US 20140298326A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0298326 A1

VENKATESAN et al. 43) Pub. Date: Oct. 2,2014
(54) ASYNCHRONOUS UNMAP OF THINLY (52) US.CL
PROVISIONED STORAGE FOR VIRTUAL CPC ..ot GO6F 9/45533 (2013.01)
MACHINES USPC ittt seneneaes 718/1
(71) Applicant: VMware, Inc., Palo Alto, CA (US) (57) ABSTRACT
(72) Inventors: Dhanashanka.r VENKATESAN, Palo In a computer system having virtual machines running
Alto, CA (US): Prasanna AITHAL, therein, a hypervisor that supports execution of the virtual
Palo Alto, CA (US) machines allocates blocks of storage to the virtual machines
. from a thinly provisioned logical block device. When the
(21) Appl. No.: 13/853,608 hypervisor deletes a file or receives commands to delete a file,
(22) Filed: Mar. 29. 2013 the hypervisor moves the file into a delete directory. An
’ unmap thread running in the background issues unmap com-
Publication Classification mands to the storage device to release one or more blocks of
the logical block device that are allocated to the files in the
(51) Int.ClL delete directory, so that the unmap operation can be executed
GOG6F 9/455 (2006.01) asynchronously with respect to the file delete event.

VM

Guest 0OS

l—Storage Request—

Hypervisor 108

File Path/Name | Timestamp | Pointerta LUNLBA | Lockbit | Allocated/Free/Pending
LUNLBA UNMAP

VidAumdk . — | o1 ajejp

Femp/TieA : —* L 0/1 AfE/P

YMB.ymdk . — 0/1 A/F/e] .

136 210

Unmap Thread

135

N=
L]

Array
150

Patent Application Publication Oct. 2,2014 Sheet1 of 5 US 2014/0298326 A1

/ SERVER 100 \

Applications 118 Lo ey

0S 1186

I Virtual HBA 120
e R T T T T e SR T ~
2, Cm i) z== v]
Py A Y S S

HYPERVISOR 108
Y h 4 A 4

\&“f HBA Emulator 126 \&" \&'\S
SCS! Virtualization Layer 128 nmap D?rzﬁlew
VMFS Driver 130 135 136
Logical Volume Manager 132 Prs:{/?;;%?ng
Data Access Layer 140 M;Jg;le

HW PLATFORM 102

Storage
Array
150

FIGURE 1

Patent Application Publication Oct. 2,2014 Sheet 2 of 5 US 2014/0298326 A1

VMMS

|—UNLINK—

A 4

Hypervisor 108

l

Fite Path/Mame | Thmestamp | Pointerto HUMERE | tockbi | Allccated/FreefPending
L Laa UNEIAP
WA vmgk * e |2 af1 AfFie
45. L i;:'«a‘a " > N 'gfl Ai’gjg
. —>k 871 A/579]
A
210
Unmap Thread
135 \
UNMAP
Storage
command to Arra
storage array 150y

FIGURE 2

Patent Application Publication

Oct. 2,2014 Sheet 3 of 5

Examine metadata of
files in delete directory
302

v

Access next file
304

File
selection

A

US 2014/0298326 Al

Yes

condition
No met?

306

Change status

from pending

unmap to free
313

Another file
in delete directory?
318

Yes

FIGURE 3

Examine block map
and set lock bits of
free blocks of file
308

h 4

Change status of blocks
to pending unmap
312

!

Clear lock bits and
issue unmap
314

A4

Remove file from
delete directory
316

Patent Application Publication

Oct. 2,2014 Sheetd of 5

US 2014/0298326 Al

VM

Guest OS

—Storage Req uest——‘

A 4

Hypervisor 108

File Path/Name | Timestamp | Pointerto LUNLBA | Lockbit | Aliocated/Free/Pending
LUNLBA UNMAP
VA vmdk hhimmiss . — [o/1 INGE
fmp/flep | hhmmss | > 0/1 AJF]P
VB, emdk hhimmiss | » — of1 AiFfPI
/ A
Unmap Thread

135

N

il
il

Storage
Array
150

FIGURE 4

Patent Application Publication Oct. 2,2014 SheetSof 5 US 2014/0298326 A1

Storage
Provisioning

Examine block map
502

No Issue Error
Message
506

block(s) found?

Set lock bits of
blocks of file that
are free
508

'

Change status of
blocks to allocated
510

A 4

Clear lock bits
512

End

FIGURE 5

US 2014/0298326 Al

ASYNCHRONOUS UNMAP OF THINLY
PROVISIONED STORAGE FOR VIRTUAL
MACHINES

BACKGROUND

[0001] Computer virtualization is a technique that involves
encapsulating a physical computing machine platform into a
virtual machine that is executed under the control of virtual-
ization software running on a hardware computing platform,
or “host.” A virtual machine has both virtual system hardware
and guest operating system software. Virtual system hard-
ware typically includes at least one “virtual disk,” a single file
or a set of files that appear as a typical storage drive to the
guest operating system. The virtual disk may be stored on the
host platform or on a remote storage device. Typically, a
virtual machine (VM) uses the virtual disk in the same man-
ner that a physical storage drive is used, to store the guest
operating system, application programs, and application data.
[0002] The virtualization software, also referred to as a
hypervisor, manages the guest operating system’s access to
the virtual disk and maps the virtual disk to the underlying
physical storage resources that reside on the host platform or
in a remote storage device, such as a storage area network
(SAN) or network attached storage (NAS). Because multiple
virtual machines can be instantiated on a single host, allocat-
ing physical storage space for virtual disks corresponding to
every instantiated virtual machine in an organization’s data
center can stress the physical storage space capacity of the
data center. For example, when provisioning a virtual disk for
avirtual machine, the virtualization software may allocate all
the physical disk space for the virtual disk at the time the
virtual disk is initially created, sometimes creating a number
of empty data blocks containing only zeros (“zero blocks™).
However, such an allocation may result in storage inefficien-
cies because the physical storage space allocated for the vir-
tual disk may not be timely used (or ever used) by the virtual
machine. In one solution, known as “thin provisioning,” the
virtualization software dynamically allocates physical stor-
age space to a virtual disk only when such physical storage
space is actually needed by the virtual machine and not nec-
essarily when the virtual disk is initially created.

[0003] Inasimilarmanner, thin provisioning may be imple-
mented as a storage space optimization technology in the
underlying storage hardware, e.g., storage array, which may
include an array of rotating disks or solid state disks as the
physical storage media. In such cases, a storage system con-
troller that manages the physical storage media and exposes
them as logical data storage units, referred to as logical unit
numbers (LUNSs), to the host, thinly provisions the LUNSs.
That is, the storage system controller dynamically allocates
physical storage space to the LUNs only when such physical
storage space is actually needed by the LUNs and not neces-
sarily when the LUNs are initially created. As a result, when
the LUNSs are initially created, the logical size of each of the
LUN:ss is typically much greater than its physical size.
[0004] However, even with the use of thinly-provisioned
virtual disks and thinly-provisioned [LUNSs, storage ineffi-
ciencies may be caused by an accumulation of “stale” data,
i.e., disk blocks that were previously used and are currently
unused but remain allocated. For example, deletion of a file,
such as a temporary file or a swap file used by the hypervisor
while supporting virtual machines, does not generally result
in arelease of the actual data blocks corresponding to the files.
In addition, after migration of one or more virtual disks asso-

Oct. 2,2014

ciated with a virtual machine, known as Storage vMotion™,
is carried out, a set of files corresponding to the virtual disks
is deleted by the hypervisor in response to an unlink com-
mand issued by a virtual machine management server. The
deletion of these files does not necessarily result in a release
of the actual data blocks corresponding to these files. This
behavior can result in storage inefficiencies because such
“stale” portions of the LUN are not utilized. U.S. patent
application Ser. No. 13/181,153, filed Jul. 12, 2011, the entire
contents of which are incorporated by reference herein,
describes a technique that employs unmap commands to
reclaim data blocks of “stale” data and continue to maintain
the benefits of thin provisioning. However, the overhead asso-
ciated with the execution of unmap operation in the storage
system often offsets the benefits gained by the unmap opera-
tion.

SUMMARY

[0005] One or more embodiments provide asynchronous
techniques for releasing free storage blocks previously allo-
cated to a logical block device to an underlying storage device
supporting the logical block device. In one embodiment, the
logical block device is a LUN and blocks of the LUN are
allocated to virtual machines by a hypervisor supporting
execution of the virtual machines. When the hypervisor
deletes a file or receives commands to delete a file associated
with virtual disks, the hypervisor moves each such file into a
delete directory instead of synchronously issuing an unmap
command to the underlying storage device at that time. An
unmap thread running in the background issues unmap com-
mands to the storage device to release one or more blocks of
the logical block device that are allocated to the files in the
delete directory. As a result, the unmap commands are issued
to the storage device asynchronously with respect to the file
delete commands.

[0006] A method of issuing commands to release storage
allocated to a logical block device by a storage device,
according to an embodiment, includes the steps of: upon
deleting a file or receiving a command to delete a file, moving
the file into a delete directory; and cycling through one or
more files in the delete directory and, for each file, issuing an
unmap command to release one or more blocks of the logical
block device that are allocated thereto according to a length of
time the file has been placed in the delete directory or some
other criteria, including file size, file type, and file contents.

[0007] Further embodiments include, without limitation, a
non-transitory computer-readable storage medium that
includes instructions that enable a computer system to imple-
ment one or more aspects of the above methods as well as a
computer system configured to implement one or more
aspects of the above methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a block diagram that shows a virtualized
computer architecture in which embodiments may be imple-
mented.

[0009] FIG. 2 is a conceptual diagram that illustrates an
unmap process according to embodiments.

[0010] FIG. 3 is a flow diagram that illustrates the steps
carried out by a background thread when issuing unmap
commands to a storage device.

[0011] FIG. 4 is a conceptual diagram that illustrates a
storage provisioning process according to embodiments.

US 2014/0298326 Al

[0012] FIG. 5 is a flow diagram that illustrates the steps
carried out by a storage provisioning module of a hypervisor
when provisioning new storage to a virtual machine.

DETAILED DESCRIPTION

[0013] FIG. 1 depicts a block diagram of a server 100 that
is representative of a virtualized computer architecture in
which embodiments may be implemented. As illustrated,
server 100 is hosting multiple virtual machines that are run-
ning on and sharing a common physical hardware platform
102. Hardware platform 102 is comprised of, but not limited
to, conventional, though typically server-class, computer
hardware components, such as one or more central processing
units, random access memory, various types of input/output
devices, and persistent storage. As further illustrated, hyper-
visor 108 is installed on top of hardware platform 102. Hyper-
visor 108 is a virtualization software component that makes
possible the concurrent instantiation and execution of one or
more virtual machines (VMs) 112,-112,, within virtual
machine execution space 110.

[0014] Afteritis instantiated, each VM 112,-1121,, encap-
sulates a physical computing machine platform that is
executed under the control of the hypervisor 108. Each VM
112,-112,, implements a virtual hardware platform 114 that
supports the installation of a guest operating system (OS) 116
which is capable of executing applications 118. Examples of
a guest OS 116 include any of the well-known commodity
operating systems, such as Microsoft Windows, Linux, and
the like. In each instance, guest OS 116 includes a native file
system layer (not shown in FIG. 1), for example, an NTFS or
an ext3FS type file system. These virtual file system layers
interface with their respective virtual hardware platforms 114
to access, from the perspective of guest operating systems
116, a data storage host bus adapter (HBA). This HBA is, in
reality, a virtual HBA 120 implemented by virtual hardware
platform 114 that provides the appearance of disk storage
support (virtual disks 122 ,-122) to guest OS 116, allowing
guest OS 116 to execute seamlessly with the virtualized sys-
tem hardware. In certain embodiments, virtual disks 122 ,-
122, may appear to support, from the perspective of guest OS
116, the SCSI standard for connecting to the virtual machine
or any other appropriate hardware connection interface stan-
dard known to those with ordinary skill in the art, including
IDE, ATA, and ATAPIL.

[0015] Although, from the perspective of guest operating
systems 116, file system calls initiated by such guest operat-
ing systems 116 to implement file system-related data trans-
fer and control operations appear to be routed to virtual disks
122 ,-122, for final execution, in reality, such calls are pro-
cessed and passed through virtual HBA 120 to adjunct virtual
machine monitor (VMM) layers 124,-124,, that implement
the virtual system support needed to coordinate operation
with hypervisor 108. In particular, HBA emulator 126 func-
tionally enables the data transfer and control operations to be
correctly handled by hypervisor 108 which ultimately passes
such operations through its various layers to physical HBAs
that connect to a storage array 150, which may be a disk array,
an SSD (solid state drive) array, or any mass storage device.
Assuming a SCSI supported virtual device implementation
(although those with ordinary skill in the art will recognize
the option of using other hardware interface standards), SCSI
virtualization layer 128 of hypervisor 108 receives a data
transfer and control operation (in the form of SCSI com-
mands, for example, intended for a SCSI-compliant virtual

Oct. 2,2014

disk) from VMM layers 124,-124,, and converts them into
file system operations that are understood by virtual machine
file system (VMFS) driver 130 in order to access a file stored
in one of the LUNS in storage array 150 under the manage-
ment of VMFS driver 130 that represents the SCSI-compliant
virtual disk. In one embodiment, the file representing the
virtual disk conforms to the VMware Virtual Disk (.vmdk) file
format promulgated by VMware, Inc. for virtual disks,
although it should be recognized that alternative virtual disk
file formats may be used in other embodiments.

[0016] SCSI virtualization layer 128 then issues these file
system operations to VMFS driver 130. VMFS 130, in gen-
eral, manages creation, use, and deletion of files (e.g., such as
-vmdk files representing virtual disks) stored on LUNs
exposed by storage array 150. One example of a clustered file
system that can serve as VMFS driver 130 in an embodiment
is described in U.S. Pat. No. 7,849,098, entitled “Multiple
Concurrent Access to a File System,” filed Feb. 4, 2004 and
issued on Dec. 7, 2010, the entire contents of which are
incorporated by reference herein. VMFS driver 130, converts
the file system operations received from SCSI virtualization
layer 128 to volume (e.g. LUN) block operations, and pro-
vides the volume block operations to logical volume manager
132. Logical volume manager (LVM) 132 is typically imple-
mented as an intermediate layer between the driver and file
system layers, and supports volume oriented virtualization
and management of the LUNs accessible through the physical
HBAs. LVM 132 issues raw SCSI operations to device access
layer 134 based on the LUN block operations. Data access
layer 140 includes device access layer, which discovers stor-
age array 150, and applies command queuing and scheduling
policies to the raw SCSI operations, and device driver 136,
which understands the input/output interface of the physical
HBAs interfacing with storage array 150, and sends the raw
SCSI operations from the device access layer to the physical
HBAs to be forwarded to storage array 150.

[0017] Itshouldberecognizedthatthe various terms, layers
and categorizations used to describe the virtualization com-
ponents in FIG. 1 may be referred to differently without
departing from their functionality or the spirit or scope of the
invention. For example, VMMs 124 may be considered sepa-
rate virtualization components between VMs 112 and hyper-
visor 108 (which, in such a conception, may itself be consid-
ered a virtualization “kernel” component) since there exists a
separate VMM for each instantiated VM. Alternatively, each
VMM may be considered to be a component of its corre-
sponding virtual machine since such VMM includes the hard-
ware emulation components for the virtual machine. In such
an alternative conception, for example, the conceptual layer
described as virtual hardware platform 114 may be merged
with and into VMM 124 such that virtual host bus adapter 120
is removed from FIG. 1 (i.e., since its functionality is effec-
tuated by host bus adapter emulator 126).

[0018] In the embodiments illustrated herein, virtual disks
for VM 112,-112,,; are thinly provisioned and one or more
LUNs in which the virtual disks are stored are also thinly
provisioned. As a result, storage is allocated virtual disks of
VM 112,-112,; only as required by the virtual disks and
storage is allocated to the LUNs only as required by the
LUNs. When less storage is needed by the virtual disks, the
corresponding VM 112 issues an unmap command to hyper-
visor 108 that is managing the virtual disks. Similarly, when
less storage is needed by the LUNSs, hypervisor 108 issues an
unmap command to storage array 150.

US 2014/0298326 Al

[0019] According to embodiments, when hypervisor
deletes a file or receives a command to delete a file, the file is
moved into a delete directory 136 and an unmap thread 135
within hypervisor 108 executes in the background, preferably
during periods when resource usage of server 100 is low, to
examine time stamps of files that have been placed in delete
directory 136 and issue unmap commands for blocks allo-
cated to files that have been placed in delete directory 136 for
longer than a threshold amount of time. As an alternative to
length of time in delete directory 136, the file selection factors
include file size, file type, and file contents. In one embodi-
ment, temp files are selected before any other type of files. In
another embodiment, files corresponding to virtual disks that
have been migrated to a difterent LUN are selected before any
other type of files.

[0020] FIG. 2 is a conceptual diagram that illustrates an
unmap process according to embodiments. In the example
illustrated in FIG. 2, a virtual machine management server
(VMMS) issues an unlink command for virtual disks that
have been migrated to a different LUN, in response to which
hypervisor 108 moves the file corresponding to the migrated
virtual disks into delete directory 136. In addition, hypervisor
108 records a time stamp indicating when each such file has
been moved into delete directory 136 in the directory’s
descriptor file (e.g., inode). In addition to delete directory
136, a block map 210 is maintained by hypervisor 108 to track
which blocks of LUNs are tracked as currently allocated, free,
or pending unmap. Block map 210 may also maintain a lock
bit for each block to prevent competing entities (e.g., storage
provisioning module 137 within hypervisor 108 and unmap
thread 135) from updating the status of the same block at the
same time. When a file is added to delete directory 136, blocks
corresponding to the added file, which can be determined
from the file’s corresponding descriptor file (e.g., inode), are
indicated in block map 210 as free. Because they are free,
storage provisioning module 137 may allocate them for other
uses. The files in delete directory 136 may also include temp
files, swap files, and other files that hypervisor 108 has cre-
ated and then subsequently deleted.

[0021] In an alternative embodiment, the information of
block map 210 is provided by a free block bitmap and a set of
inodes corresponding to the files in delete directory 136. The
file blocks referenced by these inodes are understood to be
“free” but “not yet unmapped.” In this embodiment, the total
storage space available would be reported as the sum of the
number of unmapped blocks and the number of blocks of files
in delete directory 136.

[0022] FIG. 3 is a flow diagram that illustrates the steps
carried out by a background thread, e.g., unmap thread 135,
when issuing unmap commands to a storage device. The
background thread may be configured to execute periodically
or opportunistically during periods of low resource usage by
server 100. At step 302, the background thread retrieves the
descriptor file for delete directory 136 and examine the meta-
data of files in delete directory 136, in particular locations of
their descriptor files and time stamp of when they were placed
in delete directory 136 (or other selection factor). The first or
next file is accessed at step 304 and the file’s time stamp (or
other selection factor) examined at step 306. If the back-
ground thread determines that the file’s time in delete direc-
tory 136 exceeds a threshold (or some other selection condi-
tion based on file size, file type, or file contents, is met), step
308 is executed. Otherwise, the process flow returns to step
304 where another file in delete directory 136 is accessed.

Oct. 2,2014

[0023] At step 308, the background thread examines block
map 210 to see if any of the storage blocks of the file selected
at step 304, as determined from its descriptor file, are free. It
should be noted the storage block of the file may have been
repurposed by hypervisor 108 (e.g., allocated for another
purpose) since the file was placed in delete directory 136. If
any storage blocks remain free, the background thread sets
the lock bits associated with them in block map 210. Then, at
step 312, the background thread further updates block map
210 to indicate these blocks as pending unmap. When an
acknowledgement of unmap is received from the storage
array, the background thread at step 313 changes the status of
those blocks indicated as pending unmap at step 312 to free.
Then, the background thread at step 314 clears the lock bits
that were set at step 308 and at step 316 removes the processed
file from delete directory 136. If there is another file in delete
directory 136 to be processed, as determined at decision block
318, the process flow returns to step 304 where another file in
delete directory 136 is accessed. Otherwise, the process ter-
minates.

[0024] It was noted above that it is possible for storage
blocks offiles in delete directory 136 to have been repurposed
by hypervisor 108 (e.g., allocated for another purpose). FI1G.
4 is a conceptual diagram that illustrates a storage provision-
ing process according to embodiments. When a request for
additional storage is made by a virtual machine (e.g., VM in
FIG. 4), storage provisioning module 137 within hypervisor
108 searches block map 210 for sufficient number of free
storage blocks to meet the request. In the alternative embodi-
ment, hypervisor 108 searches the free block bitmap and the
inodes of files in delete directory 136. FIG. 5 is a flow diagram
that illustrates the steps carried out by the storage provision-
ing module in response to such a request.

[0025] The process begins at step 502 where the storage
provisioning module examines block map 210 (or free block
bitmap and the inodes of files in delete directory 136) for free
blocks. It should be noted that the storage blocks that are
pending unmap will not be counted as being free. If a suffi-
cient number of free blocks are not found, as determined at
decision block 504, the storage provisioning module returns
an error message at step 506. On the other hand, if a sufficient
number of free blocks are not found, step 508 is executed. At
step 508, the storage provisioning module sets the lock bits
associated with the free blocks that were found in block map
210. Then, the storage provisioning module allocates the
storage blocks to the requesting VM and changes the status of
the storage blocks in block map 210 as allocated. The lock bits
that were set at step 508 are then cleared and the process
terminates thereafter.

[0026] Although one or more embodiments have been
described herein in some detail for clarity of understanding, it
should be recognized that certain changes and modifications
may be made without departing from the spirit of the inven-
tion.

[0027] The various embodiments described herein may
employ various computer-implemented operations involving
data stored in computer systems. For example, these opera-
tions may require physical manipulation of physical quanti-
ties—usually, though not necessarily, these quantities may
take the form of electrical or magnetic signals, where they or
representations of them are capable of being stored, trans-
ferred, combined, compared, or otherwise manipulated. Fur-
ther, such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any

US 2014/0298326 Al

operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

[0028] The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

[0029] One or more embodiments of the present invention
may be implemented as one or more computer programs or as
one or more computer program modules embodied in one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system—com-
puter readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams in a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

[0030] Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding, it will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.
[0031] Virtualization systems in accordance with the vari-
ous embodiments, may be implemented as hosted embodi-
ments, non-hosted embodiments or as embodiments that tend
to blur distinctions between the two, are all envisioned. Fur-
thermore, various virtualization operations may be wholly or
partially implemented in hardware. For example, a hardware
implementation may employ a look-up table for modification
of storage access requests to secure non-disk data.

[0032] Many variations, modifications, additions, and
improvements are possible, regardless the degree of virtual-
ization. The virtualization software can therefore include
components of a host, console, or guest operating system that
performs virtualization functions. Plural instances may be
provided for components, operations or structures described
herein as a single instance. Finally, boundaries between vari-
ous components, operations and data stores are somewhat
arbitrary, and particular operations are illustrated in the con-
text of specific illustrative configurations. Other allocations
of functionality are envisioned and may fall within the scope

Oct. 2,2014

of the invention(s). In general, structures and functionality
presented as separate components in exemplary configura-
tions may be implemented as a combined structure or com-
ponent. Similarly, structures and functionality presented as a
single component may be implemented as separate compo-
nents. These and other variations, modifications, additions,
and improvements may fall within the scope of the appended
claim(s).

We claim:

1. In a computer system having virtual machines executed
therein and a hypervisor supporting execution of the virtual
machines, a method of issuing commands to release storage
allocated to a logical block device by a storage device, com-
prising:

upon deleting a file or receiving a command to delete a file,

moving the file into a delete directory; and

cycling through one or more files in the delete directory

and, for each file, issuing an unmap command to release
one or more blocks of the logical block device that are
allocated thereto according to a file selection criterion.

2. The method of claim 1, wherein the file selection crite-
rion includes one of a length of time the file has been placed
in the delete directory, a file size, a file type, and file contents.

3. The method of claim 2, wherein the logical block device
is a logical unit number (LUN) thinly provisioned in the
storage device.

4. The method of claim 1, wherein said cycling comprises:

determining that a file has been placed in the delete direc-

tory for longer than a threshold time;

identifying blocks associated with the file; and

issuing the unmap command to release one or more of the

identified blocks that have not been reallocated by the
hypervisor.

5. The method of claim 4, further comprising:

maintaining a block map that tracks which of blocks of the

logical block device are free for allocation and are pend-
ing unmap.

6. The method of claim 5, further comprising:

marking the blocks included in the unmap command as

pending unmap in the block map; and

upon receiving acknowledgement from the storage device

that the blocks have been unmapped, updating the block
map to mark the blocks as free.

7. The method of claim 6, further comprising:

provisioning additional blocks of the logical block device

to the virtual machines,

wherein at least one of the additional blocks is a block

associated with a file that has been placed in the delete
directory.

8. The method of claim 7, wherein said provisioning com-
prises:

selecting blocks that are marked free in the block map.

9. The method of claim 1, wherein the file corresponds to a
virtual disk.

10. A non-transitory computer readable storage medium
comprising instructions executable by a virtualization soft-
ware layer of a computer system having virtual machines
executed therein, to carry out a method of issuing commands
to release storage allocated to a logical block device by a
storage device, the method comprising:

upon deleting a file or receiving a command to delete a file,

moving the file into a delete directory; and

cycling through one or more files in the delete directory

and, for each file, issuing an unmap command to release

US 2014/0298326 Al

one or more blocks of the logical block device that are
allocated thereto according to a file selection criterion.

11. The non-transitory computer readable storage medium
of claim 10, wherein the file selection criterion includes one
of a length of time the file has been placed in the delete
directory, a file size, a file type, and file contents.

12. The non-transitory computer readable storage medium
of claim 11, wherein said cycling is performed periodically
and comprises:

determining that a file has been placed in the delete direc-

tory for longer than a threshold time;

identifying blocks associated with the file; and

issuing the unmap command to release one or more of the

identified blocks that have not been reallocated by the
hypervisor.

13. The non-transitory computer readable storage medium
of claim 12, wherein the method further comprises:

maintaining a block map that tracks which of blocks of the

logical block device are free for allocation and are pend-
ing unmap.

14. The non-transitory computer readable storage medium
of claim 13, wherein the method further comprises:

marking the blocks included in the unmap command as

pending unmap in the block map; and

upon receiving acknowledgement from the storage device

that the blocks have been unmapped, updating the block
map to mark the blocks as free.

15. The non-transitory computer readable storage medium
of claim 13, wherein the method further comprises:

Oct. 2,2014

provisioning additional blocks of the logical block device

to the virtual machines,

wherein at least one of the additional blocks is a block

associated with a file that has been placed in the delete
directory.

16. The non-transitory computer readable storage medium
of claim 15, wherein said provisioning comprises:

selecting blocks that are marked free in the block map.

17. A computer system having virtual machines executed
therein and a hypervisor supporting execution of the virtual
machines, the computer system comprising:

a processor and memory,

wherein the hypervisor is programmed to issue commands

to release storage allocated to a logical block device by
a storage device by performing the steps of:

upon deleting a file or receiving a command to delete a file,

moving the file into a delete directory; and

cycling through one or more files in the delete directory

and, for each file, issuing an unmap command to release
one or more blocks of the logical block device that are
allocated thereto according to a file selection criterion.

18. The computer system of claim 17, wherein the logical
block device is a logical unit number (LUN) thinly provi-
sioned in the storage device.

19. The computer system of claim 18, wherein each of the
virtual machines has a thinly provisioned virtual disk associ-
ated therewith and one of files in the delete directory corre-
sponds to one of the thinly provisioned virtual disks.

#* #* #* #* #*

