US 20190198132A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0198132 Al

Dusanapudi et al. 43) Pub. Date: Jun. 27, 2019
(54) LIST INSERTION IN TEST SEGMENTS (52) US. CL
WITH NON-NATURALLY ALIGNED DATA CPCcc..... G1IC 29/38 (2013.01); G1IC 29/36
BOUNDARIES (2013.01)
(71) Applicant: International Business Machines (57) ABSTRACT
Corporation, Armonk, NY (US)
A processor memory is stress tested with a variable list
(72) Inventors: Manoj Dusanapudi, Bangalore (IN); insertion depth using list insertion test segments with non-
Shakti Kapoor, Austin, TX (US), naturally aligned data boundaries. List insertion test seg-
Nelson Wu, Austin, TX (US) ments are interspersed into test code of a processor memory
tests to change the list insertion depth without changing
(21) Appl. No.: 15/850,201 results of the test code. The list insertion test segments are
. the same structure as the segments of the test code and have
(22) Filed: Dec. 21, 2017 non-naturally aligned boundaries. The list insertion test
A . . segments include list insertion segments and load/store
Publication Classification seimems. The list insertion segmgé;lts locate a current
(51) Int. CL memory location using a fixed segment at a known location.
G1IC 29/38 (2006.01) The load/store segments load and store list elements in
G1IC 29/36 (2006.01) memory.

110
o 100
Y
Processor ol
180
= /
F 1
{ 12\0
Main Memory
121~ Operating System
e Pata
123 —— Test Case Generator
124 _...._,_1] Test Code
125 ~ Tost Data
y List Insertion Test
128 Segraents
150
130 J ‘ }40 J 7
§ Mass Storage IIF [Display IfF l Network IfF i
T T 155 TT 170
1Ly 7T e
Mass .
Storage Display \ ;
f"”‘
1758 175

/"t 195 165"
(o)
_/,‘

Patent Application Publication Jun. 27,2019 Sheet 1 of 11 US 2019/0198132 A1

110
o ?QO
e
Processor o
160
] 120
<
Main Memory
121 ———-- Operating System
122 —— Data ,
123 ——— Test Case Generator
124 it Test Code
125 i Test Data
List Insertion Test
126 Segments
180
130 140 i ;
S /) St . z
| MassStorageyF | | DisplayWF | | NetworklF |
jﬁ 3)55 17 170
by
Vel ~§<\\ b l i
Mass ,
Storage Display
\ T
", ‘({
. ~
A 175 175
- 185 165
&

Patent Application Publication

Computer 100

User

210

Jun. 27,2019 Sheet 2 of 11

US 2019/0198132 A1l

Test Case Exocuior

Test Case Test 2dd
Genarator - Code Test Data
est Lases
a3] 12e | 128
\
2121 | List Insertion Test
Segments 128
Processor 218
1.1 Cache (split)
L2 Cache nag
L1 {Cache {Undfied} —
218A
L1 D Cache Load-Store nan
2188 Unit R

FIG. 2

200

Patent Application Publication

Jun. 27,2019 Sheet 3 of 11

L3 T Cache

218A

fnstruction Cache Line 312
Test Code 124

1.1 D Cache 2188

Data Cache Line 314

Test Dala 125

FIG. 3

L1 1 Cache

21BA
instruction Cache Line 312
Test Code 124
L1 D Cache 2188
Data Cache Line 314
Test Data 125

FIG. 4

1.2 Cache (Unified)

N
f’

2
Cache Linet 316
Test Code 124

Cache Line2 318
Test Data 125

L2 Cache {Uniflet)

Cache Linet 318

US 2019/0198132 A1l

Test Code || Test Data
7 7
124 125

US 2019/0198132 A1l

Jun. 27,2019 Sheet 4 of 11

Patent Application Publication

AR
Buissoin

abeg

M

G Old

O

O,

0. %

o O

(<o ot

Sliced

{ca MR g

— PORIUC SSOiS BlRQ §

{2 v

N8 O

N 20

RS

Glice?

v

Sticez

SMD

SAD

O EMT

ZMD

VAAD

GAA

O

tamd

oMmd

AN

DrMO

G

L Oma

LAG

oM

LAA

OMa

GG

VARG

45

aois

Q016

80L6

YOG

Patent Application Publication Jun. 27,2019 Sheet 5 of 11 US 2019/0198132 A1

312

338\w k
316

344 ™ Dwo | ow1 | pwo | owt | bwo | pwt | owo | Dwi | owo | pwi | owo | owi
~ awo Qw1 Qwz QW3 Qw4 Qw5

610D

FIG. 6

iy

610A
g108 ™ at a2 a3 ad a5 a6 a7
g100 ™ b b2 b3 b4 b5 b6 b7
61 OD\ o1 R 3 ¢4 B ¢B o7
S dt d2 d3 d4 d8 d6 d7
at et e3 a4 el ed e7
1 2 3 4 5 6 7
gt g2 g3 a4 a5 a6 oq7
hi he h3 h4 hs h8 hY
it i2 i3 i4 i5 H i

FIG. 7

Patent Application Publication Jun. 27,2019 Sheet 6 of 11 US 2019/0198132 A1

800
\§ mfLR 13 (addir4, 13,4 mtlR 4] Hird I Parent Instr. instr.
s 4 s ! /
810 812 814 816 818 820
909
U mfLR 5 belea | Chid | mirdd | mireS bc+116 | Insir.
A / / 7 / S
910 912 914 916 918 920
1000
\\' fwarx 15, 10, 14] stw 13, O{r3) I tasyncisync [stwex. 3, 10, 14 bne- ~0x10] bc +116 instr.
/ /’3 r // /"
1010 1012 1014 1016 1018
1100

\“»—:&addi £3,10,0x71f] addi r3,53,-1 tweqi £3,0] wz v4 ,0(rd} lcmpwi or7,r4,0] bne--0x10 bec +112

J/ Va 7 S / /
1110 1112 1114 1116 1118 1120 1122

FIG. 11

1200
4
800\ ,,,,,,,,,, 7 5 5 7 5 5 5

\; X mfLR @ addird, 13,4 miLtR r4 birt Parent {nstr. instr.

. St L ¥ !

~ N N

900 : I s v ;
1006‘\- A mfLR 5 bel_ea Child mitred | misS_ L _be+116 Instr.
1 106‘*“ B | wani§, 10, r4< " Stw s, B{r3) fwsyncisyne | stwox. 13,10, 74| _bne: -Ox10.. L ~be +116 Instr.

e C laddi r3,r0,0x7§§‘ I 5d3i73,73:1 twegi r3,0 twz v, 004) | cmpwicr7.,4.0| buoe--Ox10 be +112

US 2019/0198132 A1l

Jun. 27,2019 Sheet 7 of 11

Patent Application Publication

89¢1

voci

¢l Ol4

e

N
a00tLt

80001

™.
4006

V0001

V006

4 9 QY i ey gy by l
ZLi+0g 0IXQ--ouq | Q'pw o mdwd | (p0'pAZM | 0'EI0OM | GBI IPPE W/XO'0rEl IpPR H
SO U gy ek ke = > Il 1 e .
Asuy 9L+ 0q O1X0- ~euq XoMS oc>w\oc>‘wai‘ s Mmu_.vm mL '\.sw.m.. ;VE O ‘Ga xdemy 3]
8L gLi+ag T T T S i 2R PO 2910 Shdw E|
Y A
N /
) 9o go pre go ze Ve 3
. 3
. s
p gp 5p boop £p Zp Lp a
4
. HEZRR . LN
S 9f L+ 99 O1LX0- -eug ¥ QuAs/oUASMY (00 G MIS V| 10 G Xuemy o)
i XOMIS T b
— b e - —
sy 9hi+0g "7 T G Vo PIYO BSg N giyw g
T h //)Y
e ge ge oye ge ze M|\ e v
t ; N
Af ., ¥ mv//af
) !
sy sy Jesed Mg 12BN ¥'E i ppe cHYyu X
2z 9 g 1% € Z L
*
ooct

008

Patent Application Publication Jun. 27,2019 Sheet 8 of 11 US 2019/0198132 A1

1400

Provide Test Code for Testing A Memory in
Segments With Non-Naturally Aligned Data |
Boundaries

I

Place a Plurality of List Insertion Test
Segments interspersed into the Test Code |
Segments

I

Execute the Test Code With the 1430
Interspersed List Insertion Test Segments |~
and Load/Store Segments to Load Data Into
Registers Using a Fixed Segment at Known
Location

Optionally check linked list to ensure list |~

I
|
: insertion test segments operated properly
I

FIG. 14

Patent Application Publication Jun. 27,2019 Sheet 9 of 11 US 2019/0198132 A1

1500
\
1
1505
Store an Address in Link Register Intoa |

General Purpose Register

Branching To a Fixed Segment and Storing /1/5/10
an Address in a First List Element Location |

in the List Insertion Segment

I

Calculate an Address To a Return Memory | 1515
Location in the List Insertion Segment -
Consecutive To the First List Element

Location

I

Branch To the Return Memory Location in
the List Insertion Segment

\

1520

P

FIG. 15A

Patent Application Publication Jun. 27,2019 Sheet 10 of 11 US 2019/0198132 A1l

1500 Con't
\
4
Load from Memory a First List Element 1/925
» Stored in a Second List Element Location in |
the Fixed Segment

1@30

Store the Second List Element into One of |~

the Plurality of General Purpose Registers

\ 4
1@,35
Prohibit write access to the Second List | -
Element Location
\ 4

1540

Store the Second List Element into the First | -~

List Element Location
1545
Another Process Attempt Write™
0. Second List Element Location?

1550
///

Store the Address to the First List Location | -
into the Second List Element Location

Done

FIG. 15B

Patent Application Publication Jun. 27,2019 Sheet 11 of 11 US 2019/0198132 A1l

Initialize a counter

A 4

. < Decrement counter

Is counter at zero?

1605

1610
S

1 6/20
Send interrupt to |
interrupt handler

Load content of memory address stored in

the parent list element location after step
15620 of FIG. 15B into same GPR

general purpose register (‘GPR”) pointingto | _-

1630
Yes s content of GPR™"
greater than 07

FIG. 16

1625

US 2019/0198132 Al

LIST INSERTION IN TEST SEGMENTS
WITH NON-NATURALLY ALIGNED DATA
BOUNDARIES

BACKGROUND

[0001] This disclosure generally relates to computer hard-
ware testing and development, and more specifically relates
to a system and method for list insertion of test segments
with non-naturally aligned data boundaries into a processor
memory.

[0002] Processor testing tools attempt to generate the most
stressful test case for a processor. In theory, the generated
test case should provide maximum test coverage and should
be able to stress various timing scenarios and operations on
the processor, including the coherency of cache memory.
Coherency in the cache memory involves insuring that
changes to data in the cache are accurately reflected to main
memory to keep the data consistent. Building test cases to
thoroughly test a processor can be extremely costly in time
and resources, thus building efficient test cases is an impor-
tant goal of processor testing.

[0003] Many processors have restrictions on alignment for
memory operations. For example, some Power processors
allow different alignment boundaries in memory for differ-
ent instructions while in different modes like Cache Inhib-
ited, Little Endian etc. With these complexities on boundary
restrictions, it’s very difficult to generate test cases for the
different alignment boundaries for each of the instructions.
Moreover, testing all valid boundaries for an instruction is
very important and multiple test cases for multiple bound-
aries would have the overhead of generation and simulation
in case of reference model checking. Test case generation
can be extremely labor intensive to test the different align-
ment boundaries while preserving boundaries where needed.

SUMMARY

[0004] A system, method and/or computer program prod-
uct for testing a computer processor is disclosed. An appa-
ratus for testing a computer processor having a plurality of
registers includes a test case generator that creates test cases
with test code for testing the computer processor, a test case
executor that replicates the test code and loads the replicated
test code into non-naturally aligned segments of consecutive
memory locations on the computer processor, and a load-
store unit that loads and stores data in the memory locations
and loads and stores data in the plurality of registers. The test
case executor further adds one or more list insertion test
segments and each list insertion test segment comprises a list
insertion segment and a load/store segment. The list inser-
tion test segments are interspersed in the test code in
non-naturally aligned segments that insert a list element into
at least one of a plurality of list element locations using a
fixed segment stored at a fixed location on the computer
processor.

[0005] The method utilizes test code inserted in a plurality
of memory segments with non-naturally aligned boundaries.
Non-naturally aligned means that the ends of the segments
when placed end-to-end with another segment do not fall on
a natural boundary that is a number of the form 2n. The test
code with the non-naturally aligned segments may have
seven words of test code comprising one single word
sub-segment, one double word sub-segment and one quad
word sub-segment. A plurality of list insertion test segments

Jun. 27,2019

that have non-naturally aligned boundaries are interspersed
into the test code segments. The list insertion test segments
comprise at least one list insertion segment and at least one
load/store segments. The list insertion test segments may
also comprise a checking segment. Each list insertion seg-
ment branches to a fixed segment that determines a first list
element location and that includes a second list element
location. Each load/store segment that loads a list element
stored in the second list element location, stores the list
element in the first list element location. The test code is
executed with the interspersed list insertion test segments to
insert a list element into at least one of a plurality of list
element locations using a fixed segment stored at a fixed
location on the computer processor.

[0006] The method determines a second list element loca-
tion by storing an address to a next consecutive memory
location contained in a link register of the computer pro-
cessor into one of a plurality of general purpose registers of
the computer processor. The method continues by branching
to the fixed segment, storing an address to the first list
element location contained in the link register into a second
of the plurality of general purpose registers, and calculating
an address to a return memory location consecutive to the
first list element location and storing the return memory
location to the link register. The method branches to the
return memory location and restores the address to the next
consecutive memory location to the link register.

[0007] The load/store segment includes instructions that
add list elements to a linked list. A list element stored in the
second list element location is loaded from memory into one
of the plurality of general purpose registers, and the list
element in this register is stored the list element into the first
list element location. Write access to the second list element
location is prohibited and it is determined whether another
process attempts to write to the second list element location
after write access has been prohibited. If another process has
attempted to write to the list element after write access has
been prohibited, the steps of loading from memory the list
element, prohibiting write access to the second list element
location, and determining whether another process attempts
to write to the second list element location are repeated until
no process attempts to write to the second list element
location after write access has been prohibited. If no process
has attempted to write to the second list element location
after write access has been prohibited, write access to the
second list element location is enabled and the address to the
first list element location is stored into the second list
element location.

[0008] The checking segment may include instructions
that initialize and run a counter loop to check that the linked
list has been inserted correctly. The checking segment may
operate, for example, by checking the content of a memory
address stored in a general purpose register that points to the
last item inserted in a linked list. The checking segment may
load the content of the memory location pointed to in each
successive list item until the beginning of the list is reached.
A parent list element may have an initial value of 0. Once the
content of the general purpose register is zero, the checking
segment confirms the list insertion test segments have
executed correctly.

[0009] The foregoing and other features and advantages
will be apparent from the following more particular descrip-
tion, as illustrated in the accompanying drawings.

US 2019/0198132 Al

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0010] The various aspects, features and embodiments of
the memory system, architectural structure and its method of
operation will be better understood when read in conjunction
with the figures provided. Embodiments are provided in the
figures for the purpose of illustrating aspects, features and/or
various embodiments of the memory system, architectural
structure and method of operation, but the claims should not
be limited to the precise arrangement, structures, features,
aspects, embodiments or devices shown, and the arrange-
ments, structures, subassemblies, features, aspects, embodi-
ments, methods, and devices shown may be used singularly
or in combination with other arrangements, structures, sub-
assemblies, features, aspects, embodiments, methods and
devices.

[0011] FIG. 1 is a block diagram a computer system with
atest case generator as described herein to generate test code
and place it in segments of a data cache with non-naturally
aligned data boundaries;

[0012] FIG. 2 illustrates simplified block diagrams of a
system for testing a processor with test code and list inser-
tion test segments placed in segments of a cache with
non-naturally aligned data boundaries;

[0013] FIG. 3 is a simplified block diagram of a memory
cache system in a processor with test code and test data
placed in different cache lines in a level two memory cache;
[0014] FIG. 4 is a simplified block diagram of a memory
cache system in a processor with test code and test data
placed in the same cache lines in a level two memory cache;
[0015] FIG. Sillustrates successive slices of replicated test
code and test data stored in a memory cache with non-
naturally aligned data boundaries.

[0016] FIG. 6 further illustrates the test code segments in
FIG. 5 having non-naturally aligned data boundaries.
[0017] FIG. 7 illustrates a portion of the memory cache
shown in FIG. 5 with a strand of memory shown as a single
block.

[0018] FIG. 8 illustrates an example of a fixed code
segment that resides in a known, fixed location.

[0019] FIG. 9illustrates an example of a list insertion code
segment.
[0020] FIG. 10 illustrates an example of a load/store code
segment.
[0021] FIG. 11 illustrates an example of a checking code
segment.
[0022] FIG. 12 illustrates strands of memory containing

the test code segments in FIGS. 8, 9, 10, and 11.

[0023] FIG. 13 illustrates strands of memory containing
the test code segments in FIGS. 8, 9, 10, and 11 including
multiple copies of test code segments.

[0024] FIG. 14 is a flow diagram of a method for stress
testing a processor memory cache using list insertion test
segments with non-naturally aligned data boundaries.
[0025] FIGS. 15A-B are a flow diagram of a specific
method for step 1430.

[0026] FIG. 16 is a flow diagram of a specific method for
step 1440.

DETAILED DESCRIPTION
[0027] The following description is made for illustrating

the general principles of the invention and is not meant to
limit the inventive concepts claimed herein. In the following

Jun. 27,2019

detailed description, numerous details are set forth in order
to provide an understanding of the memory system, archi-
tectural structure and method of operation, however, it will
be understood by those skilled in the art that different and
numerous embodiments of the memory system, architectural
structure and method of operation may be practiced without
those specific details, and the claims and invention should
not be limited to the embodiments, subassemblies, features,
processes, methods, aspects, features of details specifically
described and shown herein. Further, particular features
described herein can be used in combination with other
described features in each of the various possible combina-
tions and permutations.

[0028] Unless otherwise specifically defined herein, all
terms are to be given their broadest possible interpretation
including meanings implied from the specification as well as
meanings understood by those skilled in the art and/or as
defined in dictionaries, treatises, etc. It must also be noted
that, as used in the specification and the appended claims,
the singular forms “a,” “an” and “the” include plural refer-
ents unless otherwise specified.

[0029] The disclosure and claims herein relate to a system
and method for stress testing a processor memory using list
insertion test segments with non-naturally aligned data
boundaries. List insertion test segments are interspersed into
test code of processor memory tests to change the list
insertion depth without changing results of the test code. The
list insertion test segments are the same structure as the
segments of the test cases and also have non-naturally
aligned boundaries. The list insertion test segments include
a list insertion segment and a load/store segment. A fixed
segment may be located at a suitable known location in
memory and maybe outside the strand of memory. In some
embodiments, the list insertion segment may branch to the
fix segment to obtain an address of one or more list element
locations in memory and the load/store segment may per-
form a series of memory operations to insert list elements
into the list element locations determined by the list inser-
tion and fixed segments. Optionally, the list insertion test
segments may also include a checking segment that confirms
proper operation of the list insertion and load/store seg-
ments.

[0030] Referring to FIG. 1, a computer system 100 is one
suitable implementation of a computer system that is
capable of performing the computer operations described
herein including a test case generator for generating test
cases for stress testing a processor memory and/or a test case
executor as described herein. Computer system 100 is a
computer which can run multiple operating systems includ-
ing the IBM i operating system. However, those skilled in
the art will appreciate that the disclosure herein applies
equally to any computer system, regardless of whether the
computer system is a complicated multi-user computing
apparatus, a single user workstation, laptop, phone or an
embedded control system. As shown in FIG. 1, computer
system 100 comprises one or more processors 110. The
computer system 100 further includes a main memory 120,
a mass storage interface 130, a display interface 140, and a
network interface 150. These system components are inter-
connected through the use of a system bus 160. Mass storage
interface 130 is used to connect mass storage devices with
a computer readable medium, such as mass storage 155, to
computer system 100. One specific type of mass storage 155
is a readable and writable CD-RW drive, which may store

US 2019/0198132 Al

data to and read data from a CD-RW 195. Some mass
storage devices may have a removable memory card or
similar instead of the CD-RW drive.

[0031] Main memory 120 preferably contains an operating
system 121. Operating system 121 is a multitasking oper-
ating system known in the industry as IBM i; however, those
skilled in the art will appreciate that the spirit and scope of
this disclosure is not limited to any one operating system.
The memory 120 further includes data 122 and a test case
generator 123. The memory 120 also includes test code 124
and test data 125 which is typically created by the test case
generator 123. The memory also includes list insertion test
segments 126 for testing the memory with different list
insertion scenarios as described herein.

[0032] Computer system 100 utilizes well known virtual
addressing mechanisms that allow the programs of computer
system 100 to behave as if they only have access to a large,
single storage entity instead of access to multiple, smaller
storage entities such as main memory 120 and mass storage
155. Therefore, while operating system 121, data 122, test
case generator 123, test code 124, test data 125 and list
insertion test segments 126 are shown to reside in main
memory 120, those skilled in the art will recognize that these
items are not necessarily all completely contained in main
memory 120 at the same time. It should also be noted that
the term “memory” is used herein generically to refer to the
entire virtual memory of computer system 100, and may
include the virtual memory of other computer systems
coupled to computer system 100.

[0033] Processor 110 may be constructed from one or
more microprocessors and/or integrated circuits. Processor
110 executes program instructions stored in main memory
120. Main memory 120 stores programs and data that
processor 110 may access. When computer system 100 starts
up, processor 110 initially executes the program instructions
that make up operating system 121 and later executes the
program instructions that make up the test case generator
123 to generate the test code 124 and the test data 125 as
directed by a user.

[0034] Although computer system 100 is shown to contain
only a single processor and a single system bus, those skilled
in the art will appreciate that the system may be practiced
using a computer system that has multiple processors and/or
multiple buses. In addition, the interfaces that are used
preferably each include separate, fully programmed micro-
processors that are used to off-load compute-intensive pro-
cessing from processor 110. However, those skilled in the art
will appreciate that these functions may be performed using
1/O adapters as well.

[0035] Display interface 140 is used to directly connect
one or more displays 165 to computer system 100. These
displays 165, which may be non-intelligent (i.e., dumb)
terminals or fully programmable workstations, are used to
provide system administrators and users the ability to com-
municate with computer system 100. Note, however, that
while display interface 140 is provided to support commu-
nication with one or more displays 165, computer system
100 does not necessarily require a display 165, because all
needed interaction with users and other processes may occur
via network interface 150, e.g. web client based users.
[0036] Network interface 150 is used to connect computer
system 100 to other computer systems or workstations 175
via network 170. Network interface 150 broadly represents
any suitable way to interconnect electronic devices, regard-

Jun. 27,2019

less of whether the network 170 comprises present-day
analog and/or digital techniques or via some networking
mechanism of the future. In addition, many different net-
work protocols can be used to implement a network. These
protocols are specialized computer programs that allow
computers to communicate across a network. TCP/IP
(Transmission Control Protocol/Internet Protocol) is an
example of a suitable network protocol.

[0037] The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

[0038] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0039] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0040] Computer readable program instructions for carry-
ing out operations may be assembler instructions, instruc-
tion-set-architecture (ISA) instructions, machine instruc-
tions, machine dependent instructions, microcode, firmware
instructions, state-setting data, configuration data for inte-
grated circuitry, or either source code or object code written
in any combination of one or more programming languages,
including an object oriented programming language such as
Smalltalk, C++, or the like, and procedural programming

US 2019/0198132 Al

languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0041] Aspects of the system, method and/or computer
program product are described herein with reference to
flowchart illustrations and/or block diagrams of embodi-
ments of methods, apparatus (systems), and computer pro-
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer readable pro-
gram instructions.

[0042] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0043] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter-implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0044] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order

Jun. 27,2019

noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

[0045] FIG. 2 illustrates a simplified block diagram of a
system 200 for reducing the time needed to generate test
cases for testing a processor by replicating test code and test
data and placing slices of the test code and test data into a
memory cache where the slices of the replicated test code
and test data have non-naturally aligned data boundaries. A
user 210 or an operator uses the test case generator 123 to
provide tests cases 212 to a test case executor 214. The test
case generator 123 and the test case executor 214 operate in
a manner similar to the prior art except as described herein.
The test cases 212 include test code 124 and test data 125.
The test case executor 214 loads the test code 124, test data
124 and the list insertion test segments 126 into a processor
216 to verify and validate the processor design.

[0046] Again referring to FIG. 2, the processor 216 has a
typical cache design with one or more caches. In the
illustrated example, the processor 216 has a split .1 cache
218 and a unified [.2 cache 220. The split L1 cache 218
means the [.1 cache 218 is split between an L.1 instruction
cache 218A and an L1 data cache 218B. When instructions
and data are needed by the processor, the processor first
looks to the L1 cache 218 to load the instructions and data.
If the needed instructions and data are not in the L1 cache
218, then the L2 cache is searched for the needed instruc-
tions and data and loaded into the L1 cache from the L2
cache if available. If the needed instructions and data are not
in the L2 cache, then they are loaded from main memory.
Alternatively an additional level of cache (L3 cache) can be
used but is not shown here for simplicity. The test code 124
and test data 125 are loaded into the L2 cache 220 and then
to the L1 cache 218 as described further below. The test case
executor 214 replicates the test code 124, placing multiple
copies of the test code into the .2 cache 220, and then the
test code is executed by the processor to test proper handling
of data coherency as described further below. The test case
executor 214 may also replicate the test data 125 into the [.2
cache 220. The processor 216 further includes a load-store
unit 222 or call return stack that can be used to predict a
target address of a branch to improve performance.

[0047] FIG. 3 illustrates an example of loading the L1
cache 218 from the L2 cache 220 of the processor 216
(shown in FIG. 2) where the test code and test data are
initially placed in different cache lines in the [.2 memory
cache. In this example, the L1 instruction cache 218A has a
single instruction cache line 312. Similarly, the L1 data
instruction cache 218B has a single data cache line 314.
Those of ordinary skill in the art will recognize that pro-
cessors may have multiple cache lines in the instruction
cache and the data cache. In such a case, the operation would
be similar to the described example. In this example, the test
code 124 was initially loaded into cache linel 316. When
test code 124 is requested by the L1 instruction cache 218A,
the L2 cache 220 provides a cache line containing the

US 2019/0198132 Al

requested test code, in this case test code 124 from cache
linel 316. Similarly, the test data 125 was initially loaded
into cache line2 318. When test data 125 is requested by the
L1 data cache 218B, the 1.2 cache 220 provides a cache line
containing the test data 125 from cache line2 318. If the test
code makes changes to the test code 124 in the instruction
cache line 312 or makes changes to the test data 125 in the
data cache line 314 then these changes need to be pushed
back to the 1.2 cache 220 in a manner known in the prior art.
Since the test code 124 and the test data 125 are on different
cache lines, this example illustrates the simple case of
maintaining memory coherency between the [L1 and 1.2
caches. If the processor or test code detects an error in data
coherency between the caches or main memory, the proces-
sor being tested can be flagged as having a potential memory
failure in a manner known in the prior art.

[0048] FIG. 4 illustrates another example of loading the
L1 cache 218 from the .2 cache 220 of the processor 216
(shown in FIG. 2). In this example, the test code and test data
are initially placed in the same cache line in the [.2 memory
cache. As in the previous example, the L1 instruction cache
218A and the L1 data instruction cache 218B each have a
single cache line. In this example, the test code 124 was
initially loaded into cache linel 316. When test code 124 is
requested by the L1 instruction cache 218A, the .2 cache
220 provides the test code 124 from cache linel 316. The
test data 125 was initially loaded into the same cache linel
316. When test data 125 is requested by the [.1 data cache
218B, the 1.2 cache 220 provides the test data 125 from
cache linel 316. If the test code makes changes to the test
code 124 in the instruction cache line 312, or if the test code
makes changes to the test data 125 in the data cache line 314
then these changes need to be reflected in the .1 cache and
pushed back to the .2 cache 220. This example illustrates
the case of maintaining memory coherency between the L1
and L2 caches where test code 124 and the test data 125 are
loaded into the L1 cache 218 from the same cache lines in
the L2 cache 220.

[0049] FIG. 5 illustrates additional detail of successive
slices of the [.2 memory cache with replicated test cases
(tc0-1, tcl-1, etc.) placed in segments of memory with
non-naturally aligned data boundaries. Thus, FIG. 5 repre-
sents a simplified representation of a portion of the level 2
cache 220 introduced above. In the illustrated example, the
cache 220 illustrates four replicated slices 510 that can
contain test code or test data (described further below). The
table 512 above the cache data illustrates how the cache lines
of the cache are divided. A cache line in the cache is divided
into eight quad words 514. The quad words 514 are labeled
QWO through QW?7. Each quad word 514 is divided into two
double words 516. The double words for each quad word are
labeled DWO and DW1. Each double word 516 is further
divided into two words 518 (not labeled). In this example,
each word is four bytes of memory space. Thus each cache
line has eight quad words with 128 bytes of memory. Thus
the level 2 cache 220 is divided into lines of memory 520
with 128 bytes in each line. In the illustrated portion of level
2 cache 220 shown in FIG. 5, lines 1-9 and 27-35 are shown
with the line number 520 shown for each line at the left side
of the drawing.

[0050] Again referring to FIG. 5, the memory represented
in the level 2 cache 220 is divided into slices 510 as shown.
For simplification of the drawing, only four slices of the
memory cache are actually shown. Slices 3 through 6 are

Jun. 27,2019

omitted from the drawing but follow the same pattern as the
other slices. Slicel 510A begins on linel of the cache and
ends near the middle of line 5. Line 5 is shown twice at the
left of the drawings. This is done for illustration so that it can
be clearly seen where slicel 510A ends and slice2 510B
begins. In the cache there is actually only one line of
memory designated as line 5. Slice2 510B begins at the end
of slicel 510A near the middle of line 5 and ends near the
end of line 9. Slice7 510C begins at the end of slice6 (not
shown) near the middle of line 27 and ends near the end of
line 31. Slice8 510D begins at the end of slice7 510C near
the middle of line 31 and ends at the end of line 35.

[0051] Again referring to FIG. 5, each slice of memory
510 includes several strands of test cases. In this example,
there are five strands of test cases (tcO through tc4) divided
into four segments each. The segments of each strand are
shown with the same shading in FIG. 5. The segment of the
strand is indicated by the number after the dash. Thus tc0-1
522 is the first segment of test case zero, tc1-1 524 is the first
segment of test case one, tc2-1 526 is the first segment of test
case 2, tc3-1 528 is the first segment of test case 3 and tc4-1
530 is the first segment of test case four. Test case zero (tc0)
includes tc0-1, tc0-2, tc0-3 and tc0-4. Similarly the other test
case strands include four segments. As can be seen using the
table 512 above the cache, each of the segments has a test
case that is seven words long. It is important to note that the
seven word length of the segments means that each of the
test cases are on non-naturally aligned word boundaries.
Non-naturally aligned means that when the segments of the
test cases are placed end-to-end the end of the segments does
not fall on a natural boundary that is a number of the form
2". This is accomplished by having segments with an odd
number of words. In this example this means that the
beginning and end of each of the test case segments does not
line up with 32 byte, cache line (128 byte) and page crossing
boundaries. For example, the page crossing boundary 532 is
within the test case tcl-1 at the boundary between line 31
and line 32 as shown in FIG. 5. Since the segments are
non-naturally aligned, after replication alignment boundar-
ies change for tests on subsequent segments to allow more
robust testing of the processor using the same repeated test
code. In cases where alignment boundaries need to be
respected for a few instructions, these instructions are placed
in sub-segments with special alignment locations so that
they preserve alignment even after replication and re-execu-
tion on new segments as described below.

[0052] FIG. 6 further illustrates a portion of the memory
cache shown in FIG. 5 having test cases with test code and
test data on non-naturally aligned data boundaries. FIG. 6
illustrates the first two strands of the five strands of test cases
shown in FIG. 5, namely tc0 610 and tc1 612. Test case zero
(tc0) 610 includes four segments 610A, 610B, 610C and
610D. Similarly, test case one (tcl) 612 includes four
segments 612A, 612B, 612C and 612D. As described above,
each segment of the cache has a test case that is seven words
long. The test case segment is divided into three sub-
segments. In this example, the sub-segments include a quad
word, a double word and a single word for a total of seven
words. The order of the sub-segments changes for each
segment in the test case strand in order that the test cases
within the strings can observe word boundaries where
needed. The first segment 610A of test case zero (tc0) has a
quad word followed by a word and then a double word. In
the next segment of tcO 610B there is a word, a quad word

US 2019/0198132 Al

and then a double word. In the next segment of tcO 610C
there is a double word, a quad word and then a single word.
In the final segment of tc0 610D there is a single word, a
double word and then the quad word. Similarly the tcl
alternates the single word, double word and quad word in
subsequent segments as shown in 612A, 612B, 612C and
612D.

[0053] In the example described above, each segment of
the test cases has seven words to insure that the test case data
has non-naturally aligned data boundaries. By having non-
naturally aligned data boundaries for each segment of the
slice of test data, testing can be done on the replicated test
cases to test various boundaries. These boundaries include
32 byte boundaries, cache line boundaries (128 bytes) and
page crossing boundaries. The test case segment is divided
into sub-segments of word, double word and quad word and
the order of the sub-segments changes for each segment in
the test case strand. Dividing into sub-segments and chang-
ing of the order of the sub-segments insures that the data for
test cases within the sub-strings can observe and preserve
double word and quad word boundaries where needed.
Using non-naturally aligned data boundaries with replicated
code insures that all types of segments will cross the
boundaries at some replication of the test data. This allows
testing of the boundaries without using special code to look
at the restrictions of a particular segment for each of the
boundaries.

[0054] The examples described above illustrate a pre-
ferred test case segment with 7 words to achieve non-
naturally aligned data boundaries. Other non-naturally
aligned data boundaries could include other odd numbers
such as 5, 9, 11, etc. A combination of word, double word
and quad word could be chosen as sub-segments for these
segments similar to the described example. For example, for
a segment with 9 words, a quad word, two double words and
a word would achieve the correct number of sub-segments
for 9 words. The sub-segments could be changed for each
segment in a strand as described above for the 7 word
example.

[0055] FIG. 7 illustrates a portion of the memory cache
shown in FIG. 5. The memory shown in FIG. 7 is a sequence
of segments or a strand of memory 700 shown as a single
block. The strand of memory 700 may be modified to
include list insertion scenarios to stress test memory and the
list insertion as described herein. In this example, the strand
of memory 700 includes the strand segments 610 described
in FIG. 6. Each of the segments in this example includes
seven words of memory. Segment 610A includes seven
words of memory al through a7. Similarly, segments 6108,
610C and 610D each include seven words of memory.
Additional segments labeled as e, f, g, h, and i are also
shown in the strand 700. These segments are not consecutive
memory locations, but are shown here as a block of memory
that are logically in the strand and used for testing the cache
memory of the processor 216 (FIG. 2). In this example, each
segment 610 of the strand 700 is loaded with a test case for
testing memory by the test case executor 214 as described
above. In addition, the test case executor 214 may load list
insertion test blocks into the strand 700 as described below.
[0056] FIG. 8 illustrates an example of a fixed segment
800. The fixed segment 800 is a single segment. In the
illustrated examples, the segments each have seven words
with data or instructions. The fixed segment 800 serves to
determine the location of a list element location in another

Jun. 27,2019

segment of memory. In this case, the fixed segment 800
determines the location of a child pointer in a list insertion
segment that branches to the fixed segment, for example list
insertion segment 900 discussed below in reference to FIG.
9. The first instruction in fixed segment 800, “mfLR r3” 810,
moves the contents of the link register to general purpose
register (“GPR”) r3. A link register in the processor holds
return address which is equal to the next consecutive
memory location after the location of any branch and/or link
instruction that was most recently executed. For example,
after the execution of the instruction in memory location
912, the link register contains an address pointing to
memory location 914. Saving the link register into GPRs at
certain times enables a process to return to the next instruc-
tion after branching to various other locations and execute
instructions at those locations. In this example, the link
register points to the child list element location 914, as
explained in further detail below in reference to FIG. 9. The
next instruction, “addi r4, r3,4” 812, adds a value of four to
the address stored in 13 and stores the result in GPR r4. In
this example, register r4 points to memory location 916 of
FIG. 9 after the execution of the addi instruction. The next
instruction, “mtLR r4” 814, moves the contents of GPR r4,
e.g. an address for memory location 916, to the link register.
The next instruction, “blrl” 816, branches to the address
stored in the link register. In this example, when the blrl
instruction is executed, the processor branches to memory
location 916 to which the address currently in the link
register points. Also included in fixed segment 800 is parent
list element memory location 818. In this example, the
parent list element memory location holds an initial value of
zero. Also included in fixed segment 800 are one or more
speculative instructions 820 which are, in this example, not
executed during list insertion.

[0057] FIG. 9 illustrates an example of a list insertion
segment 900. List insertion segment 900 includes instruc-
tions that branch to fixed segment 800 as well as memory
locations for the storage of list elements. The first instruction
of list insertion segment 900, “mflL.R r5” 910, moves the
contents of the link register to GPR r5. The next instruction,
“bel_ea” 912, branches to a fixed location elsewhere in the
computer processor memory that corresponds to the location
of fixed segment 800. In this example, bcl_ea 912 is a
subroutine call that branches to memory location 810 for
execution of instructions stored in fixed segment 800,
described in more detail above in reference to FIG. 8. The
next memory location, child list element location 914, stores
the child list element described above. The child list element
contains a pointer to the next node in the link list that is
being inserted into memory. After branching to fixed seg-
ment 800, in this example, the link register points to child
list element location 914 because it is the next memory
location following the subroutine call that branches to fixed
segment 800. As discussed above, the pointer stored in the
link register is stored in GPR r3. After the fixed segment
branches back to memory location 916, as discussed above,
the link register contains an address pointing to parent list
element location 818. The next instruction, “mfLLR r4” 916,
moves the contents of the link register into GPR r4, which
now contains the address of parent list element location 818.
The next instruction, “mtLR r5” 918, returns the contents of
GPR r5 to the link register for execution. The next instruc-
tion, “bc+116” 920, branches to the beginning of the next

US 2019/0198132 Al

test code segment, in this case, the beginning of the load/
store segment 1000 discussed in more detail below in
reference to FIG. 10.

[0058] FIG. 10 illustrates an example of a load store
segment 1000. The load/store segment 1000 performs a
memory read/write operation to insert a list element into a
list memory location. The first instruction in the load/store
segment 1000, “Iwarx r5, 10, r4” 1010 is a “load word and
reserve indexed” instruction that loads the content of the
memory location addressed by the pointer stored in GPR r4
and stores it in GPR r5. In this case r4 points to the parent
list element location 818, as discussed above. The Iwarx
instruction also reserves the memory location, in this
example parent list element location 818, to prohibit writes
into the memory location until the reservation is released.
The next instruction, “stw r5, 0(r3)” 1012, stores the con-
tents of r5 at the memory location addressed by the pointer
stored in r3. In this example, r3 points to the child list
element location 914. Thus, in this example, the child list
element location 914 would have the value that formerly
was stored in the parent list element location 818. On a first
run of the list insertion test segments 126, the value of the
parent list element, and what is stored in child list element
location 914 by the stw instruction, is a value of zero. The
next instruction, “lwsync/sync” 1014, clears all store
instructions already executing. In other words, the list inser-
tion process pauses until all pending stores are completed
and all out-of-order stores are prohibited. The next instruc-
tion, “stwcx r3, r0, r4” 1016, is a “store word conditional
indexed” instruction that stores the content of GPR r3 into
the memory location addressed by the pointer stored in GPR
r4. As explained above, in this example, the GPR r3 contains
the address pointing to the child list element location 914
and GPR r4 contains the address pointing to the parent list
element location 818. In this example, after the stwcx
instruction is completed, the parent list element location 818
(addressed by the pointer stored in r4) contains an address
pointing to the child list element location 914 (the content
stored in r3).

[0059] The stwcx instruction 1016 also releases the res-
ervation on parent list element location 818 that was created
by the lwarx instruction 1010. The stwcx instruction 1016
may only complete if a reservation on the relvant memory
location still exists. The next instruction in the load/store
segment 1000, “bne- -0x10” 1018, determines whether the
reservation still exists, and if so, performs the store opera-
tion and releases the reservation. If, however, another pro-
cess has attempted to write to parent list element location
818 since the reservation was made, the reservation would
no longer exist and the stwcx instruction 1016 would be
unable to complete. In this case, instructions 1010, 1012,
and 1014 are repeated until the reservation created by the
Iwarx instruction 1010 remains through the execution of the
stwex instruction 1016 and the store instruction is completed
and the reservation is released. The bne instruction confirms
the stwex instruction has been completed. The next instruc-
tion is identical to instruction 920, which branches to the
beginning of the next test code segment which will either be
the beginning of another test case or the beginning of a
checking segment 1100 discussed in more detail below in
reference to FIG. 11.

[0060] FIG. 11 illustrates an example of a checking seg-
ment 1100. The checking segment 1100 is an optional
segment that runs a counter loop to check that the linked list

Jun. 27,2019

has been inserted correctly. The checking segment operates
by checking the content of a memory address stored in a
general purpose register that points to the last item inserted
in a linked list. In the example of FIGS. 8-10 above, the
checking segment would load the content of the memory
location pointed to in each successive list item until the
beginning of the list is reached. As explained above, parent
list element location 818 has an initial value of 0. Thus, once
the content of the general purpose register is zero, the
checking segment confirms the list insertion test segments
have executed correctly. The first instruction in the checking
segment 1100, “addi 3, r0,0x7{ff” 1110, places a value of
Ox7ftf into GPR r3. This instruction initializes a counter to
a high value, which may be any arbitrary value. Preferably,
the value is larger than the length of the linked list that is
inserted using the list insertion and load/store segments.

[0061] Continuing with FIG. 11, the next instruction in the
checking segment 1100, “addi r3, 13, -1” 1112, decrements
the counter by a value of one. The next instruction, “tweqi
r3, 07 1114, is a “trap word equal immediate” instruction that
generates a program interrupt when two specified values are
equal. In this example, the instruction compares the value
stored in GPR r3 and 0 and generates a trap-type program
interrupt if the value in GPR r3 is equal to zero. GPR r3
contains the counter initialized at instruction 1110. There-
fore, in this example, the instruction will generate a trap-
type program interrupt if the checking segment loops
enough times for the counter to decrement to zero at
instruction 1112. The next instruction, “lwz r4, 0(r4)” 1116,
is a “load word and zero” instruction that loads a word of
data from a specified location in memory into a general
purpose register. In this example, the instruction loads the
content of the memory location whose effective address is
stored in GPR r4 and stores that content into GPR r4. As
noted above, after the load/store segment 1000 is executed,
GPR r4 contains the address of the parent list element
location 818 which, in turn, contains the address of the child
list element location 914. Thus, after the execution of the
Iwz 1116 instruction, GPR r4 will include the address of the
child list element location 914. The next instruction, “cmpwi
cr7, r4,0” 1118, is a “compare immediate” instruction that
compares specified values and sets a conditional register
when the value stored in GPR r4 is not greater than 0. Thus,
as long as the value in GPR r4 is greater than 0, the
conditional register is not set. Since the initial value of the
parent list item is 0, the conditional register is set when the
beginning of the linked list is reached (and GPR r4 is equal
to 0). The next instruction, “bne- -0x10” 1120 checks the
conditional register and loops the changing segment 1100 if
the conditional register is not set. Otherwise, execution
continues with the next instruction, “bc+112” 1122, which
branches to the beginning of the next test code segment,
which may be the beginning of another test case.

[0062] FIG. 12 illustrates an example of the list insertion
test segments discussed above in a single figure for simplic-
ity. FIG. 12 is intended to be viewed in conjunction with
FIGS. 8, 9, and 10 as described above and FIG. 13 as
described below. Row and column identifiers have been
added to allow reference to each memory location. Extra-
neous memory segments have been removed from FIG. 12
for simplicity of presentation. FIG. 13 illustrates a memory
strand that includes a number of memory segments, includ-

US 2019/0198132 Al

ing multiple copies of the list insertion segment and the
load/store segment interspersed in a memory strand that
includes other segments.

[0063] Referring to FIG. 12, the fixed segment 800 is
shown separate from the list insertion segment 900 and the
load/store segment 1000 to indicate that it is a fixed, known
location in memory and is not in memory strand 700 (see
FIG. 13). The first instruction (column 1, row A) in the list
insertion segment 900 which moves the content of the link
register to a GPR, in this example r5. The next instruction,
bel_ea (column 2, row A), causes execution to branch to the
fixed segment 800 (column 1, row X). The instruction at this
location (column 1, row X) moves the content of the link
register following the branch operation to a GPR r3. As
noted above, the link register contains an address to return
to when a function call completes. GPR r3 will now hold the
address of column 3, row A, which is the next address from
the branch instruction. Thus, in this example, the address
stored in GPR r3 points to the child list element location 914
shown in FIG. 9 and located at column 3, row A. The next
instruction (column 2, row X) in the fixed segment 800
performs an address calculation that adds a value of four to
the address stored in GPR r3 and stores the result in GPR r4.
In this example, the result of the calculation stored in r4 is
an address that points to column 4, row A, the next con-
secutive memory location to the location pointed to by the
address in r3. The next instruction in fixed segment 800
(column 3, row X) moves the contents of the GPR r4, in this
example an address pointing to the memory location at
column 4 row A, to the link register. The next instruction,
blrl, branches to the location (column 4, row A) addressed by
the contents of the link register. The instruction at this
location moves the contents of the link register to the GPR
r4. In this example, the link register, following execution of
the branch instruction, points to the memory location fol-
lowing the location of the branch instruction, or to column
5, row X. GPR r4 will now hold the address of column 5,
row X, which is the next address from the branch instruction.
Thus, in this example, the address stored in GPR r3 points
to the parent list element location 818 shown in FIG. 8 and
located at column 5, row X. The next instruction, in memory
location at column 5, row A moves the contents of GPR r5
into the link register. The next instruction in the list insertion
segment 900 is a branch instruction be+116 (col. 6, row A).
This instruction causes execution to advance 116 bytes
forward to continue with the first instruction of the next
segment of this strand (col. 1, row B), the load/store segment
1000.

[0064] Continuing with the example of FIG. 12, the first
instruction in the load/store segment 1000 (column 1, row B)
is a load word and reserve indexed or “Iwarx” instruction
that, in this example, loads the word (i.e. the content) from
the location in storage specified by the address stored in
GPR r4 (parent list element location 818, column 5, row X)
into the target GPR r5. The initial value of the parent list
element location 818 is zero. In addition, a reservation on the
memory location (parent list element location 818, column
5, row X) is created for use by a subsequent store word
conditional indexed (“stwcx”) instruction. The next instruc-
tion at column 2, row B is a store word (“stw”) instruction
that, in this example, stores the contents of GPR 5 (currently
holding the contents of memory location at column 5, row
X, the parent list element location 818) at the memory
location addressed by the content of GPR r3 (the address of

Jun. 27,2019

the child list element location 914, column 3, row A). This
effectively moves the content of the parent list element
location 818 (column 5, row X) to the child list element
location 914 (column 3, row A). The next instruction at
column 3, row B “Iwsync/sync” provides an ordering func-
tion that ensures completion of all storage instructions
initiated prior to the Iwsync/sync, and that no subsequent
instructions initiate until after the lwsync/sync instruction
completes. When the lwsync/sync instruction completes, all
storage accesses initiated prior to the sync instruction are
complete. The next instruction at column 4, row B is the
stwex instruction that complements the previous Iwarx
instruction. If the reservation created by a lwarx instruction
exists, the content of GPR r3 is stored into the memory
location in storage addressed by the address stored in GPR
r4 and the reservation is cleared. Otherwise, the storage is
not altered. If the store is performed, the use of the stwex and
Iwarx instructions ensures that no other processor, process,
or mechanism has modified the target memory location
between the time the Iwarx instruction is executed and the
time the stwcx instruction completes. The next instruction at
column 5, row b is a branch instruction, bne, that determines
whether the reservation created by the lwarx instruction is
lost and the store not performed. If the store is not per-
formed, e.g. because another processor attempted to write at
the parent list element location 818 between the execution of
the lwarx instruction and the completion of the stwex
instruction, then the branch instruction executes a loop that
restarts the load/store segment 1000 and re-executes the
Iwarx instruction in column 1, row B. If, however, the
reservation exists and the store is completed, the next
instruction (column 6, row B) causes execution to advance
116 bytes forward to continue with the first instruction of the
next segment of this strand (col. 1, row C), the checking
segment 1100.

[0065] Continuing with the example of FIG. 12, the first
instruction in the checking segment 1100 (column 1, row C
is an add immediate “addi” instruction that places a high
value, in this case Ox71ff) into a general purpose register, in
this case GPR r3. This instruction initializes a counter to a
high value, which may be any arbitrary value. Preferably, the
value is larger than the length of the linked list that is
inserted using the list insertion and load/store segments so
that the counter will not hit zero before the checking
segment loops to reach the first element in the linked list.
The next instruction (column 2, row C) is another addi
instruction that adds a value of -1 to the counter value in the
general purpose register. This, in effect, decrements the
counter by a value of one. The next instruction (column 3,
row D) is a trap word equal immediate “tweqi” instruction
that generates a trap-type program interrupt if the value in
GPR 13 is equal to zero. GPR r3 contains the counter
initialized by the first instruction in the checking segment
(column 1, row C). Therefore, in this example, the instruc-
tion will generate a trap-type program interrupt if the
checking segment loops enough times for the counter to
decrement to zero. The next instruction (column 4, row C)
is a load word and zero “Iwz” instruction that loads the
content of the memory location whose effective address is
stored in GPR r4 and stores that content into GPR r4. As
noted above, after the load/store segment 1000 is executed,
GPR r4 contains the address of the parent list element
location 818 which, in turn, contains the address of the child
list element location 914. Thus, after the execution of the

US 2019/0198132 Al

Iwz instruction, GPR r4 will include the address of the child
list element location 914. As the checking segment 1100
loops, the content of GPR r4 should eventually reach 0, the
initial value of the parent list element location 818. The next
instruction (column 5, row C) is a compare immediate
“cmpwi” instruction that compares specified values and sets
a conditional register when the value in GPR r4 is not greater
than 0. Since the initial value of the parent list item is 0, the
conditional register is set when the beginning of the linked
list is reached (and GPR r4 is equal to 0). The next
instruction (column 6, row C) checks the conditional register
and loops the changing segment 1100 if the conditional
register is not set. Otherwise, execution continues with the
next instruction (column 7, row C) which branches to the
beginning of the next test code segment, which may be the
beginning of another test case.

[0066] FIG. 13 illustrates another view of a portion of
memory 1300 used for stress tests as described herein. FIG.
13 includes the same or similar strand of memory 700 shown
in FIG. 7 where the strand is arranged as a single block. In
FIG. 13, the strand of memory 700 has been modified to
include list insertion test segments to stress test memory.
The list insertion scenarios are added to the test cases in the
strand of memory 700 by adding list insertion test segments
126. The list insertion test segments 126A include a list
insertion segment 900A and a load/store segment 1000A.
The list insertion test segments 1268 include a list insertion
segment 900B, a load/store segment 1000B, and a checking
segment 1100B. A fixed segment 800 may be located at a
suitable known location in memory and maybe outside the
strand of memory 700. The same list insertion segment
900A, 900B and load/store segment 1000A, 1000B may be
used by multiple different test cases. The checking segment
1100B may be optionally added along with the list insertion
and load/store segments. The list insertion segment 900A,
900B and the load/store segment 1000A, 1000B and the
checking segment 1100B are described further above in
reference to FIGS. 9, 10, and 11. In this example, there are
two list insertion segments 900A, 900B and load/store
segments 1000A, 1000B and one checking segment 1100B.
The execution of fixed segment 800, list insertion segments
900A and 900B, and load/store segments 1000A and 1000B
mirrors that described above in reference to FIG. 12.

[0067] Referring to FIG. 14, a method 1400 shows one
suitable example for an example of stress testing the list
insertion in a processor memory cache using segments with
non-naturally aligned data boundaries. Portions of method
1400 are preferably performed by the test case generator 123
shown in FIG. 1 and the test case executor 214 shown in
FIG. 2. First, provide test code for testing a memory in a
strand of non-consecutive memory segments with non-
naturally aligned data boundaries (step 1410). Next, place a
plurality of list insertion test segments interspersed into the
test code segments (step 1420). Execute the test code with
the interspersed list insertion segments and load/store seg-
ments to load data into registers using a fixed segment at
known location (step 1430). Optionally, the inserted linked
list is checked to ensure that the list insertion test segments
126 executed properly (step 1440). Method 1400 is then
done.

[0068] FIG. 15A shows one suitable example of a method
1500 for loading and storing data into registers and memory
words using a list insertion segment, a load/store segment,
and a fixed segment at a known location. Method 1500 thus

Jun. 27,2019

shows a suitable method for performing step 1430 in method
1400 in FIG. 14. FIG. 15A describes an example embodi-
ment of' a method using the list insertion and fixed segments.
First, store an address in a link register of a computer
processor into a general purpose register (step 1505) that
corresponds to a child list element location, for example
memory location 914. Branch to a fixed segment at a known
location in memory and store an address of the child list
element location into one of a plurality of general purpose
registers (step 1510). Calculate an address to a return
memory location in the list insertion segment consecutive to
the list element location (step 1515), for example memory
location 916. Branch to the return memory location in the
list insertion segment and store the an address of a parent list
element location, for example memory location 818, into a
general purpose register (step 1520). The method 1500 then
continues to A on FIG. 15B.

[0069] FIG. 15B continues method 1500 from FIG. 15A
and describes an example embodiment of a method using the
load/store segment. Load from memory a list element stored
in a parent list element location (step 1525), for example
memory location 818. Store the parent list element into one
of a plurality of general purpose registers (step 1530).
Prohibit write access to the parent list element location (step
1535). Store the parent list element into the child list element
location (step 1540). Determine whether another process
attempts to write to the parent list element location (step
1545). If another process has attempted to write to the parent
list element location (step 1545: Yes), return to step 1525
and proceed through the method 1500 starting with that step.
It no process has attempted to write to the parent list element
location (step 1545: No), store the address pointing to the
child list location into the parent list element location (step
1550). Method 1500 is then done. One of ordinary skill will
understand that this method may be repeated multiple times.
Assuming the the parent list element location initially con-
tains a value of 0, after the first iteration of method 1500, the
parent list element location will contain the address of the
child list element location and the child list element location
will contain 0. After a second iteration in which a second
child list element is introduced, the parent list element
location will contain an address of a child list element
location which will contain the address of the first child list
element location which will contain O.

[0070] FIG. 16 shows one suitable example of a method
1600 for checking the execution of list insertion segment
900 and load/store segment 1000. Method 1600 thus shows
a suitable method for performing optional step 1440 in
method 1400 in FIG. 14. Initialize a counter (step 1605), for
example, by storing a high value into a general purpose
register. Decrement the counter (step 1610), for example, by
subtracting a value of one from the value stored in the
general purpose register. Determine whether counter is at
zero (step 1615). If counter is at zero (step 1615: Yes), send
an interrupt to an interrupt handler (step 1620). Any suitable
method of exiting the method/process may be used and one
of ordinary skill may understand that any number of other
mechanisms may be used to prevent an endless loop. In this
example, a high value counter decremented to zero is used.
[0071] Continuing with the method of FIG. 16, if the
counter is not at zero, or has not been decremented to zero,
(step 1615: No), load the content at the parent memory
location stored in the general purpose register at step 1520
of FIG. 15A, described above and store the content in the

US 2019/0198132 Al

same general purpose register (step 1625). As an example of
step 1625, refer to the example of FIG. 12: the Iwz instruc-
tion loads the content at the address stored in GPR r4, which
is the address of parent list element location (column 6, row
X; parent list element location 818 of FIG. 8). Parent list
element location contains an address of child list element
location (column 3, row A; child list element location 914 of
FIG. 9). Thus, the result of the Iwz instruction is that the
address of the child list element is inserted into GPR r4.
Determine whether the content of GPR r4 is greater than
zero. If the content is greater than zero (step 1630: Yes), the
method 1600 loops steps 1610-1625. As the checking seg-
ment loops, the content of GPR r4 eventually reaches the
first element of the list, which is the initial value of 0. When
this happens, the content of GPR r4 is not greater than zero
(step 1630: No), and the method 1600 is done.

[0072] The disclosure and claims herein relate to a system
and method for stress testing a memory using list insertion
test segments with non-naturally aligned data boundaries.
List insertion test segments are interspersed into test code of
a processor memory tests to insert list elements of a linked
list into processor memory.

[0073] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0074] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0075] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions

Jun. 27,2019

from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0076] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0077] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0078] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0079] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which

US 2019/0198132 Al

execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0080] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that
each block of the block diagrams and/or flowchart illustra-
tion, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts or carry out combinations of special
purpose hardware and computer instructions.

[0081] Moreover, a system according to various embodi-
ments may include a processor and logic integrated with
and/or executable by the processor, the logic being config-
ured to perform one or more of the process steps recited
herein. By integrated with, what is meant is that the pro-
cessor has logic embedded therewith as hardware logic, such
as an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), etc. By executable by the
processor, what is meant is that the logic is hardware logic;
software logic such as firmware, part of an operating system,
part of an application program; etc., or some combination of
hardware and software logic that is accessible by the pro-
cessor and configured to cause the processor to perform
some functionality upon execution by the processor. Soft-
ware logic may be stored on local and/or remote memory of
any memory type, as known in the art. Any processor known
in the art may be used, such as a software processor module
and/or a hardware processor such as an ASIC, a FPGA, a
central processing unit (CPU), an integrated circuit (IC), a
graphics processing unit (GPU), etc.

[0082] It will be clear that the various features of the
foregoing systems and/or methodologies may be combined
in any way, creating a plurality of combinations from the
descriptions presented above.

[0083] It will be further appreciated that embodiments of
the present invention may be provided in the form of a
service deployed on behalf of a customer to offer service on
demand.

[0084] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Jun. 27,2019

1. An apparatus for testing a computer processor having
a plurality of registers comprising:

a test case generator that creates test cases with test code

for testing the computer processor;

a test case executor that replicates the test code and loads
the test code into non-naturally aligned segments of
consecutive memory locations on the computer proces-
sor;

a load-store unit that loads and stores data in the memory
locations and loads and stores data in the plurality of
registers;

wherein the test case executor further adds one or more
list insertion test segments, wherein each list insertion
test segment comprises a list insertion segment and a
load/store segment, the one or more list insertion test
segments interspersed in the test code in non-naturally
aligned segments that insert a list element into at least
one of a plurality of list element locations using a fixed
segment stored at a fixed location on the computer
processor.

2. The apparatus of claim 1, wherein the list insertion
segment includes one or more instructions that, when
executed, branch to a fixed data segment which determines
a first list element location where a list element is to be
inserted; and the load/store segment performs a memory
read/write operation to insert the list element into the list
memory location.

3. The apparatus of claim 2, wherein the first list element
location is in the list insertion segment.

4. The apparatus of claim 3, wherein a second list element
location is in the fixed segment.

5. The apparatus of claim 4, wherein the load/store unit
includes instructions that, when executed, load a list element
stored in the second list element location and stores it in the
first list element location.

6. The apparatus of claim 1, wherein the fixed segment is
located outside the test code at a known location in memory.

7. The apparatus of claim 1, wherein the list insertion test
segment further comprises a checking segment.

8. The apparatus of claim 7, wherein the checking seg-
ment includes one or more instructions that, when executed,
check each list element inserted into memory.

9. A computer-implemented method executed by at least
one processor for testing a computer processor comprising:

providing test code in a plurality of segments with non-
naturally aligned boundaries;

interspersing a plurality of list insertion test segments
with non-naturally aligned boundaries into the test code
segments; and

executing the test code with the interspersed list insertion
test segments to insert a list element into at least one of
a plurality of list element locations using a fixed
segment stored at a fixed location on the computer
processor.

10. The method of claim 9, wherein the step of interspers-
ing a plurality of list insertion test segments that are non-
naturally aligned into the test code segments further com-
prises:

providing a plurality of list insertion segments;

providing a plurality of load/store segments; and

wherein each list insertion segment branches to a fixed
segment that determines a first list element location and
includes a second list element location, and

US 2019/0198132 Al

wherein each load/store segment loads a list element
stored in the second list element location and stores the
list element in the first list element location.

11. The method of claim 10, further comprising deter-
mining the first list element location by:

storing an address to a next consecutive memory location

contained in a link register of the computer processor
into one of a plurality of general purpose registers of
the computer processor;

branching to the fixed segment and storing an address to

the first list element location contained in the link
register into a second of the plurality of general purpose
registers;
calculating an address to a return memory location con-
secutive to the first list element location and storing the
return memory location to the link register; and

branching to the return memory location and restoring the
address to the next consecutive memory location to the
link register.
12. The method of claim 11, further comprising inserting
the list element in the first list element location by:
loading from memory a list element stored in the second
list element location and storing the list element into
one of the plurality of general purpose registers;

storing the list element into the first list element location;
and

storing the address to the first list element location into the

second list element location.

13. The method of claim 12, further comprising, after
storing the list element into one of the plurality of general
purpose registers, prohibiting write access to the second list
element location.

14. The method of claim 13, further comprising:

determining whether another process attempts to write to

the second list element location after write access has
been prohibited;
if another process has attempted to write the list element
after write access has been prohibited, performing the
steps of loading from memory the list element, prohib-
iting write access to the second list element location,
and determining whether another process attempts to
write to the second list element location until no
process attempts to write to the second list element
location after write access has been prohibited; and

before storing the address to the first list element location
into the second list element location, enabling write
access to the second list element location.

15. The method of claim 9, further comprising providing
at least one checking segment.

16. The method of claim 15, further comprising succes-
sively checking each list element inserted into memory to
confirm that the list insertion segment and load/store seg-
ments executed correctly.

17. The method of claim 9, wherein the fixed segment is
located outside the test code and used by a plurality of test
cases.

18. The method of claim 9, wherein non-naturally aligned
means ends of the segments when placed end-to-end with
another segment do not fall on a natural boundary that is a
number of the form 2”.

19. A computer-implemented method executed by at least
one processor for testing a computer processor comprising:

providing test code in a plurality of segments with non-

naturally aligned boundaries;

Jun. 27,2019

interspersing a plurality of list insertion test segments that
have non-naturally aligned boundaries into the test
code segments comprising:
providing a plurality of list insertion segments;
providing a plurality of load/store segments; and
wherein each list insertion segment branches to a fixed
segment that determines a first list element location
and that includes a second list element location, and
wherein each load/store segment that loads a list ele-
ment stored in the second list element location,
stores the list element in the first list element loca-
tion; and
executing the test code with the interspersed list insertion
test segments to insert a list element into at least one of
a plurality of list element locations using a fixed
segment stored at a fixed location on the computer
processor.
determining the second list element location by:
storing an address to a next consecutive memory loca-
tion contained in a link register of the computer
processor into one of a plurality of general purpose
registers of the computer processor;
branching to the fixed segment and storing an address
to the first list element location contained in the link
register into a second of the plurality of general
purpose registers;
calculating an address to a return memory location
consecutive to the first list element location and
storing the return memory location to the link reg-
ister; and
branching to the return memory location, wherein after
branching the link register contains an address a
second list element location;
storing the address of the second list element location
into the second of the plurality of general purpose
register; and
restoring the address to the next consecutive memory
location to the link register.
20. The method of claim 19, further comprising:
loading from memory a list element stored in the second
list element location and storing the list element into
one of the plurality of general purpose registers;
storing the list element into the first list element location,
wherein the list element is equal to zero;
prohibiting write access to the second list element loca-
tion;
determining whether another process attempts to write to
the second list element location after write access has
been prohibited;
if another process has attempted to write to the list
element after write access has been prohibited, per-
forming the steps of loading from memory the list
element, prohibiting write access to the second list
element location, and determining whether another
process attempts to write to the second list element
location until no process attempts to write to the first
list element location after write access has been pro-
hibited; and
if no process has attempted to write to the second list
element location after write access has been prohibited,
enabling write access to the second list element loca-
tion;
storing the address to the first list element location into the
second list element location;

US 2019/0198132 Al Jun. 27,2019
13

initializing a counter at a high value;

decrementing the counter;

on a condition that the counter does not equal zero,
retrieving data from a memory location, wherein an
address for the memory location is stored in the second
of the plurality of general purpose registers and storing
the data in the second of the plurality of general
purpose registers;

determining whether the data in the second of the plurality
of general purpose registers greater than zero;

repeating the decrementing, retrieving, and determining
steps until either
the data in the second of the plurality of general

purpose registers is not greater than zero, or;

the counter equals equal zero; and

on a condition the counter equals zero, sending an inter-
rupt to an interrupt handler,

wherein test code with the non-naturally aligned segments
have seven words of test code comprising one single
word sub-segment, one double word sub-segment and
one quad word sub-segment, wherein non-naturally
aligned means ends of the segments when placed
end-to-end with another segment do not fall on a
natural boundary that is a number of the form 2.

#* #* #* #* #*

