
US 20210232586A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0232586 A1

Leu et al . (43) Pub . Date : Jul . 29 , 2021

Publication Classification (54) TABLE PLACEMENT IN DISTRIBUTED
DATABASES

(71) Applicant : SAP SE , Walldorf (DE)

(72) Inventors : Hans - Joerg Leu , Dossenheim (DE) ;
Christian Bensberg , Heidelberg (DE) ;
Johannes Beigel , Rauenberg (DE) ;
Jochen Becker , Haseluenne (DE) ;
Carsten Mueller , Bruchsal (DE)

(51) Int . Ci .
G06F 16/2455 (2006.01)
G06F 16/27 (2006.01)
G06F 16/23 (2006.01)

(52) U.S. CI .
CPC G06F 16/24554 (2019.01) ; G06F 16/2365

(2019.01) ; GO6F 16/27 (2019.01)
(57) ABSTRACT

(21) Appl . No .: 17 / 207,512

(22) Filed : Mar. 19 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 245,520 , filed on

Jan. 11 , 2019 , now Pat . No. 10,984,002 , which is a
continuation of application No. 15 / 160,771 , filed on
May 20 , 2016 , now Pat . No. 10,223,420 , which is a
continuation of application No. 14 / 090,799 , filed on
Nov. 26 , 2013 , now Pat . No. 9,372,907 .

A node type of a plurality of distributed nodes to which a
table to be added to a distributed database should be
assigned can be identified by applying a set of placement
rules defined for the table . The set of placement rules can
also be applied to determine whether the table should be
partitioned into more than one partition . A table group name
associated with the table can be obtained and used in
conjunction with the node type and determination of
whether to partition the table to store the table in the
distributed database on at least one node of the plurality of
nodes as one or more partitions .

700

702
COLLECT INFORMATION ABOUT DISTRIBUTED DATABASE INCLUDING TABLE
CLASSIFICATION INFORMATION , TABLE PLACEMENT RULES , DATABASE

LANDSCAPE MAKEUP AND HARDWARE CONSTRAINTS .

704 ANALYSE TABLE CLASSIFICATION INFORMATION FOR TABLE GROUPING
REQUIREMENTS AND PROPOSE REDISTRIBUTION ACTIVITIES .

706 ANALYSE TABLE PLACEMENT RULES FOR LOCATION OR TABLE PARTITIONING
REQUIREMENTS AND PROPOSE REDISTRIBUTION ACTIVITIES .

708 ANALYSE DATABASE LANDSCAPE MAKEUP AND HARDWARE CONSTRAINTS AND
PROPOSE RE - DISTRIBUTION ACTIVITIES .

710 CONSIDER ALL PROPOSE RE - DISTRIBUTION ACTIVITIES TOGETHER AND
PROPOSE CONSOLIDATED TABLE REDISTRIBUTION PLAN TO USER ,

REQUESTING PERMISSION TO EXECUTE .

712 IF ACCEPTED . EXECUTE TABLE REDISTRIBUTION PLAN .

100

Node 1

Patent Application Publication

102

Node 2

104

Node 3

106

A

B

GIH

DELE

HT

?

T1 T2

Jul . 29 , 2021 Sheet 1 of 9

Node 1 '

103

Node 2 '

105

Node 3

107

C

ADH

BEIG

FO

Sie

.

wereld
1

112 Application Server

US 2021/0232586 A1

FIG . 1

200

Patent Application Publication

Node 4

202

Node 5

204

Node 6

206

222

224

226

X X X

Jp1 JP2 Jp3

XX
X

T1 Tz

Jul . 29 , 2021 Sheet 2 of 9

Node 4

203

Node 5 '

205

Node 6 '

207

Jp1 X

Jp2

XIX

Jp3

X

223

225

he

227

her

112 Application Server

US 2021/0232586 A1

FIG . 2

300

305

310

320

330

340

Table Name

Schema Name

Group Type (GROUP_TYPE)

Subtype (SUBTYPE)

Group Name (GROUP_NAME)

Patent Application Publication

SCHEMA1

/ BIC / Table 1

ACTIVE

ZFIGL

SCHEMA1

/ BIC / Table2

QUEUE

SCHEMA1

GROUP

CHANGE LOG

350

Jul . 29 , 2021 Sheet 3 of 9

CREATE TABLE

GROUP TYPE < TYPE > GROUP SUBTYPE < SUBTYPE > GROUP NAME < NAME >

360

ALTER TABLE ALTER TABLE

SET GROUP TYPE < TYPE > GROUP SUBTYPE < SUBTYPE > GROUP NAME < NAME > UNSET GROUP TYPE < TYPE > GROUP SUBTYPE < SUBTYPE > GROUP NAME < NAME >

US 2021/0232586 A1

FIG . 3

400

305

310

320

330

340

422

424

426

428

Schema Name

Location

Table Name

Subtype
Group Type

Group Name

Partitioning Threshold
Initial Partitions
Re partitioning Threshold

Patent Application Publication

SCHEMA1

GROUP

slaves

40 million

3

40 million

/ BIC / Table
1

SCHEMA1

master

1

1

/ BIC Table
2

ERPRE
BIC / Table

All

ERP_RE

slaves

60 million

3

40 million

4

Jul . 29 , 2021 Sheet 4 of 9

412

414

US 2021/0232586 A1

FIG . 4

500

502

CHECK IF TABLE REACHED MAXIMUM RECORD THRESHOLD FOR PARTITIONING

Patent Application Publication

504
-

IF YES , PARTITION TABLE INTO PREDEFINED NUMBER OF PARTITIONS .

506

PLACE PARTITIONS ONTO NODES OF PREDEFINED SERVER TYPE .

508

CHECK IF PARTITIONED TABLES REACHED MAXIMUM RECORD
THRESHOLD FOR RE - PARTITIONING .

Jul . 29 , 2021 Sheet 5 of 9

510

IF YES , CHECK THAT DOUBLE THE CURRENT NODE COUNT ARE
AVAILABLE .

512

IF YES , REPARTITION TABLE PARTITIONS AND PLACE ONTO TWICE AS MANY NODES OF PREDEFINED SERVER TYPE .

US 2021/0232586 A1

FIG . 5

600

Patent Application Publication

602

DETERMINE THAT REDISTRIBUTION OF TABLES IS REQUIRED IN
DISTRIBUTED IN - MEMORY DATABASE COMPRISING PLURALITY OF TABLES LOCATED ON PLURALITY OF DISTRIBUTED NODES .

604

GENERATE TABLE REDISTRIBUTION PLAN BASED ON SET OF TABLE REDISTRIBUTION PARAMETERS COMPRISING GROUPING PARAMETER INDICATING OTHER TABLE (S) WITH WHICH TABLE SHOULD BE COLLOCATED .

Jul . 29 , 2021 Sheet 6 of 9

606

EXECUTE TABLE REDISTRIBUTION PLAN BY MOVING TABLE FROM FIRST NODE OF PLURALITY OF DISTRIBUTED NODES TO SECOND NODE OF PLURALITY OF DISTRIBUTED NODES .

US 2021/0232586 A1

FIG . 6

700

702

COLLECT INFORMATION ABOUT DISTRIBUTED DATABASE INCLUDING TABLE CLASSIFICATION INFORMATION , TABLE PLACEMENT RULES , DATABASE LANDSCAPE MAKEUP AND HARDWARE CONSTRAINTS .

Patent Application Publication

704

ANALYSE TABLE CLASSIFICATION INFORMATION FOR TABLE GROUPING REQUIREMENTS AND PROPOSE REDISTRIBUTION ACTIVITIES .

706

ANALYSE TABLE PLACEMENT RULES FOR LOCATION OR TABLE PARTITIONING REQUIREMENTS AND PROPOSE REDISTRIBUTION ACTIVITIES .

708

ANALYSE DATABASE LANDSCAPE MAKEUP AND HARDWARE CONSTRAINTS AND PROPOSE RE - DISTRIBUTION ACTIVITIES .

Jul . 29 , 2021 Sheet 7 of 9

710

CONSIDER ALL PROPOSE RE - DISTRIBUTION ACTIVITIES TOGETHER AND
PROPOSE CONSOLIDATED TABLE REDISTRIBUTION PLAN TO USER , REQUESTING PERMISSION TO EXECUTE .

712

IF ACCEPTED , EXECUTE TABLE REDISTRIBUTION PLAN .

US 2021/0232586 A1

FIG . 7

800

Patent Application Publication

802

IDENTIFY NODE TYPE OF DISTRIBUTED NODES TO WHICH TABLE TO BE ADDED TO DISTRIBUTED DATABASE SHOULD BE ASSIGNED , INCLUDING APPLYING SET OF PLACEMENT RULES DEFINED FOR TABLE ,

804

DETERMINE WHETHER TABLE SHOULD BE PARTITIONED INTO MORE THAN ONE PARTITION BY APPLYING SET OF PLACEMENT RULES .

806

OBTAIN TABLE GROUP NAME ASSOCIATED WITH TABLE .

Jul . 29 , 2021 Sheet 8 of 9

810

STORE TABLE IN DISTRIBUTED DATABASE ON AT LEAST ONE NODE AS ONE OR MORE PARTITIONS ACCORDING TO IDENTIFYING , DETERMINING , AND OBTAINING .

US 2021/0232586 A1

FIG . 8

900

CLIENTS
906

910

902

Patent Application Publication

CONNECTION AND SESSION MANAGEMENT

SESSION PARAMETERS
904

920

932

934

936

REQUEST PARSER
SQL SCRIPT

MDX

PLANNING ENGINE

TRANS ACTION MANAGER
REQUEST PROCESSING & EXECUTION CONTROL 916

CALCULATION ENGINE
938

AUTHORIZATION MANAGER
954

OPTIMIZER

926

EXECUTION LAYER

930

922

IN - MEMORY RELATIONAL ENGINES

940

Jul . 29 , 2021 Sheet 9 of 9

METADATA MANAGER

ROW STORE
942

COLUMN STORE
944

DISK STORE
946

OBJ . STORE
924

TEMP . RESULTS

912

959
914

PAGE MANAGEMENT

PERSISTENCE LAYER

LOGGER

DATA VOL .

DISK STORAGE

950 (TRANS , LOG

US 2021/0232586 A1

FIG . 9

US 2021/0232586 A1 Jul . 29 , 2021
1

TABLE PLACEMENT IN DISTRIBUTED
DATABASES

TECHNICAL FIELD

[0001] The subject matter described herein relates gener
ally to database management , and specifically to balancing
resource use in a distributed database .

BACKGROUND
[0002] Many organizations make use of software applica
tions to optimize business operations by analyzing large
amounts of data in real time . Such applications need to be
extremely efficient , and need to be able to provide analyses
on very large relational databases having information stored
in tables in a distributed manner on multiple nodes . A node
may be a server or a virtual server , and nodes may be
connected via a computing bus , a local area network (LAN) ,
a wide area network (WAN) , a storage area network (SAN) ,
the Internet , or the like . These nodes may reside in the same
location , or they may be stored in remote locations . When an
application runs a query on the database , it may need to
access data from more than one database table . As a part of
running the query , database tables may need to be joined . If
the tables to be joined do not reside on the same node , one
or more of these tables would need to be sent over the
network so that the can be performed on a single node . The
transferring of data between nodes to join tables can be very
taxing and can create a bottleneck for the whole procedure ,
especially for joins requiring large amounts of data to be
transferred .

together with the description , help explain some of the
principles associated with the disclosed implementations . In
the drawings ,
[0007] FIG . 1 shows a diagram illustrating table redistri
bution between nodes of a distributed database ;
[0008] FIG . 2 shows a diagram illustrating table redistri
bution implementing an aspect of table placement rules in
which table and table partitions are distributed between
nodes of a distributed relational database ;
[0009] FIG . 3 shows a sample table of table classification
information for database tables of a distributed relational
database ;
[0010] FIG . 4 shows a sample table of table placement
rules for database tables of a distributed relational database ;
[0011] FIG . 5 and FIG . 6 show a process flow diagrams
illustrating features of table placement methods in a distrib
uted database ;
[0012] FIG . 7 and FIG . 8 show process flow diagrams
illustrating features of methods for redistributing database
tables in a distributed database ; and
[0013] FIG . 9 shows a block diagram of an in - memory
relational database server .
[0014] When practical , similar reference numbers denote
similar structures , features , or elements .

DETAILED DESCRIPTION

SUMMARY

or

[0003] In some aspects of the current subject matter ,
computer - implemented methods can include features relat
ing to placement of tables or table partitions in a distributed
database in which tables or table partitions are stored on
multiple computing nodes . A set of placement rules defined
for the table can be applied to determine whether the table
should be partitioned into more than one partition , a node
type onto which the table or table partition should be stored ,
and a table group name to store the table or table partition
in an optimal manner within the distributed database .
[0004] Also described are articles (also referred to as
computer program products) that comprise a tangibly
embodied (e.g. non - transitory) machine - readable medium
operable to cause one or more machines (e.g. , computers ,
etc.) to result in operations described herein . Similarly ,
computer systems are also described that may include com
puter circuitry , such as for example a processor and a
memory coupled to the processor . The memory may include
one or more programs that cause the processor to perform
one or more of the operations described herein .
[0005] The details of one or more variations of the subject
matter described herein are set forth in the accompanying
drawings and the description below . Other features and
advantages of the subject matter described herein will be
apparent from the description and drawings , and from the
claims .

[0015] Storage of very large amounts of data within a
database typically involves a distributed relational approach
across multiple nodes . Data are stored in database tables ,
and these tables may be distributed amongst multiple nodes .
Depending on their size , certain tables may be partitioned ,
and such a table may be distributed amongst a number of
nodes . Criteria for determining the nodes and the approach
for distributing database tables and database table partitions
may include query performance , physical hardware resource
constraints , and the like .
[0016] For example , when an application performs queries
requiring data from multiple database tables , the query joins
the tables , or parts of these tables , before any aggregation ,

her activities can be performed . If the tables do not
reside on the same node , the tables (or relevant parts thereof)
that reside on remote nodes need to be transported across the
network . Since the amount of data may be very large , this
transferring of an entire table , or parts thereof , typically
slows down execution time of the query . If the tables
required by a query were on the same node , joining and
aggregating the data on one node can be completed with
significant query performance improvements .
[0017] FIG . 1 shows a diagram illustrating table redistri
bution between nodes of a distributed relational database
100 , consistent with implementations of the current subject
matter . First , second , and third nodes (Node 1 , Node 2 , and
Node 3 , respectively) 102 , 104 , 106 , are nodes of the
distributed database 100 , before table redistribution at time
T1 . The first node 102 contains database tables A , B and C.
The second node 104 and the third node 106 contain
database tables D , E , F and G , H , I , respectively . After table
redistribution , e.g. at time T2 , the contents of the nodes are
redistributed as shown in the first node (Node 1 ') 103 ,
second node (Node 2 ') 105 , and third node (Node 3 ') 107. An
application server 112 is shown communicating with the
first , second , and third nodes 102 , 104 , 106 before table
redistribution at time T1 , and with these same nodes 103 ,
105 , 107 after table redistribution at time T2 .

DESCRIPTION OF DRAWINGS
[0006] The accompanying drawings , which are incorpo
rated in and constitute a part of this specification , show
certain aspects of the subject matter disclosed herein and ,

US 2021/0232586 A1 Jul . 29 , 2021
2

[0018] A user within an organization may want to run a
query to analyze data related to business intelligence , or for
other purposes . Such a query can be executed by the
application server 112. This first query involves the aggre
gation and analysis of data residing in tables A , D and H.
Before table redistribution at time T1 , the application server
112 needs to communicate with node 102 for table A , node
104 for table D and node 106 for table H , and tables A , D
and H need to be joined before performing the query on
these tables . In order to be able to join tables A , D and H ,
the tables , or results sets from within the tables , need to be
moved across the network and reside temporarily at the
same location , which could be on one of the nodes , or a
storage or memory location . Database tables A - I may be
very large , and transferring such tables over a network , may
take an unacceptably long amount of time . Even a few
seconds delay can typically result in a negative end user
experience , and delays of many seconds or minutes are
generally unacceptable , in particular in high - performance
in - memory database systems in which transfer of large
tables between nodes can readily become the key perfor
mance bottleneck . As such , minimizing or removing this
bottleneck can result in significant improvements of effi
ciency and perceived performance when making database
queries .
[0019] After table redistribution , e.g. at time T2 , tables D
and H have been redistributed onto Node 1 ' 103 , while table
A remains on Node 1 ' 103 having not been moved . In this
example , if the application server needs to implement a
query requiring tables A , D , and H , there would be no need
to transfer any tables to join them , since they already reside
on Node 1 ' 103. As such , the query requiring tables A , D and
H would run much more efficient and quickly than prior to
redistribution . A similar description applies to an example
query requiring data from tables B , E and G , as well as to an
example query requiring data from tables C , F and I. This
example is merely illustrative . Other numbers of nodes and
tables within nodes are within the scope of the current
subject matter . Additionally the number of tables required
for a query may vary . This example shows the redistribution
of entire tables . However , in other implementations of the
current subject matter , parts of tables can be distributed onto
different nodes .
[0020] FIG . 2 shows a diagram illustrating table redistri
bution implementing an aspect of table placement rules in
which table and table partitions are distributed between
nodes of a distributed relational database 200 , consistent
with implementations of the current subject matter . In this
example , a database table that initially resides on one node
is partitioned into three parts , and distributed onto three
nodes . Table placement rules , which are described later in
reference to FIG . 4 , can define how the table is partitioned
and where the partitions need to be located . Table redistri
bution , when applied , can redistribute tables and table
partitions onto nodes using table classifications (described
below in reference to FIG . 3) , table placement rules , physi
cal hardware constraints of the nodes , etc. The distributed
database 200 shown in FIG . 2 is similar to the distributed
database 100 of FIG . 1 , and Nodes 4 , 5 and 6 (respectively
labeled 202 , 204 and 206 in FIG . 2) and Nodes 4 ' , 5 ' and 6
(respectively labeled 203 , 205 and 207 in FIG . 2) illustrate
a similar before and after table redistribution as in FIG . 1 .
Node 5 204 contains a table J 224 , which can be divided into
three partitions Jp1 , Jp2 , and Jp3 . Node 4 202 and Node 6

206 each contain three tables (“ X ”) labeled 222 and 226 ,
whose actual contents are less relevant in this example . At
time T2 , after implementation of table redistribution table
placement rules consistent with implementations of the
current subject matter , the three partitions Jp1 , Jp2 , and Jp3
are redistributed onto Node 4 ' 203 , Node 5 ' 205 , and Node
6 206 .
[0021] FIG . 3 shows a sample table of table classification
information 300 for database tables of a distributed rela
tional database , consistent with implementations of the
current subject matter . Table classification information 300
is used to define the relationship between tables such that
query performance considerations and / or other criteria ,
parameters , etc. , are taken into account . Either or both of
table placement rules and table redistribution procedures
consistent with implementations of the current subject mat
ter can optionally use table classification information , as is
explained below in reference to FIG . 4 and FIG . 5. Table
classification information 300 can include metadata describ
ing a database table .
[0022] In some cases , a single database table is not the sole
storage location for data used or otherwise accessed by a
particular application , but is instead closely related to other
tables that are also associated with that application . Table
classification functionality can allow table redistribution or
table placement rules to recognize similar or associated
database tables , thereby allowing table redistribution to
optimally distribute database tables based at least in part on
their database table classification , to different nodes in a
distributed database . In this manner , database tables that are
regularly joined can be stored on a same node instead of
being stored on separate nodes . Such an approach can avoid
or at least reduce the need for a table , or parts of a table to
be transferred between nodes (e.g. across a network con
nection) when SQL join statements or other operations
required for responding to a query are executed . Instead ,
database tables that are stored on the same node can join
locally , which results in significant query performance
improvements .
[0023] FIG . 3 illustrates an imple listing of table clas
sification information 300 for three database tables within a
given database schema name 305 in this example ,
“ SCHEMA1 ”) . For each table having a respective table
name 310 , the table classification information 300 can
include a group type 320 , a subtype 330 , and / or a group
name 340. For example , the table classification information
300 for the database tables of a specific application object
are classified as the group type 320 GROUP1 , and with
ZFIGL as the group name 340. All of the tables in this
example have the group type 320 GROUP1 and are there
fore identified as tables of the application object . The
subtype 330 can differ depending on the use of each of the
individual tables . The table classification information 300
can be used as discussed below in association with table
placement rules and / or table redistribution parameters to
identify associations between tables or table partitions such
that associated tables or table partitions can be placed or
redistributed among nodes of a distributed database in an
advantageous manner .
[0024] Table classification information 300 can be speci
fied when creating a new table or for an existing table . When
creating a table or a table partition , the table classification
information 300 can be used in conjunction with table
placement rules , e.g. as illustrated in FIG . 4 , to identify onto

US 2021/0232586 A1 Jul . 29 , 2021
3

name

which type of server , onto which node , etc. the newly
created table or table partition should be placed . SQL create
commands 350 are an example of software commands used
to assign table classification information 300 to a table when
creating a new table . SQL alter commands 360 are examples
of software commands used to assign table classification
information 300 to an existing table .
[0025] A management repository (not shown in FIG . 3)
can store the table classification information 300 as a way of
tracking the table classification information 300. All data
base tables for which a group type 320 , subtype 330 , or
group name 340 is specified can have an entry in this
repository .
[0026] FIG . 4 shows a sample table of table placement
rules 400 , which is composed of table classification infor
mation 412 similar to that shown in FIG . 3 , with some
additional table placement rules 414 , consistent with imple
mentations of the current subject matter . Table placement
rules can be assigned to tables based on some or all of
classification information 412 and can define an expected
behavior for the tables on the distributed database . Examples
of table placement rules provided are location 422 , and
partition splitting rules (including parameters : partitioning
threshold 424 , and initial partitions 426) . Other examples
may include other table placement rules .
[0027] A table placement rule 414 may be assigned to
place a table at a location based on all or a part of the table
classification information , for example , the combination of
a schema name 305 and a group type 320. Following the
provided example , a combination of schema
SCHEMA1 and group type GROUP1 should be placed at
locations , slaves . The location options are slaves , master , or
All and are server types . Table redistribution can use these
table placement rules and can balance the tables across the
nodes specified as these server types , using database land
scape makeup and hardware constraint information . Similar
location rules may be assigned based on other parameters of
table classification information 412. A rule applied to more
specific classification information 422 can take precedence
over a more general rule . For example a rule specifying
schema 305 , group type 320 and group name 340 can
overwrite the prior , more general example provided , for the
corresponding tables .
[0028] Another example of table placement rules can
include table partitioning rules . FIG . 2 provided an example
of partitioning a table onto multiple nodes . Examples of
table placement rules defining under what conditions , into
how many parts and to which locations to distribute the
partitions are described in additional detail below . A parti
tioning threshold 424 and an initial number of partitions 426
are two parameters used to define partitioning rules . A
repartitioning threshold 428 is also explained in the next
section .
[0029] Partitioning a table and distributing its partitions
onto multiple nodes may be beneficial when a table is very
large , but is not beneficial when a table is small . Accord
ingly , a rule defining a threshold table size at which to
implement table partitioning can be advantageously applied .
The partitioning threshold parameter 424 can define a mini
mum number of records that must exist in a table before
table partitioning takes place . If partitioning is required , the
initial partitions parameter 426 can specify into how many
initial partitions to partition the database table . The location
parameter 422 can also be used to assign the partitions to

specific server type locations , in a similar manner as was
previously discussed . Following the example from FIG . 4 ,
if / BIC / Table 1 has more than 40 million records , it will be
divided into three partitions , and these partitions will be
placed on slave type servers .
[0030] In some cases , at least one of the tables that share
a group name 340 may require partitioning . By default , all
tables with the same group name 340 will be partitioned into
the same number of partitions . The number of partitions is
determined by the largest table within the group . A specific
table redistribution behavior parameter can be set to alter
this behavior such that tables that share a group name 340
will not be partitioned together into the same number of
partitions as the largest table within the group .
[0031] Another specific table redistribution behavior
parameter may be set to force the execution of operations
that change the number of partitions that a table will be
partitioned into . For example , if a table has two partitions
but should have three according to the table redistribution
rules , the table redistribution process would not , by default ,
adjust this , unless the specific table redistribution behavior
parameter is set to force the adjustment of the table parti
tioning requirement .
[0032] Additionally , there may be other partitioning
parameters in the table placement rules , for example a
repartitioning threshold parameter 428. The partitions of a
partitioned database table can still be very large and require
re - partitioning . In the re - partitioning case , the re - partition
ing threshold parameter 428 value can define a number of
records in a partitioned table that triggers a re - partitioning .
Once a table has been partitioned with the specified initial
number of partitions , for performance reasons , the table can
be repartitioned only by doubling the number of partitions .
Extending the previous example where tables with more
than 40 million records are divided into three partitions , if
the individual partitions have more than 40 million entries
on average , these are halved again in accordance with the
partitioning threshold parameter 428 value . In other words ,
if the initial number of partitions is three , this would result
in six partitions being created during a re - partitioning .
However , creation of more partitions than the number of
available nodes can advantageously be avoided . For
example , if a distributed database only has five nodes , the
repartitioning described above , from three partitions to six
partitions , would not take place .
[0033] A management repository (not shown in FIG . 4)
can store the table placement rules 414 in association with
table classification information 412 to keep track of the table
placement rules 414. An entry in this repository can reflect
table placement rule parameters as discussed herein . This
management repository can be an expanded version of the
management repository discussed in FIG . 3 , or can be a
separate additional management repository .
[0034] An example of table partitioning as described is
controlling the number of level 1 partitions to split a table
into . Level 1 partitioning splits a table based on a hash
function which uses hash function input parameters such as
document numbers and line items . An example of another
type of table partitioning is a Level 2 partitioning , where the
partitions are defined and managed by an application that
uses the tables .
[0035] FIG . 5 shows a process flow diagram 500 illustrat
ing features that can be included in a table placement method
in a distributed database . At 502 , a database engine , or

US 2021/0232586 A1 Jul . 29 , 2021
4

another implementing entity checks if a number of records
in a database table has reached a predefined maximum
record threshold , which can be defined as a partitioning
parameter 424. If the number of records does not exceed the
predefined maximum record threshold , then no table parti
tioning is performed on the database table . If the number of
records does exceed the predefined maximum record thresh
old , then at 504 , the implementing entity partitions the
database table into the number of partitions as defined by the
initial partitions parameter 426. At 506 the partitioned table
portions are placed onto nodes of a predefined server type as
defined by the location parameter 422 .
[0036] At 508 , the implementing entity optionally either
immediately thereafter , or at some later time checks to see
if the average of the table partitions have reached the
predefined maximum record threshold for re - partitioning . If
not , then no table re - partitioning is performed on these table
partitions . If yes , then at 510 , the implementing entity
checks that double the current node count are available , and
if yes then at 512 the implementing entity re - partitions the
table partitions and places them onto double the nodes of the
predefined server type as defined by the location parameter
422 .
[0037] FIG . 6 shows another process flow diagram 600
illustrating features that can be included in a table placement
method in a distributed database . At 602 , a determination
can be made that a redistribution of a plurality of tables is
required in a distributed in - memory database that includes a
plurality of tables located on a plurality of distributed nodes .
Based at least in part on a set of table redistribution
parameters , at 604 a table redistribution plan that includes
redistribution of a table of the plurality of tables is gener
ated . The set of table redistribution parameters includes a
grouping parameter indicating at least one other table with
which the table should be collocated . At 606 , the table
redistribution plan is executed , which includes moving the
table from a first node of the plurality of distributed nodes
to a second node of the plurality of distributed nodes .
[0038] FIG . 7 shows a process flow diagram 700 illustrat
ing aspects of a method for redistributing database tables in
a distributed database . At 702 , a database engine or some
other implementing entity collects information about the
distributed database . This information populates a set of
table redistribution parameters , which may include table
classification information 300 , table placement rules 400 ,
database landscape makeup and hardware constraints . The
database landscape makeup includes a number of schemas ,
a number of tables and nodes , sizes of the tables , a utilization
of the nodes , and a characteristic representative of an
amount of asymmetry in data distribution across the land
scapes , among other things . The hardware constraints
include number of nodes , storage and memory capacity
limitations of the different nodes , among other things . An
example situation of a boundary case would involve adding
one or more nodes , where the utilization of these new nodes
would initially be zero . The implementing entity may deter
mine whether or not a table redistribution is required , based
on the information populated into the table redistribution
parameters . Additionally , a user may determine that a table
redistribution is required based on the table redistribution
parameters , or other factors .
[0039] At 704 the implementing entity analyzes the table
classification information 300 , and learns the groupings that

would improve query performance . Based on these group
ings the implementing entity proposes table redistributing
activities .
[0040] At 706 the implementing entity optionally analyzes
the table placement rules 400 , and learns the location 422
and partitioning rules 424 , 426 , 428 as described in refer
ence to FIG . 4 , FIG . 5 , and FIG . 6. Based on some , or all of
these rules and table redistribution behavior parameters , the
implementation entity proposes table redistribution activi
ties , including partitioning and repartitioning as required . It
is noted that there may not be relevant rules , or that the
condition to satisfy these rules may not be sufficient .
[0041] At 708 the implementing entity analyzes database
landscape makeup and the hardware constraints as described
in 702 , and based on database landscape makeup and the
hardware constraints the implementing entity proposes table
redistribution activities to balance the resource usage of the
distributed database . For example if memory usage on one
node is at full capacity , and other nodes , or a new node has
memory resources available , the implementing entity will
propose a re - distributing activity to balance out these
memory resource in - balances .
[0042] At 710 the implementing entity considers proposed
table redistribution activities from 704 , 706 and 708 .
Depending on the details of a particular table redistribution
case , it is possible that only some of 704 , 706 , and 708 may
generate proposed redistribution activities . Based on the
proposed table redistribution activities , the implementation
entity creates at least one table redistribution plan to a user .
The user may select a preferred re - distribution plan , if more
than one is provided , and the user may provide permission
to execute the single , or selected table redistribution plan .
The implementing entity may then execute the table redis
tribution plan , and redistributes tables within the distributed
database in a manner similar to the examples provided in
FIGS . 1 and 2. It is noted that at least in one implementation
that without explicit user permission , the table redistribution
plan will not be executed .
[0043] FIG . 8 shows another process flow diagram 800
illustrating aspects of a method for redistributing database
tables in a distributed database . At 802 , a node type of a
plurality of distributed nodes to which a table to be added to
a distributed database should be assigned , is identified . In
some examples , the identifying includes applying a set of
placement rules defined for the table . The distributed data
base includes a plurality of tables located on the plurality of
distributed nodes . At 804 , a determination is made whether
the table should be partitioned into more than one partition ,
for example by applying the set of placement rules . A table
group name associated with the table is obtained at 806 , and
at 810 , the table is stored in the distributed database on at
least one node of the plurality of nodes as one or more
partitions according to the identifying , the determining , and
the obtaining
[0044] In some implementations of the current subject
matter , automatic table redistribution may not occur on a
distributed database . For example , even if table partitioning
would be advantageous due to resource over - utilization or
when threshold values for table re - partitioning are exceeded ,
these parameters can be considered during a next execution
of table redistribution rather than occurring dynamically or
automatically whenever a threshold or other parameter is
exceeded or met . In still other implementations of the

US 2021/0232586 A1 Jul . 29 , 2021
5

current subject matter , automatic table redistribution may
occur on a distributed database .
[0045] By default , unless specified by a table redistribu
tion behavior parameter , when the table redistribution is
performed , tables can be moved to a new node with only
their working memory part moved during runtime . The
persistence part can be written to the new node during the
next delta merge . However , if the specific table redistribu
tion behavior parameter is selected , then the persistence part
is moved immediately during the table redistribution . This
however may significantly extend the runtime of the table
redistribution .
[0046] FIG . 9 shows a block diagram of an in - memory
relational database server 900 consistent with implementa
tions of the current subject matter . An in - memory relational
database server 900 is an example of the implementation
entity of FIG . 6. A connection and session management
component 902 of an in - memory database system 904
creates and manages sessions and connections for the data
base clients 906. For each session a set of parameters 910 is
maintained such as for example auto commit settings or the
current transaction isolation level . Once a session is estab
lished , database clients 906 can use logical (e.g. SQL)
statements to communicate with the in - memory database
system 904. For analytical applications the multidimen
sional query language MDX can also be supported .
[0047] Each statement can be processed in the context of
a transaction . New sessions can be implicitly assigned to a
new transaction . A transaction manager 912 can coordinate
transactions , control transactional isolation , and keep track
of running and closed transactions . When a transaction is
committed or rolled back , the transaction manager 912 can
inform the involved engines about this event so they can
execute necessary actions . The transaction manager 912 can
cooperate with a persistence layer to achieve atomic and
durable transactions .
[0048] Requests received from the database clients 906
can be analyzed and executed by a set of request processing
and execution control components 916 , which can include a
request parser 920 that analyses a request from a database
client 906 and dispatches it to a responsible component .
Transaction control statements can , for example , be for
warded to the transaction manager 912 , data definition
statements can be dispatched to a metadata manager 922 and
object invocations can be forwarded to an in - memory object
store 924. Data manipulation statements can be forwarded to
an optimizer 926 , which creates an optimized execution plan
that is provided to an execution layer 930. The execution
layer 930 can act as a controller that invokes the different
engines and routes intermediate results to a next phase in
execution of the execution plan .
[0049] Built - in support can be offered for domain - specific
models (such as for financial planning) scripting capabilities
that allow to run application - specific calculations inside an
in - memory database system . A scripting language , for
example SQL Script 932 , which is based on side effect free
functions that operate on tables using SQL queries for set
processing , can be used to enable optimizations and paral
lelization . The MDX language 934 can be used to provide
support for multidimensional queries . A planning engine 936
can allow financial planning applications to execute basic
planning operations in the database layer . An example of a
basic planning operation is to create a new version of a data
set as a copy of an existing one while applying filters and

transformations . For example , planning data for a new year
can be created as a copy of the data from the previous year .
This operation requires filtering by year and updating the
time dimension . Another example of a planning operation
can be a disaggregation operation that distributes target
values from higher to lower aggregation levels based on a
distribution function .
[0050] Features such as SQL Script 932 , MDX 934 , and
planning engine 936 operations can be implemented using a
common infrastructure called a calculation engine 938 .
Metadata can be accessed via the metadata manager com
ponent 922. Metadata can include a variety of objects , such
as for example definitions of relational tables , columns ,
views , indexes , SQL Script functions , object store metadata ,
and the like . All of these types of metadata can be stored in
a common catalog for all stores (in - memory row store ,
in - memory column store , object store , disk based) . Metadata
can be stored in tables in row store . In multi - tenant systems
and in distributed systems , central metadata can be shared
across servers and tenants as discussed in greater detail
below . How metadata is stored and shared can be hidden
from the components that use the metadata manager 922 .
[0051] One or more relational engines 940 , for example an
in - memory row store 942 , an in - memory column store 944 ,
a disk - based store 946 , and the in - memory object store 924
mentioned above can communicate with the request pro
cessing and execution control components 916 , the metadata
manager 922 , and the in - memory persistence layer 914. The
row store 942 and column store 944 are each relational
in - memory data engines that can store data in a row - based
or column - based way , respectively . Some data , such as for
example tracing data , need not be kept in memory all the
time . The disk - based store 946 can handle such data . Data in
the disk - based store 146 can be primarily stored in disk
storage 950 and only moved to memory buffers (e.g. the
persistence layer 914) when accessed .
[0052] When a table is created , the table can be specified
in the store in which it is located . Table can be moved to
different stores at a time after their creation . Certain SQL
extensions can optionally be available only for specific
stores (such as for example the “ merge ” command for a
column store) . However , standard SQL can be used on all
tables . It is also possible to combine tables from different
stores in one statement (e.g. using a join , sub query , union ,
or the like) .
[0053] As row based tables and columnar tables can be
combined in one SQL statement , the corresponding engines
must be able to consume intermediate results created by the
other . Two engines can differ in the way they process data .
Row store operations , for example , can process data in a
row - at - a - time fashion using iterators . Column store opera
tions (such as for example scan , aggregate , and so on) can
require that the entire column is available in contiguous
memory locations . To exchange intermediate results , a row
store can provide results to a column store materialized as
complete rows in memory while a column store can expose
results using the iterator interface needed by a row store .
[0054] The persistence layer 914 can be responsible for
durability and atomicity of transactions and can ensure that
the database is restored to the most recent committed state
after a restart and that transactions are either completely
executed or completely undone . To achieve this goal in an
efficient way , the persistence layer 914 can use a combina
tion of write - ahead logs , shadow paging and save points .

US 2021/0232586 A1 Jul . 29 , 2021
6

The persistence layer 914 can offer interfaces for writing and
reading data and can also contain a logger 952 that manages
the transaction log . Log entries can be written implicitly by
the persistence layer 914 when data are written via a
persistence interface or explicitly by using a log interface .
[0055] An authorization manager 954 can be invoked by
other components of the architecture to check whether a user
has the required privileges to execute the requested opera
tions . Privileges can be granted to users or roles . A privilege
grants the right to perform a specified operation (such as for
example create , update , select , execute , and the like) on a
specified object (such as for example a table , view , SQL
Script function , and the like) . Analytic privileges that rep
resent filters or hierarchy drill down limitations for analyti
cal queries can also be supported . Analytical privileges can
grant access to values with a certain combination of dimen
sion attributes . This could for example be used to restrict
access to a cube with sales data to values with dimension
attributes such as region = " US ” and year = “ 2010 . "
[0056] Implementations of the current subject matter can
include features of distributed architectures that provide
table redistribution support and table placement rules imple
mentations that enable improved query performance and
balance out the resources in a distributed relational database .
[0057] Aspects of the subject matter described herein can
be embodied in systems , apparatus , methods , and / or articles
depending on the desired configuration . In particular , vari
ous implementations of the subject matter described herein
can be realized in digital electronic circuitry , integrated
circuitry , specially designed application specific integrated
circuits (ASICs) , computer hardware , firmware , software ,
and / or combinations thereof . These various implementations
can include implementation in one or more computer pro
grams that are executable and / or interpretable on a program
mable system including at least one programmable proces
sor , which can be special or general purpose , coupled to
receive data and instructions from , and to transmit data and
instructions to , a storage system , at least one input device ,
and at least one output device .
[0058] These computer programs , which can also be
referred to programs , software , software applications , appli
cations , components , or code , include machine instructions
for a programmable processor , and can be implemented in a
high - level procedural and / or object - oriented programming
language , and / or in assembly / machine language . As used
herein , the term “ machine - readable medium ” refers to any
computer program product , apparatus and / or device , such as
for example magnetic discs , optical disks , memory , and
Programmable Logic Devices (PLDs) , used to provide
machine instructions and / or data to a programmable proces
sor , including a machine - readable medium that receives
machine instructions as a machine - readable signal . The term
“ machine - readable signal ” refers to any signal used to
provide machine instructions and / or data to a programmable
processor . The machine - readable medium can store such
machine instructions non - transitorily , such as for example as
would a non - transient solid state memory or a magnetic hard
drive or any equivalent storage medium . The machine
readable medium can alternatively or additionally store such
machine instructions in a transient manner , such as for
example as would a processor cache or other random access
memory associated with one or more physical processor

[0059] To provide for interaction with a user , the subject
matter described herein can be implemented on a computer
having a display device , such as for example a cathode ray
tube (CRT) or a liquid crystal display (LCD) monitor for
displaying information to the user and a keyboard and a
pointing device , such as for example a mouse or a trackball ,
by which the user may provide input to the computer . Other
kinds of devices can be used to provide for interaction with
a user as well . For example , feedback provided to the user
can be any form of sensory feedback , such as for example
visual feedback , auditory feedback , or tactile feedback ; and
input from the user may be received in any form , including ,
but not limited to , acoustic , speech , or tactile input . Other
possible input devices include , but are not limited to , touch
screens or other touch - sensitive devices such as single or
multi - point resistive or capacitive trackpads , voice recogni
tion hardware and software , optical scanners , optical point
ers , digital image capture devices and associated interpre
tation software , and the like .
[0060] The subject matter described herein can be imple
mented in a computing system that includes a back - end
component , such as for example one or more data servers , or
that includes a middleware component , such as for example
one or more application servers , or that includes a front - end
component , such as for example one or more client com
puters having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described herein , or any combination of
such back - end , middleware , or front - end components . A
client and server are generally , but not exclusively , remote
from each other and typically interact through a communi
cation network , although the components of the system can
be interconnected by any form or medium of digital data
communication . Examples of communication networks
include , but are not limited to , a local area network
(“ LAN ”) , a wide area network (“ WAN ”) , and the Internet .
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client - server relationship to each other .
[0061] The implementations set forth in the foregoing
description do not represent all implementations consistent
with the subject matter described herein . Instead , they are
merely some examples consistent with aspects related to the
described subject matter . Although a few variations have
been described in detail herein , other modifications or addi
tions are possible . In particular , further features and / or
variations can be provided in addition to those set forth
herein . For example , the implementations described above
can be directed to various combinations and sub - combina
tions of the disclosed features and / or combinations and
sub - combinations of one or more features further to those
disclosed herein . In addition , the logic flows depicted in the
accompanying figures and / or described herein do not nec
essarily require the particular order shown , or sequential
order , to achieve desirable results . The scope of the follow
ing claims may include other implementations or embodi
ments .

1-17 . (canceled)
18. A system comprising :
at least one programmable processor ; and
at least one memory including program code which when

executed by the at least one programmable processor
causes operations comprising : cores .

US 2021/0232586 A1 Jul . 29 , 2021
7

dividing , based on table classification information for a
table stored across a plurality of partitions in a
distributed database , a first partition of the plurality
of partitions into more than one partition by creating
a new partition for the first partition , the distributed
database comprising a plurality of tables located on
a plurality of distributed nodes ; and

placing , based on the table classification information ,
the new partition onto at least one available distrib
uted node of the plurality of distributed nodes .

19. The system of claim 18 , wherein the table classifica
tion information comprises a schema name .

20. The system of claim 18 , wherein the table classifica
tion information comprises a table name .

21. The system of claim 18 , wherein the table classifica
tion information comprises an application type .

22. The system of claim 18 , wherein the dividing and / or
the placing is further based on a table placement rule defined
for the table .

23. The system of claim 18 further comprising :
collecting information about the distributed database , the

information including the table classification informa
tion and a table placement rule .

24. The system of claim 23 , wherein the table placement
rule defines how the table is partitioned .

25. The system of claim 23 , wherein the table placement
rule defines where the new partition is to be placed .

26. The system of claim 23 , wherein the table placement
rule includes a partition threshold defined for the table .

27. A method comprising :
dividing , based on table classification information for a

table stored across a plurality of partitions in a distrib
uted database , a first partition of the plurality of parti
tions into more than one partition by creating a new
partition for the first partition , the distributed database
comprising a plurality of tables located on a plurality of
distributed nodes ; and

placing , based on the table classification information , the
new partition onto at least one available distributed
node of the plurality of distributed nodes .

28. The method of claim 27 , wherein the table classifi
cation information comprises a schema name .

29. The method of claim 27 , wherein the table classifi
cation information comprises a table name .

30. The method of claim 27 , wherein the table classifi
cation information comprises an application type .

31. The method of claim 27 , wherein the dividing and / or
the placing is further based on a table placement rule defined
for the table .

32. The method of claim 27 further comprising :
collecting information about the distributed database , the

information including the table classification informa
tion and a table placement rule .

33. The method of claim 32 , wherein the table placement
rule defines how the table is partitioned .

34. The method of claim 32 , wherein the table placement
rule defines where the new partition is to be placed .

35. The method of claim 32 , wherein the table placement
rule includes a partition threshold defined for the table .

36. A computer program product comprising a non
transitory machine - readable medium storing instructions
that , when executed by at least one programmable processor ,
cause the at least one programmable processor to perform
operations comprising :

dividing , based on table classification information for a
table stored across a plurality of partitions in a distrib
uted database , a first partition of the plurality of parti
tions into more than one partition by creating a new
partition for the first partition , the distributed database
comprising a plurality of tables located on a plurality of
distributed nodes ; and

placing , based on the table classification information , the
new partition onto at least one available distributed
node of the plurality of distributed nodes .

37. The computer program product of claim 36 , wherein
the table classification information comprises a schema
name , a table name , and / or an application type .

38. The computer program product of claim 36 , wherein
the dividing and / or the placing is further based on a table
placement rule defined for the table .

39. The computer program product of claim 36 further
comprising :

collecting information about the distributed database , the
information including the table classification informa
tion and a table placement rule .

* *

