US 20160212198A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0212198 A1

Krishnasamy et al.

(54)

(71)

(72)

@
(22)

(1)

SYSTEM OF HOST CACHES MANAGED IN A

UNIFIED MANNER

Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventors: Somasundaram Krishnasamy, Austin,
TX (US); Brian McKean, Boulder, CO
(US); Yanling Qi, Austin, TX (US)

Appl. No.: 14/599,251

43) Pub. Date: Jul. 21, 2016
(52) US.CL

CPC oo, HO4L 67/10 (2013.01)
(57) ABSTRACT

A method and system for host caches managed in a unified
manner are described. In an example, a server in a clustered
environment designates cache ownership for a cluster appli-
cation to the cache on one of the hosts. While the application
is running on this host, the server monitors data writes made

Filed: Jan. 16, 2015 by the application. Upon detecting that the application is
Publication Classification running on a different host in the clustered environment, the
server can transfer cache ownership to the new host and
Int. Cl selectively invalidate cache blocks in the cache of the new
H0;I 1 59 /08 (2006.01) host based on the data writes that were previously monitored.
100—(‘
Host A 120 Host B 130
Cache Application Cache Application
Device 121 Device 121
123 1 123
1/0 142 /0 142
t 11O 142 J { 1O 142
Cache Driver Cache Driver
122 E—— 122
Cache T Cache T
Commands Commands
144 144
 J 110 142 /0 142
Host Agent | > I/O Stack Host Agent | > /O Stack
124 125 124 125
A A
Cache ? Cache f
Commands I Commands I
Cach
O\Evnifs:ip, I O\Evcni(r;::ip, I
Invalidation) Invalidation) 144
I Storage Server 110 |
I 1/0 (Reads, IIIOV\}F_\’teaL)is,
i rntes,
I W1r:ezs) Controller A 112 I 142
I Cache Logic I
| Module |
L — |, 115 «— |
| I
| I
I II/O (Reads,
Wit
| Controller B 114 [1”425)
[Y™ Cache Logic I
| 142 Module |
—_—— e — — — P 11_5 lg— <
D (3 (D S
Volume Volume Volume Volume
116 116 116 116

Patent Application Publication Jul. 21,2016 Sheet1 of 6 US 2016/0212198 A1

U

Host A 120 Host B 130
Cache Application Cache Application
Device 121 Device 121
123 123
110 142 110 142
f 1/0 142 t { /O 142 t
Cache Driver Cache Driver
122 122
Cache Cache
Commands Commands
144 144
/O 142 /0 142
Host Agent | > I/O Stack Host Agent | > I/O Stack
124 125 124 125
A A
Cache f Cache ?
Commands I Commands |
(Cache Cach
Ownership, I O\fvn?afsr?ip, |
Invalidation) Invalidation) 144
144
| Storage Server 110 I
| /O (Reads, |10 (Reads,
| Writes) Controller A 112 l ngs)
| 142 > < |
Cache Logic
| Module |
L — —]— » 115 <— |
| I
| I
I |I/O (F_{eads,
| Controller B 114 I\ W{';‘;S)
e
| A, Cache Logic |
| 142 Module |
— - —— —» 115 — -
O O DY (=™
Volume Volume Volume Volume
116 116 116 116

FIG. 1

Patent Application Publication Jul. 21,2016 Sheet?2 of 6 US 2016/0212198 A1

Cache
Commands
(Cache
Ownership,
Invalidation)
264 Cache Cache
st A 7| Communications Co'grg:”ds Cluster Comzrg:"ds Cache Logic
Interface P Manager |[<——»| Module
> 210 240 250
Host B
Extents
/0 262 266
Host A
) Controller
I/O Interface I/O Monitor
Host B 220 /O 262 230 Mzrgg Y
— P £o0
I/O (Reads,
Writes) 262 1/O 262
Controller
200

Volumes

\/

Patent Application Publication Jul. 21,2016 Sheet 3 of 6 US 2016/0212198 A1
Storage
Host A Server Host B
300 310 320
Configure
Volumes
330
< - -l - >
Discover Discover
Volumes Volumes
332
Start Host 332 ~ Start Host
Agent Agent
334 334
- P
Set to Cache Pass-through Mode Set to Cache Pass-through Mode
336 336
Pl
Start Cluster Send Configuration Send Configuration
Application 338 338
340
Count I/O
-t} Operations
Read and Write from Storage 344
Server
342
g
Pass Cache Ownership to Host A
346
g
Set to Cache Read, Write-
Through Mode
348
el
Send Cache Discard or
Invalidation Request
350
P
o —
-
Continue I/O with Cache Usage
351
Y v FIG. 3A,

Patent Application Publication Jul. 21,2016 Sheet4 of 6 US 2016/0212198 A1

Storage
Host A Server Host B
300 310 320
Move Cluster Application to
Count I/0O Host B
Operations [352
358
- P
-t Read and Write from Storage
Invalidate Cache Blocks Written Server
to by Host Bif Host Aisup 14 356
360
Store Extents
362
-
Pass Cache Ownership to Host B
364
-
< Set to Cache Read, Write-
Set to Cache Pass-through Mode Through Mode
368 366
>
Send Cache Discard or
Invalidation Request
370
<
B <
-
- Continue /O with Cache Usage
Move Cluster Application back 371
to Host A | Count I/O
372 Operations
376
¢ -
Read and Write from Storage -
Server | Invalidate Cache Blocks Written
374 to by Host A
o 378
Pass Cache Ownership to Host A
380
>
Send Extents to Invalidate Cache
Blocks Written to by Host B
382
-}
Set to Cache Read, Write- F I B
v Through Mode v . v

384

Patent Application Publication

Jul. 21,2016 Sheet 5 of 6

Designate cache ownership.

410
VO Reads and | |/ 11 eshold
Writes 414
412 —

Monitor application writes.
420

l

Detect application running on

different host.
430

l

Transfer cache ownership.

US 2016/0212198 A1l

440

VO Reads and [;5 Threshold
Writes 444
442 444

Selectively invalidate cache

blocks.
450
Discard Cache Write 1/0
452 Extents
- 454

FIG. 4

Patent Application Publication Jul. 21,2016 Sheet 6 of 6 US 2016/0212198 A1

COMPUTER SYSTEM 500

PROCESSOR 504

MAIN MEMORY 506

STORAGE DEVICE 510

COMMUNICATION INTERFACE
518

NETWORK LINK
520

FIG. 5

US 2016/0212198 Al

SYSTEM OF HOST CACHES MANAGED IN A
UNIFIED MANNER

TECHNICAL FIELD

[0001] Examples described herein relate to caching, and
more specifically, to a system and method for host caches
managed in a unified manner.

BACKGROUND

[0002] Data storage technology over the years has evolved
from a direct attached storage model (DAS) to using remote
computer storage models, such as Network Attached Storage
(NAS) and Storage Area Network (SAN). With the direct
storage model, the storage is directly attached to the worksta-
tions and applications servers, but this creates numerous dif-
ficulties with administration, backup, compliance, and main-
tenance of the directly stored data. These difficulties are
alleviated at least in part by separating the application server/
workstations form the storage medium, for example, using a
computer storage network.

[0003] A typical NAS system includes a number of net-
worked servers (e.g., nodes) for storing client data and/or
other resources. The servers may be accessed by client
devices (e.g., personal computing devices, workstations, and/
or application servers) via a network such as, for example, the
Internet. Specifically, each client device may issue data
access requests (e.g., corresponding to read and/or write
operations) to one or more of the servers through a network of
routers and/or switches. Typically, a client device uses an
IP-based network protocol, such as Common Internet File
System (CIFS) and/or Network File System (NFS), to read
from and/or write to the servers in a NAS system.

[0004] Conventional NAS servers include a number of data
storage hardware components (e.g., hard disk drives, proces-
sors for controlling access to the disk drives, /O controllers,
and high speed cache memory) as well as an operating system
and other software that provides data storage and access
functions. Frequently-accessed (“hot™) application data may
be stored on the high speed cache memory of a server node to
facilitate faster access to such data. The process of determin-
ing which application data is hot and copying that data from
a primary storage array into cache memory is called a cache
“warm-up” process. However, when a particular node is ren-
dered unusable and/or is no longer able to service data access
requests, it may pass on its data management responsibilities
to another node in a node cluster (referred to as “node
failover”). In conventional implementations, the new node
subsequently warms up its cache starting from empty even
when it’s possible that the new node has some up-to-date
cached application data that remains usable.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG.1 illustrates an example system for host caches
managed in a unified manner, in accordance with some
aspects.

[0006] FIG. 2 illustrates an example controller for manag-
ing caches on hosts in a unified manner, in accordance with
some aspects.

[0007] FIG. 3A illustrates an example flow diagram for
managing caches on hosts in a unified manner, in accordance
with some aspects.

Jul. 21, 2016

[0008] FIG. 3B illustrates an example flow diagram for
passing cache ownership and selectively invalidating cache
blocks, in accordance with some aspects.

[0009] FIG. 4 illustrates an example flow chart for manag-
ing caches on hosts in a unified manner, in accordance with
some aspects.

[0010] FIG. 5 is a block diagram that illustrates a computer
system upon which aspects described herein may be imple-
mented.

DETAILED DESCRIPTION

[0011] Examples described herein include a storage system
to manage a number of memory caches on hosts in a clustered
environment. More specifically, controllers on the storage
system can direct the hosts to cache data for applications,
invalidate stale blocks in the caches, and instruct caches to
discard their contents for specified LUNs (logical unit num-
bers) based on monitored data reads and writes made by the
applications on other hosts. In this manner, cache consistency
can be maintained without having to discard an entire cache
when an application is transferred from one host to another.
[0012] Inahigh availability cluster environment, a storage
server shares access to its volumes with multiple server
nodes, or hosts. When an application running on the primary
host fails, the application is started on a backup host on the
cluster (failover). When the primary host becomes opera-
tional again, the application can be moved back to the original
host on which it was running (failback). Application migra-
tion between servers can also occur as a result of administra-
tor actions or through an automated process performed by an
agent external to the storage server. The server can use host-
based flash cache solutions to cache the data locally in order
to provide low latency and high bandwidth /O performance
to applications. When the application migrates between clus-
ter nodes, frequently accessed data can be made available in
the host cache so that the applications can find the data on the
low latency cache device, which provides better performance
than reading data from the volumes on the storage server.
[0013] In an example, a server in a clustered environment
designates cache ownership for a cluster application to the
cache on one of the hosts. While the application is running on
this host, the server monitors data writes made by the appli-
cation. Upon detecting that the application is running on a
different host in the clustered environment, the server can
transfer cache ownership to the new host and selectively
invalidate cache blocks in the cache of the new host based on
the data writes that were previously monitored.

[0014] Insome aspects, the server designates and transfers
cache ownership only once a threshold number of read/write
operations for the application is received from the host to be
given cache ownership.

[0015] In one aspect, the server starts the application on a
second host when it determines that the first host running the
application is down. In another aspect, the first host can still
be operational, but the server starts the application on the
second host for performance reasons. In further aspects, an
agent external to the storage server starts the application on
the second host, and the storage server detects the application
running on the host second through the monitored I/O opera-
tions.

[0016] According to some examples, when the server des-
ignates or transfers cache ownership, the cache of the owning
host is set to write-through mode and any previously owning
cache is set to pass-through mode.

US 2016/0212198 Al

[0017] In some aspects, detecting that the application is
running on the second host in the clustered environment also
includes detecting that the application is not running on the
first host.

[0018] In further aspects, selectively invalidating cache
blocks in the second cache includes discarding all data in the
second cache upon determining that the second host did not
have the cache ownership prior to the first host having the
cache ownership.

[0019] In some examples, the server in the clustered envi-
ronment is a storage array.

[0020] By managing host caches in a unified manner from
a storage server, cache consistency can be maintained for an
application without having to discard all of a previous host’s
cached data for the application when it is migrated back to the
previous host. This allows a more seamless transition
between clustered host failover and failback states with
higher performance and less overhead. Performing cache
management on the storage server also ensures data integrity
by coordinating the access of volumes between cluster nodes.
The server can obtain the advantage of host cache perfor-
mance without requiring changes to cluster management soft-
ware for host cache management.

[0021] Theterm “high-availability clusters™ (also known as
HA clusters or failover clusters) refers to groups of host
computers that support server applications that can be reli-
ably utilized with a minimum of down-time. They operate by
harnessing redundant computers in groups or clusters that
provide continued service when system components fail.
Without clustering, if a server running a particular application
crashes, the application may be unavailable until the crashed
server is fixed. HA clustering remedies this situation by
detecting hardware/software faults and immediately restart-
ing the application on another system without requiring
administrative intervention, a process known as failover.
When the original host system is once again available, the
application can be restarted on the original host system in a
process known as failback.

[0022] Incomputer storage, alogical unit number, or LUN,
is a number used to identify a logical unit, which is a device
addressed by the SCSI protocol or Storage Area Network
(SAN) protocols which encapsulate SCSI, such as Fibre
Channel or iSCSI. A LUN may be used with any device which
supports read/write operations, such as a tape drive, but is
most often used to refer to a logical disk as created ona SAN.
[0023] One or more aspects described herein provide that
methods, techniques and actions performed by a computing
device are performed programmatically, or as a computer-
implemented method. Programmatically means through the
use of code, or computer-executable instructions. A program-
matically performed step may or may not be automatic.
[0024] One or more aspects described herein may be imple-
mented using programmatic modules or components. A pro-
grammatic module or component may include a program, a
subroutine, a portion of a program, a software component, or
a hardware component capable of performing one or more
stated tasks or functions. In addition, a module or component
can exist on a hardware component independently of other
modules or components. Alternatively, a module or compo-
nent can be a shared element or process of other modules,
programs or machines.

[0025] Furthermore, one or more aspects described herein
may be implemented through the use of instructions that are
executable by one or more processors. These instructions

Jul. 21, 2016

may be carried on a computer-readable medium. Machines
shown or described with figures below provide examples of
processing resources and computer-readable media on which
instructions for implementing some aspects can be carried
and/or executed. In particular, the numerous machines shown
in some examples include processor(s) and various forms of
memory for holding data and instructions. Examples of com-
puter-readable media include permanent memory storage
devices, such as hard drives on personal computers or servers.
Other examples of computer storage media include portable
storage units, such as CD or DVD units, flash or solid state
memory (such as carried on many cell phones and consumer
electronic devices) and magnetic memory. Computers, termi-
nals, network enabled devices (e.g., mobile devices such as
cell phones) are all examples of machines and devices that
utilize processors, memory, and instructions stored on com-
puter-readable media.

[0026] Alternatively, one or more examples described
herein may be implemented through the use of dedicated
hardware logic circuits that are comprised of an interconnec-
tion of logic gates. Such circuits are typically designed using
a hardware description language (HDL), such as Verilog and
VHDL. These languages contain instructions that ultimately
define the layout of the circuit. However, once the circuit is
fabricated, there are no instructions. All the processing is
performed by interconnected gates.

System Overview

[0027] FIG. 1 illustrates an example clustered system 100
for host caches managed in a unified manner, in accordance
with some aspects. The clustered system 100 includes a stor-
age server 110 and a pair othosts: Host A 120 and Host B 130.
Although FIG. 1 depicts two hosts, more than two can be
employed in the clustered system 100 to similar effect. Stor-
age server 110 and hosts 120, 130 are shown with specific
components but can contain others that have been omitted for
simplicity.

[0028] Storage server 110, also known as a storage array,
comprises controller A 112, controller B 114, and a number of
volumes 116 spread across physical disks such as hard disk
drives, solid state drives, tape devices, and other physical
media. Although storage system 110 is described with two
controllers, storage server 110 can contain one controller or
three or more controllers in other examples. Each of the
controllers 112, 114 include a cache logic module 115 to
determine cache commands 144 to send to the hosts 120, 130.
These cache commands 144 include commands such as giv-
ing the cache on one host ownership, changing the cache
mode on the host, or invalidating certain cached blocks on the
host. In some aspects, cache commands 144 are executed on
a per-LUN basis. For example, a command to change the
cache mode on the host specifies a LUN, and only that LUN’s
mode is changed.

[0029] Each of the hosts 120, 130 in the clustered system
100 are capable of running clustered applications 121. In one
example, application 121 runs on either Host A 120 or Host B
130, but not both simultaneously. The application 121 com-
municates with clients and other servers in order to provide
services. When those clients and other servers request data or
perform actions that require data to be written, application
121 sends input/output (I/O, e.g., data read and write opera-
tions) requests 142 to a cache driver 122. Depending on the
current mode of the cache driver 122, the I/O request 142 can

US 2016/0212198 Al

be passed through to the 1/O stack 125 or sent to the cache
device 123 and the 1/O stack 125.

[0030] At host startup and when not the cache owner for a
LUN used by application 121, cache logic module 115 places
ahost’s cache driver 122 in pass-through, write-around mode.
In pass-through, write-around mode, if the cache driver 122
determines that a write operation is a cache miss, it sends the
write operation to the I/O stack 125. If the write operation is
a cache hit, that is, a matching block is found in the cache
device 123, the matching block is invalidated before the write
operation is sent to the /O stack 125. In some examples,
cache device 123 is a flash memory device capable of retain-
ing data after a reboot or loss of power in Host A 120. Cache
device 123 transparently stores data so that future requests for
that data can be served faster.

[0031] When cache logic module 115 designates a Host As
cache owner for application 121, the cache driver 122 is
placed in write-through mode, wherein data writes are sent to
be written in both the cache device 123 and 1/O stack 125 to
be written to the storage server 110. In either mode, I/O stack
125 transmits the /O requests 142 to controllers 112,114 on
the storage server 110 to be written to volumes 116.

[0032] Host agent 124 handles communications between
the cache driver 122, 1/O stack 125, and the controllers 112,
114 on storage server 110. In some examples, the communi-
cation channel can be out-of-band, such as through a network
connection using TCP/IP. In other examples, the communi-
cation channel can be in-band using the storage I/O path. Host
agent 124 exchanges a number of different messages and
cache commands 144 between the hosts 120, 130 and the
storage server 110. First, commands to take cache LUN own-
ership or give itup, such as when the application 121 is started
on the host or restarted on another host. Second, invalidate
specific blocks in the cache device 123 or invalidate a list of
extents, which identify contiguous areas of storage in a com-
puter file system reserved for a file. These scenarios can occur
when a host 120, 130 has data cached for a LUN but is not the
current owner of that LUN. Third, discard all cache blocks in
the cache device 123 for a LUN, which can be performed
when a host 120, 130 is given ownership of the LUN but was
not the previous cache owner of the LUN. Fourth, prefetch a
list of extents to store in the cache device 123, and fifth, save
cache blocks’ hotness information to store and retrieve later
from the storage server 110.

[0033] FIG. 2 illustrates an example controller 200 for
managing caches on hosts in a unified manner, in accordance
with some aspects. Controller 200 may be, for example, one
of controller A 112 or controller B 114 depicted as part of
storage server 110 in FIG. 1.

[0034] Communications interface 210 handles all commu-
nications between the cluster manager 240 and the host
agents on the hosts. Communications include cache com-
mands 264 described above, such as cache ownership mes-
sages and cache invalidation commands. /O interface 220
receives read and write 1/O requests 262 from the I/O stack on
the hosts, which are passed to the correct LUN on the volumes
attached to the storage array. For data read requests, the I/O
interface 220 receives the requested data back from the vol-
umes and passes them on to the requesting host. In addition,
1/0O requests 262 are read by an /O monitor 230 in order to
determine whether to designate or transfer cache ownership
for a LUN. For example, once 1/O monitor 230 receives a
number of I/O requests 262 beyond a predetermined thresh-
old from a given host for a specific LUN, it signals cluster

Jul. 21, 2016

manager 240 to designate that Host As the cache owner for the
LUN and remove any cache ownership from any other host
that is currently the cache owner.

[0035] Insome aspects, cluster manager 240 executes clus-
ter software to issue cache commands 264, manage hosts, and
manage volumes on the storage server. Cluster manager 240
can monitor the status of the hosts, such as whether they are
up or down, along with performance details that are used in
determining whether to migrate an application from one host
to another. For example, if one host becomes unreachable to
the controller 200, cluster manager 240 can start the applica-
tion running on a second host as backup. In other aspects,
cluster software to manage hosts, such as migrating applica-
tions between hosts, runs on an agent or agents external to
controller 200.

[0036] Cache logic module 250 operates to determine
cache ownership for the hosts, including designating initial
ownership, changing ownership to another host, and setting
cache modes on the hosts such as write-through and pass-
through. These are examples of cache commands 264 gener-
ated by cache logic module 250 and ultimately sent to the
hosts in the clustered environment. In addition, cache logic
module 250 can store extents 266 in controller memory 260,
which each identify a logical block address (LBA) and length
of data written to the volumes by one of the hosts. Logical
block addressing is a common scheme used for specifying the
location of blocks of data stored on computer storage devices,
such as the volumes on the storage server. Through the use of
a list of extents, stale data stored in one of the host caches can
be identified and invalidated with a minimal use of network
traffic and processor usage.

Methodology

[0037] FIG. 3A illustrates an example flow diagram for
managing caches on hosts in a unified manner, in accordance
with some aspects. FIG. 3B illustrates an example flow dia-
gram for passing cache ownership and selectively invalidat-
ing cache blocks, in accordance with some aspects.

[0038] While operations detailed in the flow diagrams are
described below as being performed by specific components,
modules or systems of the clustered system 100, it will be
appreciated that these operations need not necessarily be
performed by the specific components identified, and could
be performed by a variety of components and modules, poten-
tially distributed over a number of machines. Accordingly,
references may be made to elements of clustered system 100
for the purpose of illustrating suitable components or ele-
ments for performing a step or sub step being described.
Alternatively, at least certain ones of the variety of compo-
nents and modules described in clustered system 100 can be
arranged within a single hardware, software, or firmware
component. It will also be appreciated that some of the steps
of this method may be performed in parallel or in a different
order than illustrated.

[0039] FIGS. 3A and 3B illustrate operations executed by
Host A 300, storage server 310, and Host B 320, which may
be, for example, servers depicted as part of clustered system
100 in FIG. 1. With reference to an example of FIG. 3A,
controllers in storage server 310 configure the storage array
volumes (330). Configuration can include details such as on
which physical disks the volumes are provided, file systems,
LUN assignments, provisioning, and optimization features
like compression and deduplication. Once the volumes have
been properly configured, Host A 300 and Host B 320 can

US 2016/0212198 Al

discover the volumes on the storage array and save the con-
figuration details of the volumes for use by clustered appli-
cations running on the hosts (332).

[0040] In some aspects, a host agent starts on each host to
manage communications between the hosts and the storage
server 310 (334). The host agents are specifically configured
to receive cache commands such as ownership changes and
invalidation requests from controllers on the storage server
310 and send those commands to the cache driver on the host,
among other duties.

[0041] Upon startup and otherwise when not the cache
owner fora given LUN, the cache driver sets the cache for that
LUN on each host to pass-through, write-around mode (336).
In this mode, all write I/O cache hits are invalidated in the host
cache before the write I/O is sent to the storage server 310 to
be written to a volume. Host agents also gather and send all
information that the storage server 310 needs to properly
manage host caches (338). Host agents then monitor for fur-
ther communications from the storage server 310.

[0042] During normal operation of the clustered system,
Host A 300 can start a cluster application (340). This can be
done in response to a client request or an automated process.
Cluster software can determine which of the hosts 300, 320
runs the cluster application based on current loads on the
hosts or other performance factors. In some examples, Host B
320 may be a backup for Host A 300 and only used in the event
of failure in Host A 300. In one example, the cluster applica-
tion runs on both Host A 300 and Host B 320 simultaneously.
In this example, both host caches remain in pass-through
mode and are therefore not utilized because of the possibility
for inconsistency between cached data at the hosts.

[0043] With the cluster application started, whenever it
needs to read or write data, it sends I/O requests to the host
cache driver. Since the cache driver is in pass-through mode,
all /O requests bypass the host cache and are sent to be
fulfilled by the storage server 310 (342). Each time the stor-
age server 310 receives one of these I/O requests for a LUN,
it increments a counter associated with the LUN in order to
track which of the hosts 300, 320 is using that LUN (344).
After the counter passes a predetermined threshold of I/O
requests, storage server 310 gives cache LUN ownership to
the host sending the I/O requests. This threshold can be set to
any number with various trade-offs. For example, a low
threshold can allow a host to utilize its cache earlier to
improve /O performance, but this low threshold can also
cause an undesired change in ownership in situations where
the previously owning host was only down for a moment. A
high threshold can prevent undesired ownership changes, but
also delays the time it takes to begin using the host cache on
a new Host After application migration.

[0044] In the example of FIG. 3A, storage server 310
receives the threshold number of 1/O operations from Host A
300 and passes cache ownership to Host A 300 (346). The
Host agent on Host A 300 instructs its cache driver to begin
caching, that is, reading cached data on cache hits for reads
and writing data to the cache on writes. The host cache for
Host A 300 is placed into write-through mode (348). In this
mode, data writes are sent to the local cache device to be
written and also sent to the storage server 310 to be written
onto a volume.

[0045] In addition, storage server 310 determines whether
Host A 300 is allowed to use previously cached data, and if so,
which parts of the cached data. If Host A 300 was not the last
cache owner for the LUN, storage server 310 signals Host A

Jul. 21, 2016

300 to discard its existing cached data for that LUN (350). In
some examples, storage server 310 can send fast warm-up
data to prefetch blocks, such as described in U.S. patent
application Ser. No. 14/302,863, FAST WARM-UP OF
HOST FLASH CACHE AFTER NODE FAILOVER, hereby
incorporated by reference in its entirety.

[0046] In some examples, storage server 310 sends invali-
dation requests to Host A 300 as data writes are received from
other hosts and written to volumes; however, it is possible that
Host A 300 is unreachable during this time. Therefore, when
Host A 300 was the last cache owner for the LUN, instead of
signaling Host A 300 to discard its cached data, storage server
310 instead transmits a list of extents to be invalidated in Host
A's cache. These extents represent logical block addresses
and lengths of data writes to the LUN that occurred while
Host A 300 did not have cache LUN ownership. Through this
process, the cache driver discards stale data in the cache on
Host A 300 while up-to-date cached data remains available
for reading by the application.

[0047] Since Host A 300 has cache ownership of the LUN,
read requests from the application to the LUN are first
checked in the cache device of Host A 300 (351). If thereis a
cache hit, the cache driver returns the cached data, eliminat-
ing the need to contact the storage server and thereby increas-
ing performance. Write requests are written both into the
cache of Host A 300 and the volumes residing on storage
server 310.

[0048] Turning now to FIG. 3B, storage server 310 moves
the cluster application to Host B 320 (352). This can occur
when Host A 300 goes down or as a result of an automated or
manual process. For example, storage server 310 may migrate
the application to Host B 320 if Host A 300 is overloaded.
Alternatively, an administrator can manually choose to
migrate the application. In other aspects, an agent external to
storage server 310, such as cluster software running on a
cluster management server, moves the cluster application
instead.

[0049] Once migrated, the application running on Host B
320 begins sending 1/O operations to storage server 310
(356). Storage server 310 receives and counts these [/O opera-
tions as the requested data is stored or retrieved from the
volumes (358). Based on this pattern of 1/O operations, stor-
age server 310 detects that the cluster application is now
running on Host B 320. In examples where Host A 300 is still
operational and responsive, storage server 310 can transmit to
Host A 300 extents for the write requests received from Host
B 320 associated with the application. The cache driver on
Host A 300 can then check its cache device for blocks match-
ing the write requests, and if found, invalidate the blocks in
the cache (360). Storage server 310 can also store the extents
in controller memory so that they can be sent to Host A 300 at
a later time, such as when Host A 300 is up (362). This can be
done in cases where Host A 300 is down when the write
requests are made by Host B 320.

[0050] After receiving a number of I/O operations for a
LUN exceeding a predetermined threshold, storage server
310 passes cache ownership for the LUN to Host B 320 (364).
Similar to the process described with respect to FIG. 3A
regarding Host A 300, storage server 310 sets the cache driver
of' Host B 320 to cache read, write-through mode so that Host
B 320 can utilize its cache device for the LUN. If Host A 300
is up, storage server 310 also sets the cache driver of Host A
300 back to pass-through mode (368). Since Host A 300 is no
longer the cache owner for the LUN, it should not read poten-

US 2016/0212198 Al

tially stale data from its cache or waste resources storing more
data in its cache for the LUN while it is not the owner.

[0051] In addition, storage server 310 determines whether
Host B 320 is allowed to use previously cached data, and if so,
which parts of the cached data. If Host B 320 was not the last
cache owner for the LUN, storage server 310 signals Host B
320 to discard its existing cached data for that LUN (370). In
some examples, storage server 310 can send fast warm-up
data to prefetch blocks.

[0052] Since Host B 320 has cache ownership of the LUN,
read requests from the application to the LUN are first
checked in the cache device of Host B 320 (371). If there is a
cache hit, the cache driver returns the cached data, eliminat-
ing the need to contact the storage server and thereby increas-
ing performance. Write requests are written both into the
cache of Host B 320 and the volumes residing on storage
server 310.

[0053] Once Host A 300 is back up, cluster manager on the
storage server 310 can migrate the application back to Host A
300 (372). Alternatively, if Host A 300 remained operational
while the application was migrated to Host B 320, the appli-
cation can be migrated back for performance or if Host B 320
goes down. This can be done as an automated process per-
formed by an agent external to the storage server 310 or
manually triggered by an administrator.

[0054] Once migrated back, the application running on
Host A 300 resumes sending I/O operations to storage server
310 (374). Storage server 310 receives and counts these [/O
operations as the requested data is stored or retrieved from the
volumes (376). In examples where Host B 320 is still opera-
tional and responsive, storage server 310 can transmit to Host
B 320 extents for the write requests received from Host A 300
associated with the application. The cache driver on Host B
320 can then check its cache device for blocks matching the
write requests, and if found, invalidate the blocks in the cache
(378). Storage server 310 can also store the extents in con-
troller memory so that they can be sent to Host B 320 at a later
time, such as when Host A 320 is up. This can be done in cases
where Host B 320 is down when the write requests are made
by Host A 300.

[0055] After receiving a number of I/O operations for a
LUN exceeding a predetermined threshold, storage server
310 passes cache ownership for the LUN to Host A 300 (380).
Storage server 310 sets the cache driver of Host A 300 to
cache read, write-through mode so that Host A 300 can utilize
its cache device for the LUN (382). In addition, storage server
310 determines whether Host A 300 is allowed to use previ-
ously cached data, and if so, which parts of the cached data. In
the example illustrated with FIG. 3B, Host A 300 was the last
cache owner for the LUN. Therefore, storage server 310 sends
a list of extents to invalidate cache blocks that were written to
by Host B 320 and directs Host A 300 to use its previously
cached data (384).

[0056] FIG. 4 illustrates an example flow chart for manag-
ing caches on hosts in a unified manner, in accordance with
some aspects.

[0057] A server in a clustered environment designates
cache ownership for a cluster application to the cache on one
of the hosts (410). In some examples, this ownership may
extend to a particular LUN that the application accesses. The
server can count I/O reads and writes (412) up to a threshold
value (414) before determining whether to designate cache
ownership.

Jul. 21, 2016

[0058] While the application is running on this host, the
server monitors data writes made by the application (420).
The server can detect that the application is running on a
different host in the clustered environment (430), which can
occur as a result of an automated process on the server or
manual intervention, such as an administrator command.
[0059] Similar to the process of designating cache owner-
ship, the server can transfer cache ownership to the new host
(440), for example, after determining that a count of I/O reads
and writes (442) exceeds a predetermined [/O threshold
(444). Whether before or after, the server can selectively
invalidate cache blocks in the cache of the new host based on
the data writes that were previously monitored (450). In some
examples, the entire cache of data for the LUN stored in the
new host is discarded (452), and in other examples, only those
blocks identified by a list of /O extents received from the
server are invalidated, leaving the rest of the cached blocks for
the LUN ready to be read (454).

Computer System

[0060] FIG. 5 is a block diagram that illustrates a computer
system upon which aspects described herein may be imple-
mented. For example, in the context of FIG. 1, system 100
may be implemented using one or more servers such as
described by FIG. 5.

[0061] In an embodiment, computer system 500 includes
processor 504, memory 506 (including non-transitory
memory), storage device 510, and communication interface
518. Computer system 500 includes at least one processor
504 for processing information. Computer system 500 also
includes the main memory 506, such as a random access
memory (RAM) or other dynamic storage device, for storing
information and instructions to be executed by processor 504.
Main memory 506 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by processor 504. Computer
system 500 may also include a read only memory (ROM) or
other static storage device for storing static information and
instructions for processor 504. The storage device 510, such
as a magnetic disk or optical disk, is provided for storing
information and instructions. The communication interface
518 may enable the computer system 500 to communicate
with one or more networks through use of the network link
520 and any one of a number of well-known transfer proto-
cols (e.g., Hypertext Transfer Protocol (HTTP)). Examples of
networks include a local area network (LLAN), a wide area
network (WAN), the Internet, mobile telephone networks,
Plain Old Telephone Service (POTS) networks, and wireless
data networks (e.g., WiFi and WiMax networks).

[0062] Examples described herein are related to the use of
computer system 500 for implementing the techniques
described herein. According to one embodiment, those tech-
niques are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more instructions contained in main memory 506. Such
instructions may be read into main memory 506 from another
machine-readable medium, such as storage device 510.
Execution of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative aspects, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to implement aspects described herein.
Thus, aspects described are not limited to any specific com-
bination of hardware circuitry and software.

US 2016/0212198 Al

[0063] Although illustrative aspects have been described in
detail herein with reference to the accompanying drawings,
variations to specific examples and details are encompassed
by this disclosure. It is intended that the scope of examples
described herein be defined by claims and their equivalents.
Furthermore, it is contemplated that a particular feature
described, either individually or as part of an embodiment,
can be combined with other individually described features,
or parts of other aspects. Thus, absence of describing combi-
nations should not preclude the inventor(s) from claiming
rights to such combinations.
What is claimed is:
1. A system for managing a plurality of caches, the system
comprising:
a plurality of hosts in a clustered environment, each host
coupled to a cache of the plurality of caches; and

aserverto (1) designate cache ownership to a first cache of
the plurality of caches on a first host of the plurality of
hosts for an application running on the first host, (2)
monitor data writes made by the application while the
application is running on the first host, (3) detect that the
application is running on a second host in the clustered
environment, (4) transfer the cache ownership to a sec-
ond cache on the second host, and (5) selectively invali-
date cache blocks in the second cache based on the
monitored data writes.

2. The system of claim 1, wherein the cache ownership is
designated or transferred based on a received number of read
and write operations exceeding a predetermined threshold.

3. The system of claim 1, further comprising:

starting the application on the second host upon a determi-

nation that the first host is down or for performance
reasons.

4. The system of claim 3, wherein the application is started
on the second host by the server or an agent external to the
server.

5. The system of claim 1, wherein the first cache is set to
pass-through mode and the second cache is set to write-
through mode upon transferring the cache ownership to the
second cache on the second host.

6. The system of claim 1, wherein detecting that the appli-
cation is running on the second Host Also includes detecting
that the application is not running on the first host.

7. The system of claim 1, wherein selectively invalidating
cache blocks in the second cache includes discarding all data
in the second cache associated with the application upon
determining that the second host did not have the cache own-
ership prior to the first host having the cache ownership.

8. The system of claim 1, where in the server is a storage
array.

9. A method of managing a plurality of caches, the method
being implemented by one or more processors and compris-
ing:

designating, at a server in a clustered environment, cache

ownership to a first cache on a first host for an applica-
tion running on the first host;

monitoring data writes made by the application while the

application is running on the first host;

Jul. 21, 2016

detecting that the application is running on a second host in

the clustered environment;

transferring the cache ownership to a second cache on the

second host; and

selectively invalidating cache blocks in the second cache

based on the monitored data writes.

10. The method of claim 9, wherein the cache ownership is
designated or transferred based on a received number of read
and write operations exceeding a predetermined threshold.

11. The method of claim 9, further comprising:

starting the application on the second host upon a determi-

nation that the first host is down or for performance
reasons.

12. The method of claim 11, wherein the application is
started on the second host by the server or an agent external to
the server.

13. The method of claim 9, wherein the first cache is set to
pass-through mode and the second cache is set to write-
through mode upon transferring the cache ownership to the
second cache on the second host.

14. The method of claim 9, wherein detecting that the
application is running on the second Host Also includes
detecting that the application is not running on the first host.

15. The method of claim 9, wherein selectively invalidating
cache blocks in the second cache includes discarding all data
in the second cache associated with the application upon
determining that the second host did not have the cache own-
ership prior to the first host having the cache ownership.

16. The method of claim 9, where in the server is a storage
array.

17. A non-transitory computer-readable medium that
stores instructions, executable by one or more processors, to
cause the one or more processors to perform operations that
comprise:

designating, at a server in a clustered environment, cache

ownership to a first cache on a first host for an applica-
tion running on the first host;

monitoring data writes made by the application while the

application is running on the first host;

detecting that the application is running on a second host in

the clustered environment;

transferring the cache ownership to a second cache on the

second host; and

selectively invalidating cache blocks in the second cache

based on the monitored data writes.

18. The non-transitory computer-readable medium of
claim 17, wherein the cache ownership is designated or trans-
ferred based on a received number of read and write opera-
tions exceeding a predetermined threshold.

19. The non-transitory computer-readable medium of
claim 17, further comprising instructions for:

starting the application on the second host upon a determi-

nation that the first host is down or for performance
reasons.

20. The non-transitory computer-readable medium of
claim 19, wherein the application is started on the second host
by the server or an agent external to the server.

#* #* #* #* #*

