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wherein the local variable ( s ) lack dependencies across itera 
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porate the pipeline execution code into an output of a 
compiler . In one example , the pipeline execution code 
includes an initialization of a pool of buffer storage for the 
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int f ( int n , int x , int y , int * a ) 
{ 

for ( int i = 0 ; i < n ; i ++ ) { 
int b [ 100 ] ; 
for ( int j = x ; j < y ; j ++ ) { 

b [ j ] i ; 
} 
a [ i ] a [ i ] + b [ 6 ] ; 

} 
return a [ 5 ] ; 

?? 

FIG . 2A 
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static void SPGEMMKernel ( int ibegin , int iend , int n , int k , 
const int * rowptra , const int * colidxA , const FLOAT * vala , 
const int * rowptrB , const int * colidxB , const FLOAT * valB , 
const int * rowptrc , int * colidxc , FLOAT * valc ) 

?? 

+ n ) ; 

= 

#pragma omp parallel for dataflow ( pipeline ( 8 ) ) 
for ( int i = ibegin ; i < iend ; i ++ ) { 

// Private variable 
FLOAT spa [ n ] ; 
memset ( spa , 0 , sizeof ( FLOAT ) 
int startA = rowptrA [ i ] ; 
int enda = rowptrA?i + 1 ] ; 
for ( int j = startA ; j < endA ; j ++ ) { 

int idxA = colidxA [ j ] ; 
double VA valA [ j ] ; 
int startB = rowptrB [ idxA ) ; 
int endB = rowptrB [ idxA + 1 ] ; 
for ( int k = startB ; k < endB ; k ++ ) { 

int idxB = colidxB [ k ] ; 
double VB = valB [ k ] ; 
spa [ idxB ] + = VA * VB ; 

} // for ( int k = startB ; k < endB ; k ++ ) 
} // for ( int j = startA ; j < endA ; j ++ ) 
int idxc = rowptrc [ i ] ; 
for ( int j = 0 ; j < n ; j ++ ) { 

if ( spa [ j ] ! = 0.0 ) { 
colidxc [ idxc ] = j ; 
valc [ idxc ] = spa [ j ] ; 
idxC ++ ; 
spa [ j ] = 0.0 ; 

} 
} // for ( int j = 0 ; j < n ; j ++ ) 

} // for ( int i = 0 ; i < m ; i ++ ) 
} 

FIG , 2B 
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int f ( int n , int x , int y , int * a ) 
{ 

int b [ 100 ] ; 
#pragma omp parallel for private ( b ) 
for ( int i = 0 ; i < n ; i ++ ) { 

for ( int j = x ; j < y ; j ++ ) { 
b [ j ] i ; 

} 
a [ i ] a [ i ] + b [ 6 ] ; 

} 
return a [ 5 ] ; 

} 

FIG . 2C 

36 

int f ( int n , int x , int y , int * a ) 
{ 
#pragma omp parallel for 
for ( int i = 0 ; i < n ; i ++ ) { 

#if CONSTANT SIZE 
// Constant - sized array , dynamically allocated 
int * b = ( int * ) malloc ( 100 + sizeof ( int ) ) ; 

#else 
// Variable - sized array , dynamically allocated 
int * b = ( int * ) malloc ( n + sizeof ( int ) ) ; 

#endif 
for ( int j = x ; j < y ; j ++ ) { 

b [ j ] = i ; 
} 

a [ i ] = a [ i ] + b [ 6 ] ; 

} 
return a [ 5 ] ; 

~ 

FIG . 2D 
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AUTOMATIC COMPILER DATAFLOW 
OPTIMIZATION TO ENABLE PIPELINING 

OF LOOPS WITH LOCAL STORAGE 
REQUIREMENTS 

COPYRIGHT NOTICE 

[ 0001 ] A portion of the disclosure of this patent document 
contains material which is subject to copyright or mask 
work ) protection . The ( copyright or mask work ) owner has 
no objection to the facsimile reproduction by anyone of the 
patent document or the patent disclosure , as it appears in the 
Patent and Trademark Office patent file or records , but 
otherwise reserves all ( copyright or mask work ) rights 
whatsoever . 

[ 0010 ] FIG . 3 is a block diagram of an example of a 
communication arc in a dataflow graph according to an 
embodiment ; 
[ 0011 ] FIG . 4 is a flowchart of an example of a method of 
operating a compiler according to an embodiment ; 
[ 0012 ] FIG . 5 is a block diagram of an example of a 
compiler according to an embodiment ; 
[ 0013 ] FIG . 6 is a block diagram of an example of a 
performance - enhanced computing system according to an 
embodiment ; 
[ 0014 ] FIG . 7 is an illustration of an example of a semi 
conductor apparatus according to an embodiment ; 
[ 0015 ] FIG . 8 is a block diagram of an example of a 
processor according to an embodiment ; and 
[ 0016 ] FIG . 9 is a block diagram of an example of a 
multi - processor based computing system according to an 
embodiment . TECHNICAL FIELD 

DESCRIPTION OF EMBODIMENTS [ 0002 ] Embodiments generally relate to compilers . More 
particularly , embodiments relate to automatic compiler data 
flow optimizations to enable pipelining of loops with local 
storage requirements . 

BACKGROUND 

[ 0003 ] Dataflow graphs may be used to model computer 
source code in terms of the dependencies between individual 
operations performed by the code . A compiler may trans 
form the source code into the dataflow graph , which is 
typically executed by accelerator hardware such as a field 
programmable gate array ( FPGA ) , configurable spatial 
accelerator ( CSA ) , or other dataflow architecture . While the 
accelerator hardware may be useful when dealing with high 
performance computing ( HPC ) and / or data center applica 
tions that operate on relatively large data arrays and struc 
tures , there remains considerable room for improvement . 
For example , if the operations of the source code involve the 
execution of loops that internally declare “ private ” variables 
for large data arrays , the ability to hold ( e.g. , “ registerize ” ) 
the underlying data in the internal channels ( e.g. , commu 
nication arcs , buffers , latency insensitive channels / LICS , 
etc. ) of the accelerator may be limited . As a result , the 
private variables may be treated as purely memory - based 
variables , which may cause performance losses . 

[ 0017 ] Turning now to FIG . 1 , a compiler 20 is shown , 
where the compiler 20 automatically transforms source code 
22 into an output 24 that is executable by a dataflow 
architecture such as , for example , an FPGA , CSA , and so 
forth . In an embodiment , the source code 22 is written in a 
high - level language such as , for example , C , C ++ , or Fortran 
augmented by parallel annotations ( e.g. , OpenMP parallel 
pragmas ) to achieve runtime parallelism in the dataflow 
architecture . The source code 22 may generally use loops to 
perform various operations . Indeed , the runtime perfor 
mance of applications may be dominated by the time spent 
in executing loops to perform tasks . On a dataflow archi 
tecture such as CSA , the performance of parallel loops may 
be accelerated by a ) creating multiple copies of the loop 
bodies ( e.g. , “ workers ” ) , b ) executing the workers in paral 
lel , and c ) pipelining execution of the workers . 
[ 0018 ] In the illustrated example , the source code 22 
contains one or more local variables 26 ( e.g. , private vari 
ables ) , which lack dependencies across iterations of the 
loops in the source code 22. As will be discussed in greater 
detail , such a variable might occur naturally when declared 
inside a loop . In an embodiment , the local variable ( s ) 26 are 
occasionally used for relatively large data arrays . To 
improve the throughput of the loops containing the local 
variable ( s ) 26 in such a case , the illustrated compiler 20 
generates pipeline execution code 28 for the local variable ( s ) 
26 and incorporates the pipeline execution code 28 into the 
output 24 of the compiler 20. Thus , the illustrated local 
variables are allocated in a way that each loop iteration gets 
its own copy , thereby permitting pipelined execution . As 
already noted , pipelining execution of the workers may 
significantly enhance performance . 
[ 0019 ] FIG . 2A shows source code 30 containing a loop 
( e.g. , “ for ( int i = 0 ; i < n ; i ++ ” ) that declares a variable “ b ” , 
which may be considered a local variable because it lacks 
dependencies across iterations of the loop . In the illustrated 
example , the variable has a fixed size ( e.g. , an array of 100 
integers ) . Thus , the local storage requirements of the vari 
able b are fixed and statically known to the compiler . The 
illustrated source code 30 may be readily substituted for the 
source code 22 ( FIG . 1 ) , already discussed . Accordingly , 
pipeline execution code may be automatically generated for 
the illustrated local variable . 
[ 0020 ] FIG . 2B shows source code 32 containing a loop 
( e.g. , “ for ( int i = ibegin ; i < iend ; i ++ ) ” ) that declares a vari 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0004 ] The various advantages of the embodiments will 
become apparent to one skilled in the art by reading the 
following specification and appended claims , and by refer 
encing the following drawings , in which : 
[ 0005 ] FIG . 1 is a block diagram of an example of a 
compiler output according to an embodiment ; 
[ 0006 ] FIG . 2A is a source code listing of an example of 
a loop with fixed - size local storage according to an embodi 
ment ; 
[ 0007 ] FIG . 2B is a source code listing of an example of 
a loop with runtime - varying local storage according to an 
embodiment ; 
[ 0008 ] FIG . 2C is a source code listing of an example of 
a loop with an explicitly designated private variable accord 
ing to an embodiment ; 
[ 0009 ] FIG . 2D is a source code listing of an example of 
a loop with a dynamically allocated local variable according 
to an embodiment ; 



US 2020/0257510 A1 Aug. 13 , 2020 
2 

able “ spa ” , which also lacks dependencies across iterations 
of the loop and is considered a local variable . In the 
illustrated example , the size of the variable varies and is only 
known at runtime . The illustrated source code 32 may be 
readily substituted for the source code 22 ( FIG . 1 ) , already 
discussed . Accordingly , pipeline execution code may be 
automatically generated for the illustrated local variable . 
[ 0021 ] FIG . 2C shows source code 34 containing a loop 
( e.g. , “ for ( int j = x ; j < y ; j ++ ) ' ' ) that uses a variable “ b ” , where 
the variable b is explicitly designated as a private variable 
( e.g. , using the “ private ” clause ) . Other explicit clauses such 
as “ firstprivate ” , “ lastprivate ” , “ reduction ” , etc. , may also be 
used . In the illustrated example , the variable has a fixed size 
( e.g. , an array of 100 integers ) . Thus , the local storage 
requirements of the variable b are fixed and statically known 
to the compiler . The illustrated source code 34 may be 
readily substituted for the source code 22 ( FIG . 1 ) , already 
discussed . Accordingly , pipeline execution code may be 
automatically generated for the illustrated local variable . 
[ 0022 ] FIG . 2D shows source code 36 containing a loop 
( e.g. , “ for ( int i = 0 ; i < n ; i ++ ) " ) that dynamically allocates 
memory for a variable “ b ” from within the loop . In the 
illustrated example , the variable is a local variable that lacks 
dependencies across iterations of the loop and the size of the 
variable may either remain constant or vary . The illustrated 
source code 36 may be readily substituted for the source 
code 22 ( FIG . 1 ) , already discussed . Accordingly , pipeline 
execution code may be automatically generated for the 
illustrated local variable . 
[ 0023 ] Turning now to FIG . 3 , a communication arc 40 
( e.g. , LIC ) between a first functional unit 42 ( e.g. , node ) in 
a dataflow graph and a second functional unit 44 in the 
dataflow graph is shown . In the illustrated example , the 
functional units 42 and 44 are used to perform operations in 
a loop on data associated with local variables . In an embodi 
ment , the communication arc 40 includes buffer storage ( not 
shown ) such as , for example , one or more line buffers , FIFO 
( first in first out ) buffers , etc. , which may be used to hold 
values that enable apportioning data associated with local 
variables in the loop to different loop iterations . 
[ 0024 ] FIG . 4 shows a method 50 of operating a compiler . 
The method 50 may generally be implemented in a compiler 
such as , for example , the compiler 20 ( FIG . 1 ) , already 
discussed . More particularly , the method 50 may be imple 
mented in one or more modules as a set of logic instructions 
stored in a machine- or computer - readable storage medium 
such as random access memory ( RAM ) , read only memory 
( ROM ) , programmable ROM ( PROM ) , firmware , flash 
memory , etc. , in configurable logic such as , for example , 
programmable logic arrays ( PLAS ) , FPGAs , complex pro 
grammable logic devices ( CPLDs ) , in fixed - functionality 
logic hardware using circuit technology such as , for 
example , application specific integrated circuit ( ASIC ) , 
complementary metal oxide semiconductor ( CMOS ) or tran 
sistor - transistor logic ( TTL ) technology , or any combination 
thereof . 
[ 0025 ] For example , computer program code to carry out 
operations shown in the method 50 may be written in any 
combination of one or more programming languages , 
including an object oriented programming language such as 
JAVA , SMALLTALK , C ++ or the like and conventional 
procedural programming languages , such as the “ C ” pro 
gramming language or similar programming languages . 
Additionally , logic instructions might include assembler 

instructions , instruction set architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , state - setting data , configuration data for inte 
grated circuitry , state information that personalizes elec 
tronic circuitry and / or other structural components that are 
native to hardware ( e.g. , host processor , central processing 
unit / CPU , microcontroller , etc. ) . 
[ 0026 ] Illustrated processing block 52 provides for detect 
ing one or more local variables in source code , wherein the 
local variable ( s ) lack dependencies across iterations of a 
loop in the source code . The source code may be associated 
with a communication channel as , for example , the com 
munication arc 40 ( FIG . 3 ) in a dataflow graph . In an 
embodiment , block 52 includes automatically parsing and / or 
searching the source code for loops with fixed - size local 
storage ( e.g. , as in FIG . 2A ) , runtime - varying local storage 
( e.g. , as in FIG . 2B ) , explicitly designated private variables 
( e.g. , as in FIG . 2C ) , dynamically allocated local variables 
( e.g. , as in FIG . 2D ) , and so forth . Moreover , block 52 may 
be conducted after a registerization of the source code . 
[ 0027 ] Block 54 automatically generates ( e.g. , in response 
to the detection of the one or more local variables ) pipeline 
execution code for the local variable ( s ) . As will be discussed 
in greater detail , block 54 may include generating executable 
instructions to initialize a pool of buffer storage for the local 
variable ( s ) , define a pipeline depth , and define a plurality of 
tokenized slots in the initialized pool of buffer storage . In 
one example , the initialized pool of buffer storage is greater 
than the local storage amount corresponding to a single 
iteration of the loop . Moreover , each tokenized slot may 
correspond to a pipelined iteration of the loop . Illustrated 
block 56 incorporates the pipeline execution code into the 
output of the compiler . The method 50 therefore enhances 
performance by enabling the pipelining of loops containing 
private data , which improves throughput . Indeed , the overall 
cycles needed to execute a loop may be significantly less 
than the product of static loop cycles ( e.g. , the number of 
cycles needed to execute one iteration of the loop ) and the 
loop iteration count . 
[ 0028 ] FIG . 5 shows a compiler 60 that may implement 
one or more aspects of the method 50 ( FIG . 4 ) , already 
discussed . Additionally , the compiler 60 may be readily 
substituted for the compiler 20 ( FIG . 1 ) , already discussed . 
In general , the compiler 60 enables pipelined execution of 
loops containing local variables and may be explained with 
reference to a piece of sample source code and compiler 
generated pseudo - code . For further reference , the end of this 
disclosure includes actual intermediate representation ( IR ) 
results using an LLVM compiler for a similar sample before 
and after the principal compiler transformations described 
herein . 

[ 0029 ] Using dynamically allocated local storage in a loop 
as an example , with a constant array size of 100 chosen for 
simplicity , it may be assumed that the compiler 60 selects 
two workers for the loop and chooses a pipeline depth of 
three for each worker loop . 
[ 0030 ] An OpenMP language extension may also be 
implemented to allow explicit control over worker creation 
and pipeline depth . Such an extension may be considered 
optional . 
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[ 0031 ] The OpenMP language extension is : 

#pragma omp 
dataflow ( [ num_workers [ ( < n > ) ] ] , 
[ static ] ( < chunksize > ) ] ] , 
[ pipeline ] ( < depth > ) ] ] ) 

for - loops 

[ 0042 ] These intrinsics enclose the loops that need local 
storage . The arguments of the " entry ” call specify the 
pipeline depth and mark the place where allocation for the 
enclosed loops occurs . The " exit ” marks the deallocation 
point . This representation ensures that independent of the 
number of workers generated , a single allocation / dealloca 
tion is done for the loops . 
[ 0043 ] Pseudo - code of the original single loop after the 
worker creation stage 62 is shown below . In the illustrated 
example , the original loop has been replicated to form two 
workers . Additionally , the local variable in the original loop 
becomes a separate local variable in each of the new loops . 
Pipelining has not been accounted for yet and is done later 
in the local storage expansion stage 64. The pseudo - code 
after processing by the worker creation stage 62 might be : 

[ 0032 ] The pipeline ( depth ) sub - clause specifies how many 
loop iterations are to be allowed to execute concurrently . 
The num workers and static clauses specify how many 
workers to create and the way to distribute the loop iterations 
across the workers . Other parallel annotation languages 
and / or APIs ( application programming interfaces ) such as 
OpenACC , OpenCL , SYCL , etc. , may also be used . 
[ 0033 ] The solution for correctly handling private vari 
ables in pipelined loops may span many passes in the 
compiler 60. The transformations are in three places as 
shown in FIG . 5 : 
[ 0034 ] Aworker creation stage 62 may be used when local 
storage arises from OpenMP clauses . In an embodiment , the 
worker creation stage 62 replaces OpenMP directives with 
expansions for multiple workers . The worker creation stage 
62 may also represent local storage using dynamic alloca 
tion . Pseudocode for the worker creation stage 62 is pro 
vided below . 

depth.region = pipeline.limited.entry ( id1 , 3 ) 
// Worker 0 
region0 = parallel.region.entry ( id2 ) 

Loopo : 
b.priv.0 = alloca 
// all uses of b in the loop are replaced with b.priv.O 

< inner j - loop > 

End - loopo : 
parallel.region.exit ( regiono ) 
// Worker 1 
regionl = parallel.region.entry ( id3 ) 

Loopl : 
b.priv.1 = alloca ... 
1 / all uses of b in the loop are replaced with b.priv.1 

Loop : 
b = alloca ... 
// the body of this loop references the local variable b < inner j - loop > 
< inner j - loop > 

End - loop : 
End - loop1 : 

parallel.region.exit ( regionl ) 
pipeline.limited.exit ( depth.region ) 

[ 0035 ] A local storage expansion stage 64 handles a rela 
tively large portion of the transformations described herein . 
In one example , the local storage expansion stage 64 handles 
allocation and referencing of private variables that remain . 
The pass of the illustrated stage 64 is conducted relatively 
late to allow other compiler optimizations to registerize local 
variables as far as possible . Accordingly , variables that could 
not otherwise be registerized are dealt with in the stage 64 . 
If a loop has a set S of private variables , then the stage 64 
creates an array of type S with dimension the pipeline depth , 
which is dynamic count of iterations in flight . 
[ 0036 ] A dataflow operation conversion stage 66 may 
handle the management of the individual slots in the private 
variable array created for each loop . 
[ 0037 ] Worker Creation 
[ 0038 ] The worker creation stage 62 may create multiple 
workers as directed by OpenMP directives . For non 
OpenMP loops , the worker creation stage 62 may automati 
cally decide the number of workers to generate . Similarly , 
OpenMP directives may specify the pipeline depth , or the 
compiler 60 may select the degree of pipelining to generate . 
For the purposes of discussion , it is assumed that two 
workers are created and that a pipeline depth of three is 
selected . 

[ 0039 ] A pair of LLVM IR intrinsics may be introduced 
to support loop - local storage : 

[ 0040 ] r = pipeline.limited.entry ( int id , int depth ) 
[ 0041 ] pipeline.limited.exit ( r ) 

[ 0044 ] Local Storage Expansion 
[ 0045 ] In an embodiment , the local storage expansion 
stage 64 performs the transformation to account for pipe 
lining . The pipeline depth of three is enforced using the 
concept of a token and a pool of three token values is created 
for each worker . In one example , an iteration may begin 
when a token can be obtained from the pool . This operation 
is modeled by a call to “ token.take ” , which completes only 
when a local storage slot becomes available . When an 
iteration is completed , the token is returned to the pool . This 
return is modeled by a call to “ token.return ” . In one 
example , since only three distinct token values exist , only 
three iterations can execute concurrently in each worker . 
[ 0046 ] Pseudo - code after the local storage expansion stage 
64 might be : 

// Local variable pool declaration 
#define num workers 2 
#define depth 3 
struct worker_pool { 

struct loop_pool { 
double B [ 100 ] ; 

} Is [ depth ] ; 
} pool [ num_workers ] ; 

|| Allocate the pool 
pool = CsaMemAlloc ( sizeof ( worker_pool ) ) ; 
// Worker 0 
WO & pool [ 0 ] ; 
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-continued 

Loopo : 
// token.take will return one of these values : 
11 & w0.1s [ 0 ] , & wo.1s [ 1 ] , ... , WO.1s [ depth - 1 ] 
wO_pool = token.take ( wo , sizeof ( ls ) , depth ) ; 
B_loop_local = & wO_pool.B ; 
1 / all uses of B in the loop are replaced with B_loop_local 

[ 0055 ] The instruction does not execute until “ inord ” is 
available . Then , “ value ” becomes available as the result . 
[ 0056 ] The pseudocode below is an example output of the 
dataflow operation conversion stage 66 for a CSA imple 
mentation . 

< inner j - loop > 
token.return ( pool , wo_pool ) ; 

End - loopo : 
// Worker 1 
w1 & pool [ 1 ] ; 

// Each loop iteration requires 400 bytes of local storage 
// There are 2 workers created for the original loop 
// A pipeline depth of 3 is implemented 
// Total local storage 400 * 3 * 2 bytes = 2400 bytes 
// Workero uses a pool that ranges from bytes 0 to 1199 
// Workerl uses a pool that ranges from bytes 1200 to 2399 
// Within each worker's pool , the 3 slots have offsets 0 , 400 , 800 
|| A LIC of depth 3 is initialized with offset values : 
Il offset_of ( sloto ) , offset_of ( slot1 ) , offset_of ( slot2 ) 
.lic @ 8 .164 % slot_offset 

Loop 1 : 

I. 

// token.take will return one of these values : 
Il & w1.1s [ 0 ] , & w1.1s [ 1 ] , w1.1s [ depth - 1 ] 
wl_pool = token.take ( w1 , sizeof ( ls ) , depth ) ; 
B_loop_local = & wl_pool.B ; 
1 / all uses of B in the loop are replaced with B_loop_local % slot_offset : ci64 

% slot_offset : ci64 
% slot_offset : ci64 

init64 0 
init64 400 
init64 800 < inner j - loop > 

token.return ( pool , wl_pool ) ; 
End - loop 1 : 

// Deallocate the pool 
CsaMemFree ( pool ) ; 

// token_take implemented on CSA 
// Dynamic memory allocation outside the loop generates the pool address 
pool = ..... // Equivalent of CsaMemAlloc ( 2400 ) 

// In the loop , when the token_take is ready to execute 
1 / the pool address is made available to the add64 instruction 
gate64 pool_gated , token_take_inord , pool 
// The address of the local storage slot assigned to this iteration 
// is computed 
add64 slot_addr , _slot_offsets , _pool_gated 

// token_return implemented on CSA 
// In the loop , when the token_return is ready to execute 
// The slot_offset is written back at the end of the LIC 
gate64 slot_offsets , token_return_inord , slot_offsets 
// the completion of token_return is signaled with this movo 
movo token_return_outord , token_return inord 

[ 0047 ] Dataflow Operation Conversion 
[ 0048 ] The final stage in implementing loop - local storage 
is during the dataflow operation conversion stage 66 , which 
converts IR code into dataflow operations . The intrinsics 
token.take and token.return may be abstract representations 
of a mechanism that doles out a fixed number of tokens . In 
an embodiment , the physical implementation of this mecha 
nism uses CSA LICs . The fundamental property of CSA 
LICs is to hold multiple values , to deliver values from one 
end of the LIC when read , and to write values at the other 
end of the LIC when written . This property may be used to 
permit only a fixed number of values to circulate through the 
loop body . In one example , the depth of the LIC is chosen 
to be the user - specified pipeline depth . Additionally , the 
values in the LIC may be offsets of individual slots allocated 
for the private variables of a loop . When a new iteration of 
the loop begins , a value is read from the LIC and added to 
a base address to generate the slot address for the current 
iteration of the loop . When the iteration completes , the offset 
may be written back to the LIC . Because the LIC holds only 
" depth ” number of values , only depth number of iterations 
may execute concurrently , with each using a separate local 
storage slot . Example dataflow operations that implement 
this scheme are shown below . 
[ 0049 ] In a dataflow machine , instructions execute when 
their input dependencies are satisfied . In the following , an 
“ inord ” is an input ordinal ( e.g. , a signal that an input 
dependence has been satisfied ) and an " outord ” is generated 
by an instruction when the instruction completes execution 
to indicate that the result in now available . The gate64 , 
add64 and mov instructions are explained first , and then 
their use in implementing token.take and token.return . 

[ 0050 ] gate64 result , inord , value 
[ 0051 ] The instruction does not execute until inord is 
available . Then , “ value ” becomes available as the result . 

[ 0052 ] add64 result , input1 , input2 
[ 0053 ] The instruction does not execute until input1 and 
input2 are available . Then , “ result ” becomes available as the 
sum of “ input1 ” and “ input2 ” . 

[ 0054 ] mov result , inord , value 

[ 0057 ] In this way , the dataflow properties of CSA LICs 
are exploited to enable pipelining of parallel loops while 
guaranteeing that enough local storage is available for 
dynamic loop iterations . The compiler 60 may conduct this 
transformation automatically and a prototype OpenMP lan 
guage extension has been implemented to demonstrate the 
advantages of the solution . 
[ 0058 ] Turning now to FIG . 6 , a performance - enhanced 
computing system 151 is shown . The system 151 may 
generally be part of an electronic device / platform having 
computing functionality ( e.g. , personal digital assistant / 
PDA , notebook computer , tablet computer , convertible tab 
let , server ) , communications functionality ( e.g. , smart 
phone ) , imaging functionality ( e.g. , camera , camcorder ) , 
media playing functionality ( e.g. , smart television / TV ) , 
wearable functionality ( e.g. , watch , eyewear , headwear , 
footwear , jewelry ) , vehicular functionality ( e.g. , car , truck , 
motorcycle ) , robotic functionality ( e.g. , autonomous robot ) , 
Internet of Things ( IoT ) functionality , etc. , or any combi 
nation thereof . In the illustrated example , the system 151 
includes a host processor 153 ( e.g. , central processing unit / 
CPU ) having an integrated memory controller ( IMC ) 155 
that is coupled to a system memory 157 . 
[ 0059 ] The illustrated system 151 also includes an input 
output ( 10 ) module 159 implemented together with the host 
processor 153 and a graphics processor 161 ( e.g. , graphics 
processing unit / GPU ) on a semiconductor die 163 as a 
system on chip ( SoC ) . The illustrated 10 module 159 
communicates with , for example , a display 165 ( e.g. , touch 



US 2020/0257510 A1 Aug. 13 , 2020 
5 

screen , liquid crystal display / LCD , light emitting diode / 
LED display ) , a network controller 167 ( e.g. , wired and / or 
wireless ) , and mass storage 169 ( e.g. , hard disk drive / HDD , 
optical disk , solid state drive / SSD , flash memory ) . 
[ 0060 ] In an embodiment , the host processor 153 , the 
graphics processor 161 and / or the 10 module 159 execute 
instructions 171 retrieved from the system memory 157 
and / or the mass storage 169 to perform one or more aspects 
of the method 50 ( FIG . 4 ) , already discussed . Thus , execu 
tion of the illustrated instructions 171 may cause the com 
puting system 151 to detect one or more local variables in 
source code , wherein the one or more local variables lack 
dependencies across iterations of a loop in the source code , 
automatically generate pipeline execution code for the one 
or more local variables , and incorporate the pipeline execu 
tion code into an output of a compiler . 
[ 0061 ] In an embodiment , the pipeline execution code 
includes an initialization of a pool of buffer storage for the 
one or more local variables . In such a case , the initialized 
pool of buffer storage may be greater than ( e.g. , several 
multiples of ) a local storage amount corresponding to a 
single iteration of the loop . Moreover , the pipelined execu 
tion code may further include a definition of a plurality of 
tokenized slots in the initialized pool of buffer storage , 
where each tokenized slot corresponds to a pipelined itera 
tion of the loop . In an embodiment , the pipelined execution 
code further includes a pipeline depth definition . In one 
example , the local variable ( s ) are detected after a register 
ization of the source code and the source code is associated 
with a communication channel in a dataflow graph . Addi 
tionally , the automatic generation of the pipeline execution 
code may be conducted in response to the detection of the 
local variable ( s ) . 
[ 0062 ] The illustrated system 151 is therefore perfor 
mance - enhanced at least to the extent that the pipelining of 
loops containing private data improves throughput . Indeed , 
the overall cycles needed to execute a loop may be signifi 
cantly less than the product of static loop cycles and the loop 
iteration count . 

[ 0063 ] FIG . 7 shows a semiconductor package apparatus 
173. The illustrated apparatus 173 includes one or more 
substrates 175 ( e.g. , silicon , sapphire , gallium arsenide ) and 
logic 177 ( e.g. , transistor array and other integrated circuit / 
IC components ) coupled to the substrate ( s ) 175. The logic 
177 may be implemented at least partly in configurable logic 
or fixed - functionality logic hardware . In one example , the 
logic 177 implements one or more aspects of the method 50 
( FIG . 4 ) , already discussed . Thus , the logic 177 may detect 
one or more local variables in source code , wherein the local 
variable ( s ) lack dependencies across iterations of a loop in 
the source code , automatically generate pipeline execution 
code for the local variable ( s ) , and incorporate the pipeline 
execution code into an output of a compiler . The illustrated 
apparatus 173 is therefore performance - enhanced at least to 
the extent that the pipelining of loops containing private data 
improves throughput . Indeed , the overall cycles needed to 
execute a loop may be significantly less than the product of 
static loop cycles and the loop iteration count . 
[ 0064 ] In one example , the logic 177 includes transistor 
channel regions that are positioned ( e.g. , embedded ) within 
the substrate ( s ) 175. Thus , the interface between the logic 
177 and the substrate ( s ) 175 may not be an abrupt junction . 

The logic 177 may also be considered to include an epitaxial 
layer that is grown on an initial wafer of the sub strate ( s ) 
175 . 

[ 0065 ] FIG . 8 illustrates a processor core 200 according to 
one embodiment . The processor core 200 may be the core 
for any type of processor , such as a micro - processor , an 
embedded processor , a digital signal processor ( DSP ) , a 
network processor , or other device to execute code . 
Although only one processor core 200 is illustrated in FIG . 
8 , a processing element may alternatively include more than 
one of the processor core 200 illustrated in FIG . 8. The 
processor core 200 may be a single - threaded core or , for at 
least one embodiment , the processor core 200 may be 
multithreaded in that it may include more than one hardware 
thread context ( or “ logical processor ” ) per core . 
[ 0066 ] FIG . 8 also illustrates a memory 270 coupled to the 
processor core 200. The memory 270 may be any of a wide 
variety of memories ( including various layers of memory 
hierarchy ) as are known or otherwise available to those of 
skill in the art . The memory 270 may include one or more 
code 213 instruction ( s ) to be executed by the processor core 
200 , wherein the code 213 may implement one or more 
aspects of the method 50 ( FIG . 4 ) , already discussed . The 
processor core 200 follows a program sequence of instruc 
tions indicated by the code 213. Each instruction may enter 
a front end portion 210 and be processed by one or more 
decoders 220. The decoder 220 may generate as its output a 
micro operation such as a fixed width micro operation in a 
predefined format , or may generate other instructions , 
microinstructions , or control signals which reflect the origi 
nal code instruction . The illustrated front end portion 210 
also includes register renaming logic 225 and scheduling 
logic 230 , which generally allocate resources and queue the 
operation corresponding to the convert instruction for execu 
tion . 
[ 0067 ] The processor core 200 is shown including execu 
tion logic 250 having a set of execution units 255-1 through 
255 - N . Some embodiments may include a number of execu 
tion units dedicated to specific functions or sets of functions . 
Other embodiments may include only one execution unit or 
one execution unit that can perform a particular function . 
The illustrated execution logic 250 performs the operations 
specified by code instructions . 
[ 0068 ] After completion of execution of the operations 
specified by the code instructions , back end logic 260 retires 
the instructions of the code 213. In one embodiment , the 
processor core 200 allows out of order execution but 
requires in order retirement of instructions . Retirement logic 
265 may take a variety of forms as known to those of skill 
in the art ( e.g. , re - order buffers or the like ) . In this manner , 
the processor core 200 is transformed during execution of 
the code 213 , at least in terms of the output generated by the 
decoder , the hardware registers and tables utilized by the 
register renaming logic 225 , and any registers ( not shown ) 
modified by the execution logic 250 . 
[ 0069 ] Although not illustrated in FIG . 8 , a processing 
element may include other elements on chip with the pro 
cessor core 200. For example , a processing element may 
include memory control logic along with the processor core 
200. The processing element may include I / O control logic 
and / or may include I / O control logic integrated with 
memory control logic . The processing element may also 
include one or more caches . 
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[ 0070 ] Referring now to FIG . 9 , shown is a block diagram 
of a computing system 1000 embodiment in accordance with 
an embodiment . Shown in FIG . 9 is a multiprocessor system 
1000 that includes a first processing element 1070 and a 
second processing element 1080. While two processing 
elements 1070 and 1080 are shown , it is to be understood 
that an embodiment of the system 1000 may also include 
only one such processing element . 
[ 0071 ] The system 1000 is illustrated as a point - to - point 
interconnect system , wherein the first processing element 
1070 and the second processing element 1080 are coupled 
via a point - to - point interconnect 1050. It should be under 
stood that any or all of the interconnects illustrated in FIG . 
9 may be implemented as a multi - drop bus rather than 
point - to - point interconnect . 
[ 0072 ] As shown in FIG . 9 , each of processing elements 
1070 and 1080 may be multicore processors , including first 
and second processor cores ( i.e. , processor cores 1074a and 
1074b and processor cores 1084a and 1084b ) . Such cores 
1074a , 1074b , 1084a , 1084b may be configured to execute 
instruction code in a manner similar to that discussed above 
in connection with FIG . 8 . 
[ 0073 ] Each processing element 1070 , 1080 may include 
at least one shared cache 1896a , 1896b . The shared cache 
1896a , 1896b may store data ( e.g. , instructions ) that are 
utilized by one or more components of the processor , such 
as the cores 1074a , 1074b and 1084a , 1084b , respectively . 
For example , the shared cache 1896a , 1896b may locally 
cache data stored in a memory 1032 , 1034 for faster access 
by components of the processor . In one or more embodi 
ments , the shared cache 1896a , 1896b may include one or 
more mid - level caches , such as level 2 ( L2 ) , level 3 ( L3 ) , 
level 4 ( L4 ) , or other levels of cache , a last level cache 
( LLC ) , and / or combinations thereof . 
[ 0074 ] While shown with only two processing elements 
1070 , 1080 , it is to be understood that the scope of the 
embodiments is not so limited . In other embodiments , one or 
more additional processing elements may be present in a 
given processor . Alternatively , one or more of processing 
elements 1070 , 1080 may be an element other than a 
processor , such as an accelerator or a field programmable 
gate array . For example , additional processing element ( s ) 
may include additional processors ( s ) that are the same as a 
first processor 1070 , additional processor ( s ) that are hetero 
geneous or asymmetric to processor a first processor 1070 , 
accelerators ( such as , e.g. , graphics accelerators or digital 
signal processing ( DSP ) units ) , field programmable gate 
arrays , or any other processing element . There can be a 
variety of differences between the processing elements 
1070 , 1080 in terms of a spectrum of metrics of merit 
including architectural , micro architectural , thermal , power 
consumption characteristics , and the like . These differences 
may effectively manifest themselves as asymmetry and 
heterogeneity amongst the processing elements 1070 , 1080 . 
For at least one embodiment , the various processing ele 
ments 1070 , 1080 may reside in the same die package . 
[ 0075 ] The first processing element 1070 may further 
include memory controller logic ( MC ) 1072 and point - to 
point ( PPP ) interfaces 1076 and 1078. Similarly , the second 
processing element 1080 may include a MC 1082 and P - P 
interfaces 1086 and 1088. As shown in FIG . 9 , MC's 1072 
and 1082 couple the processors to respective memories , 
namely a memory 1032 and a memory 1034 , which may be 
portions of main memory locally attached to the respective 

processors . While the MC 1072 and 1082 is illustrated as 
integrated into the processing elements 1070 , 1080 , for 
alternative embodiments the MC logic may be discrete logic 
outside the processing elements 1070 , 1080 rather than 
integrated therein . 
[ 0076 ] The first processing element 1070 and the second 
processing element 1080 may be coupled to an I / O subsys 
tem 1090 via P - P interconnects 1076 1086 , respectively . As 
shown in FIG . 9 , the I / O subsystem 1090 includes P - P 
interfaces 1094 and 1098. Furthermore , I / O subsystem 1090 
includes an interface 1092 to couple I / O subsystem 1090 
with a high performance graphics engine 1038. In one 
embodiment , bus 1049 may be used to couple the graphics 
engine 1038 to the 1/0 subsystem 1090. Alternately , a 
point - to - point interconnect may couple these components . 
[ 0077 ] In turn , I / O subsystem 1090 may be coupled to a 
first bus 1016 via an interface 1096. In one embodiment , the 
first bus 1016 may be a Peripheral Component Interconnect 
( PCI ) bus , or a bus such as a PCI Express bus or another 
third generation I / O interconnect bus , although the scope of 
the embodiments are not so limited . 
[ 0078 ] As shown in FIG.9 , various I / O devices 1014 ( e.g . , 
biometric scanners , speakers , cameras , sensors ) may be 
coupled to the first bus 1016 , along with a bus bridge 1018 
which may couple the first bus 1016 to a second bus 1020 . 
In one embodiment , the second bus 1020 may be a low pin 
count ( LPC ) bus . Various devices may be coupled to the 
second bus 1020 including , for example , a keyboard / mouse 
1012 , communication device ( s ) 1026 , and a data storage unit 
1019 such as a disk drive or other mass storage device which 
may include code 1030 , in one embodiment . The illustrated 
code 1030 may implement one or more aspects of the 
method 50 ( FIG . 4 ) , already discussed . Further , an audio I / O 
1024 may be coupled to second bus 1020 and a battery 1010 
may supply power to the computing system 1000 . 
[ 0079 ] Note that other embodiments are contemplated . For 
example , instead of the point - to - point architecture of FIG.9 , 
a system may implement a multi - drop bus or another such 
communication topology . Also , the elements of FIG . 9 may 
alternatively be partitioned using more or fewer integrated 
chips than shown in FIG . 9 . 

Additional Notes and Examples 
[ 0080 ] Example 1 includes a performance - enhanced com 
puting system comprising a network controller , a processor 
coupled to the network controller , and a memory coupled to 
the processor , the memory including a set of executable 
program instructions , which when executed by the proces 
sor , cause the processor to detect one or more local variables 
in source code , wherein the one or more local variables lack 
dependencies across iterations of a loop in the source code , 
automatically generate pipeline execution code for the one 
or more local variables , and incorporate the pipeline execu 
tion code into an output of the compiler . 
[ 0081 ] Example 2 includes the computing system of 
Example 1 , wherein the pipeline execution code is to include 
an initialization of a pool of buffer storage for the one or 
more local variables . 
[ 0082 ] Example 3 includes the computing system of 
Example 2 , wherein the initialized pool of buffer storage is 
to be greater than a local storage amount corresponding to a 
single iteration of the loop . 
[ 0083 ] Example 4 includes the computing system of 
Example 2 , wherein the pipeline execution code is to further 
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include a definition of a plurality of tokenized slots in the 
initialized pool of buffer storage , and wherein each token 
ized slot is to correspond to a pipelined iteration of the loop . 
[ 0084 ] Example 5 includes the computing system of 
Example 1 , wherein the pipeline execution code is to include 
a pipeline depth definition . 
[ 0085 ] Example 6 includes the computing system of any 
one of Examples 1 to 5 , wherein the one or more local 
variables are to be detected after a registerization of the 
source code , automatic generation of the pipeline execution 
code is to be in response to detection of the one or more local 
variables , and the source code is to be associated with a 
communication channel in a dataflow graph . 
[ 0086 ] Example 7 includes a semiconductor apparatus 
comprising one or more substrates , and logic coupled to the 
one or more substrates , wherein the logic is implemented at 
least partly in one or more of configurable logic or fixed 
functionality hardware logic , the logic coupled to the one or 
more substrates to detect one or more local variables in 
source code , wherein the one or more local variables lack 
dependencies across iterations of a loop in the source code , 
automatically generate pipeline execution code for the one 
or more local variables , and incorporate the pipeline execu 
tion code into an output of a compiler . 
[ 0087 ] Example 8 includes the semiconductor apparatus 
of Example 7 , wherein the pipeline execution code is to 
include an initialization of a pool of buffer storage for the 
one or more local variables . 
[ 0088 ] Example 9 includes the semiconductor apparatus 
of Example 8 , wherein the initialized pool of buffer storage 
is to be greater than a local storage amount corresponding to 
a single iteration of the loop . 
[ 0089 ] Example 10 includes the semiconductor apparatus 
of Example 8 , wherein the pipeline execution code is to 
further include a definition of a plurality of tokenized slots 
in the initialized pool of buffer storage , and wherein each 
tokenized slot is to correspond to a pipelined iteration of the 
loop . 
[ 0090 ] Example 11 includes the semiconductor apparatus 
of Example 7 , wherein the pipeline execution code is to 
include a pipeline depth definition . 
[ 0091 ] Example 12 includes the semiconductor apparatus 
of any one of Examples 7 to 11 , wherein the one or more 
local variables are to be detected after a registerization of the 
source code , automatic generation of the pipeline execution 
code is to be in response to detection of the one or more local 
variables , and the source code is to be associated with a 
communication channel in a dataflow graph . 
[ 0092 ] Example 13 includes the semiconductor apparatus 
of any one of Examples 7 to 12 , wherein the logic coupled 
to the one or more substrates includes transistor channel 
regions that are positioned within the one or more substrates . 
[ 0093 ] Example 14 includes at least one computer read 
able storage medium comprising a set of instructions , which 
when executed by a computing system , cause the computing 
system to detect one or more local variables in source code , 
wherein the one or more local variables lack dependencies 
across iterations of a loop in the source code , automatically 
generate pipeline execution code for the one or more local 
variables , and incorporate the pipeline execution code into 
an output of a compiler . 
[ 0094 ] Example 15 includes the at least one computer 
readable storage medium of Example 14 , wherein the pipe 

line execution code is to include an initialization of a pool 
of buffer storage for the one or more local variables . 
[ 0095 ] Example 16 includes the at least one computer 
readable storage medium of Example 15 , wherein the ini 
tialized pool of buffer storage is to be greater than a local 
storage amount corresponding to a single iteration of the 
loop . 
[ 0096 ] Example 17 includes the at least one computer 
readable storage medium of Example 15 , wherein the pipe 
line execution code is to further include a definition of a 
plurality of tokenized slots in the initialized pool of buffer 
storage , and wherein each tokenized slot is to correspond to 
a pipelined iteration of the loop . 
[ 0097 ] Example 18 includes the at least one computer 
readable storage medium of Example 14 , wherein the pipe 
line execution code is to include a pipeline depth definition . 
[ 0098 ] Example 19 includes the at least one computer 
readable storage medium of any one of Examples 14 to 18 , 
wherein the one or more local variables are to be detected 
after a registerization of the source code , automatic genera 
tion of the pipeline execution code is to be in response to 
detection of the one or more local variables , and the source 
code is to be associated with a communication channel in a 
dataflow graph . 
[ 0099 ] Example 20 includes a method of operating a 
compiler , the method comprising detecting one or more 
local variables in source code , wherein the one or more local 
variables lack dependencies across iterations of a loop in the 
source code , automatically generating pipeline execution 
code for the one or more local variables , and incorporating 
the pipeline execution code into an output of the compiler . 
[ 0100 ] Example 21 includes the method of Example 20 , 
wherein the pipeline execution code includes an initializa 
tion of a pool of buffer storage for the one or more local 
variables . 
[ 0101 ] Example 22 includes the method of Example 21 , 
wherein the initialized pool of buffer storage is to be greater 
than a local storage amount corresponding to a single 
iteration of the loop . 
[ 0102 ] Example 23 includes the method of Example 21 , 
wherein the pipeline execution code further includes a 
definition of a plurality of tokenized slots in the initialized 
pool of buffer storage , and wherein each tokenized slot is to 
correspond to a pipelined iteration of the loop . 
[ 0103 ] Example 24 includes the method of Example 20 , 
wherein the pipeline execution code includes a pipeline 
depth definition 
[ 0104 ] Example 25 includes the method of any one of 
Examples 20 to 24 , wherein the one or more local variables 
are detected after a registerization of the source code , 
automatic generation of the pipeline execution code is in 
response to detection of the one or more local variables , and 
the source code is associated with a communication channel 
in a dataflow graph . 
[ 0105 ] Example 26 includes means for performing the 
method of any one of Examples 20 to 25 . 
[ 0106 ] Thus , technology described herein may include an 
automated compiler transformation that can take as input a 
loop that has some form of local loop storage and dynami 
cally pipeline the loop using one or more workers for a 
dataflow architecture such as CSA . The compiler may detect 
local storage remaining in loops after registerization and 
allocate enough memory to hold the private variables for a ) 
each worker , and b ) each concurrent execution of a worker . 
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As each worker body commences execution , the worker 
body may be assigned a unique slot in the allocated private 
storage . When the worker completes execution of an itera 
tion , the local storage slot associated with the worker may be 
automatically recycled for use in future iterations . 
[ 0107 ] Several applications / benchmarks such as , for 
example , the SPGemm ( sparse matrix - matrix multiplica 
tion ) and Apriori benchmarks , may benefit from the trans 
formation technology described herein . 
[ 0108 ] Embodiments are applicable for use with all types 
of semiconductor integrated circuit ( " IC " ) chips . Examples 
of these IC chips include but are not limited to processors , 
controllers , chipset components , programmable logic arrays 
( PLAs ) , memory chips , network chips , systems on chip 
( SoCs ) , SSD / NAND controller ASICs , and the like . In 
addition , in some of the drawings , signal conductor lines are 
represented with lines . Some may be different , to indicate 
more constituent signal paths , have a number label , to 
indicate number of constituent signal paths , and / or have 
arrows at one or more ends , to indicate primary information 
flow direction . This , however , should not be construed in a 
limiting manner . Rather , such added detail may be used in 
connection with one or more exemplary embodiments to 
facilitate easier understanding of a circuit . Any represented 
signal lines , whether or not having additional information , 
may actually comprise one or more signals that may travel 
in multiple directions and may be implemented with any 
suitable type of signal scheme , e.g. , digital or analog lines 
implemented with differential pairs , optical fiber lines , and / 
or single - ended lines . 
[ 0109 ] Example sizes / models / values / ranges may have 
been given , although embodiments are not limited to the 
same . As manufacturing techniques ( e.g. , photolithography ) 
mature over time , it is expected that devices of smaller size 
could be manufactured . In addition , well known power / 
ground connections to IC chips and other components may 
or may not be shown within the figures , for simplicity of 
illustration and discussion , and so as not to obscure certain 
aspects of the embodiments . Further , arrangements may be 
shown in block diagram form in order to avoid obscuring 
embodiments , and also in view of the fact that specifics with 
respect to implementation of such block diagram arrange 
ments are highly dependent upon the computing system 
within which the embodiment is to be implemented , i.e. , 
such specifics should be well within purview of one skilled 
in the art . Where specific details ( e.g. , circuits ) are set forth 
in order to describe example embodiments , it should be 
apparent to one skilled in the art that embodiments can be 
practiced without , or with variation of these specific details . 
The description is thus to be regarded as illustrative instead 
of limiting 
[ 0110 ] The term “ coupled ” may be used herein to refer to 
any type of relationship , direct or indirect , between the 
components in question , and may apply to electrical , 
mechanical , fluid , optical , electromagnetic , electromechani 
cal or other connections . In addition , the terms “ first " , 
" second " , etc. may be used herein only to facilitate discus 
sion , and carry no particular temporal or chronological 
significance unless otherwise indicated . 
[ 0111 ] As used in this application and in the claims , a list 
of items joined by the term “ one or more of may mean any 
combination of the listed terms . For example , the phrases 
“ one or more of A , B or C ” may mean A ; B ; C ; A and B ; A 
and C ; B and C ; or A , B and C. 

[ 0112 ] Those skilled in the art will appreciate from the 
foregoing description that the broad techniques of the 
embodiments can be implemented in a variety of forms . 
Therefore , while the embodiments have been described in 
connection with particular examples thereof , the true scope 
of the embodiments should not be so limited since other 
modifications will become apparent to the skilled practitio 
ner upon a study of the drawings , specification , and follow 
ing claims . 
We claim : 
1. A computing system comprising : 
a network controller ; 
a processor coupled to the network controller ; and 
a memory coupled to the processor , the memory including 

a set of executable program instructions , which when 
executed by the processor , cause the processor to : 
detect one or more local variables in source code , 
wherein the one or more local variables lack depen 
dencies across iterations of a loop in the source code , 

automatically generate pipeline execution code for the 
one or more local variables , and 

incorporate the pipeline execution code into an output 
of a compiler . 

2. The computing system of claim 1 , wherein the pipeline 
execution code is to include an initialization of a pool of 
buffer storage for the one or more local variables . 

3. The computing system of claim 2 , wherein the initial 
ized pool of buffer storage is to be greater than a local 
storage amount corresponding to a single iteration of the 
loop 

4. The computing system of claim 2 , wherein the pipeline 
execution code is to further include a definition of a plurality 
of tokenized slots in the initialized pool of buffer storage , 
and wherein each tokenized slot is to correspond to a 
pipelined iteration of the loop . 

5. The computing system of claim 1 , wherein the pipeline 
execution code is to include a pipeline depth definition . 

6. The computing system of claim 1 , wherein the one or 
more local variables are to be detected after a registerization 
of the source code , automatic generation of the pipeline 
execution code is to be in response to detection of the one 
or more local variables , and the source code is to be 
associated with a communication channel in a dataflow 
graph . 

7. A semiconductor apparatus comprising : 
one or more substrates ; and 
logic coupled to the one or more substrates , wherein the 

logic is implemented at least partly in one or more of 
configurable logic or fixed - functionality hardware 
logic , the logic coupled to the one or more substrates to : 

detect one or more local variables in source code , wherein 
the one or more local variables lack dependencies 
across iterations of a loop in the source code ; 

automatically generate pipeline execution code for the 
one or more local variables ; and 

incorporate the pipeline execution code into an output of 
a compiler . 

8. The semiconductor apparatus of claim 7 , wherein the 
pipeline execution code is to include an initialization of a 
pool of buffer storage for the one or more local variables . 

9. The semiconductor apparatus of claim 8 , wherein the 
initialized pool of buffer storage is to be greater than a local 
storage amount corresponding to a single iteration of the 
loop . 
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10. The semiconductor apparatus of claim 8 , wherein the 
pipeline execution code is to further include a definition of 
a plurality of tokenized slots in the initialized pool of buffer 
storage , and wherein each tokenized slot is to correspond to 
a pipelined iteration of the loop . 

11. The semiconductor apparatus of claim 7 , wherein the 
pipeline execution code is to include a pipeline depth 
definition . 

12. The semiconductor apparatus of claim 7 , wherein the 
one or more local variables are to be detected after a 
registerization of the source code , automatic generation of 
the pipeline execution code is to be in response to detection 
of the one or more local variables , and the source code is to 
be associated with a communication channel in a dataflow 
graph . 

13. The semiconductor apparatus of claim 7 , wherein the 
logic coupled to the one or more substrates includes tran 
sistor channel regions that are positioned within the one or 
more substrates . 

14. At least one computer readable storage medium com 
prising a set of instructions , which when executed by a 
computing system , cause the computing system to : 

detect one or more local variables in source code , wherein 
the one or more local variables lack dependencies 
across iterations of a loop in the source code ; 

automatically generate pipeline execution code for the 
one or more local variables ; and 

incorporate the pipeline execution code into an output of 
a compiler . 

15. The at least one computer readable storage medium of 
claim 14 , wherein the pipeline execution code is to include 
an initialization of a pool of buffer storage for the one or 
more local variables . 

16. The at least one computer readable storage medium of 
claim 15 , wherein the initialized pool of buffer storage is to 
be greater than a local storage amount corresponding to a 
single iteration of the loop . 

17. The at least one computer readable storage medium of 
claim 15 , wherein the pipeline execution code is to further 
include a definition of a plurality of tokenized slots in the 

initialized pool of buffer storage , and wherein each token 
ized slot is to correspond to a pipelined iteration of the loop . 

18. The at least one computer readable storage medium of 
claim 14 , wherein the pipeline execution code is to include 
a pipeline depth definition . 

19. The at least one computer readable storage medium of 
claim 14 , wherein the one or more local variables are to be 
detected after a registerization of the source code , automatic 
generation of the pipeline execution code is to be in response 
to detection of the one or more local variables , and the 
source code is to be associated with a communication 
channel in a dataflow graph . 

20. A method comprising : 
detecting one or more local variables in source code , 
wherein the one or more local variables lack depen 
dencies across iterations of a loop in the source code ; 

automatically generating pipeline execution code for the 
one or more local variables ; and 

incorporating the pipeline execution code into an output 
of a compiler . 

21. The method of claim 20 , wherein the pipeline execu 
tion code includes an initialization of a pool of buffer storage 
for the one or more local variables . 

22. The method of claim 21 , wherein the initialized pool 
of buffer storage is to be greater than a local storage amount 
corresponding to a single iteration of the loop . 

23. The method of claim 21 , wherein the pipeline execu 
tion code further includes a definition of a plurality of 
tokenized slots in the initialized pool of buffer storage , and 
wherein each tokenized slot is to correspond to a pipelined 
iteration of the loop . 

24. The method of claim 20 , wherein the pipeline execu 
tion code includes a pipeline depth definition . 

25. The method of claim 20 , wherein the one or more local 
variables are detected after a registerization of the source 
code , automatic generation of the pipeline execution code is 
in response to detection of the one or more local variables , 
and the source code is associated with a communication 
channel in a dataflow graph . 


