponding control signal of the control signals,

wherein the timing controller comprises:

a heap sorting circuit configured to sort the instructions
according to execution orders of the instructions based
on heap sorting using the execution times;

a reference counter configured to generate a reference
time by counting a clock signal; and

a signal generator configured to compare the reference
time with an execution time of a current instruction

Jun. 27,2019

having a highest execution order among the instruc-
tions, and generate a control signal corresponding to
the current instruction when the reference time matches
the execution time of the current instruction.

2. The modem chip of claim 1, wherein the timing
controller is configured to receive the instructions at differ-
ent times, and

when a new instruction is received, the heap sorting

circuit is configured to sort pre-sorted instructions and
the received instructions in real time based on the heap
sorting.

3. The modem chip of claim 1, wherein the heap sorting
circuit is configured to generate a minimum heap tree based
on the execution time of each of the instructions.

4. The modem chip of claim 1, further comprising:

a memory that stores the instructions sorted according to

the execution orders.

5. The modem chip of claim 1, wherein the timing
controller further comprises:

an instruction buffer configured to store N instructions

having a relatively early execution time of the instruc-
tions in N registers according to an execution order
determined based on an execution time, and provide the
heap sorting circuit with instructions having a relatively
late execution time among the instructions,

wherein N is an integer equal to or greater than one.

6. The modem chip of claim 5, wherein the instruction
buffer is configured to output a first instruction having a
highest execution order of the N instructions as the current
instruction to the signal generator.

7. The modem chip of claim 6, wherein, when the first
instruction is output to the signal generator, the instruction
buffer is configured to receive an instruction having a
highest execution order of the instructions sorted based on
the heap sorting from the heap sorting circuit, and to store
the received instruction.

8. The modem chip of claim 5, wherein, when a new
instruction is received from the processor, the instruction
buffer is configured to compare an execution time of the new
instruction with an execution time of each of the N instruc-
tions, and based on a result of the comparison, the instruc-
tion buffer is configured to update the N instructions stored
in the N registers and provide the heap sorting circuit with
an instruction having a latest execution time.

9. The modem chip of claim 1,

wherein the heap sorting circuit is configured to sort a

maximum of K instructions, and an operation speed of
the heap sorting circuit is log(K) or more times an
operation speed of the reference counter,

wherein K is an integer equal to or greater than two.

10. The modem chip of claim 1, wherein the reference
counter is configured to generate the reference time at every
sub-frame by counting the clock signal in a sub-frame
period.

11. The modem chip of claim 10, wherein the execution
time of each of the instructions is an absolute time with
respect to a start time of the corresponding sub-frame.

12. The modem chip of claim 1, wherein each of the
plurality of IP blocks is a hardware block comprising a
transmission circuit or a reception circuit.

13. An integrated circuit, comprising:

a processor configured to output a plurality of instructions

at different times, wherein each instruction comprises
an execution time;

US 2019/0196533 Al

a timing controller comprising a heap sorting circuit,

wherein the heap sorting circuit is configured to sort the
plurality of instructions received from the processor at
different times in an order from an earliest execution
time to a latest execution time,

wherein, when a reference time reaches an execution time
of an instruction having an earliest execution time
among the plurality of instructions, the timing control-
ler is configured to generate at least one control signal
corresponding to the instruction; and

a plurality of function blocks, wherein each function
block is configured to operate in response to a corre-
sponding control signal of the at least one control signal
generated by the timing controller.

14. The integrated circuit of claim 13, wherein the timing

controller comprises:

a buffer configured to store N instructions having a
relatively early execution time of the plurality of
instructions according to execution orders, and provide
other instructions to the heap sorting circuit, wherein N
is an integer equal to or greater than one;

a reference counter configured to generate a count value
at a faster speed than an operation speed of the inte-
grated circuit based on counting a system clock signal,
and output the count value as the reference time; and

a signal generator configured to compare the reference
time with the execution time of the instruction having
the earliest execution time, and when the reference time
matches the execution time, generate the at least one
control signal.

15. The integrated circuit of claim 13, wherein the heap
sorting circuit is configured to generate a minimum heap tree
based on the execution time of each of the plurality of
instructions.

16. The integrated circuit of claim 13, wherein the heap
sorting circuit comprises:

a heap sorting logic configured to sort the plurality of

instructions using a heap sorting algorithm; and

Jun. 27,2019

a memory controller configured to store the plurality of

instructions in a memory by controlling the heap sort-
ing logic and the memory.

17. An application processor comprising the integrated
circuit of claim 13.

18. A timing controller, comprising:

an interface circuit configured to sequentially receive a

plurality of instructions from a processor, wherein each
instruction comprises an execution time;

an instruction buffer configured to store one or more

instructions having a relatively early execution time of
the plurality of instructions;

heap sorting circuit configured to sort instructions
except the one or more instructions of the plurality of
instructions according to execution orders based on
heap sorting using the execution time, and store the
sorted instructions in a storage area;

reference counter configured to generate a reference
time by counting a clock signal; and

signal generator configured to receive an instruction
having an earliest execution time of the one or more
instructions as a current instruction from the instruction
buffer, and when the reference time reaches an execu-
tion time of the current instruction, generate a control
signal representing an operation time of a function
block corresponding to the current instruction.

19. The timing controller of claim 18, wherein,
when a new instruction is received through the interface

circuit, the instruction buffer is configured to provide
the heap sorting circuit with an instruction having a
latest execution time of the new instruction and the one
or more instructions, and

the heap sorting circuit is configured to re-sort and store

the instruction and pre-stored instructions.

20. The timing controller of claim 18, wherein the inter-
face circuit is configured to receive the plurality of instruc-
tions through a bus from the processor.

#* #* #* #* #*

