US 20210232595A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2021/0232595 A1l

Solan et al.

(54)

(71)

(72)

@
(22)

(63)

(1)

MERKLE SUPER TREE FOR
SYNCHRONIZING DATA BUCKETS OF
UNLIMITED SIZE IN OBJECT STORAGE
SYSTEMS

Applicant: EMC IP Holding Company LLC,
Hopkinton, MA (US)

Inventors: Alex Solan, Hertzelia (IL); Jehuda
Shemer, Kfar Saba (IL)

Appl. No.: 16/803,918
Filed: Feb. 27, 2020

Related U.S. Application Data

Continuation-in-part of application No. 16/776,129,
filed on Jan. 29, 2020.

Publication Classification

Int. CL.
GO6F 16/27 (2006.01)
GO6F 16/22 (2006.01)

100

Top Hash

43) Pub. Date: Jul. 29, 2021
(52) US. CL
CPC ... GOG6F 16/27 (2019.01); GOGF 16/2282

(2019.01); GOG6F 16/2255 (2019.01); GO6F
16/2246 (2019.01)

(57) ABSTRACT

Embodiments extend using sparse Merkle trees for smart
synchronization of S3 buckets by overcoming fixed size
limitations through creating another Merkle tree when the
fixed size limit of the first tree is exceeded, and creating yet
another tree when the second tree is filled up, and so on as
needed. The method maintains a super Merkle tree of trees,
in which each tree can be synchronized separately by
keeping a strict division to trees according to generation
number. The generation is passed from a source site to a
target site during replication operations. Syncing between
two data sites is efficient as the super Merkle tree of the
source is synced with the super Merkle tree of the target
using the hashes on the nodes, as in normal Merkle tree sync
operations.

Hash @

Hash 0-0 Hash 0-1

Hash 1-0 Hash 1-1

Patent Application Publication Jul. 29,2021 Sheet 1 of 12 US 2021/0232595 A1

100 Top Hash

Hash 1-0 Hash 1-1

Hash 0-0 Hash 0-1

Top Hash
200 Hash 4-3-2-1
e ®
Hashi-2 Hash3-4
Hashi Hash2=0 Hash3=0 . Hashd
........ — -
Koyl FayE Keyd Keyd
Appice G g Sales

FIG. 1B

Patent Application Publication Jul. 29,2021 Sheet 2 of 12 US 2021/0232595 A1

FIG. 2

FIG. 3

Patent Application Publication Jul. 29,2021 Sheet 3 of 12 US 2021/0232595 A1

SOURCE TARGET
BUCKET : BUCKET

401

Genlt Gen2 Gen3 Gen1 Gen2 Gen3

IMB JMB 2MB % 2MB 2ME 2MB
SOURCE TARGET
BUCKET 3 BUCKET

402 404 4D ; 1o AE s

B

Gen1 Gen2 Gen3 Genl Gen2 Gen3
1MB JMB 4AMB § 1MB SMB 4AMB

FIG. 4B

Patent Application Publication Jul. 29,2021 Sheet 4 of 12 US 2021/0232595 A1

500

SET MERKLE TREE SIZE LIMIT
502

SET FIRST MERKLE GENERATION NUMBER
504

CREATE FIRST MERKLE TREE WITH NUMBER
AND SET SIZE
506

b |

RECEIVE INCOMING OBJECT DATA AND TAG
WITH CURRENT GENERATION NUMBER
508

EXCEEDEDr) R ee0000 R R 3

CREATE NEW MERKLE TREE ACCORDING TO
SIZING POLICY
512

INCREASE CURRENT GENERATION NUMBER
514

Patent Application Publication Jul. 29,2021 Sheet 5 of 12 US 2021/0232595 A1

650

POST
Create a New Object

652

PUT
Update an Existing Object

654

DELETE
Delete an Existing Object

656

FIG. 6

Patent Application Publication Jul. 29,2021 Sheet 6 of 12 US 2021/0232595 A1

700

\ RECEIVE TAGGED DATA OBJECT
702

..................... NEEDED? ’

CREATE NEW
MERKLE TREE USE CURRENT
ACCORDING TO TREE
SIZING POLICY 706
708

i

USE NEW
TREE FOR NEW
DATA
710

FIG. 7

FIG. 8

Patent Application Publication Jul. 29,2021 Sheet 7 of 12 US 2021/0232595 A1
900
ADD ELEMENTS TO SOURCE OBJECT STORE
AND MAINTAIN SOURCE MERKLE TREE ———
902 _
PASS SOURCE MERKLE TREE TO TARGET SIDE
906
SET MERKLE TREE CAPACITY LIMIT
908
YES T LMIT TS NO
REACHED? i — :
CREATE NEW USE CURRENT
MERKLE TREE TREE = T T
912 916

CONNECT
ADDITIONAL TREES
TO FORM SUPER

TREE
914

FIG. 9

Patent Application Publication Jul. 29,2021 Sheet 8 of 12 US 2021/0232595 A1

FIG. 10A

Patent Application Publication Jul. 29,2021 Sheet 9 of 12 US 2021/0232595 A1

FIG. 10B

Patent Application Publication Jul. 29,2021 Sheet 10 of 12 US 2021/0232595 A1l

1080
ADD MERKLE TREE GEN_K TO SUPER TREE
1082
IDENTIFY PARENT, P, OF GEN_K-1 TREE
1084
T ISPEMPTY? T,
1086
IF P IS EMPTY AND
ADD GEN_K AS HAS A PARENT, SET
NEXT CHILD AT LEAF P TO ITS PARENT
LEVEL OF P 1090
1088

'

ADD NEW ROOT
NODE TO SUPER
TREE
1092

ROOT NODE FIRST
CHILD POINTS TO
PREVIOUS ROOT

1094

FIG. 10C

Patent Application Publication Jul. 29,2021 Sheet 11 of 12 US 2021/0232595 A1l

600 =
3
BACKUP e —
MANAGEMENT —
PROCESS
12
6 602
Server HDD STORAGE
6514
$3 SYNC
PROCESS
620
NETWORK
610
=
1“' fl"‘"’ “"“ I 6506
VM STORAGE
CLIENT STORAGE
<
DATA SOURCE

FIG. 11

US 2021/0232595 Al

Jul. 29,2021 Sheet 12 of 12

Patent Application Publication

¢l "Old

L1001
HRRON

SO
IR LOMIEN

e
BRI see

£L101
ppngAa

i e
P e

G
seydepy Appdun

¥

501 ng

vt
roseade

118438
R

SHCHIOG O

{20l

4/ Gool

US 2021/0232595 Al

MERKLE SUPER TREE FOR
SYNCHRONIZING DATA BUCKETS OF
UNLIMITED SIZE IN OBJECT STORAGE
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a Continuation-In-Part Applica-
tion of U.S. patent application Ser. No. 16/776,129, filed on
Jan. 29, 2020, which is incorporated herein by reference for

all purposes.
TECHNICAL FIELD

[0002] Embodiments are generally directed to large-scale
data storage, and more specifically to providing a Merkle
super tree for object storage data buckets of unlimited size.

BACKGROUND

[0003] Object storage systems involve data that is man-
aged as objects as opposed to hierarchical files. Each object
typically includes the data, metadata, and a globally unique
identifier. This allows storage systems to store massive
amounts of unstructured data, and can be implemented at
many levels, including device level, system level, and inter-
face level. Object storage represents a type of key-value
storage that uses an associative array to link a unique key to
a value in the data collection to form a key-value pair.
[0004] The Amazon Simple Storage Service (“S3”) is an
example of service that provides object storage through a
web service interface. Amazon S3, and other similar key-
value or object storage systems, is used to store any type of
data object for Internet applications, backup and recovery,
disaster recovery, data archives, data lakes for analytics, and
hybrid cloud storage. The basic storage units of Amazon S3
are objects that are organized into buckets. Each object is
identified by a unique, user-assigned key. Data can be can
accessed through the S3 service from any where on the
Internet, and requests are authorized using an access control
list associated with each object bucket.

[0005] A Merkle tree is a tree data structure where every
node is referenced by a hash. The hash is created by hashing
the contents of the node and any child nodes so that at each
node, the hash is dependent on all direct descendent hashes.
Synchronizing data using Merkle Trees is a known meth-
odology in the industry, but present methods operate on
block-like data, which is data that can be easily represented
as an array of bytes, whose size is fixed. In S3 or any other
object storage, the data is not organized as a flat array.
Certain solutions have been discovered to overcome this by
utilizing the fact that the main property of array-like data is
that in the Merkle Tree, the topology is fixed where each
node always represents the same data location (metadata)
and only the data itself changes. A development using sparse
Merkle tree data structures for synchronization of S3 data
buckets uses Merkle trees with a fixed size and a fixed
number of leaves. The size was defined by using some
limitation on the S3 bucket size and multiplying it by a small
constant to ensure source and target trees match in size,
which is needed for Merkle tree synch algorithms to create
a large enough address space for use of hashes. Although
sparse trees help to overcome the waste of a relatively large
tree on small buckets, there are certain problems growing
beyond this fixed size limit.

Jul. 29, 2021

[0006] What is needed, therefore, is a way to synchronize
S3 buckets using Merkle Trees without a size limitation.
[0007] The subject matter discussed in the background
section should not be assumed to be prior art merely as a
result of its mention in the background section. Similarly, a
problem mentioned in the background section or associated
with the subject matter of the background section should not
be assumed to have been previously recognized in the prior
art. The subject matter in the background section merely
represents different approaches, which in and of themselves
may also be inventions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the following drawings like reference numerals
designate like structural elements. Although the figures
depict various examples, the one or more embodiments and
implementations described herein are not limited to the
examples depicted in the figures.

[0009] FIG. 1A illustrates an example of a Merkle tree
structure that may be used in conjunction with certain
embodiments.

[0010] FIG. 1B illustrates an example fixed-size Merkle
tree, such as that of FIG. 1A, in which there are only two
elements.

[0011] FIG. 2 illustrates an example initial Merkle Tree for
an empty S3 bucket.

[0012] FIG. 3 illustrates adding an S3 object key example
to a Merkle tree.

[0013] FIG. 4A illustrates the generation of same size
additional Merkle trees between source and destination S3
buckets, under some embodiments.

[0014] FIG. 4B illustrates the generation of different size
additional Merkle trees between source and destination S3
buckets, under some embodiments

[0015] FIG. 5 is a flowchart that illustrates a method of
synchronizing S3 buckets for a source disk, under some
embodiments.

[0016] FIG. 6 illustrates a set of operations for data in a
Merkle tree forest, under some embodiments.

[0017] FIG. 7 is a flowchart that illustrates a method of
synchronizing S3 buckets for a target disk, under some
embodiments.

[0018] FIG. 8 illustrates an example data array that maps
generation numbers to Merkle trees, under some embodi-
ments.

[0019] FIG. 9 is a flowchart that illustrates a process of
synchronizing two S3 disks using a Merkle super tree, under
some embodiments.

[0020] FIG. 10A illustrates an example super Merkle tree,
under some embodiments.

[0021] FIG. 10B illustrates an example of adding a new
Merkle tree to a super Merkle tree, under some embodi-
ments.

[0022] FIG. 10C is a flowchart that illustrates adding a
Merkle tree to a super Merkle tree, under some embodi-
ments.

[0023] FIG. 11 is a block diagram of a computer network
that implements an S3 sync process for unlimited size
Merkle trees, under some embodiments.

[0024] FIG. 12 is a block diagram of an example computer
executing processes under some embodiments.

US 2021/0232595 Al

DETAILED DESCRIPTION

[0025] A detailed description of one or more embodiments
is provided below along with accompanying figures that
illustrate the principles of the described embodiments.
While aspects of the invention are described in conjunction
with such embodiment(s), it should be understood that it is
not limited to any one embodiment. On the contrary, the
scope is limited only by the claims and the invention
encompasses numerous alternatives, modifications, and
equivalents. For the purpose of example, numerous specific
details are set forth in the following description in order to
provide a thorough understanding of the described embodi-
ments, which may be practiced according to the claims
without some or all of these specific details. For the purpose
of clarity, technical material that is known in the technical
fields related to the embodiments has not been described in
detail so that the described embodiments are not unneces-
sarily obscured.

[0026] It should be appreciated that the described embodi-
ments can be implemented in numerous ways, including as
a process, an apparatus, a system, a device, a method, or a
computer-readable medium such as a computer-readable
storage medium containing computer-readable instructions
or computer program code, or as a computer program
product, comprising a computer-usable medium having a
computer-readable program code embodied therein. In the
context of this disclosure, a computer-usable medium or
computer-readable medium may be any physical medium
that can contain or store the program for use by or in
connection with the instruction execution system, apparatus
or device. For example, the computer-readable storage
medium or computer-usable medium may be, but is not
limited to, a random access memory (RAM), read-only
memory (ROM), or a persistent store, such as a mass storage
device, hard drives, CDROM, DVDROM, tape, erasable
programmable read-only memory (EPROM or flash
memory), or any magnetic, electromagnetic, optical, or
electrical means or system, apparatus or device for storing
information. Alternatively or additionally, the computer-
readable storage medium or computer-usable medium may
be any combination of these devices or even paper or
another suitable medium upon which the program code is
printed, as the program code can be electronically captured,
via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a suitable manner, if necessary, and then stored in a
computer memory. Applications, software programs or com-
puter-readable instructions may be referred to as compo-
nents or modules. Applications may be hardwired or hard-
coded in hardware or take the form of software executing on
a general purpose computer or be hardwired or hard coded
in hardware such that when the software is loaded into
and/or executed by the computer, the computer becomes an
apparatus for practicing the processes described herein.
Applications may also be downloaded, in whole or in part,
through the use of a software development kit or toolkit that
enables the creation and implementation of the described
embodiments. In this specification, these implementations,
or any other form that the invention may take, may be
referred to as techniques. In general, the order of the steps
of disclosed processes may be altered within the scope of the
described embodiments.

[0027] Embodiments are directed to a processing compo-
nent in or associated with a server computer that expands on

Jul. 29, 2021

the development of using sparse Merkle trees for smart
synchronization of S3 buckets by overcoming fixed size
limitations through creating another Merkle tree when the
fixed size limit of the first tree is exceeded, and creating yet
another tree when the second tree is filled up, and so on as
needed.

[0028] As stated above, a Merkle tree is a tree data
structure where every node is referenced by a hash. The hash
is created by hashing the contents of the node, including any
children the node may have. At each node, the hash is
dependent on all direct descendent hashes (children). FIG.
1A illustrates an example of a Merkle tree structure 100 that
may be used in conjunction with certain embodiments. As
shown in FIG. 1A, a top hash level has children Hash_0 and
Hash_1, which respectively have children Hash_0-0 and
Hash_0-1, and Hash_1-0 and Hash_1-1. Hashes at each
level are dependent on the hash value or values below. If any
hash changes then the parent hash will change and these
changes are percolated up to the top of the tree. Changes to
the hash value of a node may occur due to a change in the
data at the node or the addition/deletion/change to any of its
child nodes. Conversely, if a hash at a certain level has not
changed, this indicates that no hash or data below has
changed either. This represents the power of Merkle trees,
namely they provide an extremely efficient method of deter-
mining if large sets of data has not changed. The properties
of the Merkle tree thus provide very efficient storage of a
system changing over some period of time.

[0029] Merkle trees are generally built from the bottom-
up, i.e., hash values of children determine the hash of a
parent and so on up the tree. Because of this a Merkle tree
has only downward pointing references because a node at
one level has a value that is only dependent on itself and its
immediate child nodes. If data of one of the blocks changes
(for example [.2 in the above image) hash(.2) needs to be
calculated, and then all the hashes up the tree to the root also
need to be recalculated. This means that for a disk with n
blocks O(log n) hashes need to be updated for every change
in data. As an example, a 1 TB disk has 2 billion blocks with
a binary tree depth of 31 e.g. and update operation requires
31 hash operations just to update the tree.

[0030] In a related development, Merkle trees have been
used to synchronize S3 buckets using the fact that the main
property of array-like data is that in the Merkle tree, the
topology is fixed with each node always representing the
same data location with only the data itself changing. In an
embodiment, sparse Merkle trees were developed to still
keep this rule, i.e., each key is always represented by the
same node. This is done by putting a limit on the number of
elements allowed in the bucket and create an initial tree of
size M=c*n, where n is the maximum allowed number of
elements in the bucket, and ¢ is a constant, typically 2, 3, or
4. For each key, the system uses a hash function to create a
number between 0 to M-1, to determine the location of the
key, so each key is represented in a leaf in the form of
hash(key) % M. The leaf contains the hash of the value of
the key and its parent node, as usual has the hash of the
hashes of its children in the tree. FIG. 1B illustrates an
example fixed-size Merkle tree, such as that of FIG. 1A, in
which there are only two elements. In the example in FIG.
1B, it can be seen that such a tree 200, which size is four has
only two elements “Apples” (Keyl) and “Dates” (Key4).
[0031] Data synchronization involves configuring two
separate or remote disks so that they have the same data. In

US 2021/0232595 Al

an object storage system, such as an S3 system, the disks
hold data buckets. With respect to the use of Merkle trees for
data synchronization, embodiments improve on the basic
approach of simply having both disks send all data or hashes
of data between the disks and then comparing the result. In
an embodiment, Merkle trees are used to synchronize the
disks, such that the process involves: reading diskl and
creating a Merkle tree (Treel), reading disk2 and creating a
Merkle tree Tree2, and then traversing the trees using a
special function. In an embodiment, the special function can
be represented by the following computer code example
(pseudo code, run Tree2):

Function MerkleSync(node) {

Hashl = Get_hash_of same node_in_treel
If Hashl == node.hash

Return; //Hashes match. Subtree matches. Done.
//if we got to here there is a difference in the subtree
If node.isLeaf

Get_data_of_same node_in_treel
else

/frecursively scan the children

foreach child of node

MerkleSync(child)

[0032] It should be noted that Treel and Tree2 are iden-
tical in structure as the size of the disks needs to match. The
improvement here is that only a subset of hashes need to be
transferred. If only a specific area of the disk had changes,
only hashes and blocks of that area in the subtree are
transferred. The complexity of building the tree is offset by
significant reductions in data transfer.

[0033] When protecting an object store (S3), the user can
add, remove or modify any number of keys. To use Merkle
trees there must be some consistent mapping between the
keys and the leaves of the Merkle tree (a leaf index for
example). Therefore, the mapping is a function given as:
Map(key)—=Number.

Sparse Merkle Trees

[0034] The requirement to maintain a consistent mapping
between the keys and leafs of the Merkle tree is addressed
in one embodiment by the use of sparse Merkle trees. In this
case, it is required that the mapping have the following
characteristics: (1) determinism—applying the mapping to
same key will calculate the same result; (2) stability—
adding new keys will not modify the mapping results of
existing keys (or at least not a large number of them); (3)
stability on removal—removing a key will not modify the
mapping results of existing keys; (4) steadiness—any of the
above operations should not cause the tree topology to
change with the resulting costly rebalancing; and (5) effi-
ciency—it should be computationally lightweight to calcu-
late (O(log(n)). In other words, there needs to be a stable
base to the tree.

[0035] In an embodiment, the mapping function uses
Hash(key), with a modification as described below. Hashes
are stable functions that are not affected by other keys and
therefore will meet the criteria listed above. If a key is
mapped to the leaf index using the hash of the key, it
guarantees that it will always get to the same index (and
therefore the same leaf node) regardless of the existence and
status of other keys. To stay within a reasonable size of tree
base, the process needs to limit the value it gets from the
mapping function. For example, if it uses a 64-bit hash it will
result in a tree base so big that it is not practical. Therefore,

Jul. 29, 2021

it needs a hash function with a small enough target range or
limit our function somehow. It can be chosen to limit the
function to some maximum number M by using modulo so
that the mapping is:

Map(key)=Hash (key) % M

[0036] The result is a tree with a constant base size M. The
hash function above is applied to the keys. This is opposed
to the internal Merkle tree construction on which hashes are
applied to the data. It should be noted that hash functions
need a large enough range in order that there will not be too
many hash collisions. The range must be at least two to three
times the number of items handled. There is no necessity to
use Hash(key) % M. Any mapping function that meets the
criteria and has a limited target range can be used.

[0037] There is a defined constant M that defines the
number of leaves in the base of the Merkle tree. In an
example where M is 100000, this means that even if the tree
is empty, there is still a Merkle tree spanning across M
leaves. This is a great many hashes to calculate on empty
data. Note that these are the internal data hashes, not
mapping function hashes.

[0038] A sparse Merkle tree is defined as a Merkle tree
where empty nodes hash is defined as 0. This includes nodes
within the tree, e.g., if all children of a node are O then the
nodes hash is also 0. Empty nodes as such are called Zero
Nodes. The definition of Zero Nodes as defined allows for an
efficient implementation of the sparse tree: zero nodes do not
really need to be allocated. This includes zero node subtrees.
Therefore, a large and empty tree does not take up that much
space. Caution needs to be exercised when implementing
iterators: iterators should iterate over zero nodes and their
children as usual, even if the zero nodes are not allocated.
[0039] To create a Merkle tree for an S3 bucket, a hash
function is used to map keys and a sparse Merkle tree. With
respect to S3 protection, to overcome the dynamic number
of items in S3, there will be a maximum limit of the items
that are supported (maximal number of keys).

[0040] This number can be denoted n. A sparse Merkle
tree will be created which represents c*n leaves, where c is
typically a small number, such as 2, 3, 4, etc. The number ¢
is a scaling factor to have a large enough range to reduce
hash collisions. The value of M is declared to be M=c*n.
Operations on the tree are still O(log n) as ¢ is a small fixed
constant. For an empty tree, there will be a tree with ¢*n
hash-s which are 0. FIG. 2 illustrates an example initial
Merkle tree 210 for an empty S3 bucket. For each new
element to insert into the tree, its hash(key) % M will be
calculated as its leaf location in the tree. For instance,
suppose there is a new Key="Pineapple”, the process will
calculate hash(“Pineapple”) % M, get a number k, between
0 and M-1, and this will be the location for the element in
the tree base above. It will calculate the data hash (not using
a mapping function but the standard Merkle tree data hash
same as done for block devices), and this will be the node
hash. FIG. 3 illustrates adding an S3 object key example to
a Merkle tree 300 in which the S3 object key="Pineapple”
is added to the Merkle tree.

[0041] There can again be a situation that a new element
takes log(n) hash calculations to enter and it does not change
the structure of the tree. To handle hash collisions, there is
defined the following method. The process will first extend
each leaf to an ordered list of leaves and the hash be the hash
of all the hashes of the members. There will not be too many
of such lists, so it will not influence the complexity of the
algorithm (the collision rate can be controlled using the
constant c¢). Other traditional options are to resolve colli-
sions such as rehashing, open addressing, or other chaining

US 2021/0232595 Al

variants to the above are all possible, but they may require
adjustments to the Merkle tree hash calculation. The impor-
tant traits are: (1) the order of item insertion should not
matter (which is why an ordered list was used), (2) the tree
topology should not change (no nodes added/removed), and
(3) there is a small number or no existing key moves.
[0042] To protect an S3 bucket, a sparse Merkle tree as
described for both the source and the replica (target) buckets
can be created. When there are two such trees representing
source and target S3 buckets, the process can compare and
synchronize them. It should be noted that empty nodes in the
source may delete objects on the target S3 bucket.

[0043] One possible downside of this method is that if the
number of elements is much smaller than M, it wastes
calculations, because the depth of the tree is log(c*n). While
still asymptotically equivalent it does have real life compu-
tational implications.

[0044] One optimization to overcome this is to shortcut
hashes of zero nodes with other hashes. For example,
hash(hashvalue, 0) so that 0 nodes do not require additional
rehashing. This must be done with care as the order of the
child nodes still needs to be preserved and a naive approach
will mean hash(hashvalue, 0)==hash(0, hashvalue). It can be
done by concatenating hashvalue_0 or 0_hashvalue or oth-
erwise dedicating one bit (in a binary tree, more otherwise)
to determine the child leaf number. Regardless of the meth-
ods, significant computational complexity can be reduced by
simple techniques around calculating hashes with zero
nodes.

[0045] Another possible downside is the situation in
which the process grows more than the estimated n items.
There is some tolerance to surpass n but at some point
(depending on the value of ¢) hash function collisions will
rise.

[0046] Using a sparse Merkle tree for smart synchroniza-
tion of S3 buckets, as described above in which a Merkle
tree with a fixed size is used, helps to ensure the source and
target trees match in size. Such sparse trees overcome the
waste of a relatively large tree on small buckets, however,
there is still a problem growing beyond this fixed size limit.
Embodiments include creating successive additional trees to
overcome this fixed size limit.

[0047] As just described, present synchronization of S3
bucket methods assume that there is a limit on the bucket
size in order to calculate the leaf location in the tree in an
efficient manner. Making an estimation regarding bucket
size is often both wasteful and non-scalable. If the bucket
size is estimated too low, there is no room to grow; while
estimating it too high results in more waste for unused areas
and excess calculations. Simply growing the Merkle tree
will result in significant rehashing. For key hashing to work
correctly, when changing the base of the tree, all existing
keys will need to be rehashed. This is an expensive step that
should be avoided. In addition, changing the tree topology
interferes with the Merkle trees synchronization algorithms.
The sync algorithms rely on matching the tree topologies in
source and target trees. The user must also make decisions
regarding the number of elements. It is advantageous to have
the user make a minimal number of decisions. In the case
where the user must think and make an estimation about the
system, a wrong estimate may have severe implications and
the user does not have an efficient way to fix any issues.

Merkle Tree Forest

[0048] Embodiments of an S3 bucket synchronization
process involve adding one or more additional Merkel trees
when the limit of a tree has been reached. In order to

Jul. 29, 2021

effectively add trees, it is necessary to coordinate between
the source and target in what tree should the keys be placed.
The process tags all the elements in S3 with a ‘Merkle
Generation’ tag. The first tree is tagged with an initial value
of'1, and when a new tree is opened, it is tagged with 2, and
so on. The number 1, 2, 3, etc. are referred to as tree
“generations.” All new key insertions are written to the latest
tree generation. When replicating, the tags are sent to the
target site along with other metadata, and when a target site
gets a new element to insert into the tree, it uses the tag it
received to know where to insert the key. Thus, the process
makes sure that the same elements should be distributed in
the same way between the trees in both the source and target
locations.

[0049] FIG. 4A illustrates the generation of additional
Merkle trees between source and destination S3 buckets,
under an embodiment. As shown in FIG. 4A, a number of
trees 401 are generated for both the source S3 bucket and the
target S3 bucket. The generated trees are denoted sequen-
tially as Genl, Gen2, Gen3, and so on, for each of the source
and target. The Genl tree of the source corresponds to the
Genl tree of the target, the Gen2 tree of the source corre-
sponds to the Gen2 tree of the target, and so on. For the
example shown, all of the trees are configured to be of the
same size, e.g., 2 MB.

[0050] In an alternative embodiment, the size of at least
some of the trees in different generations may be different.
FIG. 4B illustrates the generation of additional Merkle trees
between source and destination S3 buckets, under this
alternative embodiment. As shown in FIG. 4B, the same
Genl, Gen2, and Gen3 trees are provided for each of the
source bucket and target bucket. Instead of all being the
same size, the trees increase in size as the generation number
increases. Hence, for the example shown, Genl is 1 MB,
Gen2 is 2 MB, and Gen3 is 4 MB. Since the source and
generation trees must match, the same generation tree for
each of the source and target must be the same. The increase
in size may be configured to be a fixed amount, e.g., plus 1
or 2 MB per generation, or it may be arithmetic, such as
doubling the size of the previous generation, as shown in the
example of FIG. 4B, until a practical limit is reached, or
some other formula to increase the size. In yet another
embodiment, the size of a subsequent generation tree may be
decreased from the previous generation.

[0051] Each tree in the series of generated trees is tagged
with a unique Merkle Generation tag, which can be an
sequential integer number, alphabetic character, or other
alphanumeric character. In an embodiment, the tag com-
prises a key/value pair that is added to the object store. For
the example of S3 buckets, the tagging syntax can be
expressed as in the example pseudo-code sequence:

aws s3pi put-object-tagging \
--bucket my-bucket \
--key docl.rtf\
--tagging '{"TagSet": [{ "Key": "designation”, "Value": "confidential" }]}

[0052] In this example, the code will generate a tag as
follows:
[0053] tagging {“TagSet”:[{“Generation”:7},

{TreeSize:size}]}’
[0054] The above example uses the AWS (Amazon Web
Services) command line interface (CLI). However, there can
be a programmatic version, as well. Furthermore, although
embodiments are described with respect to Amazon S3 and
AWS implementations, embodiments are not so limited and
any other object or key-value storage system may be used.

US 2021/0232595 Al

[0055] Tagging also allows the process to delete older
versions from the tree, such as when an existing key (PUT)
is replaced, the process can extract the old generation tag
that the key had and know from which tree it needs to be
removed. It can then remove the old key from the old
generation and place the new value in the new generation.
[0056] In a data replication scenario in which a disk with
a first set of S3 buckets is to be copied to another disk to hold
the copied S3 buckets, the respective set of disks and
buckets are thus denoted source disk and target disk or
source bucket and a target bucket. Each has a regular or
sparse Merkle tree, and the synchronization process uses
certain tree traversal techniques. In an embodiment, each of
the source and target buckets perform a different process to
execute the data movement and Merkle tree synchroniza-
tion.

[0057] FIG. 5 is a flowchart that illustrates a method of
synchronizing S3 buckets for a source disk, under some
embodiments. Process 500 starts by deciding on and setting
the size of the Merkle tree for the source disk or buckets,
502. As shown in FIG. 4A, such a size can be on the order
of 2 MB, but any reasonable size from 1 MB to 8 MB, or
more, can be used. The process next sets the tree number that
represents the current generation, and identifies the tree
keeping the elements of this generation, 504. The first tree
can be denoted tree 1, tree A, etc. Thus, in an example, the
process starts with currentGeneration=1. The first Merkle
tree is then created according to the set size limit and with
the first Merkle number, 506. The number can be stored in
any appropriate manner and location for the data container
holding the Merkle tree.

[0058] The created tree is now ready for data operations
involving the source bucket. For an incoming operation on
the bucket, the entering data is tagged with the current
generation number of the Merkle tree, 508. The process
checks, in determination step 510, whether the incoming
data exceeds the size limit of the Merkle tree. If the size limit
is not exceeded, the process proceeds from the receiving of
the next object data, 508. If the size limit is exceeded, a new
Merkle tree is allocated, as a next generation tree. The
allocation process involves creating a new Merkle Tree
bucket according to a sizing policy, 512, and increase the
current generation number, 514. In an embodiment, the
sizing policy dictates the size of subsequent created Merkle
trees based on the size of the size limit set in step 502. The
sizing policy could say that all Merkle trees are to be of the
same size, as shown in FIG. 4A, or that the size of subse-
quent trees should be increased by a certain function, such
as adding a constant size, or doubling the size of the previous
tree, or other similar formulas. The process then proceeds
from step 508 for further incoming object data.

[0059] With respect to the new tree allocation process, it
should be noted that the process of FIG. 5 is asynchronous.
A new tree is allocated as soon as it is first detected that the
size limit of a present tree has been exceeded. Either the
source site or the target site can cause a new tree to be
allocated. Typically the source site initiates a new tree
allocation, but delays may cause the target site instead to
determine that a new tree is required.

[0060] With respect to the sizing policy, the process still
requires the user to make an estimate on the number of
elements in a tree, however compared to existing methods,
the estimate can be much looser, and the system will adjust
accordingly. For example, the estimate can be a bit low, and
additional trees will be created as needed. Estimating far too
low a number may still have ill effects as a lot of tree
generations need to be created, and some efficiency may be

Jul. 29, 2021

lost. Likewise, estimating an excessively large tree size will
be wasteful in cases where it is only partially filled. There-
fore, some knowledge must be applied in estimating the
right or most appropriate size number. The process can also
apply some learning to the size estimation process. For
example, it can start from a relatively small tree and make
the trees bigger, as we more trees are created. An example
heuristic, such as shown in FIG. 4B is to double the tree size
every new generation time, or every second generation time.
For this example, Gen 1 is with size M and Gen 2 with also
be size M, however Gen 3 will be 2*M, as will be Gen 4, and
then it is doubled again, and so on. Such as scheme provides
a balance between size and growth. Any similar growth
scheme can be utilized based on system constraints and
requirements. Likewise if the initial tree estimates were too
high, the next generation tree size could be decreased. It
should be noted that there is freedom in choosing the sizes
as long as the source and target coordinate or have the exact
same size changing heuristic. This ensures that the trees in
source and target of the same generation will have matching
topology.

[0061] As shown in FIG. 5, once the Merkle tree is
created, the incoming object data is received. This incoming
data is subject to certain operations depending on the nature
of the data, such as whether it is new data, updated data, or
if existing data is to be deleted. FIG. 6 illustrates a set of
operations for data in a Merkle tree forest, under some
embodiments. As shown in FIG. 6, process 650 includes a
POST operation that is used to create a new object. The
POST operation 652 enters the element key and hash of the
value to the current Merkle tree. The generation number is
marked in the object metadata in S3. A PUT operation 654
updates an existing object. For this operation, the process
deletes its previous version from the Merkle tree in which
the previous version resides. Therefore, it will read the
generation from the metadata of the current object and use
it to find the proper tree in which this version resides, and
will delete it from there. A new object for the data is then
created using the POST operation. ADELETE operation 656
deletes an existing object. For this operation, the process
fetches the generation tag from exiting S3 object, and deletes
it from the relevant tree. The process then proceeds with a
POST for any new data.

[0062] As stated above, the source and target disks or sites
perform a different process to execute the data movement
and Merkle tree synchronization. FIG. 5 illustrated the
operation of a source disk, and FIG. 7 is a flowchart that
illustrates a method of synchronizing S3 buckets for a target
disk, under some embodiments. As shown in FIG. 7, process
700 starts with the target receiving a tagged data object, 702.
Since the target receives an object that is already tagged, it
should not keep a global number of current generation or
keep track of the number of elements in the current bucket.
However, it should create a new tree if it has a member with
a generation tag for which no tree exists. Thus, in step 704,
process 700 determines if a new tree is needed from the
target side. This determination is made by reading the
generation tag of the received data. During replication, the
source sends the generation tag along with the object meta-
data. If a new generation value is received as compared to
the current tree for the target side, a new tree is needed. If
the tagged generation value matches or is for an earlier tree,
no new tree is needed, and the target uses the current
generation Merkle tree for the data replication, 706. If a new
tree is needed, the process creates the tree, 708. The tree
created by the target is sized according to the defined sizing
policy, as described above. The target then places the new

US 2021/0232595 Al

data in the new tree, 710. This mechanism ensures that the
number of trees in the source and target per time will match,
and that the topology on the trees in the source and target
match, and further that the keys in each tree is the same in
both source and target.

Merkle Tree Mapping

[0063] To find the proper tree according to new tree
generation within a number or “forest” of Merkle trees, there
must be some mapping between the generation number and
the corresponding Merkle Tree. In an embodiment, the
process maintains a data array or a table in which each entry
represents a generation and points to the relevant tree. It can
be a simple array or a hash table. FIG. 8 illustrates an
example data array that maps generation numbers to Merkle
trees, under some embodiments. When a new element is
created in the object store, it comes with a generation
number tag that indicates the number of the Merkle Tree to
which it belongs. As shown in FIG. 8, a number of trees 802
denoted Gen1 to Genn are provided in a forest of generated
new trees. Data array 802 has n sequential entries, where
each entry points to the appropriate and corresponding
Merkle tree, as shown.

[0064] In an embodiment, synchronization of the source
and target disks or sites uses the table or data array of FIG.
8 to produce the list of Merkle Trees in both sites. If there
is a whole tree that exists in one site, but not on the other,
the whole tree is synchronized (copied over). In the case of
a partial tree, a synchronization is performed for each
generation according to the related tree, as described above
with respect to the sparse Merkle tree embodiment. The
synchronization process using tables is typically be very
efficient. Older generation trees seldom get updated, and
therefore it is highly likely that the root hash will match
between source and target and there is no need to do
anything on the tree. Only the latest generation tree (and
maybe the one before) will likely have changes that require
the synchronization process.

[0065] In an alternative embodiment, mapping of genera-
tion number tags to Merkle trees can be implemented
through a tree of trees or Merkle “super tree” structure. This
embodiment effectively “re-roots” in a tree of trees once the
number of trees grows past a defined limit. Each sub-tree
will still be the original generation, and the new root will
point to the tree according to generation. The advantage of
this mechanism is that there will be a smaller number of
trees to manage. Placing new keys in the combined tree will
require knowing the proper generation in order to place it in
the correct sub-tree. The hash of the key will be the original
hash placed for the specific sub-tree.

[0066] In this embodiment, the system will maintain a tree
of Merkle trees in what is referred to as a “super Merkle
tree” or “super tree” that can be seen as a tree in which the
original Merkle Trees are leaves and the intermediate nodes
serve as a way to find quickly the needed Merkle tree, but
also contain the hash of its children in the tree for a fast
comparison between two such trees.

[0067] FIG. 9 is a flowchart that illustrates a process of
synchronizing two S3 disks using a Merkle super tree, under
some embodiments. Process 900 of FIG. 9 begin with the
first generation of Merkle tree in which elements are added
to the object store on the source site, and the source Merkle
tree is appropriately maintained, 902. The Merkle tree from
the source is then passed to the target site and the process
maintains the same Merkle Tree, 906. A limit on the number
of trees may be set, as shown in step 908. For example, the
system may be configured to allow only a certain number

Jul. 29, 2021

(M) elements in the tree and it builds the tree to adjust to this
limit. In step 910, it is determined whether this limit has
been reached, and if not the process proceeds using the
current tree, 916, and adding any new subsequent elements,
902.

[0068] When the limit of the Merkle tree capacity is
reached as determined in decision block 910, a new tree is
built, 912. The second added tree will be called Gen2, the
third added tree will be called Gen3, and so on. These
additional trees are connected to form a super tree, 914. FIG.
10 illustrates an example super tree, under some embodi-
ments. The example super tree of FIG. 10 is of size 2, though
embodiments are not so limited and any practical number of
trees may be included. The super Merkle tree of FIG. 10A
comprises a tree built on top of the original Merkle trees
Genl and Gen2, where Gen2 was a newly built tree to be
connected to the Genl tree. Each node in this super tree has
the hash of its child hashes and also an information regard-
ing the generations of its children, so that they can be easily
navigated to quickly find the correct generation. In the
example of FIG. 10, there are only two leaves from the root
node 1060, so the left is kept as 1 and the right tree is kept
as 2. If there is a bigger tree with 2 k Merkle trees as leaves,
it will keep in the parent node left [1-k], and right [k+1, 2k].
This information can be kept more compactly, i.e., by just
keeping the smallest generation of each child, left-1, right
k+1.

[0069] The use of super trees requires specific steps to
maintain and sync the super trees. In the case of adding a
new element (e.g., generation j), the process first find the tree
by traversing the super tree. We look for it in the left child
sub-tree if'j falls in the range of the left child, and in the right
child sub-tree if it falls in the range of the right child. When
the proper tree is found, the process proceeds until it reaches
a node indicating that the found tree is the Merkle tree itself.
Next, the process checks to if the current tree has enough
capacity to add data. If so, the elements are simply added to
the tree. If the tree does not have capacity, the process starts
a new tree corresponding to a new generation. Adding a new
Merkle Tree causes an update in the super tree. If the size of
leaves in the super tree is 2 (full binary tree), it creates a
new root, whose children are the current root and either the
added Merkle Tree (for k=0) or an artificial node that will
have only one left child, which in turn can be the tree (k=1),
or it can have another child, and so on. FIG. 10B illustrates
an example of adding a new Merkle tree to a super tree 1065,
such as shown in FIG. 10A, under some embodiments. The
process should also update the hashes of the path to the new
leaf (Merkle Tree). The example of FIG. 10B shows a new
Merkle tree denoted Gen3 added to super tree 1065 that
already has Genl and Gen2 Merkle trees.

[0070] During the tree addition process, when the super
tree 1065 is full (or the first Merkle tree if there is only genl)
another Merkle tree is added with its size according to the
sizing policy. This tree will be attached to a leaf of the super
tree according to the process illustrated in FIG. 10C. FIG.
10C is a flowchart that illustrates adding a Merkle tree to a
super Merkle tree, under some embodiments. The process
1080 assumes that a tree of GenK is being added to the super
tree, 1082, and the process identifies P, the parent of GenK-
1. In decision block 1086 it is determined whether or not the
parent is empty or full. If P is not empty and P has vacant
children, GenK is added as the next child at the leaf level of
P, 1088. For example, this can be done by adding descendant
nodes recursively until it reaches the leaves of the tree and
then add GenK to that node. If P is empty and if P has a
parent then set P to its parent and start from the top of the

US 2021/0232595 Al

process, 1090. Otherwise, the process adds a new root node
to the super tree, 1092. The root node first child points to the
previous root (P), 1094, where P=new root, and then the
process repeats from the top of the process.

[0071] In this process, descendent nodes are added recur-
sively, such that all Merkle trees are leaves in the super tree,
and they are all added at the same level in the tree. When a
new super tree node is added (root or internal), it needs to
get super node children added all the way down to the leaf
level, and only then can the new (GenK) tree be attached to
the super tree. The reason to check if P is empty is to handle
the case of Genl when Gen?2 is added. At this point, there is
no super tree, as Genl has no parent, so it is treated the same
as when the super tree is full. Adding root nodes or internal
nodes in this way in the super tree does not alter anything in
the existing parts of the super tree. There are no recalcula-
tions nor movements, and therefore, hashes only need to be
calculated for the nodes being added; there is no change in
existing nodes. Although embodiments have been described
with respect to binary trees, a similar method can be applied
to more complex tree structures.

[0072] A similar process to the addition process described
above can used if an element needs to be deleted. For
example, if an element of generation j needs to be deleted,
the process finds the tree, by traversing the super tree. It
looks for it in the left child sub-tree if j falls in the range of
the left child, and in the right child sub-tree if it falls in the
range of the right child. When the proper tree is found, the
process proceeds until it reaches a node indicating that this
is the Merkle Tree itself. The found element is then deleted.
[0073] Synchronizing Merkle trees between the source
and target sites using the super tree implementation is a
relatively easy process, since the super tree is a Merkle tree
in its own right. The synchronization process for the two
super trees uses the hashes on the nodes as expected in
Merkle tree sync processes.

[0074] Embodiments of the present method and system
use Merkle trees for S3 bucket synchronization. They over-
come certain shortcomings of previous systems using a
sparse tree of a fixed size, such as scale, waste and the need
to make decisions by the user, by having a list of trees, in
which each tree can be synchronized separately by keeping
a strict division to trees according to generation number. The
generation is passed from a source site to a target site during
replication operations. The tagging of the generation number
also makes it easy and efficient to remove an older version
of an element or deal with deleted elements. This allows
efficient syncing between two data object buckets without a
size limitation on number of elements in a bucket.

[0075] Although embodiments are described with respect
to sparse Merkle trees, it should be noted that other or
non-sparse Merkle trees can also be used.

System Implementation

[0076] FIG. 11 is a block diagram of a computer network
that implements an S3 data store synchronization process,
under some embodiments. This network may represent an
implementation that performs a data replication processes
between computers, networks, storage media (e.g., disks),
storage servers, data buckets, and so on, along with other
data backup processes. In system 600, a backup server 602
executes a backup management process 612 that coordinates
or manages the backup of data from one or more data
sources 608 to storage devices (e.g., HDD (hard disk drives)
or SSD (solid-state drives)), network storage, client storage
606, and/or virtual storage devices 604. With regard to
virtual storage 614, any number of virtual machines (VMs)

Jul. 29, 2021

or groups of VMs may be provided to serve as backup
targets. The various storage devices serve as target storage
devices for data backed up from one or more data sources,
such as computer 608, which may have attached local
storage 618 or utilize networked accessed storage devices
614. Data source 608 represents one of many possible
backup agents that initiate save sessions to backup their data
to storage devices on the network 600 through the backup
server 602 and backup management process 612.

[0077] The data may be locally sourced or remotely
sourced, and the client 608 may initiate save or backup
sessions on an automatically scheduled basis or a manually
initiated basis. In a data protection scenario, client 108
usually initiates data backups (e.g., full, incremental, differ-
ential, etc.) on a regular periodic schedule, such as hourly,
daily, weekly, and so on. The sourced data may be any type
of data, such as database data that is part of a database
management system. In this case, the data may reside on one
or more hard drives (e.g., 618) and may be stored in the
database in a variety of formats. One example is an Exten-
sible Markup Language (XML) database, which is a data
persistence software system that allows data to be stored in
XML format. Another example is a relational database
management system (RDMS) that uses tables to store the
information. Computer 608 may represent a database server
that instantiates a program that interacts with the database.
Each instance of a database server may, among other fea-
tures, independently query the database and store informa-
tion in the database, or it may be an application server that
provides user interfaces to database servers, such as through
web-based interface applications or through virtual database
server or a virtual directory server applications.

[0078] A network server computer 602 is coupled directly
or indirectly to the network storage devices 614, client
storage 616, data sources 608, and VMs 604 through net-
work 610, which may be a cloud network, LAN, WAN or
other appropriate network. Network 610 provides connec-
tivity to the various systems, components, and resources of
system 600, and may be implemented using protocols such
as Transmission Control Protocol (TCP) and/or Internet
Protocol (IP), well known in the relevant arts. In a distrib-
uted network environment, network 110 may represent a
cloud-based network environment in which applications,
servers and data are maintained and provided through a
centralized cloud-computing platform. In an embodiment,
system 600 may represent a multi-tenant network in which
a server computer runs a single instance of a program
serving multiple clients (tenants) in which the program is
designed to virtually partition its data so that each client
works with its own customized virtual application, with each
VM representing virtual clients that may be supported by
one or more servers within each VM, or other type of
centralized network server.

[0079] The data generated or sourced by system 600 may
be stored in any number of persistent storage locations and
devices, such as local client storage, server storage (e.g.,
618). The backup management process 612 causes or facili-
tates the backup of this data to other storage devices of the
network, such as network storage 614 which may at least be
partially implemented through storage device arrays, such as
RAID components. In an embodiment network 600 may be
implemented to provide support for various storage archi-
tectures such as storage area network (SAN), Network-
attached Storage (NAS), or Direct-attached Storage (DAS)
that make use of large-scale network accessible storage
devices 614, such as large capacity disk (optical or mag-
netic) arrays.

US 2021/0232595 Al

[0080] For the embodiment of FIG. 6, network system 600
includes a server or other resource that executes an object
store (S3) sync process 620 to perform the system configu-
ration and data syncing processes and operations described
herein. In an embodiment, the process works on data that is
represented in tree structure format, and processed accord-
ingly. For example, process may manage one or more
Merkle trees, or any other similar tree-based data structure.
In an embodiment, system 600 may represent a Data
Domain Restorer (DDR)-based de-duplication s r system,
and storage server 602 may be implemented as a DDR
De-duplication Storage server provided by EMC Corpora-
tion. However, other similar backup and storage systems are
also possible.

[0081] With respect to the flowcharts of FIGS. 5, 6, 7, and
9, the functional steps may be performed by hardware
processing components provided by one or more of the
servers or resources of system 600 of FIG. 11. Such com-
ponents may be provided or embodied as part of backup
process/component 112 and S3 sync process/component
620. Such components may be embodied as one or more
(first, second, third, etc.) hardware, processing, or pro-
grammed circuits configured to execute program instruc-
tions to perform a certain task, interfaces to transmit and
receive data within a computer (node) or between computers
(nodes), co-processors to perform subroutines or sub-tasks,
and other similar components.

[0082] Embodiments of the processes and techniques
described above can be implemented on any appropriate
backup system operating environment or file system, or
network server system. Such embodiments may include
other or alternative data structures or definitions as needed
or appropriate.

[0083] The network of FIG. 11 may comprise any number
of individual client-server networks coupled over the Inter-
net or similar large-scale network or portion thereof. Each
node in the network(s) comprises a computing device
capable of executing software code to perform the process-
ing steps described herein. FIG. 12 shows a system block
diagram of a computer system used to execute one or more
software components of the present system described herein.
The computer system 1005 includes a monitor 1011, key-
board 1017, and mass storage devices 1020. Computer
system 1005 further includes subsystems such as central
processor 1010, system memory 1015, I/O controller 1021,
display adapter 1025, serial or universal serial bus (USB)
port 1030, network interface 1035, and speaker 1040. The
system may also be used with computer systems with
additional or fewer subsystems. For example, a computer
system could include more than one processor 1010 (i.e., a
multiprocessor system) or a system may include a cache
memory.

[0084] Arrows such as 1045 represent the system bus
architecture of computer system 1005. However, these
arrows are illustrative of any interconnection scheme serv-
ing to link the subsystems. For example, speaker 1040 could
be connected to the other subsystems through a port or have
an internal direct connection to central processor 1010. The
processor may include multiple processors or a multicore
processor, which may permit parallel processing of infor-
mation. Computer system 1005 shown in FIG. 12 is but an
example of a computer system suitable for use with the
present system. Other configurations of subsystems suitable
for use with the present invention will be readily apparent to
one of ordinary skill in the art.

[0085] Computer software products may be written in any
of various suitable programming languages. The computer

Jul. 29, 2021

software product may be an independent application with
data input and data display modules. Alternatively, the
computer software products may be classes that may be
instantiated as distributed objects. The computer software
products may also be component software.

[0086] An operating system for the system 1005 may be
one of the Microsoft Windows®, family of systems (e.g.,
Windows Server), Linux, Mac OS X, IRIX32, or IRIX64.
Other operating systems may be used. Microsoft Windows
is a trademark of Microsoft Corporation.

[0087] In this specification, these implementations, or any
other form that the embodiments may take, may be referred
to as techniques. In general, the order of the steps of
disclosed processes may be altered within the scope of the
invention.

[0088] Unless the context clearly requires otherwise,
throughout the description and the claims, the words “com-
prise,” “comprising,” and the like are to be construed in an
inclusive sense as opposed to an exclusive or exhaustive
sense; that is to say, in a sense of “including, but not limited
to.” Words using the singular or plural number also include
the plural or singular number respectively. Additionally, the
words “herein,” “hereunder,” “above,” “below,” and words
of similar import refer to this application as a whole and not
to any particular portions of this application. When the word
“or” is used in reference to a list of two or more items, that
word covers all of the following interpretations of the word:
any of the items in the list, all of the items in the list and any
combination of the items in the list.

[0089] All references cited herein are intended to be
incorporated by reference. While one or more implementa-
tions have been described by way of example and in terms
of the specific embodiments, it is to be understood that one
or more implementations are not limited to the disclosed
embodiments. To the contrary, it is intended to cover various
modifications and similar arrangements as would be appar-
ent to those skilled in the art. Therefore, the scope of the
appended claims should be accorded the broadest interpre-
tation so as to encompass all such modifications and similar
arrangements.

What is claimed is:

1. A method of synchronizing object data between a
source site and a target site, comprising:

creating, in each of the source and target sites, an initial
Merkle tree having a fixed size with each node having
a hashed value of the metadata for the node and that of
any children of that node;

receiving data to be stored in the initial Merkle tree until
the fixed size is reached;

creating, upon reaching the fixed size, additional Merkle
trees each of a respective fixed size in a sequence of
successive additional Merkle trees as each additional
Merkle tree receives data in excess of its respective
fixed size, each additional Merkle tree having a unique
generation number;

maintaining the initial Merkle tree and each additional
Merkle tree in a super Merkle tree containing Merkle
tree leaves, wherein each node of the super Merkle tree
has a hash of its child hashes and information regarding
its respective generation number;

determining, by traversing the super Merkle tree the
existence of any missing additional Merkle trees that
are in the source site but not in the target site; and

copying data of the missing additional Merkle trees from
the source site to the target site using hashes on the
nodes through a Merkle tree synchronization process.

US 2021/0232595 Al

2. The method of claim 1 further comprising, in the
creating additional Merkle trees step:

identifying a parent of a next previous generation tree to

the added tree;

determining whether or not the parent is empty or full;

adding, if the parent not empty and P has vacant children,

the added tree to the next child at the leaf level of the
parent; and

setting, if the parent is empty, and itself has a parent then

set the parent to its parent, or, if the parent does not
have a parent, adding a new root node to the super
Merkle tree wherein a first child points to the previous
root node.

3. The method of claim 1 the object data comprises
Amazon Simple Storage Service (S3) data, and further
wherein the Merkle tree is a sparse Merkle tree wherein a
hash of an empty node is defined as zero, and includes nodes
within the Merkle tree.

4. The method of claim 2 wherein the fixed size of the
initial Merkle tree is of size M=c*n, wherein n is a maximum
allowed number of elements in the bucket, and ¢ is a
single-digit integer constant.

5. The method of claim 4 wherein a size of each subse-
quent Merkle tree is the same size of the initial Merkle tree.

6. The method of claim 5 wherein a size of each subse-
quent Merkle tree increases relative to the size of the initial
Merkle tree according to a defined sizing policy, and
wherein the defined sizing policy comprises one of: increas-
ing a subsequent Merkle tree size by a constant multiplier,
or doubling a size of each subsequent Merkle tree or group
of Merkle trees after the initial Merkle tree.

7. The method of claim 1 wherein the Merkle tree
synchronization process comprises:

recursively scanning child nodes of the missing additional

Merkle trees to identify data blocks that have different
hashes; and

sending data corresponding to the different hashes from

the source node to the target node.

8. The method of claim 2 wherein the unique generation
number is stored as object metadata for each S3 data object.

9. The method of claim 8 wherein a new object of the
received data is created in a POST operation by entering an
element key and hash of the object value to a current Merkle
tree, an existing data object is updated in a PUT operation by
deleting its previous version from a previous Merkle tree in
which the previous version resides, and an existing data
object is deleted in a DELETE operation by fetching a
corresponding generation tag for the existing data object and
deleting it from the corresponding Merkle tree.

10. The method of claim 10 further comprising:

receiving, in the target site, replicated data from the

source;

traversing the super Merkle tree to find a current Merkle

tree;

adding the replicated data to the current Merkle tree if it

has sufficient space; and

creating a new Merkle tree in the super Merkle tree if it

does not have sufficient space, and updating hashes of
a path to the new Merkle tree.

11. A method of synchronizing object stores in a data
backup system, comprising:

maintaining a tree of fixed-size Merkle trees for a source

site and a target site;

maintaining a super Merkle tree containing the fixed-size

Merkle trees, wherein each node of the super Merkle
tree has a hash of its child hashes and information

Jul. 29, 2021

regarding its respective generation number. receiving
data to be replicated from the source site to the target
site;

storing the received data in a current Merkle tree of the

sequence of Merkle trees;

creating new Merkle trees as the received data exceeds the

fixed size of the current Merkle tree, wherein each new
Merkle tree is assigned a unique generation number;
and

updating hashes of a path to the new Merkle trees.

12. The method of claim 11 further comprising, in the
creating new Merkle trees step:

identifying a parent of a next previous generation tree to

an added tree;

determining whether or not the parent is empty or full;

adding, if the parent not empty and the parent has vacant

children, the added tree to the next child at the leaf level
of the parent; and

setting, if the parent is empty, and itself has a parent then

set the parent to its parent, or, if the parent does not
have a parent, adding a new root node to the super
Merkle tree wherein a first child points to the previous
root node.

13. The method of claim 12 wherein the object data
comprises Amazon Simple Storage Service (S3) data, and
further wherein the Merkle tree is a sparse Merkle tree
wherein a hash of an empty node is defined as zero, and
includes nodes within the Merkle tree.

14. The method of claim 13 wherein a size of each
subsequent Merkle tree is the same size of the initial Merkle
tree.

15. The method of claim 14 wherein a size of each
subsequent Merkle tree increases relative to the size of the
initial Merkle tree according to a defined sizing policy, and
wherein the defined sizing policy comprises one of: increas-
ing a subsequent Merkle tree size by a constant multiplier,
or doubling a size of each subsequent Merkle tree or group
of Merkle trees after the initial Merkle tree.

16. The method of claim 15 wherein the unique genera-
tion number is stored as object metadata for each S3 data
object.

17. The method of claim 16 wherein a new object of the
received data is created in a POST operation by entering an
element key and hash of the object value to a current Merkle
tree, an existing data object is updated in a PUT operation by
deleting its previous version from a previous Merkle tree in
which the previous version resides, and an existing data
object is deleted in a DELETE operation by fetching a
corresponding generation tag for the existing data object and
deleting it from the corresponding Merkle tree.

18. The method of claim 11 wherein an initial Merkle tree
of the tree of fixed-size Merkle trees is denoted as Genera-
tion 1, a second Merkle tree of the tree of fixed-size Merkle
trees is denoted as Generation 2, a third Merkle tree of the
tree of fixed-size Merkle trees is denoted as Generation 3,
and a fourth Merkle tree of the tree of fixed-size Merkle trees
is denoted as Generation 4.

19. The method of claim 18 wherein newly received data
is input to a latest generation Merkle tree of the tree of
fixed-size Merkle trees.

20. A computer program product, comprising a non-
transitory computer-readable medium having a computer-
readable program code embodied therein, the computer-
readable program code adapted to execute a method of
synchronizing object stores in a data backup system, com-
prising:

US 2021/0232595 Al

maintaining a tree of fixed-size Merkle trees for a source
site and a target site;

maintaining a super Merkle tree containing the fixed-size
Merkle trees, wherein each node of the super Merkle
tree has a hash of its child hashes and information
regarding its respective generation number.

receiving data to be replicated from the source site to the
target site;

storing the received data in a current Merkle tree of the
sequence of Merkle trees;

creating new Merkle trees as the received data exceeds the
fixed size of the current Merkle tree, wherein each new
Merkle tree is assigned a unique generation number;
and

updating hashes of a path to the new Merkle trees.

#* #* #* #* #*

10

Jul. 29, 2021

