
US 20200257510A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0257510 A1

Deodhar et al . (43) Pub . Date : Aug. 13 , 2020

Publication Classification (54) AUTOMATIC COMPILER DATAFLOW
OPTIMIZATION TO ENABLE PIPELINING
OF LOOPS WITH LOCAL STORAGE
REQUIREMENTS

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(51) Int . Ci .
G06F 8/41 (2006.01)
G06F 9/38 (2006.01)

(52) U.S. CI .
CPC G06F 8/433 (2013.01) ; G06F 9/3838

(2013.01) ; G06F 9/381 (2013.01) ; G06F
9/3867 (2013.01) (72) Inventors : Rajiv Deodhar , Phoenix , AZ (US) ;

Sergey Dmitriev , Novosibirsk (RU) ;
Daniel Woodworth , Hudson , MA (US) ;
Rakesh Krishnaiyer , Milpitas , CA
(US) ; Kent Glossop , Nashua , NH (US) ;
Arvind Sudarsanam , Lexington , MA
(US)

(57) ABSTRACT

Systems , apparatuses and methods may provide for technol
ogy that detects one or more local variables in source code ,
wherein the local variable (s) lack dependencies across itera
tions of a loop in the source code , automatically generate
pipeline execution code for the local variable (s) , and incor
porate the pipeline execution code into an output of a
compiler . In one example , the pipeline execution code
includes an initialization of a pool of buffer storage for the
local variable (s) .

(21) Appl . No .: 16 / 863,315

(22) Filed : Apr. 30 , 2020

22 20 24

Source Code Compiler Output

Compiler Local
Variable (s)

Pipeline
Execution Code

26 28

Patent Application Publication Aug. 13 , 2020 Sheet 1 of 8 US 2020/0257510 A1

22 20 24

Source Code Compiler Output

Compiler Local
Variable (s)

Pipeline
Execution Code

26 28

FIG . 1

30

int f (int n , int x , int y , int * a)
{

for (int i = 0 ; i < n ; i ++) {
int b [100] ;
for (int j = x ; j < y ; j ++) {

b [j] i ;
}
a [i] a [i] + b [6] ;

}
return a [5] ;

??

FIG . 2A

Patent Application Publication Aug. 13 , 2020 Sheet 2 of 8 US 2020/0257510 A1

32

static void SPGEMMKernel (int ibegin , int iend , int n , int k ,
const int * rowptra , const int * colidxA , const FLOAT * vala ,
const int * rowptrB , const int * colidxB , const FLOAT * valB ,
const int * rowptrc , int * colidxc , FLOAT * valc)

??

+ n) ;

=

#pragma omp parallel for dataflow (pipeline (8))
for (int i = ibegin ; i < iend ; i ++) {

// Private variable
FLOAT spa [n] ;
memset (spa , 0 , sizeof (FLOAT)
int startA = rowptrA [i] ;
int enda = rowptrA?i + 1] ;
for (int j = startA ; j < endA ; j ++) {

int idxA = colidxA [j] ;
double VA valA [j] ;
int startB = rowptrB [idxA) ;
int endB = rowptrB [idxA + 1] ;
for (int k = startB ; k < endB ; k ++) {

int idxB = colidxB [k] ;
double VB = valB [k] ;
spa [idxB] + = VA * VB ;

} // for (int k = startB ; k < endB ; k ++)
} // for (int j = startA ; j < endA ; j ++)
int idxc = rowptrc [i] ;
for (int j = 0 ; j < n ; j ++) {

if (spa [j] ! = 0.0) {
colidxc [idxc] = j ;
valc [idxc] = spa [j] ;
idxC ++ ;
spa [j] = 0.0 ;

}
} // for (int j = 0 ; j < n ; j ++)

} // for (int i = 0 ; i < m ; i ++)
}

FIG , 2B

Patent Application Publication Aug. 13 , 2020 Sheet 3 of 8 US 2020/0257510 A1

34

int f (int n , int x , int y , int * a)
{

int b [100] ;
#pragma omp parallel for private (b)
for (int i = 0 ; i < n ; i ++) {

for (int j = x ; j < y ; j ++) {
b [j] i ;

}
a [i] a [i] + b [6] ;

}
return a [5] ;

}

FIG . 2C

36

int f (int n , int x , int y , int * a)
{
#pragma omp parallel for
for (int i = 0 ; i < n ; i ++) {

#if CONSTANT SIZE
// Constant - sized array , dynamically allocated
int * b = (int *) malloc (100 + sizeof (int)) ;

#else
// Variable - sized array , dynamically allocated
int * b = (int *) malloc (n + sizeof (int)) ;

#endif
for (int j = x ; j < y ; j ++) {

b [j] = i ;
}

a [i] = a [i] + b [6] ;

}
return a [5] ;

~

FIG . 2D

Patent Application Publication Aug. 13 , 2020 Sheet 4 of 8 US 2020/0257510 A1

42

40 Functional Unit
(Loops)

44

Functional Unit

FIG . 3

50
52

Detect one or more local variables in source code ,
wherein local variable (s) lack dependencies across

iterations of a loop in the source code
54

Automatically generate pipeline execution code for
the local variable (s)

56

Incorporate the pipeline execution code into the
output of a compiler

FIG . 4

Patent Application Publication Aug. 13 , 2020 Sheet 5 of 8 US 2020/0257510 A1

60

Early IR Passes

62

Worker Creation

IR Optimization
Passes

64

Local Storage
Expansion

Late IR Passes

66

Dataflow Operation
Conversion

Machine IR Passes

FIG . 5

Patent Application Publication Aug. 13 , 2020 Sheet 7 of 8 US 2020/0257510 A1

Code

213 Memory 270

Front End

Decoder (s)
220

210 Register Renaming
225

Scheduling
230

Execution Logic

| EU - 1 EU - 2 EU - N

255-1 255-2 255 - N 250

Back End

Retirement Logic
265

260

Processor Core 200

FIG.8

1000

FIG.9

Processing Element 1070

Processing Element 1080

1074b

1084b

1896a

1896b

Proc . Core

1074a

1084a

Proc . Core

Patent Application Publication

1050

Memory 1032

MC

1076

1078

1088 1086

MC

Memory 1034

1072

1082

P - P

P - P

P - P

P - P

Battery 1010

1094
P - P

IO Subsystem 1090

P - P

1049

1098

High - Perf . Graphics 1038

Aug. 13 , 2020 Sheet 8 of 8

IF

I / F

ho

1092

1016

1096

Bus Bridge 1018

IO Devices 1014

Audio IO 1024

1020

US 2020/0257510 A1

1030

Keyboard / Mouse 1012

Comm . Devices 1026

Data Storage
Code 1019

US 2020/0257510 A1 Aug. 13 , 2020
1

AUTOMATIC COMPILER DATAFLOW
OPTIMIZATION TO ENABLE PIPELINING

OF LOOPS WITH LOCAL STORAGE
REQUIREMENTS

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document
contains material which is subject to copyright or mask
work) protection . The (copyright or mask work) owner has
no objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure , as it appears in the
Patent and Trademark Office patent file or records , but
otherwise reserves all (copyright or mask work) rights
whatsoever .

[0010] FIG . 3 is a block diagram of an example of a
communication arc in a dataflow graph according to an
embodiment ;
[0011] FIG . 4 is a flowchart of an example of a method of
operating a compiler according to an embodiment ;
[0012] FIG . 5 is a block diagram of an example of a
compiler according to an embodiment ;
[0013] FIG . 6 is a block diagram of an example of a
performance - enhanced computing system according to an
embodiment ;
[0014] FIG . 7 is an illustration of an example of a semi
conductor apparatus according to an embodiment ;
[0015] FIG . 8 is a block diagram of an example of a
processor according to an embodiment ; and
[0016] FIG . 9 is a block diagram of an example of a
multi - processor based computing system according to an
embodiment . TECHNICAL FIELD

DESCRIPTION OF EMBODIMENTS [0002] Embodiments generally relate to compilers . More
particularly , embodiments relate to automatic compiler data
flow optimizations to enable pipelining of loops with local
storage requirements .

BACKGROUND

[0003] Dataflow graphs may be used to model computer
source code in terms of the dependencies between individual
operations performed by the code . A compiler may trans
form the source code into the dataflow graph , which is
typically executed by accelerator hardware such as a field
programmable gate array (FPGA) , configurable spatial
accelerator (CSA) , or other dataflow architecture . While the
accelerator hardware may be useful when dealing with high
performance computing (HPC) and / or data center applica
tions that operate on relatively large data arrays and struc
tures , there remains considerable room for improvement .
For example , if the operations of the source code involve the
execution of loops that internally declare “ private ” variables
for large data arrays , the ability to hold (e.g. , “ registerize ”)
the underlying data in the internal channels (e.g. , commu
nication arcs , buffers , latency insensitive channels / LICS ,
etc.) of the accelerator may be limited . As a result , the
private variables may be treated as purely memory - based
variables , which may cause performance losses .

[0017] Turning now to FIG . 1 , a compiler 20 is shown ,
where the compiler 20 automatically transforms source code
22 into an output 24 that is executable by a dataflow
architecture such as , for example , an FPGA , CSA , and so
forth . In an embodiment , the source code 22 is written in a
high - level language such as , for example , C , C ++ , or Fortran
augmented by parallel annotations (e.g. , OpenMP parallel
pragmas) to achieve runtime parallelism in the dataflow
architecture . The source code 22 may generally use loops to
perform various operations . Indeed , the runtime perfor
mance of applications may be dominated by the time spent
in executing loops to perform tasks . On a dataflow archi
tecture such as CSA , the performance of parallel loops may
be accelerated by a) creating multiple copies of the loop
bodies (e.g. , “ workers ”) , b) executing the workers in paral
lel , and c) pipelining execution of the workers .
[0018] In the illustrated example , the source code 22
contains one or more local variables 26 (e.g. , private vari
ables) , which lack dependencies across iterations of the
loops in the source code 22. As will be discussed in greater
detail , such a variable might occur naturally when declared
inside a loop . In an embodiment , the local variable (s) 26 are
occasionally used for relatively large data arrays . To
improve the throughput of the loops containing the local
variable (s) 26 in such a case , the illustrated compiler 20
generates pipeline execution code 28 for the local variable (s)
26 and incorporates the pipeline execution code 28 into the
output 24 of the compiler 20. Thus , the illustrated local
variables are allocated in a way that each loop iteration gets
its own copy , thereby permitting pipelined execution . As
already noted , pipelining execution of the workers may
significantly enhance performance .
[0019] FIG . 2A shows source code 30 containing a loop
(e.g. , “ for (int i = 0 ; i < n ; i ++ ”) that declares a variable “ b ” ,
which may be considered a local variable because it lacks
dependencies across iterations of the loop . In the illustrated
example , the variable has a fixed size (e.g. , an array of 100
integers) . Thus , the local storage requirements of the vari
able b are fixed and statically known to the compiler . The
illustrated source code 30 may be readily substituted for the
source code 22 (FIG . 1) , already discussed . Accordingly ,
pipeline execution code may be automatically generated for
the illustrated local variable .
[0020] FIG . 2B shows source code 32 containing a loop
(e.g. , “ for (int i = ibegin ; i < iend ; i ++) ”) that declares a vari

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The various advantages of the embodiments will
become apparent to one skilled in the art by reading the
following specification and appended claims , and by refer
encing the following drawings , in which :
[0005] FIG . 1 is a block diagram of an example of a
compiler output according to an embodiment ;
[0006] FIG . 2A is a source code listing of an example of
a loop with fixed - size local storage according to an embodi
ment ;
[0007] FIG . 2B is a source code listing of an example of
a loop with runtime - varying local storage according to an
embodiment ;
[0008] FIG . 2C is a source code listing of an example of
a loop with an explicitly designated private variable accord
ing to an embodiment ;
[0009] FIG . 2D is a source code listing of an example of
a loop with a dynamically allocated local variable according
to an embodiment ;

US 2020/0257510 A1 Aug. 13 , 2020
2

able “ spa ” , which also lacks dependencies across iterations
of the loop and is considered a local variable . In the
illustrated example , the size of the variable varies and is only
known at runtime . The illustrated source code 32 may be
readily substituted for the source code 22 (FIG . 1) , already
discussed . Accordingly , pipeline execution code may be
automatically generated for the illustrated local variable .
[0021] FIG . 2C shows source code 34 containing a loop
(e.g. , “ for (int j = x ; j < y ; j ++) ' ') that uses a variable “ b ” , where
the variable b is explicitly designated as a private variable
(e.g. , using the “ private ” clause) . Other explicit clauses such
as “ firstprivate ” , “ lastprivate ” , “ reduction ” , etc. , may also be
used . In the illustrated example , the variable has a fixed size
(e.g. , an array of 100 integers) . Thus , the local storage
requirements of the variable b are fixed and statically known
to the compiler . The illustrated source code 34 may be
readily substituted for the source code 22 (FIG . 1) , already
discussed . Accordingly , pipeline execution code may be
automatically generated for the illustrated local variable .
[0022] FIG . 2D shows source code 36 containing a loop
(e.g. , “ for (int i = 0 ; i < n ; i ++) ") that dynamically allocates
memory for a variable “ b ” from within the loop . In the
illustrated example , the variable is a local variable that lacks
dependencies across iterations of the loop and the size of the
variable may either remain constant or vary . The illustrated
source code 36 may be readily substituted for the source
code 22 (FIG . 1) , already discussed . Accordingly , pipeline
execution code may be automatically generated for the
illustrated local variable .
[0023] Turning now to FIG . 3 , a communication arc 40
(e.g. , LIC) between a first functional unit 42 (e.g. , node) in
a dataflow graph and a second functional unit 44 in the
dataflow graph is shown . In the illustrated example , the
functional units 42 and 44 are used to perform operations in
a loop on data associated with local variables . In an embodi
ment , the communication arc 40 includes buffer storage (not
shown) such as , for example , one or more line buffers , FIFO
(first in first out) buffers , etc. , which may be used to hold
values that enable apportioning data associated with local
variables in the loop to different loop iterations .
[0024] FIG . 4 shows a method 50 of operating a compiler .
The method 50 may generally be implemented in a compiler
such as , for example , the compiler 20 (FIG . 1) , already
discussed . More particularly , the method 50 may be imple
mented in one or more modules as a set of logic instructions
stored in a machine- or computer - readable storage medium
such as random access memory (RAM) , read only memory
(ROM) , programmable ROM (PROM) , firmware , flash
memory , etc. , in configurable logic such as , for example ,
programmable logic arrays (PLAS) , FPGAs , complex pro
grammable logic devices (CPLDs) , in fixed - functionality
logic hardware using circuit technology such as , for
example , application specific integrated circuit (ASIC) ,
complementary metal oxide semiconductor (CMOS) or tran
sistor - transistor logic (TTL) technology , or any combination
thereof .
[0025] For example , computer program code to carry out
operations shown in the method 50 may be written in any
combination of one or more programming languages ,
including an object oriented programming language such as
JAVA , SMALLTALK , C ++ or the like and conventional
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages .
Additionally , logic instructions might include assembler

instructions , instruction set architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , state - setting data , configuration data for inte
grated circuitry , state information that personalizes elec
tronic circuitry and / or other structural components that are
native to hardware (e.g. , host processor , central processing
unit / CPU , microcontroller , etc.) .
[0026] Illustrated processing block 52 provides for detect
ing one or more local variables in source code , wherein the
local variable (s) lack dependencies across iterations of a
loop in the source code . The source code may be associated
with a communication channel as , for example , the com
munication arc 40 (FIG . 3) in a dataflow graph . In an
embodiment , block 52 includes automatically parsing and / or
searching the source code for loops with fixed - size local
storage (e.g. , as in FIG . 2A) , runtime - varying local storage
(e.g. , as in FIG . 2B) , explicitly designated private variables
(e.g. , as in FIG . 2C) , dynamically allocated local variables
(e.g. , as in FIG . 2D) , and so forth . Moreover , block 52 may
be conducted after a registerization of the source code .
[0027] Block 54 automatically generates (e.g. , in response
to the detection of the one or more local variables) pipeline
execution code for the local variable (s) . As will be discussed
in greater detail , block 54 may include generating executable
instructions to initialize a pool of buffer storage for the local
variable (s) , define a pipeline depth , and define a plurality of
tokenized slots in the initialized pool of buffer storage . In
one example , the initialized pool of buffer storage is greater
than the local storage amount corresponding to a single
iteration of the loop . Moreover , each tokenized slot may
correspond to a pipelined iteration of the loop . Illustrated
block 56 incorporates the pipeline execution code into the
output of the compiler . The method 50 therefore enhances
performance by enabling the pipelining of loops containing
private data , which improves throughput . Indeed , the overall
cycles needed to execute a loop may be significantly less
than the product of static loop cycles (e.g. , the number of
cycles needed to execute one iteration of the loop) and the
loop iteration count .
[0028] FIG . 5 shows a compiler 60 that may implement
one or more aspects of the method 50 (FIG . 4) , already
discussed . Additionally , the compiler 60 may be readily
substituted for the compiler 20 (FIG . 1) , already discussed .
In general , the compiler 60 enables pipelined execution of
loops containing local variables and may be explained with
reference to a piece of sample source code and compiler
generated pseudo - code . For further reference , the end of this
disclosure includes actual intermediate representation (IR)
results using an LLVM compiler for a similar sample before
and after the principal compiler transformations described
herein .

[0029] Using dynamically allocated local storage in a loop
as an example , with a constant array size of 100 chosen for
simplicity , it may be assumed that the compiler 60 selects
two workers for the loop and chooses a pipeline depth of
three for each worker loop .
[0030] An OpenMP language extension may also be
implemented to allow explicit control over worker creation
and pipeline depth . Such an extension may be considered
optional .

US 2020/0257510 A1 Aug. 13 , 2020
3

[0031] The OpenMP language extension is :

#pragma omp
dataflow ([num_workers [(< n >)]] ,
[static] (< chunksize >)]] ,
[pipeline] (< depth >)]])

for - loops

[0042] These intrinsics enclose the loops that need local
storage . The arguments of the " entry ” call specify the
pipeline depth and mark the place where allocation for the
enclosed loops occurs . The " exit ” marks the deallocation
point . This representation ensures that independent of the
number of workers generated , a single allocation / dealloca
tion is done for the loops .
[0043] Pseudo - code of the original single loop after the
worker creation stage 62 is shown below . In the illustrated
example , the original loop has been replicated to form two
workers . Additionally , the local variable in the original loop
becomes a separate local variable in each of the new loops .
Pipelining has not been accounted for yet and is done later
in the local storage expansion stage 64. The pseudo - code
after processing by the worker creation stage 62 might be :

[0032] The pipeline (depth) sub - clause specifies how many
loop iterations are to be allowed to execute concurrently .
The num workers and static clauses specify how many
workers to create and the way to distribute the loop iterations
across the workers . Other parallel annotation languages
and / or APIs (application programming interfaces) such as
OpenACC , OpenCL , SYCL , etc. , may also be used .
[0033] The solution for correctly handling private vari
ables in pipelined loops may span many passes in the
compiler 60. The transformations are in three places as
shown in FIG . 5 :
[0034] Aworker creation stage 62 may be used when local
storage arises from OpenMP clauses . In an embodiment , the
worker creation stage 62 replaces OpenMP directives with
expansions for multiple workers . The worker creation stage
62 may also represent local storage using dynamic alloca
tion . Pseudocode for the worker creation stage 62 is pro
vided below .

depth.region = pipeline.limited.entry (id1 , 3)
// Worker 0
region0 = parallel.region.entry (id2)

Loopo :
b.priv.0 = alloca
// all uses of b in the loop are replaced with b.priv.O

< inner j - loop >

End - loopo :
parallel.region.exit (regiono)
// Worker 1
regionl = parallel.region.entry (id3)

Loopl :
b.priv.1 = alloca ...
1 / all uses of b in the loop are replaced with b.priv.1

Loop :
b = alloca ...
// the body of this loop references the local variable b < inner j - loop >
< inner j - loop >

End - loop :
End - loop1 :

parallel.region.exit (regionl)
pipeline.limited.exit (depth.region)

[0035] A local storage expansion stage 64 handles a rela
tively large portion of the transformations described herein .
In one example , the local storage expansion stage 64 handles
allocation and referencing of private variables that remain .
The pass of the illustrated stage 64 is conducted relatively
late to allow other compiler optimizations to registerize local
variables as far as possible . Accordingly , variables that could
not otherwise be registerized are dealt with in the stage 64 .
If a loop has a set S of private variables , then the stage 64
creates an array of type S with dimension the pipeline depth ,
which is dynamic count of iterations in flight .
[0036] A dataflow operation conversion stage 66 may
handle the management of the individual slots in the private
variable array created for each loop .
[0037] Worker Creation
[0038] The worker creation stage 62 may create multiple
workers as directed by OpenMP directives . For non
OpenMP loops , the worker creation stage 62 may automati
cally decide the number of workers to generate . Similarly ,
OpenMP directives may specify the pipeline depth , or the
compiler 60 may select the degree of pipelining to generate .
For the purposes of discussion , it is assumed that two
workers are created and that a pipeline depth of three is
selected .

[0039] A pair of LLVM IR intrinsics may be introduced
to support loop - local storage :

[0040] r = pipeline.limited.entry (int id , int depth)
[0041] pipeline.limited.exit (r)

[0044] Local Storage Expansion
[0045] In an embodiment , the local storage expansion
stage 64 performs the transformation to account for pipe
lining . The pipeline depth of three is enforced using the
concept of a token and a pool of three token values is created
for each worker . In one example , an iteration may begin
when a token can be obtained from the pool . This operation
is modeled by a call to “ token.take ” , which completes only
when a local storage slot becomes available . When an
iteration is completed , the token is returned to the pool . This
return is modeled by a call to “ token.return ” . In one
example , since only three distinct token values exist , only
three iterations can execute concurrently in each worker .
[0046] Pseudo - code after the local storage expansion stage
64 might be :

// Local variable pool declaration
#define num workers 2
#define depth 3
struct worker_pool {

struct loop_pool {
double B [100] ;

} Is [depth] ;
} pool [num_workers] ;

|| Allocate the pool
pool = CsaMemAlloc (sizeof (worker_pool)) ;
// Worker 0
WO & pool [0] ;

US 2020/0257510 A1 Aug. 13 , 2020
4

-continued

Loopo :
// token.take will return one of these values :
11 & w0.1s [0] , & wo.1s [1] , ... , WO.1s [depth - 1]
wO_pool = token.take (wo , sizeof (ls) , depth) ;
B_loop_local = & wO_pool.B ;
1 / all uses of B in the loop are replaced with B_loop_local

[0055] The instruction does not execute until “ inord ” is
available . Then , “ value ” becomes available as the result .
[0056] The pseudocode below is an example output of the
dataflow operation conversion stage 66 for a CSA imple
mentation .

< inner j - loop >
token.return (pool , wo_pool) ;

End - loopo :
// Worker 1
w1 & pool [1] ;

// Each loop iteration requires 400 bytes of local storage
// There are 2 workers created for the original loop
// A pipeline depth of 3 is implemented
// Total local storage 400 * 3 * 2 bytes = 2400 bytes
// Workero uses a pool that ranges from bytes 0 to 1199
// Workerl uses a pool that ranges from bytes 1200 to 2399
// Within each worker's pool , the 3 slots have offsets 0 , 400 , 800
|| A LIC of depth 3 is initialized with offset values :
Il offset_of (sloto) , offset_of (slot1) , offset_of (slot2)
.lic @ 8 .164 % slot_offset

Loop 1 :

I.

// token.take will return one of these values :
Il & w1.1s [0] , & w1.1s [1] , w1.1s [depth - 1]
wl_pool = token.take (w1 , sizeof (ls) , depth) ;
B_loop_local = & wl_pool.B ;
1 / all uses of B in the loop are replaced with B_loop_local % slot_offset : ci64

% slot_offset : ci64
% slot_offset : ci64

init64 0
init64 400
init64 800 < inner j - loop >

token.return (pool , wl_pool) ;
End - loop 1 :

// Deallocate the pool
CsaMemFree (pool) ;

// token_take implemented on CSA
// Dynamic memory allocation outside the loop generates the pool address
pool = // Equivalent of CsaMemAlloc (2400)

// In the loop , when the token_take is ready to execute
1 / the pool address is made available to the add64 instruction
gate64 pool_gated , token_take_inord , pool
// The address of the local storage slot assigned to this iteration
// is computed
add64 slot_addr , _slot_offsets , _pool_gated

// token_return implemented on CSA
// In the loop , when the token_return is ready to execute
// The slot_offset is written back at the end of the LIC
gate64 slot_offsets , token_return_inord , slot_offsets
// the completion of token_return is signaled with this movo
movo token_return_outord , token_return inord

[0047] Dataflow Operation Conversion
[0048] The final stage in implementing loop - local storage
is during the dataflow operation conversion stage 66 , which
converts IR code into dataflow operations . The intrinsics
token.take and token.return may be abstract representations
of a mechanism that doles out a fixed number of tokens . In
an embodiment , the physical implementation of this mecha
nism uses CSA LICs . The fundamental property of CSA
LICs is to hold multiple values , to deliver values from one
end of the LIC when read , and to write values at the other
end of the LIC when written . This property may be used to
permit only a fixed number of values to circulate through the
loop body . In one example , the depth of the LIC is chosen
to be the user - specified pipeline depth . Additionally , the
values in the LIC may be offsets of individual slots allocated
for the private variables of a loop . When a new iteration of
the loop begins , a value is read from the LIC and added to
a base address to generate the slot address for the current
iteration of the loop . When the iteration completes , the offset
may be written back to the LIC . Because the LIC holds only
" depth ” number of values , only depth number of iterations
may execute concurrently , with each using a separate local
storage slot . Example dataflow operations that implement
this scheme are shown below .
[0049] In a dataflow machine , instructions execute when
their input dependencies are satisfied . In the following , an
“ inord ” is an input ordinal (e.g. , a signal that an input
dependence has been satisfied) and an " outord ” is generated
by an instruction when the instruction completes execution
to indicate that the result in now available . The gate64 ,
add64 and mov instructions are explained first , and then
their use in implementing token.take and token.return .

[0050] gate64 result , inord , value
[0051] The instruction does not execute until inord is
available . Then , “ value ” becomes available as the result .

[0052] add64 result , input1 , input2
[0053] The instruction does not execute until input1 and
input2 are available . Then , “ result ” becomes available as the
sum of “ input1 ” and “ input2 ” .

[0054] mov result , inord , value

[0057] In this way , the dataflow properties of CSA LICs
are exploited to enable pipelining of parallel loops while
guaranteeing that enough local storage is available for
dynamic loop iterations . The compiler 60 may conduct this
transformation automatically and a prototype OpenMP lan
guage extension has been implemented to demonstrate the
advantages of the solution .
[0058] Turning now to FIG . 6 , a performance - enhanced
computing system 151 is shown . The system 151 may
generally be part of an electronic device / platform having
computing functionality (e.g. , personal digital assistant /
PDA , notebook computer , tablet computer , convertible tab
let , server) , communications functionality (e.g. , smart
phone) , imaging functionality (e.g. , camera , camcorder) ,
media playing functionality (e.g. , smart television / TV) ,
wearable functionality (e.g. , watch , eyewear , headwear ,
footwear , jewelry) , vehicular functionality (e.g. , car , truck ,
motorcycle) , robotic functionality (e.g. , autonomous robot) ,
Internet of Things (IoT) functionality , etc. , or any combi
nation thereof . In the illustrated example , the system 151
includes a host processor 153 (e.g. , central processing unit /
CPU) having an integrated memory controller (IMC) 155
that is coupled to a system memory 157 .
[0059] The illustrated system 151 also includes an input
output (10) module 159 implemented together with the host
processor 153 and a graphics processor 161 (e.g. , graphics
processing unit / GPU) on a semiconductor die 163 as a
system on chip (SoC) . The illustrated 10 module 159
communicates with , for example , a display 165 (e.g. , touch

US 2020/0257510 A1 Aug. 13 , 2020
5

screen , liquid crystal display / LCD , light emitting diode /
LED display) , a network controller 167 (e.g. , wired and / or
wireless) , and mass storage 169 (e.g. , hard disk drive / HDD ,
optical disk , solid state drive / SSD , flash memory) .
[0060] In an embodiment , the host processor 153 , the
graphics processor 161 and / or the 10 module 159 execute
instructions 171 retrieved from the system memory 157
and / or the mass storage 169 to perform one or more aspects
of the method 50 (FIG . 4) , already discussed . Thus , execu
tion of the illustrated instructions 171 may cause the com
puting system 151 to detect one or more local variables in
source code , wherein the one or more local variables lack
dependencies across iterations of a loop in the source code ,
automatically generate pipeline execution code for the one
or more local variables , and incorporate the pipeline execu
tion code into an output of a compiler .
[0061] In an embodiment , the pipeline execution code
includes an initialization of a pool of buffer storage for the
one or more local variables . In such a case , the initialized
pool of buffer storage may be greater than (e.g. , several
multiples of) a local storage amount corresponding to a
single iteration of the loop . Moreover , the pipelined execu
tion code may further include a definition of a plurality of
tokenized slots in the initialized pool of buffer storage ,
where each tokenized slot corresponds to a pipelined itera
tion of the loop . In an embodiment , the pipelined execution
code further includes a pipeline depth definition . In one
example , the local variable (s) are detected after a register
ization of the source code and the source code is associated
with a communication channel in a dataflow graph . Addi
tionally , the automatic generation of the pipeline execution
code may be conducted in response to the detection of the
local variable (s) .
[0062] The illustrated system 151 is therefore perfor
mance - enhanced at least to the extent that the pipelining of
loops containing private data improves throughput . Indeed ,
the overall cycles needed to execute a loop may be signifi
cantly less than the product of static loop cycles and the loop
iteration count .

[0063] FIG . 7 shows a semiconductor package apparatus
173. The illustrated apparatus 173 includes one or more
substrates 175 (e.g. , silicon , sapphire , gallium arsenide) and
logic 177 (e.g. , transistor array and other integrated circuit /
IC components) coupled to the substrate (s) 175. The logic
177 may be implemented at least partly in configurable logic
or fixed - functionality logic hardware . In one example , the
logic 177 implements one or more aspects of the method 50
(FIG . 4) , already discussed . Thus , the logic 177 may detect
one or more local variables in source code , wherein the local
variable (s) lack dependencies across iterations of a loop in
the source code , automatically generate pipeline execution
code for the local variable (s) , and incorporate the pipeline
execution code into an output of a compiler . The illustrated
apparatus 173 is therefore performance - enhanced at least to
the extent that the pipelining of loops containing private data
improves throughput . Indeed , the overall cycles needed to
execute a loop may be significantly less than the product of
static loop cycles and the loop iteration count .
[0064] In one example , the logic 177 includes transistor
channel regions that are positioned (e.g. , embedded) within
the substrate (s) 175. Thus , the interface between the logic
177 and the substrate (s) 175 may not be an abrupt junction .

The logic 177 may also be considered to include an epitaxial
layer that is grown on an initial wafer of the sub strate (s)
175 .

[0065] FIG . 8 illustrates a processor core 200 according to
one embodiment . The processor core 200 may be the core
for any type of processor , such as a micro - processor , an
embedded processor , a digital signal processor (DSP) , a
network processor , or other device to execute code .
Although only one processor core 200 is illustrated in FIG .
8 , a processing element may alternatively include more than
one of the processor core 200 illustrated in FIG . 8. The
processor core 200 may be a single - threaded core or , for at
least one embodiment , the processor core 200 may be
multithreaded in that it may include more than one hardware
thread context (or “ logical processor ”) per core .
[0066] FIG . 8 also illustrates a memory 270 coupled to the
processor core 200. The memory 270 may be any of a wide
variety of memories (including various layers of memory
hierarchy) as are known or otherwise available to those of
skill in the art . The memory 270 may include one or more
code 213 instruction (s) to be executed by the processor core
200 , wherein the code 213 may implement one or more
aspects of the method 50 (FIG . 4) , already discussed . The
processor core 200 follows a program sequence of instruc
tions indicated by the code 213. Each instruction may enter
a front end portion 210 and be processed by one or more
decoders 220. The decoder 220 may generate as its output a
micro operation such as a fixed width micro operation in a
predefined format , or may generate other instructions ,
microinstructions , or control signals which reflect the origi
nal code instruction . The illustrated front end portion 210
also includes register renaming logic 225 and scheduling
logic 230 , which generally allocate resources and queue the
operation corresponding to the convert instruction for execu
tion .
[0067] The processor core 200 is shown including execu
tion logic 250 having a set of execution units 255-1 through
255 - N . Some embodiments may include a number of execu
tion units dedicated to specific functions or sets of functions .
Other embodiments may include only one execution unit or
one execution unit that can perform a particular function .
The illustrated execution logic 250 performs the operations
specified by code instructions .
[0068] After completion of execution of the operations
specified by the code instructions , back end logic 260 retires
the instructions of the code 213. In one embodiment , the
processor core 200 allows out of order execution but
requires in order retirement of instructions . Retirement logic
265 may take a variety of forms as known to those of skill
in the art (e.g. , re - order buffers or the like) . In this manner ,
the processor core 200 is transformed during execution of
the code 213 , at least in terms of the output generated by the
decoder , the hardware registers and tables utilized by the
register renaming logic 225 , and any registers (not shown)
modified by the execution logic 250 .
[0069] Although not illustrated in FIG . 8 , a processing
element may include other elements on chip with the pro
cessor core 200. For example , a processing element may
include memory control logic along with the processor core
200. The processing element may include I / O control logic
and / or may include I / O control logic integrated with
memory control logic . The processing element may also
include one or more caches .

US 2020/0257510 A1 Aug. 13 , 2020
6

[0070] Referring now to FIG . 9 , shown is a block diagram
of a computing system 1000 embodiment in accordance with
an embodiment . Shown in FIG . 9 is a multiprocessor system
1000 that includes a first processing element 1070 and a
second processing element 1080. While two processing
elements 1070 and 1080 are shown , it is to be understood
that an embodiment of the system 1000 may also include
only one such processing element .
[0071] The system 1000 is illustrated as a point - to - point
interconnect system , wherein the first processing element
1070 and the second processing element 1080 are coupled
via a point - to - point interconnect 1050. It should be under
stood that any or all of the interconnects illustrated in FIG .
9 may be implemented as a multi - drop bus rather than
point - to - point interconnect .
[0072] As shown in FIG . 9 , each of processing elements
1070 and 1080 may be multicore processors , including first
and second processor cores (i.e. , processor cores 1074a and
1074b and processor cores 1084a and 1084b) . Such cores
1074a , 1074b , 1084a , 1084b may be configured to execute
instruction code in a manner similar to that discussed above
in connection with FIG . 8 .
[0073] Each processing element 1070 , 1080 may include
at least one shared cache 1896a , 1896b . The shared cache
1896a , 1896b may store data (e.g. , instructions) that are
utilized by one or more components of the processor , such
as the cores 1074a , 1074b and 1084a , 1084b , respectively .
For example , the shared cache 1896a , 1896b may locally
cache data stored in a memory 1032 , 1034 for faster access
by components of the processor . In one or more embodi
ments , the shared cache 1896a , 1896b may include one or
more mid - level caches , such as level 2 (L2) , level 3 (L3) ,
level 4 (L4) , or other levels of cache , a last level cache
(LLC) , and / or combinations thereof .
[0074] While shown with only two processing elements
1070 , 1080 , it is to be understood that the scope of the
embodiments is not so limited . In other embodiments , one or
more additional processing elements may be present in a
given processor . Alternatively , one or more of processing
elements 1070 , 1080 may be an element other than a
processor , such as an accelerator or a field programmable
gate array . For example , additional processing element (s)
may include additional processors (s) that are the same as a
first processor 1070 , additional processor (s) that are hetero
geneous or asymmetric to processor a first processor 1070 ,
accelerators (such as , e.g. , graphics accelerators or digital
signal processing (DSP) units) , field programmable gate
arrays , or any other processing element . There can be a
variety of differences between the processing elements
1070 , 1080 in terms of a spectrum of metrics of merit
including architectural , micro architectural , thermal , power
consumption characteristics , and the like . These differences
may effectively manifest themselves as asymmetry and
heterogeneity amongst the processing elements 1070 , 1080 .
For at least one embodiment , the various processing ele
ments 1070 , 1080 may reside in the same die package .
[0075] The first processing element 1070 may further
include memory controller logic (MC) 1072 and point - to
point (PPP) interfaces 1076 and 1078. Similarly , the second
processing element 1080 may include a MC 1082 and P - P
interfaces 1086 and 1088. As shown in FIG . 9 , MC's 1072
and 1082 couple the processors to respective memories ,
namely a memory 1032 and a memory 1034 , which may be
portions of main memory locally attached to the respective

processors . While the MC 1072 and 1082 is illustrated as
integrated into the processing elements 1070 , 1080 , for
alternative embodiments the MC logic may be discrete logic
outside the processing elements 1070 , 1080 rather than
integrated therein .
[0076] The first processing element 1070 and the second
processing element 1080 may be coupled to an I / O subsys
tem 1090 via P - P interconnects 1076 1086 , respectively . As
shown in FIG . 9 , the I / O subsystem 1090 includes P - P
interfaces 1094 and 1098. Furthermore , I / O subsystem 1090
includes an interface 1092 to couple I / O subsystem 1090
with a high performance graphics engine 1038. In one
embodiment , bus 1049 may be used to couple the graphics
engine 1038 to the 1/0 subsystem 1090. Alternately , a
point - to - point interconnect may couple these components .
[0077] In turn , I / O subsystem 1090 may be coupled to a
first bus 1016 via an interface 1096. In one embodiment , the
first bus 1016 may be a Peripheral Component Interconnect
(PCI) bus , or a bus such as a PCI Express bus or another
third generation I / O interconnect bus , although the scope of
the embodiments are not so limited .
[0078] As shown in FIG.9 , various I / O devices 1014 (e.g . ,
biometric scanners , speakers , cameras , sensors) may be
coupled to the first bus 1016 , along with a bus bridge 1018
which may couple the first bus 1016 to a second bus 1020 .
In one embodiment , the second bus 1020 may be a low pin
count (LPC) bus . Various devices may be coupled to the
second bus 1020 including , for example , a keyboard / mouse
1012 , communication device (s) 1026 , and a data storage unit
1019 such as a disk drive or other mass storage device which
may include code 1030 , in one embodiment . The illustrated
code 1030 may implement one or more aspects of the
method 50 (FIG . 4) , already discussed . Further , an audio I / O
1024 may be coupled to second bus 1020 and a battery 1010
may supply power to the computing system 1000 .
[0079] Note that other embodiments are contemplated . For
example , instead of the point - to - point architecture of FIG.9 ,
a system may implement a multi - drop bus or another such
communication topology . Also , the elements of FIG . 9 may
alternatively be partitioned using more or fewer integrated
chips than shown in FIG . 9 .

Additional Notes and Examples
[0080] Example 1 includes a performance - enhanced com
puting system comprising a network controller , a processor
coupled to the network controller , and a memory coupled to
the processor , the memory including a set of executable
program instructions , which when executed by the proces
sor , cause the processor to detect one or more local variables
in source code , wherein the one or more local variables lack
dependencies across iterations of a loop in the source code ,
automatically generate pipeline execution code for the one
or more local variables , and incorporate the pipeline execu
tion code into an output of the compiler .
[0081] Example 2 includes the computing system of
Example 1 , wherein the pipeline execution code is to include
an initialization of a pool of buffer storage for the one or
more local variables .
[0082] Example 3 includes the computing system of
Example 2 , wherein the initialized pool of buffer storage is
to be greater than a local storage amount corresponding to a
single iteration of the loop .
[0083] Example 4 includes the computing system of
Example 2 , wherein the pipeline execution code is to further

US 2020/0257510 A1 Aug. 13 , 2020
7

include a definition of a plurality of tokenized slots in the
initialized pool of buffer storage , and wherein each token
ized slot is to correspond to a pipelined iteration of the loop .
[0084] Example 5 includes the computing system of
Example 1 , wherein the pipeline execution code is to include
a pipeline depth definition .
[0085] Example 6 includes the computing system of any
one of Examples 1 to 5 , wherein the one or more local
variables are to be detected after a registerization of the
source code , automatic generation of the pipeline execution
code is to be in response to detection of the one or more local
variables , and the source code is to be associated with a
communication channel in a dataflow graph .
[0086] Example 7 includes a semiconductor apparatus
comprising one or more substrates , and logic coupled to the
one or more substrates , wherein the logic is implemented at
least partly in one or more of configurable logic or fixed
functionality hardware logic , the logic coupled to the one or
more substrates to detect one or more local variables in
source code , wherein the one or more local variables lack
dependencies across iterations of a loop in the source code ,
automatically generate pipeline execution code for the one
or more local variables , and incorporate the pipeline execu
tion code into an output of a compiler .
[0087] Example 8 includes the semiconductor apparatus
of Example 7 , wherein the pipeline execution code is to
include an initialization of a pool of buffer storage for the
one or more local variables .
[0088] Example 9 includes the semiconductor apparatus
of Example 8 , wherein the initialized pool of buffer storage
is to be greater than a local storage amount corresponding to
a single iteration of the loop .
[0089] Example 10 includes the semiconductor apparatus
of Example 8 , wherein the pipeline execution code is to
further include a definition of a plurality of tokenized slots
in the initialized pool of buffer storage , and wherein each
tokenized slot is to correspond to a pipelined iteration of the
loop .
[0090] Example 11 includes the semiconductor apparatus
of Example 7 , wherein the pipeline execution code is to
include a pipeline depth definition .
[0091] Example 12 includes the semiconductor apparatus
of any one of Examples 7 to 11 , wherein the one or more
local variables are to be detected after a registerization of the
source code , automatic generation of the pipeline execution
code is to be in response to detection of the one or more local
variables , and the source code is to be associated with a
communication channel in a dataflow graph .
[0092] Example 13 includes the semiconductor apparatus
of any one of Examples 7 to 12 , wherein the logic coupled
to the one or more substrates includes transistor channel
regions that are positioned within the one or more substrates .
[0093] Example 14 includes at least one computer read
able storage medium comprising a set of instructions , which
when executed by a computing system , cause the computing
system to detect one or more local variables in source code ,
wherein the one or more local variables lack dependencies
across iterations of a loop in the source code , automatically
generate pipeline execution code for the one or more local
variables , and incorporate the pipeline execution code into
an output of a compiler .
[0094] Example 15 includes the at least one computer
readable storage medium of Example 14 , wherein the pipe

line execution code is to include an initialization of a pool
of buffer storage for the one or more local variables .
[0095] Example 16 includes the at least one computer
readable storage medium of Example 15 , wherein the ini
tialized pool of buffer storage is to be greater than a local
storage amount corresponding to a single iteration of the
loop .
[0096] Example 17 includes the at least one computer
readable storage medium of Example 15 , wherein the pipe
line execution code is to further include a definition of a
plurality of tokenized slots in the initialized pool of buffer
storage , and wherein each tokenized slot is to correspond to
a pipelined iteration of the loop .
[0097] Example 18 includes the at least one computer
readable storage medium of Example 14 , wherein the pipe
line execution code is to include a pipeline depth definition .
[0098] Example 19 includes the at least one computer
readable storage medium of any one of Examples 14 to 18 ,
wherein the one or more local variables are to be detected
after a registerization of the source code , automatic genera
tion of the pipeline execution code is to be in response to
detection of the one or more local variables , and the source
code is to be associated with a communication channel in a
dataflow graph .
[0099] Example 20 includes a method of operating a
compiler , the method comprising detecting one or more
local variables in source code , wherein the one or more local
variables lack dependencies across iterations of a loop in the
source code , automatically generating pipeline execution
code for the one or more local variables , and incorporating
the pipeline execution code into an output of the compiler .
[0100] Example 21 includes the method of Example 20 ,
wherein the pipeline execution code includes an initializa
tion of a pool of buffer storage for the one or more local
variables .
[0101] Example 22 includes the method of Example 21 ,
wherein the initialized pool of buffer storage is to be greater
than a local storage amount corresponding to a single
iteration of the loop .
[0102] Example 23 includes the method of Example 21 ,
wherein the pipeline execution code further includes a
definition of a plurality of tokenized slots in the initialized
pool of buffer storage , and wherein each tokenized slot is to
correspond to a pipelined iteration of the loop .
[0103] Example 24 includes the method of Example 20 ,
wherein the pipeline execution code includes a pipeline
depth definition
[0104] Example 25 includes the method of any one of
Examples 20 to 24 , wherein the one or more local variables
are detected after a registerization of the source code ,
automatic generation of the pipeline execution code is in
response to detection of the one or more local variables , and
the source code is associated with a communication channel
in a dataflow graph .
[0105] Example 26 includes means for performing the
method of any one of Examples 20 to 25 .
[0106] Thus , technology described herein may include an
automated compiler transformation that can take as input a
loop that has some form of local loop storage and dynami
cally pipeline the loop using one or more workers for a
dataflow architecture such as CSA . The compiler may detect
local storage remaining in loops after registerization and
allocate enough memory to hold the private variables for a)
each worker , and b) each concurrent execution of a worker .

US 2020/0257510 A1 Aug. 13 , 2020
8

As each worker body commences execution , the worker
body may be assigned a unique slot in the allocated private
storage . When the worker completes execution of an itera
tion , the local storage slot associated with the worker may be
automatically recycled for use in future iterations .
[0107] Several applications / benchmarks such as , for
example , the SPGemm (sparse matrix - matrix multiplica
tion) and Apriori benchmarks , may benefit from the trans
formation technology described herein .
[0108] Embodiments are applicable for use with all types
of semiconductor integrated circuit (" IC ") chips . Examples
of these IC chips include but are not limited to processors ,
controllers , chipset components , programmable logic arrays
(PLAs) , memory chips , network chips , systems on chip
(SoCs) , SSD / NAND controller ASICs , and the like . In
addition , in some of the drawings , signal conductor lines are
represented with lines . Some may be different , to indicate
more constituent signal paths , have a number label , to
indicate number of constituent signal paths , and / or have
arrows at one or more ends , to indicate primary information
flow direction . This , however , should not be construed in a
limiting manner . Rather , such added detail may be used in
connection with one or more exemplary embodiments to
facilitate easier understanding of a circuit . Any represented
signal lines , whether or not having additional information ,
may actually comprise one or more signals that may travel
in multiple directions and may be implemented with any
suitable type of signal scheme , e.g. , digital or analog lines
implemented with differential pairs , optical fiber lines , and /
or single - ended lines .
[0109] Example sizes / models / values / ranges may have
been given , although embodiments are not limited to the
same . As manufacturing techniques (e.g. , photolithography)
mature over time , it is expected that devices of smaller size
could be manufactured . In addition , well known power /
ground connections to IC chips and other components may
or may not be shown within the figures , for simplicity of
illustration and discussion , and so as not to obscure certain
aspects of the embodiments . Further , arrangements may be
shown in block diagram form in order to avoid obscuring
embodiments , and also in view of the fact that specifics with
respect to implementation of such block diagram arrange
ments are highly dependent upon the computing system
within which the embodiment is to be implemented , i.e. ,
such specifics should be well within purview of one skilled
in the art . Where specific details (e.g. , circuits) are set forth
in order to describe example embodiments , it should be
apparent to one skilled in the art that embodiments can be
practiced without , or with variation of these specific details .
The description is thus to be regarded as illustrative instead
of limiting
[0110] The term “ coupled ” may be used herein to refer to
any type of relationship , direct or indirect , between the
components in question , and may apply to electrical ,
mechanical , fluid , optical , electromagnetic , electromechani
cal or other connections . In addition , the terms “ first " ,
" second " , etc. may be used herein only to facilitate discus
sion , and carry no particular temporal or chronological
significance unless otherwise indicated .
[0111] As used in this application and in the claims , a list
of items joined by the term “ one or more of may mean any
combination of the listed terms . For example , the phrases
“ one or more of A , B or C ” may mean A ; B ; C ; A and B ; A
and C ; B and C ; or A , B and C.

[0112] Those skilled in the art will appreciate from the
foregoing description that the broad techniques of the
embodiments can be implemented in a variety of forms .
Therefore , while the embodiments have been described in
connection with particular examples thereof , the true scope
of the embodiments should not be so limited since other
modifications will become apparent to the skilled practitio
ner upon a study of the drawings , specification , and follow
ing claims .
We claim :
1. A computing system comprising :
a network controller ;
a processor coupled to the network controller ; and
a memory coupled to the processor , the memory including

a set of executable program instructions , which when
executed by the processor , cause the processor to :
detect one or more local variables in source code ,
wherein the one or more local variables lack depen
dencies across iterations of a loop in the source code ,

automatically generate pipeline execution code for the
one or more local variables , and

incorporate the pipeline execution code into an output
of a compiler .

2. The computing system of claim 1 , wherein the pipeline
execution code is to include an initialization of a pool of
buffer storage for the one or more local variables .

3. The computing system of claim 2 , wherein the initial
ized pool of buffer storage is to be greater than a local
storage amount corresponding to a single iteration of the
loop

4. The computing system of claim 2 , wherein the pipeline
execution code is to further include a definition of a plurality
of tokenized slots in the initialized pool of buffer storage ,
and wherein each tokenized slot is to correspond to a
pipelined iteration of the loop .

5. The computing system of claim 1 , wherein the pipeline
execution code is to include a pipeline depth definition .

6. The computing system of claim 1 , wherein the one or
more local variables are to be detected after a registerization
of the source code , automatic generation of the pipeline
execution code is to be in response to detection of the one
or more local variables , and the source code is to be
associated with a communication channel in a dataflow
graph .

7. A semiconductor apparatus comprising :
one or more substrates ; and
logic coupled to the one or more substrates , wherein the

logic is implemented at least partly in one or more of
configurable logic or fixed - functionality hardware
logic , the logic coupled to the one or more substrates to :

detect one or more local variables in source code , wherein
the one or more local variables lack dependencies
across iterations of a loop in the source code ;

automatically generate pipeline execution code for the
one or more local variables ; and

incorporate the pipeline execution code into an output of
a compiler .

8. The semiconductor apparatus of claim 7 , wherein the
pipeline execution code is to include an initialization of a
pool of buffer storage for the one or more local variables .

9. The semiconductor apparatus of claim 8 , wherein the
initialized pool of buffer storage is to be greater than a local
storage amount corresponding to a single iteration of the
loop .

US 2020/0257510 A1 Aug. 13 , 2020
9

10. The semiconductor apparatus of claim 8 , wherein the
pipeline execution code is to further include a definition of
a plurality of tokenized slots in the initialized pool of buffer
storage , and wherein each tokenized slot is to correspond to
a pipelined iteration of the loop .

11. The semiconductor apparatus of claim 7 , wherein the
pipeline execution code is to include a pipeline depth
definition .

12. The semiconductor apparatus of claim 7 , wherein the
one or more local variables are to be detected after a
registerization of the source code , automatic generation of
the pipeline execution code is to be in response to detection
of the one or more local variables , and the source code is to
be associated with a communication channel in a dataflow
graph .

13. The semiconductor apparatus of claim 7 , wherein the
logic coupled to the one or more substrates includes tran
sistor channel regions that are positioned within the one or
more substrates .

14. At least one computer readable storage medium com
prising a set of instructions , which when executed by a
computing system , cause the computing system to :

detect one or more local variables in source code , wherein
the one or more local variables lack dependencies
across iterations of a loop in the source code ;

automatically generate pipeline execution code for the
one or more local variables ; and

incorporate the pipeline execution code into an output of
a compiler .

15. The at least one computer readable storage medium of
claim 14 , wherein the pipeline execution code is to include
an initialization of a pool of buffer storage for the one or
more local variables .

16. The at least one computer readable storage medium of
claim 15 , wherein the initialized pool of buffer storage is to
be greater than a local storage amount corresponding to a
single iteration of the loop .

17. The at least one computer readable storage medium of
claim 15 , wherein the pipeline execution code is to further
include a definition of a plurality of tokenized slots in the

initialized pool of buffer storage , and wherein each token
ized slot is to correspond to a pipelined iteration of the loop .

18. The at least one computer readable storage medium of
claim 14 , wherein the pipeline execution code is to include
a pipeline depth definition .

19. The at least one computer readable storage medium of
claim 14 , wherein the one or more local variables are to be
detected after a registerization of the source code , automatic
generation of the pipeline execution code is to be in response
to detection of the one or more local variables , and the
source code is to be associated with a communication
channel in a dataflow graph .

20. A method comprising :
detecting one or more local variables in source code ,
wherein the one or more local variables lack depen
dencies across iterations of a loop in the source code ;

automatically generating pipeline execution code for the
one or more local variables ; and

incorporating the pipeline execution code into an output
of a compiler .

21. The method of claim 20 , wherein the pipeline execu
tion code includes an initialization of a pool of buffer storage
for the one or more local variables .

22. The method of claim 21 , wherein the initialized pool
of buffer storage is to be greater than a local storage amount
corresponding to a single iteration of the loop .

23. The method of claim 21 , wherein the pipeline execu
tion code further includes a definition of a plurality of
tokenized slots in the initialized pool of buffer storage , and
wherein each tokenized slot is to correspond to a pipelined
iteration of the loop .

24. The method of claim 20 , wherein the pipeline execu
tion code includes a pipeline depth definition .

25. The method of claim 20 , wherein the one or more local
variables are detected after a registerization of the source
code , automatic generation of the pipeline execution code is
in response to detection of the one or more local variables ,
and the source code is associated with a communication
channel in a dataflow graph .

