a9y United States

US 20190200258A1

a2y Patent Application Publication o) Pub. No.: US 2019/0200258 A1

Luna et al. 43) Pub. Date: Jun. 27, 2019
(54) MOBILE DEVICE CONFIGURED FOR HO4L 1226 (2006.01)
OPERATING IN A POWER SAVE MODE AND HO4W 24/10 (2006.01)
A TRAFFIC OPTIMIZATION MODE AND HO4W 52/02 (2006.01)
RELATED METHOD HO4L 12724 (2006.01)
(52) US. CL
(71) Applicant: Seven Networks, LLC, Marshall, TX CPC ... HO4W 28/06 (2013.01); Y02D 70/1244
us) (2018.01); HO4L 43/065 (2013.01); HO4W
. . 24/10 (2013.01); HO4W 52/0258 (2013.01);
(72) Inventors: Michael Luna, San JOSG, CA (US); Ari HO4IL 41/0823 (2013.01); HO4L 41/083
Backholm, Los Altos, CA (US); Ross (2013.01); Y02D 70/1226 (2018.01); Y02D
Bott, Half Moon Bay, CA (US) 70/23 (2018.01); Y02D 70/1264 (2018.01);
Y02D 70/144 (2018.01); Y02D 70/142
(21) Appl. No.: 16/292,543 (2018.01); Y02D 70/1224 (2018.01); Y02D
- 70/1242 (2018.01); Y02D 70/164 (2018.01);
(22) Filed: Mar. 5, 2019 Y02D 70/1262 (2018.01); Y02D 70/1246
Related U.S. Application Data (2018.01); Y02D 70/00 (2018.01); Y02D 70/21
(2018.01); Y02D 70/146 (2018.01); HO4L
(63) Continuation of application No. 15/675,951, filed on 67/2819 (2013.01); HO4L 67/2842 (2013.01);
Aug. 14, 2017, which is a continuation of application HO4L 67/289 (2013.01)
No. 14/691,373, filed on Apr. 20, 2015, now Pat. No.
9,769,702, which is a continuation of application No. (57) ABSTRACT
14/546,053, filed on Nov. 18, 2014, now Pat. No.))
10,098,036, which is a continuation of application A method and system are for generating a report for delivery
No. 13/710,274, filed on Dec. 10, 2012, now Pat. No. to or access or query by a network operator by determining,
9,021,021. by a server-side proxy, optimization efficiency for traffic in
o o a wireless network, tracking, by the server-side proxy,
(60) Provisional application No. 61/570,724, filed on Dec. user-related information in the wireless network, generating,
14, 2011. based on at least one of the optimization efficiency and the
A . . user-related information, a report for delivery to or access by
Publication Classification an operator of the wireless network, the report including an
(51) Int. CL alert of viral take-up of a new application, and performing,
HO4W 28/06 (2006.01) by the server-side proxy, traffic optimization functions alle-
HO4L 29/08 (2006.01) viating traffic in the wireless network.
150

Mobite Device)

Radio Access
Network

112

Third Party PEP/
Caching Proxy 199

A

175 j

Client-Side Proxy
{Local Proxy)

Internet

\—/\

125

Server-Side Proxy
(Proxy server)

h A

174
Reportting and Usage

Non-Optimized Traffic

Optimized Traffic

[
>

Analytics System

VI OIAd

oyfel] POZIMRAQD ceememcimcanen-
oigel | peziundO-UON —eeee
LoSAg sophieuy
obesn pue Buluoday] |«

US 2019/0200258 A1

e

Gl
(19n105 Ax0id) {Axoid 1B00T) H
AXCIc] OPIS-IOMNIOG lafemrosrorafemnmnramronadronancannnssnncnsas e 014 BpIS-1ushD

L \
/
7/
/
/
/ ; 3
S
S
PR ;Nz S 7

//;lllllll\\
661 \
Axoid Buiyors MIOMIBN 018 (] BRAON

/d3d Aed pay L §5800Y oipey ool

T4

Jun. 27,2019 Sheet 1 of 54

h 4
™~

Patent Application Publication

US 2019/0200258 A1

Jun. 27,2019 Sheet 2 of 54

Patent Application Publication

a1 ‘OId

(s)onle8 () omes
: B0 (s)enieg py
uodnod-a [euooWwoid

QONP\ mowv\ <owv\

SQ0IIOS
JBUI0 "'SHIOMIBU {BI00S
ayoe)
JOAIOG 1puRLUL 'Sjelod
0
901 D 801 BuiBessopy
gel 18410 'SINN SIS
|ewy jeuosie
mmmmwo S}OMISN fiews | d
{2007 yewy ejesodio)
/ J9AI8S suodnog 1041093
/ ISOH
JUSIUOD [BUOHOWIOIY
USWIBSIISAPY

aoeLoN| /
198
n 18PIAOLd JUBIUOYD
7 \ 1aateg uoneoyjddy
0L4
4811 001
14%%

Patent Application Publication

142

Jun. 27,2019 Sheet 3 of 54

I’HO

Optional Caching
Proxy Server

i~

US 2019/0200258 A1

I12OA

f?ZOB

App Server/
Content Provider
Ad Server(s)
Promotional
Content
Network Server(s)
108
e-Coupon
Server(s)

ITZOC

Host Server

I100

Prox31/285erver Server Cache
T 135

Network
106

Short Message
Service Center
112

Local
Proxy
175

FIG. IC

US 2019/0200258 A1

Jun. 27,2019 Sheet 4 of 54

Patent Application Publication

al ‘Did

\ walsAg sonAjeuy abesn x Buioday 0

vl
A A A
! _ f
t I]
i | }
_
[
aseqejeq JoAIag “
wswesbeurp Aolod < ' >
| IONIBG
1onies ! UOBORIION
\ swebeuepy Aofjod I
evl _
| \l\
_ Lyl
isziuouiieH _ Axoig
Jontog Buljod : _ spis
OHEIL __ eseqeje(¢ > ueno
- 198 W04 4/0
fxorg ,/J \ek N 4/0L
Aued Syl 124" < » -
piyy " m "
Woi4/01

ezvi
obeioig eleQg

- octL jonieg Aejay

474"

US 2019/0200258 A1

Jun. 27,2019 Sheet 5 of 54

Patent Application Publication

HI "DIA

S . N

— ¥
— Zid
— 0E/9
— 82/9
— 92¢/9
— ¥Z/9
T 29
— 02/9
— 81/9
— 91/9
— 719
— 249
— 049
— 8/9

T

81980} 'ON

S R L

e M e L 007

she 0¢ sen

(sfep og 1sed) pousd swiy pauodal ay) Buunp s1asn SAROER JO Jaquinu sy sjuasald Jodad siy | ~—s19sn 9AIOY

Patent Application Publication Jun. 27,2019 Sheet 6 of 54 US 2019/0200258 A1

— /L
w
& b
ko]
o)
o
4 ~ 0£/9
Q.
[
£
@ — 8Z/9
>
O
2]
3 — 9Z/9
=
2
e
= vzio
5 Ry
3 m~
m L]
5 ~ 22/9 G
s [7)
2 37 —
£ A m
2 3 — 02/9
Q) ot
s s
& — 81/9
o
o
1<
» T 9L/9
)
T
g — VL9
Q
B
-
2 — Z1/9
pra
— 01/9
+— 8/9

si8sf) "ON

US 2019/0200258 A1

Jun. 27,2019 Sheet 7 of 54

Patent Application Publication

VL

47

DI ‘DIA
1] 1sa

0e/9
8¢/9
9z/9
¥2i9
2z
029
81/9
9119
i
TAYL
0i/9
8/9

sAe(] 0¢ 1se

s91AQ Ul oyjedy (je1o] paaes eie() 1S snsian (dijedy [e1ol) 11 swesaud pyodad siyj—ejeq

~ 0

- 000°000°001

~ 000°000°002

-+ 000°000°00¢€

-+ 000'000°00%

- 000°000°00S

- 000°000°009

eleq ei0f

Patent Application Publication Jun. 27,2019 Sheet 8 of 54 US 2019/0200258 A1

Vil
il
e o
8¢/9
B T -
S oo

e e

0e/8

Last 30 Days

FIG. IH

e 81/9

[]sc

,,,,, S ¥i/9

O
<

............ ‘ rANL)

, ,,,,,,,,,,,,,, , 0L/9

8/9

f
ool
<Q
<

100

i i
o o
S S
B &

Signaling—This report presents # of AC (Actual Connections) versus #3$ of SC (Saved Connections) {raffic
600 -

SUOJ}O8UUO0Y) B30

Patent Application Publication Jun. 27,2019 Sheet 9 of 54 US 2019/0200258 A1

0¢c/9

82/9

92/9

¥2/9

22/9

0¢/9

Last 30 Days

FIG. 11

81/9

91/9

O
w

/9

219

0i/9

8/9

Time Connected—This report presents AT (Actual Time) versus ST (Saved Time) traffic

{s) pajosuuon swi}

US 2019/0200258 A1

Jun. 27,2019 Sheet 10 of 54

Patent Application Publication

1 OId

%0

- i
- 22
- 08/9
- 82/9
- 9219
- v2/9
- zz19
A oz
- g1/9

-+ o9
- pL/9

- Z1/9

- 0L/9

- 919

(T S N S RS SN P R I .
..... ot M e g
N I T - — T— — —— —— o — — ——:

...... J o\o.v.

S S B SN B S W AT

..... V.. L o9
sheQ 0¢ se

apous Suiieys ug 10U S§ 3AASP USYM Jnoy Jad iasn Jad aBejusdiad
adieyo ui dodp 3y ajousp sonjep “inoy 1ad 9 uondwnsuod Alelieq siuasasd uodau sy —~uocpdwnsuo) Asayieg

INOH
Jad o, uonduwnsuoy Aisjeg

US 2019/0200258 A1

Jun. 27,2019 Sheet 11 of 54

Patent Application Publication

M1 OIAd

renulT auoibul won
isBielo oquININW WoD
sus b Wwoo

“olpue sodossuuiod
apinocid pIoIPUER IDS 0D
repusevol gejdde woo
18SMOIQ PICIPUE LoD
PIOIpUR 19108S]E) LoD

jdB poom asnfuiod

Ajpaay puAsp LoD

%001

%06 %08 %0L %09 %08 %0¥ %08 %02 %01 %0
9% Aouaroyy

yjuow 1se| 8u} Jeao paaaiyoe uoneziundo uonosuuod 1saybiy sy Aq painsesiu
suoneodde g1 doj ey} siuasaud podal siyj—uoneziwundQ uoioauuocs) ysaybiy Aq suoneoyddy g doj

aweN uonesyddy

11 °DIA

ospur sibooh wos

US 2019/0200258 A1

gipaw ssoocid prospue
IMASES 2dRISIIABD WIOD
B0 assodajqow uios
Buipuaa piospue’ woo
sddeb-ssenoid eifoob woo
agninoA piospue aihoob-wioo

IBSMOIG PIoIpuR 0D

Jun. 27,2019 Sheet 12 of 54

sdde yoc0qeoe) wos

WSO UL WOD

oLl 00 06 09 0/ 09 0S ov 0¢ 0z 0l 0

S198[) JO #

yjuow ise| ay} Jaao way} Buisn siasn
10 # aY) AQ paunsesw suoeodde (1 doy sy susselid yodal siu|—siasq) 40 # Aq suogedyjddy g} doy

Patent Application Publication

auwiep uoneoiddy

W1 OIA

..... T aPIAOId PIOIPUR 088 LB

US 2019/0200258 A1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1S WPIOIpUE SPEL WO
s suo)bul oo

Aipesy pyrep woo
oidsmaNeliqon pesybop wioo
s BRI OQUINNULE W0
“IOIppECIPNE 0D

Zedw pEOUMOP O.8aS 0ISNLU

Jun. 27,2019 Sheet 13 of 54

gIpaul'sson0id ploipue

sdde joogaoe) oo

000'000°04 000°008°2 000°000°G 000'005°2 0
BjR(] ejo],

awnsuoo Asyj elep Jo Junowe ay)
Ag paunsesw suoedndde o1 doy ey susssuad uodal siy | —pueiuag ejeq jsaubid Aq suoneaddy g1 doj

Patent Application Publication

slueN uopjesyjddy

NI OIAd

......... ORI ...mUM>O.~Q.EO‘.UCWV.Omw.EOU

US 2019/0200258 A1

e e et et et et ot e e e e et e e e e e AAAAAA e .oﬁ:EmmEEEvcm.wmumz.Eoo
SR suoIBuL oD
A{pa9y pUASP WIOD

| OI4SMANBHGOW peaybop woo
s BRI OqUNENUY WO
....... | - oppeopne-Lics

.......................... S Zsdus PROJUMOD 4OIBBS DISNLU

Jun. 27,2019 Sheet 14 of 54

,,,,,, SO eipswssancid piospue

........... sddeoodese) wod

0082

000'¢S

0000} 0052

{8) pajosuucy) s}

pajoduUos UIBWAl ABY) 8w} JO Junowe ay; Ag painsesiu
suoijeoydde g} doy sy} sjuesald podal siy | —puewag palosuuo awij 3saybiy Aq suoneoiddy g doy

Patent Application Publication

swepN uonedyjddy

US 2019/0200258 A1

Jun. 27,2019 Sheet 15 of 54

Patent Application Publication

O1I DI

...... A 82180
Al 82ireQ
{1 8dheQ
It 801ABQ

| @01A8(]

It S Axejen
g Axeen
G8N

. B ssaidx3 21SNN00YS

X pioig

%09 %01 %0€ %02 %04 %0

%, Aouaioiya

%004 %06 %08 %04 %09

uoljeziwgdo UoOBUUOD JO JUnowWe 8y} Aq
paJnsesiu $aoinep gL doj oy sesaid podal sy —uoneziwgd uoidsuuo) jsoybiy Aq saoiasqg o doj

awieN 991A0Qg

dl ‘DIAd

A @ome

US 2019/0200258 A1

Al @0ir8(
s
w Hi 8210
=]
= Il 801meq
~N—
g
= | 8018800
wn
=) Il S Axejes
(=]
(o]
> g Axejeg)
(o]
s
= G8N
J

s$84dXT JISNND0YS

X pioiQ

04l 001 06 08 0L 09 0% oy o€ 0C O 0

SIOSN O #

way) Buisn siosn jo junowe
8y} Aq painseaw $801Aap (| doy oy} sjuesaid yodal sy —slosq o JequnN Aq sasiaaQ gL doj

Patent Application Publication

swieN asiaaQg

US 2019/0200258 A1

Jun. 27,2019 Sheet 17 of 54

Patent Application Publication

Ol ‘DI

,,,,,,,,,,,,,,,,,,,,,,,, Xaoyda

0019€0d

..................... O9SW-IEMVYNH

..................... .. \ Ommwziol_

0{64-HOS

000°'05¢ 000°00€ 000°052 ooowoow 000°0G1 000001 000'0S 0

ejeq [ejol

auINsuoo Asy} Biep Jo
junowe ayy Aq painseauw saoinep () doj syl sussald podsau siy | —puewaq eyeqg Aq sesinaq o doy

2wieN 901A2Qg

US 2019/0200258 A1

Jun. 27,2019 Sheet 18 of 54

Patent Application Publication

a1 DI

..... A 908

S S S . | . | | . Al 92180

[8dneQ

,,,,, . . " ‘ ‘ . . . {1 801A8(]

_____ | “ : , : 4 . | 8o1Ae(]

Il S Axefen

. g Axejed)

: | | | | | | " G8N

“ “ “ | | n : | : : ssa1dxg MISNNOORS

X pioid

Y%t %€ % %l 0

INOH 124 9% uonduwinsuon ajey Assyeq

%S

auwNsu0o Asyl Asleq Jo junowe ay} AgQ painsesiu
sa0Inap) doi sy swiessdd pods siyl—aey uonduinsuog Aianeg 1soybiH Ag saoiaag oL dog

SwieN ao1Aa(g

US 2019/0200258 A1

Jun. 27,2019 Sheet 19 of 54

Patent Application Publication

Ve OIA

702
WasAs
Bunetsd

90¢
jd¥ X800

d4/1 semied

SHHM

471 SNS

802 eoBUa| HOMBN

m

m

GIZ 8npopw AaiOY 188

bve

awbug uoyEZLOUY

£S7 1ojpisueg
ajy0id uoseoddy

€2
J010818(T Uisned

9o7 J010818(] JoIARYey Uonediddy

%4

Jefeuepy vonorsuel] Asenbay

192
Jebeuepy 1eoquesy

99¢
JojjonuoD opey

GG7 Jebeuepy uogosUUOD

o4
anos_mcfo“mm

952
SINpo Jusuubipy

€67 subuz Buideyg oyei

GZZ 1dV Axoid

8ve
SINPOY 0001044 uoiEdlddy

Gpz iebeuepy Aotjod Bugoe)d

qiz
Axoid 18007

\

SO Biemy-AX0id

02¢
yoneonddy

0iz
uogeanddy

SHQOI SiemMBU}~AXOld

58¢
ayoen

W»\

06T 8dna(siiqei

US 2019/0200258 A1

Jun. 27,2019 Sheet 20 of 54

Patent Application Publication

qac "OIAd

ta74

Aopsodey
apoId

uogeaiddy

I%2 ewbug uogeziuold

08¢C
1oyRiaq bunguny jjod Buo

6L
Jorly jeASiul ABIB(esuodsay

BTZ 40jRIBUSD) 8]0 uogeoddy

q8ee
suibuy Bupjoel§ asuodseygsenbey

JE2 i010819(] uieled

BgEe Joeied jiod Buo

2 10pela(ferep] fjod

[}

Jopeia(soineysq uolpoyddy

SFe sabeuep Aoijog Buiyoed

pove s 74 —
J8zhpeuy asuodsay i9zheuy sanbay £ve —
Aloysodey ;omr%ﬂwmﬁ
2574 Aolod 8yoeg sippeg
Jsnpayag ssuodsey qove 2974 uoneoyddy
JOIIPSId JUBIUOYD 10101pasd Buju
B2 eubug
UOIIO8IBG 10aUU0s 10 ayded OFe eutbul uoisiaq sseusiedoiddy syoen
_ 2507
_ Jelid N o g
S0z o
557 glvz ewbuzy || elpg subul aubuz dri-j007 syoe) g8z
BINDON jusunsnipy alepdny eppz Jobeusiy 111 ayoen
{000}04 U anpsyas
uogeoyddy s — S
I¥e 10jeisUB9) 9INPBLOS {{Od The so1epteau syoe) 1800 £0¢ Jojesuag ejepeiapy

2¢ 'OIA

US 2019/0200258 A1

e 8t
suibug UoEZINONY J0joaleq [easelu] Jlod
yee el FARA
Joes(10p88Q SINPOp
557 Aoysodoy iopueed lsjsweiey uonoBAX
- 5e7 sleq/ouI | wopuey uiened

uogeoyddy J01BIBUBY) 8pj0Id uoneoyddy il —

Ge7 J10)081a(] Jotneyeg uonediddy

Jun. 27,2019 Sheet 21 of 54

T2 Aoysoday
foiod ayoes §77 10198180 77 10108)8(] 444
— uonediddy 19jBlrIR Sle(y/eun] isisiuBled wiopuey cw%uﬂww_m
awwﬁv%r__\umo £22 1019819 1018UIBIRd 12319(] BYdeD tieyed
122 suibuz uonnjosay 1eaja(] aysen
(574 174 _
awbuy vonoBIvS auibug uoisioeqg
10BULOY J0 BYoBD sseusieudosddy syoen _
_ _ m &7 212 1sjpueH
! Jspweled
auibug ysen 1esjaq ayoen
51724 e ¥¥C 11z
S|NPOY 1020}0Id injeiauan JoyEplRALY
uonediddy /ANPBYLS 110d IYOET |BO0T 12ZHBULION J8YRuUBD]
S¥e

ssfeuein Aoiod Buijoes

Patent Application Publication

ac ‘Did

US 2019/0200258 A1

oujeit el qive
SoUBUUIB ANORIIU|] suibugy
uono8lag

AyeonuD swiy
Dive Jezuobsien oygely uopedyddy

I [:{¥4

_ Jopsleg wybipoeg
puncibyoeg punosbsiog eiye
— suibug

UoBeZRUIOM
ITyz sezuobeie) syelg uonediddy 3E1T Ge12
isbeuepy subuzy Emvmoww |
9c7 008l oineyag uonedsiddy co:MmMaxm >m\ww%@nwmm3 Aoy J8sn
§1Z enpop Aianoy sosn

Jun. 27,2019 Sheet 22 of 54

Patent Application Publication

piee
010988
U0 88900y

3162
sulbug uowdsleg
[guuRyD $8800Y

q14¢
1eyneds sley 2ie(

T4
Jojoeeg piepuRlS
UOHEIBUSE) SSOPIHAN

52
ajnpopyy buiyoieg

952
sjnpopyy swubiy

§G7 auibug Buideys oygelt

167 owbug uonoePey ucleINBYUO YIoMBN

US 2019/0200258 A1

Jun. 27,2019 Sheet 23 of 54

Patent Application Publication

Ve OIAd

Sig
Aoysoday
S J— J— 9G¢ ABRIADIG
86€ L6¢ g6t
sebeuBp Jaf{olu0n) isjjonuen eINPON BOIMBS HOMEN
1eaquesH | |1ieueiy olpey 1690j0.d
uoneosddy
GBE +efieueyy uonoBLUCD GGE sobeuepy
Aagjod Buiyoe —
04 DUijoR) PIE
Aioyisoday
| UORBULIOU| 90IA8(
LIE 8jnpo ;owﬂw@mm uje
apow Buoieg {NPOIA J0epiiaALl Ble(]
——— 108 sinpon Z¥E Jopela(
9.8 SSBUBMY AMIOLY Bleq Mo PR
JOO0I0I |OLUOD p /
TOT oInpopy Ssausiemy 10}IS0aaY
TIE ouibu3 Jo1neyegAIAIOY SPE swbuz swwwww_ﬂ,_uwwwoo
Buideys ayes) TOE 1a0au0D) AXOid SS80V dLIH P ¥ 0

oI
— auoED

578 Jonieg
188G Axoig
| anempd | 1111 Lo 41 SIS

0€ edBlSlU] YHOMBN

o

0o¢g

18AIBG JSOH -
0Le 30¢€ 802% TS
JOPIAOId BOIAISS (s)ionias {s)oAlag JUBIIOY (s)3Ai0
JeAleg uoneoyddy uodna)-3 {RUOHOWOId sey

US 2019/0200258 A1

Jun. 27,2019 Sheet 24 of 54

Patent Application Publication

qa¢ "OId

p8Ge

19¢
1ezAleuy asuodsey

aubuzy wsunsnipy swiy

0g9Ge
auibuz erepdn oinpeyos

65¢
J0J09}8(] JUsu0D
map o psjepdn

qgct sebeuepyy
Jio18ta(] ysenbay fod BuoT

95¢
SINPOY 1000304 uogesiddy

BQGL

Joyeinung Buiwy] JSoH

S0E
suiBug dn-oo ayoen

85t

Jebeuep aNPayos fiod

158

awbuz BULCHUOK 92INOG JUBIOT

€0¢
JojRiBuUeD) BIRPRIONN

gGe
sobeuepy Aosod Buiyoen

Gee
ayor?) IBAIBG

US 2019/0200258 A1

Jun. 27,2019 Sheet 25 of 54

Patent Application Publication

JE DIA

6G¢
1010818(] JUBII0YD
MapN 10 perepdn

9%t

SNPON
j020j0i4 uopesyddy

8GE ¥G¢E £€6¢
Jefbeuep ainpop Bupoes} BNPOW
8inpayog Hiod uialjied Jelijuap] IBYIPOA Jeyuap]
158

auibuz Buuonuop
90IN0G WRBOD

[4413

sebeuepy sainog Bunesiaq ayoen

GGt
sobBeuepy Aoljog Buiyoren

US 2019/0200258 A1

Jun. 27,2019 Sheet 26 of 54

Patent Application Publication

a¢ D1

oyjedy oel} qrHE
souURUSIUIRIN SAljoRIBIU} — swbug uonosieg
Ajeonu) sul)

[Pe 1ezuobelen ougest

punoibyoeg puncifelo L
b auwbuz
uonezjuold

31FC Jozuobejen slels uonedyddy

GeT sozAeuy oujed |

1Ig 8¢
sinpoyy Buyoleg ajnpop Wewubiy

7¢ eubuzg budeys ogeld

US 2019/0200258 A1

Jun. 27,2019 Sheet 27 of 54

Patent Application Publication

Ve OIA4

Y02
wiesAg
Bunessdo

902
IdV X8U00

it Enged

EHRE Y

3/1 SNS

B eorioIU} YIOMIBN

0%
auBug sogAeuy

abesn pue suibuly Buguodey

I

GiZ sinpoiy Auagoy Jesn

g

1abeueyy 1eaguEsH

99z

oonuc) olpey

ive

suBug uoneziuoud

BC7 101018UBS 757
810l uoseotddy

10j0818(Uinlied

TE7 sopae(loneyag uogeoyddy

4

iobBeuepy uooestel] gsenbay

g¢ Jebeauepy uoRoBULOD

4
9[NPON

Z 8gz

o W

§a7 swbuz Buideyg oeiy

(174
BINPOIN 1000104d tonesyddy

uioleg | | enpo jusubiy

522 idv Axoid

Eiz4

1obeuepy Aoljod Buyoe)

\v\

§.2
AXCid [8207]

(if44
uonesyddy
SO BiEMY-Ax0id

[1]%4
uoneayddy
BHQOW BIBMBUM-AXOid

582
aycen

\l\

0G¢ @o1eQ ofiqon

US 2019/0200258 A1

Jun. 27,2019 Sheet 28 of 54

Patent Application Publication

qy "OId

90v
JaNoel |
uondwnsuon Aejeg

G0V

Yov
Jeyorl | UOIOBULOY

aorl] esn eleq

207 o |

Aousiog uoneziundo

107 aubug sonhjeuy abesn pue suibug Buipoday

VS DIA

US 2019/0200258 A1

Jun. 27,2019 Sheet 29 of 54

Patent Application Publication

91¢
Aiopsodoy
5e 76% 96t e e
sabeuepy Jafjoiunn Jajjionuon SINPOW O BOIAIBS HIOMISN
1eaquesH | |lawaewei | | opey 102030 Qs
uogeoyddy aufbuy
soghjeny abesn
Gae sebeuepy UOHOBULOD CCE sebeuepy pue suifugy
foyog BurorD Bupadey T TN
¥ie
fsousoday
| | UOEULIO| 80IAB(
1IE snpo ow@;wm uj e —
spop Buoleg INPO JojepleAul eyeq
o I9E eInpop . RN
9.¢ ssauslemy ALoud 755 Jop081eQ 1ig ¢l
JO00104 JONIOD B1B(] MBN aLbug Asoysodoy
TaT oNpOpy SSeUBIEMY Bunjorl % BIEPEIOY JUSIUOD
T7% euifug Joineysg/AnAnY TFE suibu uonesliddy pUe UoIPIBLcD
Buideys oyjest TOT 4OI0NUOD) AXOdd SS90V dLiH T T
N—
gee
18M18S AX0id
| dnenweo || 311 1M . 3/l SWS _
BOET 20BUSBIU] YIOMIDN
T
00¢
JOAISS ISOH S
ole o0¢s a0cs voTe
18PINDIH 90INBS (s)eniag (sleAlag JUSIUDD (s)1onio
jvaieg uonesyddy uodno)-3 Jeuoowold {95 PY

US 2019/0200258 A1

Jun. 27,2019 Sheet 30 of 54

Patent Application Publication

qs ‘OId

809
awfiug sbupueyy

106
awBug Buipusiy

905
awbug bunioday
801isHIE}S 9niAS(]

S0%

suibuz Bugoday
sopsiels uoneonddy

Zis
auwfug Bunuodey

sofsyels Buieudig

0%

awfiug buniodey

1S
awfug Buodey

solshels eleq

SONSIEIS J0S)

05
auwbuzg Bujpoday
sisAjeuy paziuolsny)

605
asuibug Bunioday uoneziwundo

105 owibug sonfjeuy abesn pue suibug Buniodey

US 2019/0200258 A1

Jun. 27,2019 Sheet 31 of 54

Patent Application Publication

V9 ‘DIA

A
»

| ssuadsal 10a0Q €

ssuodssai
Bunepien uLcy

2YoBd W0l

asuodsal W04 asuodsas ayoe)

0€9
foru]

<> oy -

ajgesyoen
asuodsal yosyn

asuodsss A9y

os|B} ysenbai puss

919 [punocjiou]

JOJEPHBA SUIBIUOD

1senbas yoayn [enn]

pieA Aue yoayo

829 29

asupdsal aaI809Y)

jjod 1senbay

¥i9

1sanbsu pusg
asiey

809

siqesyoeod
}senbal yoeyn

[onn

]
ayoeD dmyjooT o SZIBULION

(43

jsenbel sAe08)

209

US 2019/0200258 A1

Jun. 27,2019 Sheet 32 of 54

Patent Application Publication

q9 "OId

14

.

&

Ax0id gepn Buyoen wipi peysieg isenbay g

<<

y

h 4

9. asucdsay pabueyn

A

Yip Beq] JOHUOW

A

>

9ot asuodsay auieg
¥ap ele(JOHUOWN <

h

X

8ib 7
UOREOHION Slepyet|

Zgy 1senbey
2le(poxoid

21 BUDRY) 1800 WiPi4 POYSHRS Jsenboy "

&

20% ysenbey
eye(] pexold

29P 1senbay
BlE(IOHUOW

Y

h 4

861 osuodsey
B1e(] poIxXoid

A4

oGP 159nbay
Ble(] paxoid

S asuodsey eleq

A

Z51 1s8nbsy B1eq

G6¥ J8piaold — Gy Axoid So% GG¥ 198pim
jusuoHtenes ddy 58V JOnISS JS0H Buiyorn AXOid {8007 UsaI0S SWOH
. J . J
Y N
0Ly 0S¥y
apis-easag 221n8(d SO
. J
Y
0sy

wasAg Axoid panguisiq

Patent Application Publication Jun. 27,2019 Sheet 33 of 54 US 2019/0200258 A1l

Traffic Category/Application Category 700
interactive traffic Background traffic
User waiting for response User not waiting for response
Application in foreground Application in background
Backlight on Backlight off

FIG. 7

Content Category 800

High priority Low priority

Time critical Non-time critical

FIG. 8

US 2019/0200258 A1

Jun. 27,2019 Sheet 34 of 54

Patent Application Publication

6 OId

986 Jepiroidiiaases vogeadde
aU} W) paysnes jsanbay

$86 esucdsal oy} spuss
pue wod jjod saneoay

7086 1apiroidusniss uoneoydde
ay; o} jlod sy spiemuoy pue siqepeae
s AJud 810ED PIfEA DU JBY] SBULLSIRQ

088 sepinosd
jusjuoosonias uonesydde sjod

8786 Axoud Buwoeo 1o ayoen
JAAISS BY W0} PBlSiHES Jsanbay

978 Axoid {e00f st} 0} asuodsss 8y spuss
pue asuodsas mau ay) 10} 1senbay saneoay

T76 s40e0 J9AI8S Y] WO
BsUOdsal 8Y) SBABLAU puE B|gejesR
Si AJJUS BYDED plieA ou JBYy) sauluela(

716 Jepinosd
JUBIIODEALRS Uogeodde sflod

06 SSis aU0e0 JUensi) SSIEDIEAUL Si0aRAR
S eep pabiueuyn 0 Mot JeU) UORROoL SANE0SY

§0B Axoid Buiyoes ay) 10 ayoeo Joales
o Ui peio}s asuodse: meu so pabueyn

008 Axoud B0} 8L}
SOYOU ‘Bsucdsas mau Jo pebuey) s108a(]

1BAIBS 1504 LY {jod SaNBoeY

$06 asuodsas auj Spuss pue 756 ainpayds dugod sy} Lo paseq
JONI9S 190y wioy flod seneosy | uoneotdde ay) sind ‘peasoal asucdsal sweg
008 asucdsas sy spuss pue | BGp 1senbal oy} 0} asuodsal auy BpucHs

0} Japinoid/sases uoneoyddy o siiod

956 ainpeyos Bugod e pue payod eq 0}
repuasdusnies uonesydde syl jo uogeaygusp!
ue Bupniout dnias SYoRD 3L} SBAR09Y

PGB 19108
180y oy} 0} dnies aysed By spuUsyg

3B onms 150y aL 10} ppanos Bugiod e dn sies
pue uogeoydde s jo Aouenbey Bugjod sypei

J4aaseg uogeoyddy

CHB 19A195 1S0H

§96 Axaug (8207

055 Brvaidianss uogeoidde su Loy
Jsenbau et Aies 0} esuodsal B SoNeRY
876 sarbarpruno s Ages g 556
%ﬂm@%ﬂmﬁ%&m 22IN0S BY] 0} PAPIBMIOS 188Nnba {{0d
$¥6 buyoen Joy @3inos pajjod
s} dnjes O SBPIDBP PUB BigRjieARUN
S} JUBJUOS 94IBD IBY] $128jap AX0id
V6 peidadisul jiod 076 Jepincidieniaes uopeoydde sjod
8T Aiue ayoeo e By
iod 8yl 01 osuodsas B s6AI1909Y
968 jjod ayy Aisies o asuodsas e sarswal
SN} pUB PIIeA St pue Juslueo pajjod sty Jo}
sjgetieAR SfUSILICY BUIED JBL SI08)ER AXQld
$$6 peydaoseut fiod 766 Jopmnoidieniaes uogeoydde sjod
TEG 10pIADId Jusu0n | 516 Ax0ig Buiyoe) 4o TTE oysen Joaseg

G566 j0bpipyuoyesyddy ongqow

US 2019/0200258 A1

Jun. 27,2019 Sheet 35 of 54

Patent Application Publication

01 "DIA

301 sepnaidianes uogeoydde
ay} wiol peysnes jsenboy

001 osuodsal eyl spuss
pue wolt fod seaisoey

V201 epioidjenies uogeogdde 8 0} Jodt g spemicy
PUE SiCEene 5| AJUS SO DIEA OLL L) SBUUISIS()

Z80T Jepinoid
JUBLOo/BAIRS Logeondde sjjod

0801 Axoud Buiyoeo 10 syped
JBALES BU) Wity payshes jsenboy

707 Axoud B0} sy 0} ssuodsas sy} spuas
pue asuodsas mou s} Joj jsenbei saA1eDeY

G707 210e0 jaAss sl Wil asuodsal sl sarsues
PUB geyene 5| AQUS BLOEO DIIEA OU R SBUIIS(

¥I0T Jepincid
jejuUOsIeAlRS Uogendde sijod

ZI0T s8ius aYED JUBADIRE SRIEDIRALI ‘DiqeRAR
5} £jEp PafueLd J0 MBU L LOGEDHEOU SOAR0EY

0701 Axoud Bugord ayj 10 8YIED Janies
a8y} ut pelols esuocdsal mau Jo pabueyn

BG07 Axoid feooy atly
solijou esuodsas mau Jo pabueyod soeleg

1senbat jod st seAeosy

BE07 esucdsos ot Spuss pue 7001 sinpayos Bujjiod ey uo peseq
Jonas 150y twioy god senaoayy | uoneoydde sy synd ‘paatasel asucdsas sweg
2907 esuodsai e spues pue | 0001 1senbal ay) 0} osuodsal eyl JOlUOW
JONIDS IS0 LY 00 SOAR0SY 0} Jepincidiaalas uoleoyddy 8y} siod
G0 sinpeyos Buijod e pug pejjod aq 0} 9GO JB4NUdDI 3y} JO LOISIAA
Jopiaosdienas uopeoydde ay) JO UORESHUBP) pazieuIou B 10 saunuspl syl Bupnjow
ue Bupniouy dnias ayoes oy SeAR9Y “18AI08 1S0Y B 01 dNIBS BYoB)D Sy} Spueg
VEGL IAsUal pUe LORBOGRUSD! 21Ny J0f 8sUodsal 7G01 sopnoidienias
DONBORI SU LW UORRIOSSE LLISYRUSD; 8L JO uoeoydde sy wioy jsanba oy
UOIRIOA DOZIBULIOU B 9I0JS pue asuodsal sy auoes) | Aisges 0} asuodsas oy $aaeaay
0G0 umwzww_ jaunoag i
ﬁw&mﬁ.&%%ﬁﬂgo THOT 90IN0S By} O] Papresio) 1sanbail |jod

P01 Jon8S 1804 84 JOL anpaups buigod e dn
Sjes pue uogeoidde su jo Aousnbay Bugiod Spes
pue jsenbay Ll 10 JeigLap) ue Jo wieped e e

P01 Buipen so) soinos pajod ey dnies o) seppep
DUE SgERABUN §} JUSILCT SYDE0 JBLY) SPAISP Aid

201 1BDIADICIOAIRDS BLf}
Aq peloda st wsiueyosus Buieagep syoed
e 1eut sounielap Axoud pue peldosion Hod

Ov0F Jopiaoid
J1en1es uogeoydde sod

BEOT Alue 9yoed B woy
fiod 8y} 0} BsUCUSAI B SOAIBIDY

80| jod o Aspes o) asuodsal
© 8A918J 0} SOpPI0ap pue Jusiuco pajjod auy
JOL SigEeAR S$1IUSINOG SYDED 18U S1alap A0l

FE0 1 JOPINOIdIBAIDE BL

THOT sopinoid Juauosn
[BA19g uonjedjddy

GZ01 Axold Buiyoen 10 GEGL syses 9A19¢
GO01 49A195 150H

d
Ag padodia 51 wispueyoaw Bujesep aydea ¢t} J8pinol
£ JBL} SeuLLSlep Axoid bue pardeniat 10 Hanias uogeaijdde sjjod
550t

G901 Axoid 12007

jeBpyuonesyddy ogqogy

Patent Application Publication

Jun. 27,2019 Sheet 36 of 54

Collect information about a request and information about the
response received for the request
1102

4

X

Use information about the
request initiated at the mobile
device 1104

Use information about the
response received for the
request 1106

US 2019/0200258 A1

1110

Response not cached

Store the response in the cache as a cache
entry including metadata having additionat
information regarding caching of the response

1112

Y

Detect a subsequent request
1114

X

Perform cache look-up in the local
cache to identify the cache entry to
be used in responding o the
subsequent request 1116

Y

Serve the response from the cache
to satisfy the subsequent request
1118

Does the
fesponse stored in the
cache needs to be
updated?
1120

Yes

Invalidate the response stored
in the cache of the mobile
device or remove the response
from the cache
1122

FIG. 11

US 2019/0200258 A1

Jun. 27,2019 Sheet 37 of 54

Patent Application Publication

<l 'Ol

[l 14
PByoRD 84 UBD SsuUodsay

Y
A

4

=24
payoeo Jou asundsay | A

4 A

SOA

ON

¢ect
IUBU00

gLl
DRBUAD 057 ON iezis
o ON Ugio0 $B7S s|qBaYDED
N [|gesyoed ON 57T S0, \ € PaSOXs oS
sap \ E pasoxe azis ; ponUap! ON
odsas au) — Gra
Ssu g7zl S8A N\ Aloipotiag

$00¢}

Fi2t
¢aigesyoeg

(44} $94 NAlaRaYaE]

SBA

8y} ul pasn
Bupoous ¥77T
msuenl /| fpopg |00 oot e Zicl
Y Apog ZZZ1 esuodsas 0cct JaHo swes ayj Ag pajesauab OWNP e
ssuodsal a0 ozIs BPOD SMEIS s1s0nbss 19UI0 pue 159nba) _m%wNM.ME 2021
pzhieuy S BUILLIBIAQ sy Anuen| By} USBMISY LoRELLLIOJLY §0 oms St poyjau jsanbas
ﬂ ﬁ a Ayoipored supie1ag suLBeq ayi Aluap
BOZT 1senbas 8y} Joj pBAIBOAI soA % 048 ﬂ %
asuodsa U Yl PRjeIosse UolBULOMU sofsualoRIByD asuodsas azfieuy 15enbal 8UF YIM POIBIN0SSE UCHRULIOMY SONSLIeIoREUD 1senbads azAleuy

A A

¢oct
onEMISep polsyoe)
e 0} pajoelp 1senbal

ON ON

US 2019/0200258 A1

Jun. 27,2019 Sheet 38 of 54

Patent Application Publication

&1 °OIA

;. Sosuodsal ay)

A 4

S6El
PaYoRs ag ued JBIU0D asuodsay

0 OM] 18E8] JE JO JUBIC
By} Ut AJRjiulS a5ay) St Jo
suies sy} sesuodsal

G8el

payoe 10U asuodsay

A

A

Ziet (X%
sasuodss. sasuodsal
Y} Yim pajeioosse 8y} Jo saipog asuodsal
S8P00 SNIE)S sujexy 1O S8njeA USBY auiliexs
A A
vocl

sasuodsal 8y} Jo Jusjuo uj Ajjigeieadau
10918p 0} WeHd ay) Ag pojeisush
sjsanbsi o} paAledal sasuodsal yoel}

T

SOA

g0¢ct
AL
20URIDIO} B UIYNIM |jB8}
sfeasaiut Jsenbay

ssjsenbal ay) jo
Buiy ey} ut suwisyed
sjge1opasd sisy

c0ct
slsenbai sy} jo Aloipousd

J1o818p 0} Juslo ayl Ag pejelausb sisenbal yoes |

Patent Application Publication Jun. 27,2019 Sheet 39 of 54 US 2019/0200258 A1

Track requests generated by a client or
directed to a host at the mobile device
to detect periodicity of the requests
1402

v v

Determine that the request

intervals between the two or more . Determine that the request
intervals between the two or more
requests are the same or e
; requests fall within a tolerance level
approximately the same 1406
1404 —

! '

Receive the response received for

. N Determine a rate to monitor a host,
the requests for which periodicity is .
e from the request intervals
detected 1410
1408 [—
Cache a response as a cache entry 3 -
in a cache of the mobile device Detect change in request
1412 v intervals for requests
enerated by the client
,l, Set or update the 9 1 42y2
- rate at which the
Monilor the host at a rate . .
. given host is
to verify relevance or | monitored 1o verif -
validity of the cache entry|" Ty Compute a different rate
1414 relevance or validity | based on the change in
of the cache entry [© request intervals
4 v 1420 1424

Serve the response from the cache
to satisfy a subsequent request
14186

FIG. 14

US 2019/0200258 A1

Jun. 27,2019 Sheet 40 of 54

Patent Application Publication

§1°DIA

7261 eep pabueyo Jo mau oy} jo Bupuas eip sseuddng _

G751 @2IAeD BUGOU 8Y) 0} BIER PaBUBLD 10 MBU 8L} PUBS

A
~
.
»

SOA

SSA SOA

° ° o 15]
7 N S | N |\
£B0IN Haotl sy
w%%mwﬂwﬁn .ﬁow_mbmea ; mu_mo_ma Jpunoiiyoeq ajigotu oLy Uo Josn e yjim
asuodsai e 10} ¢ B1Bp 8y} :o@ i ele Sy} vy Buung uo punoibe:o} Bugoeset ayes
s mwm« ww P uogroydde 2y uy Buuunt SARDE UB Ut

Yy} 8}

ON ON ON ON ON
X 4 h 4 h 4
I I] 1 i 1
016l 9061
Biep ey} ezucbeyen uonieoydde sy ezuobae)
9 A
!
8061 POSL
eiep pabueyd 10 mal oyl 3o Aeonuo awy jo Ajuoud suuueiad pa1oalp st Rep pebueyd 10 mau ayl uoim oy uoneodde ue Auep;

* x
|

ZOGT ©0ASD B)GOW B O} JUaS o 0] SigRIIRAR Bjep pebueys 1o meu 19818

Patent Application Publication Jun. 27,2019 Sheet 41 of 54 US 2019/0200258 A1

Y Y

Wait until for a time period to Wait until there is additional
elapse 1602 datato be sent 1604

A 4 A4

Transmit the new or changed data 1606

FIG. 164

US 2019/0200258 A1

Jun. 27,2019 Sheet 42 of 54

Patent Application Publication

q91 "OIA

0291 swiod ssedoe 8191
buiAyoads Ag uoeinbyuocs alel elep Aq uonemnbyuoco
HIOMIBU B 1038(95 MIOMIBU B 109183
A y

BZot 74P
— ocat

o0) (HOV) o s
jeuueyd m u JU— S
Do $$8908 9297 2eal

premiod 347 DGZ/OT

A A A A

B10T edAh 197 plepuels
|puUURYD $58008 JO 108198 ssojesim jo uojeisusb 1o8jeg

A A

MJOMIBU SSOJRMIM BU] Ul JOAISS JSOY B PUEB 80iASD S{IqOW B usameq diyjen Buipuss uf asn 1o) uoieinbiyuo yomiau e 109j9g

417

018i
JOAIBS 1SOY BU) PUB 80IABD IO BY) USBMIB(] JUSS 8]

01 Dyfe4] B Ul POUIRILOD elep JO AIRoNLD L) B SuLLIBIs(

8091
Wi} pareuiBL0 10 O} PRJISIP St OiRY YDIUM 1O 80IASp
BpgoL 8t Uo uonedlidde ue JO B18ls AIIANDE UR 19818(

US 2019/0200258 A1

Jun. 27,2019 Sheet 43 of 54

Patent Application Publication

D91 “DIA

vl 0¥91
BOIASD SHIGOW B ybnouy; ssed

wioyy pue o) oiyes Buissed ul 0} pomolie S DB Y} yoiym
B8N 0} HIOMISU SSBjBNM BY) Ul ynm Buiui. eyl uo Paseq avAap
uonemnByUo0 IoMIaU € 10988 SHQOW 8Y} U0 SSN OIPES [OHUCD

A A
8¢9l
Aljeanuo aw 8y} Jo 91e)s AJAl0R o] Uo paseq
‘yBnosyl ssed 0} oyjel syl Moje o} yom yim Bunun e suiuusiag

9e91 ¥EOL
JBAIBS 1SOY BY} pUE 90IASD SjIqOW BY) woJy peyewiBuo 1o 0] pajoanp
USOMIDQ JUSS 84 O} DR SU} Ul PBUIBIUOD S1 OB} YOIUM IO} SOIASD SJGOW Y} LD
BIEp {0 ARRONLO B B aulwIBla(uoneoydde ue jo e11s AyAe ue 12818(

Patent Application Publication

Jun. 27,2019 Sheet 44 of 54

Start

Detect backlight status
of the mobile device
1702

Determine whether
a user is expecting
data contained in the
traffic directed o the
mobile device
1706

Y

Detect user interaction

.| with an application on

a mobile device
1704

A

4

Determine an activity state of an application on the mobile
device for which traffic is originated from or directed to

1708

A

Select whether 3G, 4G or LTE network is used
in sending traffic between a mobile device and
a host server in the wireless network

1710

FIG. 17

US 2019/0200258 A1

US 2019/0200258 A1

Jun. 27,2019 Sheet 45 of 54

Patent Application Publication

00:¥0

0ist

—

90:€0 bue $5:20
usamiaqg pauaddey
3 9880 Ui Dipouad
pPaIopISUND U BBy
osie pinom isenbay

808}

|

81 'OIA

0081

JeALSIL INOY |

§0 95€0 U Ul 7| o'
‘fenssun snownasd ey
0 %0C St SMOPUIA

inoy i
00:€0 - 00
A

Jnoy |
z0 00:Z0 — 0010
A

00:00

a0

Jsenbau o
00:€0

Janes Axoud ayy o) paynads (unoy |
“6a) feasoul yum jsanbay Buiyjod ueis
SpUds pue ssuodsal sayoes Axoud
{200} ‘pelosiap si 1senbal oipouad

Jjsenbai , z
00:20

Jsenbai |
00:10

jeAIRjul Yum patepdn pajessn Bueg
Bureq si Anue ayoen st Aljus syoen

\l\

9081

~ —

081 c08l

US 2019/0200258 A1

Jun. 27,2019 Sheet 46 of 54

Patent Application Publication

61 ‘OIA

$3NUIW §G SojnuIL 6g noy i
0GP0 ~ G50 G620~ 0020 00:€0 — 00°20
0050 A " A ~ 0010
jsonbai G isenbal i 1senbes .2
0S-%0 §95€0 00:20
Isenbai g
"SSINURL L O} Z1 Wik 00:€0
safueyd azis MOPUIAA (SBINUIL GG
0} Jos mou “5'9) jealaiul pejepdn MOPUIM 3L}

ynm ysanbel Bunjod peis buipussad
pue syoed Buysasyas 4eates Axoud
w014 92IN0sal Bunsiley "asowiur
MODUIM B} O1U 11} JOU SB0p jeAIBiu)

Clul S} IS [eAassiy

\.\

061

\l\

9061

Janias Axoid o) (unoy | of “6'9)
198 {eAIBIU1 Ui Jsenbal Buyyod uels
spuss pue ssuodsal seyoed Axoud
{e00) ‘pejosiap jsenbeu oipouad

\lk

AV 0061

US 2019/0200258 A1

Jun. 27,2019 Sheet 47 of 54

Patent Application Publication

0C "OIAd

0€-€0 00:€0
~ N p
~ e
~ ~ 1senbe: vcmo‘_mmho% ol 1senbay ﬁm..gem@_o% ") P 7 /
0z:e0 04:€0 4 jsenbai | ¢
8002 7 = b
~ s 00:€0
N ~ ,J e
~ “18AIBS O} s
~ 0} Jues 10U St {eAsel 7
™ - MaN ‘patepdn 106 fim P
~ elep osuodsal payoen oy |
~ ~ ~00:€0 — 00:20
. - A)
N ~ ;
00:80 /...l..l..l.la\\ ™ 00:1.0
i
|
1sanbei e 180nhei o 1senbai ol
00-50 0040 00:20
sanbai , 0
00:€0
SHOBD LUoH YD WO
PaAlas asuodsey poA »mw mmcoawwm
\l\ J19M19s 0} (dnoy | 01+ 5'9)
\I\ 198 JeAssiul Y 1senbad Sugod 0002

900¢

B0 ‘pajoslep 1senbas ompoued

002 \ Hels spuas pue asucdsss seyden
2002

US 2019/0200258 A1

Jun. 27,2019 Sheet 48 of 54

Patent Application Publication

0042 IC ‘DI

noy | mnoy i
2050 — 200 2090 ~ Z0'E0
00:£0 p A N A N 00:20
co_www%mw,mcwwcwmo sofiueyo ou ‘esinosal siod 1eakeg
SPUBS JIBAIBG | i : 2000
\r\ abueyo spesp wo,h:owwh sjjod Janeg 196nbo Qoa SOAI900] IOAIES
050 Z0°€0
oHve 804i2
sabueyo a0nosay /
0Z:¥0 noy | 0} 188 {eASRY|
00:20 ._. 00:20
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Y morssssssssnnssssasanaaay
uoneptieAu; syoen tsenbas ¢
060 00'E0
wenbal 9 senbal
0080 ¥ . "4
188nbai e 00-%0 Janes oy 3senbai Buijod
00:50 MBS Spuss pue asuodsel ssyoeo
wsHo ‘payoerep ysanbel oipousd
i@ye; powad | pasaayep \ \l\
AOU JUSIUO0D YSaiy 012
\\a\ H paJsAllep uesq aary 0
9012 v0LZ DINOM JUSILOT 4S8l

US 2019/0200258 A1

Jun. 27,2019 Sheet 49 of 54

Patent Application Publication

AR 44

o~

Jensas 0} (anoy | 03 “He)
195 fealolul yim senbed Bugjod
JelS spuas pue ssuodsas seyoro
1ol ‘pajoslep 1senbau oipoiiad

¢ OId

oLze

!

feAsalul Yiim
paiepdn Buteq
51 Aljue ayoen

80cZ

\l\

pajeasn Buieg
st AU ayoe)

00-¥0 00:00
~—~ - \
-~ _ \
~ - 1senbay A \
1senbal ¢ -~ - 00:20 \
00:€0 T~ - sanbas | \
o~ : \
0010 ~— _ - 00:10 0:00
0102/ 1108 ~— - 0402/ 1162
e I ——— v oo oo
!
!
}
parcwsi 5188 ysenbal i
eiep Mwmuﬁ%mwm 0040
180nbos g
1sanbai w82 oo”moz
000
YOO WY}
oI9S asuodse
toaies o} (noy | 01 “B'a) P d
198 AR Ylim 1senbas Buyjed \. 80ce \l\ por——
JE)S SPUBS pUe JsUodssl seYORD Y02z 0%¢c
sl ‘pojoslep 1senbss SIpoLSd 0072 (sinoy yZ 0y “B9)

19$ L1 BIep asuodsoy

Patent Application Publication Jun. 27,2019 Sheet 50 of 54 US 2019/0200258 A1

Perform functions related to battery consumption reduction
at the mobile device 2302

Y

Perform functions related to functions related to traffic
optimization and management 2304

v

Track, by a client-side proxy on a mobile device,
optimization efficiency for traffic at the mobile device 230

Y

Determine, by the client-side proxy on the mobile device,
battery consumption data of the mobile device 2308

Y

Generate the report to be provided {o the mobile network
operator 2310

Y

Provide the report to the mobile network operator 2312

FIG. 23

Patent Application Publication Jun. 27,2019 Sheet 51 of 54 US 2019/0200258 A1

Y Y Y Y

Determine/detect . . .
) Determine the Determine/detect Determineldetect
connections or . < .
. . amount of data radio state radio connection
signaling at the .)
mobile device communicated changes time
2402 2404 2406 2408

Y y A 4 Y

Determine optimization efficiency for a mobile device 2410

Y.

Determine optimization efficiency information specific to individual applications on the
mobile device 2412

Y

Generate statistical data from the optimization efficiency for the wireless network 2414

X Y
Generate statistical data from the
optimization efficiency across muttiple
wireless networks serviced by multiple
network operators 2416

Generate trending reports and/or
ranking reports from the optimization
efficiency 2418

FIG. 24

Patent Application Publication Jun. 27,2019 Sheet 52 of 54 US 2019/0200258 A1

Perform functions related to traffic optimization and management in the wireless network
2502
\ 4 h 4
Determine, by a server-side proxy, Track, by the server-side proxy, user-
optimization efficiency for wireless related information in the wireless
network traffic 2504 network 2506

Generate the report to be delivered to the network operator or queried by the network
operator 2508

) 4

Y A

Generate a Generate statistical data from the optimization efficiency for the
customized report wireless network 2512
for the network
operator 2510 v v
Generate statistical data from the Generate trending
optimization efficiency across reports and/or ranking
muitiple wireless networks serviced reports from the
by muiltiple network operators optimization efficiency
2514 2516
¥
h 4 ¥

Provide the report to the network operator 251

FIG. 25

Patent Application Publication Jun. 27,2019 Sheet 53 of 54 US 2019/0200258 A1

)

X A\ 4 Y

Compare data Compare actual Compare aciual
traffic and saved connections and connection time
data traffic saved connections and saved
2602 2604 connection time

2606

FIG. 26

Patent Application Publication Jun. 27,2019 Sheet 54 of 54 US 2019/0200258 A1

2700

Processor
Video Display
Instructions
Alpha-numeric input Device
Main Memory
Cursor Controf Device
Bus
Instructions
Drive Unit

Machine-readable
{Storage) Medium

Non-volatile Memory

Instructions
Network Interface Device

Signal Generation Device

v

FIG. 27

US 2019/0200258 Al

MOBILE DEVICE CONFIGURED FOR
OPERATING IN A POWER SAVE MODE AND
A TRAFFIC OPTIMIZATION MODE AND
RELATED METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 15/675,951 entitled “MOBILE
DEVICE CONFIGURED FOR OPERATING IN APOWER
SAVE MODE AND A TRAFFIC OPTIMIZATION MODE
AND RELATED METHOD?”, filed Aug. 14, 2017, which is
a continuation of U.S. patent application Ser. No. 14/691,
373 entitled “SYSTEM AND METHOD FOR GENERAT-
ING A REPORT TO A NETWORK OPERATOR BY DIS-
TRIBUTING AGGREGATION OF DATA”, filed Apr. 20,
2015, which is a continuation of U.S. patent application Ser.
No. 14/546,053 entitled “SYSTEM AND METHOD FOR
GENERATING AREPORT TO ANETWORK OPERATOR
BY DISTRIBUTING AGGREGATION OF DATA”, filed
Nov. 18, 2014, which is a continuation of U.S. patent
application Ser. No. 13/710,274 entitled “MOBILE NET-
WORK REPORTING AND USAGE ANALYTICS SYS-
TEM AND METHOD AGGREGATED USING A DIS-
TRIBUTED TRAFFIC OPTIMIZATION SYSTEM?”, filed
Dec. 10, 2012, now U.S. Pat. No. 9,021,021 issued Apr. 28,
2015. The Ser. No. 13/710,274 application claims the benefit
of priority of U.S. Provisional Patent Application No.
61/570,724 entitled “MOBILE NETWORK REPORTING
AND USAGE ANALYTICS SYSTEM AND METHOD”,
which was filed on Dec. 14, 2011. Accordingly, this appli-
cation claims a priority of Dec. 14, 2011 by way of conti-
nuity through the co-pending Ser. No. 13/710,274 applica-
tion. The contents of the above referenced applications are
incorporated by reference herein.

BACKGROUND

[0002] Network operators/carriers have the will and the
resources to fix the wireless network overload problem.
However, the increased availability of free apps only makes
network congestion worse with constant signaling from the
application to the application stores and/or advertiser web-
sites.

[0003] Part of that consideration includes traffic optimi-
zation, which can ameliorate signaling that comes from
applications and from the network and optimizing traffic for
resource conservation. However, network operators/carriers
lack a mechanism of monitoring usage, in particular appli-
cation usage and its impact on network resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1A illustrates an example diagram of the
logical architecture of a distributed proxy and cache system.
[0005] FIG. 1B illustrates an example diagram of a system
where a host server facilitates management of traffic, content
caching, and/or resource conservation between mobile
devices (e.g., wireless devices), an application server or
content provider, or other servers such as an ad server,
promotional content server, or an e-coupon server in a
wireless network (or broadband network) for resource con-
servation. The host server can be integrated with a network
operator as illustrated in the examples of FIG. 1A-1-FIG.
1A-3.

Jun. 27,2019

[0006] FIG. 1C illustrates an example diagram of a proxy
and cache system distributed between the host server and
device which facilitates network traffic management
between a device, an application server or content provider,
or other servers such as an ad server, promotional content
server, or an e-coupon server for resource conservation and
content caching. The host server can be integrated with a
network operator as illustrated in the examples of FIG.
1A-1-FIG. 1A-3.

[0007] FIG. 1D illustrates a diagram of the example com-
ponents on the server side of the distributed proxy and cache
system.

[0008] FIG. 1E-1R illustrate examples of reports gener-

ated by the reporting and usage analytics system.

[0009] FIG. 1E illustrates an example report showing the
number of active users during a reported time period (e.g.,
past 30 days).

[0010] FIG. 1F illustrates an example report showing the
total number of new users over a reported time period (e.g.,
past 30 days).

[0011] FIG. 1G illustrates an example report showing the
amount of data depicting the total traffic (TT) vs. the data
saved total (DST) traffic in bytes.

[0012] FIG. 1H illustrates an example report showing
amount of signaling depicting the number of actual connec-
tions (AC) vs. the number of saved connections (SC) traffic.
[0013] FIG. 11 illustrates an example report of connection
time depicting the actual time (AT) vs. saved time (ST).
[0014] FIG. 1J illustrates an example report showing
battery consumption by depicting battery consumption %
per hour. The % value denote the drop in charge % per user
per hour when the device is not in charging mode.

[0015] FIG. 1K illustrates an example report showing
application optimization by depicting the top 10 applications
measured by amount of connection optimization achieved
over a reported of time (e.g., past 30 days).

[0016] FIG. 1L illustrates an example report showing
application user by depicting top applications measured by
the number of users using them over a reported period of
time (e.g., past 30 days).

[0017] FIG. 1M illustrates an example report showing
application data demand measured by the amount of data
consumed.

[0018] FIG. 1IN illustrates an example report showing
applications measured by the amount of time connected.
[0019] FIG. 10 illustrates an example report showing
device types by depicting the top devices measured by
amount of connection optimization.

[0020] FIG. 1P illustrates an example report showing the
device types by popularity measured by the number of users.
[0021] FIG. 1Q illustrates an example report showing
devices types ranked by the amount of data consumed.
[0022] FIG. 1R illustrates an example report showing
devices types ranked by the amount of battery consumed.
[0023] FIG. 2A depicts a block diagram illustrating an
example of client-side components in a distributed proxy
and/or cache system (e.g., (distributed) traffic optimizer,
traffic management system, (distributed) content caching
mechanism for traffic alleviation) (e.g., (distributed) traffic
optimizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) residing on a
mobile device (e.g., wireless device) that manages traffic in
a wireless network (or broadband network) for resource
conservation, content caching, and/or traffic management.

US 2019/0200258 Al

The client-side proxy (or local proxy) can further categorize
mobile traffic and/or implement delivery policies based on
application behavior, content priority, user activity, and/or
user expectations.

[0024] FIG. 2B depicts a block diagram illustrating a
further example of components in the cache system shown
in the example of FIG. 2A which is capable of caching and
adapting caching strategies for mobile application behavior
and/or network conditions. Components capable of detect-
ing long poll requests and managing caching of long polls
are also illustrated.

[0025] FIG. 2C depicts a block diagram illustrating addi-
tional components in the application behavior detector and
the caching policy manager in the cache system shown in the
example of FIG. 2A which is further capable of detecting
cache defeat and perform caching of content addressed by
identifiers intended to defeat cache.

[0026] FIG. 2D depicts a block diagram illustrating
examples of additional components in the local cache shown
in the example of FIG. 2A which is further capable of
performing mobile traffic categorization and policy imple-
mentation based on application behavior and/or user activ-
ity.

[0027] FIG. 3A depicts a block diagram illustrating an
example of server-side components in a distributed proxy
and/or cache system (e.g., (distributed) traffic optimizer,
traffic management system, (distributed) content caching
mechanism for traffic alleviation) (e.g., (distributed) traffic
optimizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) that manages
traffic in a wireless network (or broadband network) for
resource conservation, content caching, and/or traffic man-
agement. The server-side proxy (or proxy server) can further
categorize mobile traffic and/or implement delivery policies
based on application behavior, content priority, user activity,
and/or user expectations.

[0028] FIG. 3B depicts a block diagram illustrating a
further example of components in the caching policy man-
ager in the cache system shown in the example of FIG. 3A
which is capable of caching and adapting caching strategies
for mobile application behavior and/or network conditions.
Components capable of detecting long poll requests and
managing caching of long polls are also illustrated.

[0029] FIG. 3C depicts a block diagram illustrating
another example of components in the proxy system shown
in the example of FIG. 3A which is further capable of
managing and detecting cache defeating mechanisms and
monitoring content sources.

[0030] FIG. 3D depicts a block diagram illustrating
examples of additional components in proxy server shown in
the example of FIG. 3A which is further capable of per-
forming mobile traffic categorization and policy implemen-
tation based on application behavior and/or traffic priority.
[0031] FIG. 4A depicts a block diagram illustrating
another example of client-side components in a distributed
proxy and cache system, further including a reporting engine
and usage analytics engine.

[0032] FIG. 4B depicts a block diagram illustrating addi-
tional components in the client-side reporting engine and
usage analytics engine shown in the example of FIG. 4A.

[0033] FIG. 5A depicts a block diagram illustrating an
example of server-side components in a distributed proxy
and cache system, further including a reporting engine and
usage analytics engine.

Jun. 27,2019

[0034] FIG. 5B depicts a block diagram illustrating addi-
tional components in the server-side reporting engine and
usage analytics engine shown in the example of FIG. SA.
[0035] FIG. 6A depicts a flow diagram illustrating an
example process for distributed content caching between a
mobile device (e.g., any wireless device) and remote proxy
and the distributed management of content caching.

[0036] FIG. 6B depicts a timing diagram showing how
data requests from a mobile device (e.g., any wireless
device) to an application server/content provider in a wire-
less network (or broadband network) can be coordinated by
a distributed proxy system in a manner such that network
and battery resources are conserved through using content
caching and monitoring performed by the distributed proxy
system.

[0037] FIG. 7 depicts a table showing examples of differ-
ent traffic or application category types which can be used in
implementing network access and content delivery policies.
[0038] FIG. 8 depicts a table showing examples of differ-
ent content category types which can be used in implement-
ing network access and content delivery policies.

[0039] FIG. 9 depicts an interaction diagram showing how
polls having data requests from a mobile device (e.g., any
wireless device) to an application server/content provider
over a wireless network (or broadband network) can be can
be cached on the local proxy and managed by the distributed
caching system.

[0040] FIG. 10 depicts an interaction diagram showing
how polls for content from an application server/content
provider which employs cache-defeating mechanisms in
identifiers (e.g., identifiers intended to defeat caching) over
a wireless network (or broadband network) can be detected
and locally cached.

[0041] FIG. 11 depicts a flow chart illustrating an example
process for collecting information about a request and the
associated response to identify cacheability and caching the
response.

[0042] FIG. 12 depicts a flow chart illustrating an example
process showing decision flows to determine whether a
response to a request can be cached.

[0043] FIG. 13 depicts a flow chart illustrating an example
process for determining potential for cacheability based on
request periodicity and/or response repeatability.

[0044] FIG. 14 depicts a flow chart illustrating an example
process for dynamically adjusting caching parameters for a
given request or client.

[0045] FIG. 15 depicts a flow chart illustrating example
processes for application and/or traffic (data) categorization
while factoring in user activity and expectations for imple-
mentation of network access and content delivery policies.
[0046] FIG. 16A depicts a flow chart illustrating example
processes for handling traffic which is to be suppressed at
least temporarily determined from application/traffic catego-
rization.

[0047] FIG. 16B depicts a flow chart illustrating an
example process for selection of a network configuration for
use in sending traffic based on application and/or traffic
(data) categorization.

[0048] FIG. 16C depicts a flow chart illustrating an
example process for implementing network access and con-
tent delivery policies based on application and/or traffic
(data) categorization.

US 2019/0200258 Al

[0049] FIG. 17 depicts a flow chart illustrating an example
process for network selection based on mobile user activity
or user expectations.

[0050] FIG. 18 depicts a data timing diagram showing an
example of detection of periodic request which may be
suitable for caching.

[0051] FIG. 19 depicts a data timing diagram showing an
example of detection of change in request intervals and
updating of server polling rate in response thereto.

[0052] FIG. 20 depicts a data timing diagram showing an
example of serving foreground requests with cached entries.
[0053] FIG. 21 depicts a data timing diagram showing an
example of the possible effect of cache invalidation that
occurs after outdated content has been served once again to
a requesting application.

[0054] FIG. 22 depicts a data timing diagram showing
cache management and response taking into account the
time-to-live (TTL) set for cache entries.

[0055] FIG. 23 illustrates a flow chart showing an example
flow of providing a report to a mobile network operator by
distributed aggregation of data to show network optimiza-
tion efficiency.

[0056] FIG. 24 illustrates a flow chart showing an example
flow for determining optimization efficiency at a mobile
device or in a wireless network.

[0057] FIG. 25 illustrates a flow chart showing an example
flow for generating a report to be provided to a network
operator including optimization efficiency effectuated by
performing traffic optimization and management functions
in a wireless network.

[0058] FIG. 26 illustrates a flow chart showing examples
comparisons of data shown in reports of optimization effi-
ciency provided to network operators.

[0059] FIG. 27 shows a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

DETAILED DESCRIPTION

[0060] The following description and drawings are illus-
trative and are not to be construed as limiting. Numerous
specific details are described to provide a thorough under-
standing of the disclosure. However, in certain instances,
well-known or conventional details are not described in
order to avoid obscuring the description. References to “one
embodiment” or “an embodiment™ in the present disclosure
can be, but not necessarily are, references to the same
embodiment and such references mean at least one of the
embodiments.

[0061] Reference in this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
disclosure. The appearances of the phrase “in one embodi-
ment” in various places in the specification are not neces-
sarily all referring to the same embodiment, nor are separate
or alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not other
embodiments.

Jun. 27,2019

[0062] The terms used in this specification generally have
their ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no influence on the
scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way.

[0063] Consequently, alternative language and synonyms
may be used for any one or more of the terms discussed
herein, nor is any special significance to be placed upon
whether or not a term is elaborated or discussed herein.
Synonyms for certain terms are provided. A recital of one or
more synonyms does not exclude the use of other synonyms.
The use of examples anywhere in this specification, includ-
ing examples of any terms discussed herein, is illustrative
only, and is not intended to further limit the scope and
meaning of the disclosure or of any exemplified term.
Likewise, the disclosure is not limited to various embodi-
ments given in this specification.

[0064] Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used
herein have the same meaning as commonly understood by
one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document,
including definitions, will control.

[0065] Embodiments of the present disclosure include
mobile network reporting and usage analytics system and
method aggregated using a distributed traffic optimization
system.

[0066] There are multiple factors that contribute to the
proliferation of data: the end-user, mobile devices, wireless
devices, mobile applications, and the network. As mobile
devices evolve, so do the various elements associated with
them-availability, applications, user behavior, location thus
changing the way the network interacts with the device and
the application.

[0067] The disclosed technology provides a comprehen-
sive and end-to-end solution that is able to address each
element for operators and devices manufacturers to support
both the shift in mobile or wireless devices and the surge in
data by leveraging the premise that mobile content has a
definable or relevant “freshness” value. The “freshness” of
mobile content can be determined, either with certainty, or
with some heuristics having a tolerance within which the
user experience is enhanced, or not negatively impacted, or
negatively impacted but is either not perceptible to the user
or within a tolerable threshold level.

[0068] The disclosed innovation transparently determines
such “freshness” by monitoring, analyzing, and applying
rules (which may be heuristically determined) the transac-
tions (requests/responses) between applications (e.g.,
mobile applications) and the peers (corresponding server or
other clients). Moreover, the technology is further able to

US 2019/0200258 Al

effectively cache content which may be marked by its
originating/host server as being “non-cacheable” and iden-
tify some “freshness” value which can then be used in
implementing application-specific caching. In general, the
“freshness” value has an approximate minimum value which
is typically determined using the update interval (e.g., inter-
val with which requests are sent) between the application
and its corresponding server/host.

[0069] One embodiment of the disclosed technology
includes a system that optimizes multiple aspects of the
connection with wired and wireless networks and devices
through a comprehensive view of device and application
activity including: loading, current application needs on a
device, controlling the type of access (push vs. pull or
hybrid), location, concentration of users in a single area,
time of day, how often the user interacts with the application,
content or device, and using this information to shape traffic
to a cooperative client/server or simultaneously mobile
devices without a cooperative client. Because the disclosed
server is not tied to any specific network provider it has
visibility into the network performance across all service
providers. This enables optimizations to be applied to
devices regardless of the operator or service provider,
thereby enhancing the user experience and managing net-
work utilization while roaming. Bandwidth has been con-
sidered a major issue in wireless networks today. More and
more research has been done related to the need for addi-
tional bandwidth to solve access problems. Many of the
performance enhancing solutions and next generation stan-
dards, such as those commonly referred to as 3.5G, LTE, 4G,
and WiMAX, are focused on providing increased band-
width. Although partially addressed by the standards, a key
problem that remains is lack of bandwidth on the signaling
channel more so than the data channel and the standard does
not address battery life very well.

[0070] Embodiments of the disclosed technology
includes, for example, alignment of requests from multiple
applications to minimize the need for several polling
requests; leverage specific content types to determine how to
proxy/manage a connection/content; and applying specific
heuristics associated with device, user behavioral patterns
(how often they interact with the device/application) and/or
network parameters.

[0071] Embodiments of the present technology can further
include, moving recurring HTTP polls performed by various
widgets, RSS readers, etc., to remote network node (e.g.,
Network Operation Center (NOC)), thus considerably low-
ering device battery/power consumption, radio channel sig-
naling and bandwidth usage. Additionally, the offloading can
be performed transparently so that existing applications do
not need to be changed.

[0072] In some embodiments, this can be implemented
using a local proxy on the mobile device (e.g., any wireless
device) which automatically detects recurring requests for
the same content (RSS feed, Widget data set) that matches
a specific rule (e.g., happens every 15 minutes). The local
proxy can automatically cache the content on the mobile
device while delegating the polling to the server (e.g., a
proxy server operated as an element of a communications
network). The server can then notify the mobile/client proxy
if the content changes, and if content has not changed (or not
changed sufficiently, or in an identified manner or amount)
the mobile proxy provides the latest version in its cache to
the user (without need to utilize the radio at all). This way

Jun. 27,2019

the mobile or wireless device (e.g., a mobile phone, smart
phone, M2M module/MODEM, or any other wireless
devices, etc.) does not need to open (e.g., thus powering on
the radio) or use a data connection if the request is for
content that is monitored and that has been not flagged as
new/changed.

[0073] The logic for automatically adding content sources/
application servers (e.g., including URLs/content) to be
monitored can also check for various factors like how often
the content is the same, how often the same request is made
(is there a fixed interval/pattern?), which application is
requesting the data, etc. Similar rules to decide between
using the cache and request the data from the original source
may also be implemented and executed by the local proxy
and/or server.

[0074] For example, when the request comes at an
unscheduled/unexpected time (user initiated check), or after
every (n) consecutive times the response has been provided
from the cache, etc., or if the application is running in the
background vs. in a more interactive mode of the fore-
ground. As more and more mobile applications or wireless
enabled applications base their features on resources avail-
able in the network, this becomes increasingly important. In
addition, the disclosed technology allows elimination of
unnecessary chatter from the network, benefiting the opera-
tors trying to optimize the wireless spectrum usage.

[0075] Traffic Categorization and Policy

[0076] In some embodiments, the disclosed proxy system
is able to establish policies for choosing traffic (data, con-
tent, messages, updates, etc.) to cache and/or shape. Addi-
tionally, by combining information from observing the
application making the network requests, getting explicit
information from the application, or knowing the network
destination the application is reaching, the disclosed tech-
nology can determine or infer what category the transmitted
traffic belongs to.

[0077] For example, in one embodiment, mobile or wire-
less traffic can be categorized as: (al) interactive traffic or
(a2) background traffic. The difference is that in (al) a user
is actively waiting for a response, while in (2) a user is not
expecting a response. This categorization can be used in
conjunction with or in lieu of a second type of categorization
of traffic: (b1) immediate, (b2) low priority, (b3) immediate
if the requesting application is in the foreground and active.

[0078] For example, a new update, message or email may
be in the (bl) category to be delivered immediately, but it
still is (a2) background traffic—a user is not actively waiting
for it. A similar categorization applies to instant messages
when they come outside of an active chat session. During an
active chat session a user is expecting a response faster. Such
user expectations are determined or inferred and factored
into when optimizing network use and device resources in
performing traffic categorization and policy implementation.

[0079] Some examples of the applications of the described
categorization scheme, include the following: (al) interac-
tive traffic can be categorized as (b1) immediate—but (a2)
background traffic may also be (b2) or (b3). An example of
a low priority transfer is email or message maintenance
transaction such as deleting email or other messages or
marking email as read at the mail or application server. Such
a transfer can typically occur at the earlier of (a) timer
exceeding a timeout value (for example, 2 minutes), and (b)
data being sent for other purposes.

US 2019/0200258 Al

[0080] An example of (b3) is IM presence updates, stock
ticker updates, weather updates, status updates, news feeds.
When the Ul of the application is in the foreground and/or
active (for example, as indicated by the backlight of the
device/phone being lit or as determined or inferred from the
status of other sensors), updates can be considered imme-
diate whenever server has something to push to the device.
When the application is not in the foreground or not active,
such updates can be suppressed until the application comes
to foreground and is active.

[0081] With some embodiments, networks can be selected
or optimized simultaneously for (al) interactive traffic and
(a2) background traffic.

[0082] In some embodiments, as the wireless device or
mobile device proxy (separately or in conjunction with the
server proxy) is able to categorize the traffic as (for example)
(al) interactive traffic or (a2) background traffic, it can apply
different policies to different types of traffic. This means that
it can internally operate differently for (al) and (a2) traffic
(for example, by allowing interactive traffic to go through to
the network in whole or in part, and apply stricter traffic
control to background traffic; or the device side only allows
a request to activate the radio if it has received information
from the server that the content at the host has been updated,
etc.).

[0083] When the request does require access over the
wireless network, the disclosed technology can request the
radio layer to apply different network configurations to
different traffic. Depending on the type of traffic and network
this may be achieved by different means:

[0084] (1) Using 3G/4G for (al) and 2G/2.5G for (a2);
[0085] (2) Explicitly specifying network configuration for
different data sets (e.g. in terms of use of FACH (forward
access channel) vs. DCH (dedicated channel), or otherwise
requesting lower/more network efficient data rates for back-
ground traffic); or

[0086] (3) Utilizing different network access points for
different data sets (access points which would be configured
to use network resources differently similar to (1) and (2)
above).

[0087] Additionally, 3GPP Fast Dormancy calls for
improvements so that applications, operating systems or the
mobile device would have awareness of the traffic type to be
more efficient in the future. Embodiments of the disclosed
system, having the knowledge of the traffic category and
being able to utilize Fast Dormancy appropriately may solve
the problem identified in Fast Dormancy. This way the
mobile or broadband network does not need to be configured
with a compromised configuration that adversely impacts
both battery consumption and network signaling resources.
[0088] Polling Schedule: Detecting (or determining) a
polling schedule allows the proxy server (server-side of the
distributed cache system) to be as close as possible with its
polls to the application polls. Many applications employ
scheduled interval polling (e.g., every 4 hours or every 30
seconds, at another time interval). The client side proxy can
detect automatic polls based on time measurements and
create a automatic polling profile for an application. As an
example, the local proxy attempts to detect the time interval
between requests and after 2, 3, 4, or more polls, determines
an automatic rate if the time intervals are all within 1 second
(or another measure of relative closeness) of each other. If
not, the client may collect data from a greater number of
polling events (e.g., 10-12 polls) and apply a statistical

Jun. 27,2019

analysis to determine, compute, or estimate a value for the
average interval that is used. The polling profile is delivered
to the server where it is used. If it is a frequent manual
request, the locally proxy can substitute it with a default
interval for this application taken from a profile for non-
critical applications.

[0089] Insome embodiments, the local proxy (e.g., device
side proxy) may keep monitoring the application/client polls
and update the polling interval. If it changes by more than
30% (or another predetermined/dynamic/conditional value)
from the current value, it is communicated to the proxy
server (e.g., server-side proxy). This approach can be
referred to as the scenario of “lost interest.” In some
instances, the local proxy can recognize requests made
outside of this schedule, consider them “manual,” and treat
them accordingly.

[0090] Application Classes/Modes of Caching

[0091] In some embodiments, applications can be orga-
nized into three groups or modes of caching. Each mobile
client/application can be categorized to be treated as one of
these modes, or treated using multiple modes, depending on
one or more conditions.

[0092] A) Fully cached—Ilocal proxy updates (e.g., sends
application requests directly over the network to be serviced
by the application server/content host) only when the proxy
server tells the local proxy to update. In this mode, the local
proxy can ignore manual requests and the proxy server uses
the detected automatic profile (e.g., sports score applets,
Facebook, every 10, 15, 30, or more polls) to poll the
application server/content provider.

[0093] B) Partially cached—the local proxy uses the local
or internal cache for automatic requests (e.g., application
automatic refreshes), other scheduled requests but passes
through some manual requests (e.g., email download, Ebay
or some Facebook requests); and

[0094] C) Never cached (e.g., real-time stock ticker, sports
scores/statuses; however, in some instances, 15 minutes
delayed quotes can be safely placed on 30 seconds sched-
ules—B or even A).

[0095] The actual application or caching mode classifica-
tion can be determined based on the rate of content change
and critical character of data. Unclassified applications by
default can be set as class C.

[0096] Backlight and Active Applications

[0097] In some embodiments, the local proxy starts by
detecting the device backlight status. Requests made with
the screen light ‘off” can be allowed to use the local cache
if a request with identical signature is registered with the
proxy server, which is polling the original host server/
content server(s) to which the requests are directed. If the
screen light is ‘on’, further detection can be made to
determine whether it is a background application or for other
indicators that local cache entries can or cannot be used to
satisfy the request. When identified, the requests for which
local entries can be used may be processed identically to the
screen light off situation. Foreground requests can use the
aforementioned application classification to assess when
cached data is safe to use to process requests.

[0098] FIG. 1A illustrates an example diagram of the
logical architecture of a distributed proxy and cache system.
The distributed system can include, for example the follow-
ing components:

[0099] The Client Side Proxy 175: a component installed
in the Smartphone, mobile device or wireless device 150 that

US 2019/0200258 Al

interfaces with device’s operating system, as well as with
data services and applications installed in the device. The
client side proxy is compliant with all standard networking
protocols.

[0100] The server side proxy 125 including a group of
servers that can interface with third party application serv-
ers, mobile operator’s network and/or the client side proxy
175. The server side proxy 125 is compliant with all standard
specifications required to interact with mobile network ele-
ments and third party servers.

[0101] Reporting and Usage Analytics Server 174 (Rep &
UA): The Reporting and Usage Analytics system 174 col-
lects information at client side and/or server side and pro-
vides the necessary tools for producing reports and usage
analytics that operators can use for analyzing traffic and
signaling data

[0102] FIG. 1B illustrates an example diagram of a system
where a host server 100 facilitates management of traffic,
content caching, and/or resource conservation between
mobile devices (e.g., wireless devices 150), and an applica-
tion server or content provider 110, or other servers such as
an ad server 120A, promotional content server 120B, or an
e-coupon server 120C in a wireless network (or broadband
network) for resource conservation. The host server can
further monitor mobile application activities for malicious
traffic on a mobile device and/or automatically generate
and/or distribute policy information regarding malicious
traffic in a wireless network.

[0103] The client devices 150 can be any system and/or
device, and/or any combination of devices/systems that is
able to establish a connection, including wired, wireless,
cellular connections with another device, a server and/or
other systems such as host server 100 and/or application
server/content provider 110. Client devices 150 will typi-
cally include a display and/or other output functionalities to
present information and data exchanged between among the
devices 150 and/or the host server 100 and/or application
server/content provider 110. The application server/content
provider 110 can by any server including third party servers
or service/content providers further including advertise-
ment, promotional content, publication, or electronic coupon
servers or services. Similarly, separate advertisement servers
120A, promotional content servers 120B, and/or e-Coupon
servers 120C as application servers or content providers are
illustrated by way of example.

[0104] For example, the client devices 150 can include
mobile, hand held or portable devices, wireless devices, or
non-portable devices and can be any of, but not limited to,
a server desktop, a desktop computer, a computer cluster, or
portable devices, including a notebook, a laptop computer, a
handheld computer, a palmtop computer, a mobile phone, a
cell phone, a smart phone, a PDA, a Blackberry device, a
Palm device, a handheld tablet (e.g., an iPad or any other
tablet), a hand held console, a hand held gaming device or
console, any Super Phone such as the iPhone, and/or any
other portable, mobile, hand held devices, or fixed wireless
interface such as a M2M device, etc. In one embodiment, the
client devices 150, host server 100, and application server
110 are coupled via a network 106 and/or a network 108. In
some embodiments, the devices 150 and host server 100
may be directly connected to one another.

[0105] The input mechanism on client devices 150 can
include touch screen keypad (including single touch, multi-
touch, gesture sensing in 2D or 3D, etc.), a physical keypad,

Jun. 27,2019

a mouse, a pointer, a track pad, motion detector (e.g.,
including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light
sensor, capacitance sensor, resistance sensor, temperature
sensor, proximity sensor, a piezoelectric device, device
orientation detector (e.g., electronic compass, tilt sensor,
rotation sensor, gyroscope, accelerometer), or a combination
of the above.

[0106] Signals received or detected indicating user activ-
ity at client devices 150 through one or more of the above
input mechanism, or others, can be used in the disclosed
technology in acquiring context awareness at the client
device 150. Context awareness at client devices 150 gener-
ally includes, by way of example but not limitation, client
device 150 operation or state acknowledgement, manage-
ment, user activity/behavior/interaction awareness, detec-
tion, sensing, tracking, trending, and/or application (e.g.,
mobile applications) type, behavior, activity, operating state,
etc.

[0107] Context awareness in the present disclosure also
includes knowledge and detection of network side contex-
tual data and can include network information such as
network capacity, bandwidth, traffic, type of network/con-
nectivity, and/or any other operational state data. Network
side contextual data can be received from and/or queried
from network service providers (e.g., cell provider 112
and/or Internet service providers) of the network 106 and/or
network 108 (e.g., by the host server and/or devices 150). In
addition to application context awareness as determined
from the client 150 side, the application context awareness
may also be received from or obtained/queried from the
respective application/service providers 110 (by the host 100
and/or client devices 150).

[0108] The host server 100 can use, for example, contex-
tual information obtained for client devices 150, networks
106/108, applications (e.g., mobile applications), applica-
tion server/provider 110, or any combination of the above, to
manage the traffic in the system to satisfy data needs of the
client devices 150 (e.g., to satisfy application or any other
request including HTTP request). In one embodiment, the
traffic is managed by the host server 100 to satisfy data
requests made in response to explicit or non-explicit user
103 requests and/or device/application maintenance tasks.
The traffic can be managed such that network consumption,
for example, use of the cellular network is conserved for
effective and efficient bandwidth utilization. In addition, the
host server 100 can manage and coordinate such traffic in the
system such that use of device 150 side resources (e.g.,
including but not limited to battery power consumption,
radio use, processor/memory use) are optimized with a
general philosophy for resource conservation while still
optimizing performance and user experience.

[0109] Forexample, in context of battery conservation, the
device 150 can observe user activity (for example, by
observing user keystrokes, backlight status, or other signals
via one or more input mechanisms, etc.) and alters device
150 behaviors. The device 150 can also request the host
server 100 to alter the behavior for network resource con-
sumption based on user activity or behavior.

[0110] In one embodiment, the traffic management for
resource conservation is performed using a distributed sys-
tem between the host server 100 and client device 150. The
distributed system can include proxy server and cache
components on the server side 100 and on the device/client

US 2019/0200258 Al

side, for example, as shown by the server cache 135 on the
server 100 side and the local cache 185 on the client 150
side.

[0111] Functions and techniques disclosed for context
aware traffic management for resource conservation in net-
works (e.g., network 106 and/or 108) and devices 150,
reside in a distributed proxy and/or cache system (e.g.,
(distributed) traffic optimizer, traffic management system,
(distributed) content caching mechanism for traffic allevia-
tion) (e.g., (distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic
alleviation). The proxy and cache system can be distributed
between, and reside on, a given client device 150 in part or
in whole and/or host server 100 in part or in whole. The
distributed proxy and/or cache system (e.g., (distributed)
traffic optimizer, traffic management system, (distributed)
content caching mechanism for traffic alleviation) (e.g.,
(distributed) traffic optimizer, traffic management system,
(distributed) content caching mechanism for traffic allevia-
tion) are illustrated with further reference to the example
diagram shown in FIG. 1C. Functions and techniques per-
formed by the proxy and cache components in the client
device 150, the host server 100, and the related components
therein are described, respectively, in detail with further
reference to the examples of FIG. 2-3.

[0112] In one embodiment, client devices 150 communi-
cate with the host server 100 and/or the application server
110 over network 106, which can be a cellular network
and/or a broadband network. To facilitate overall traffic
management between devices 150 and various application
servers/content providers 110 to implement network (band-
width utilization) and device resource (e.g., battery con-
sumption), the host server 100 can communicate with the
application server/providers 110 over the network 108,
which can include the Internet (e.g., a broadband network).
[0113] In general, the networks 106 and/or 108, over
which the client devices 150, the host server 100, and/or
application server 110 communicate, may be a cellular
network, a broadband network, a telephonic network, an
open network, such as the Internet, or a private network,
such as an intranet and/or the extranet, or any combination
thereof. For example, the Internet can provide file transfer,
remote log in, email, news, RSS, cloud-based services,
instant messaging, visual voicemail, push mail, VoIP, and
other services through any known or convenient protocol,
such as, but is not limited to the TCP/IP protocol, UDP,
HTTP, DNS, FTP, UPnP, NSF, ISDN, PDH, RS-232, SDH,
SONET, etc.

[0114] The networks 106 and/or 108 can be any collection
of distinct networks operating wholly or partially in con-
junction to provide connectivity to the client devices 150
and the host server 100 and may appear as one or more
networks to the serviced systems and devices. In one
embodiment, communications to and from the client devices
150 can be achieved by, an open network, such as the
Internet, or a private network, broadband network, such as
an intranet and/or the extranet. In one embodiment, com-
munications can be achieved by a secure communications
protocol, such as secure sockets layer (SSL), or transport
layer security (TLS).

[0115] In addition, communications can be achieved via
one or more networks, such as, but are not limited to, one or
more of WiMax, a Local Area Network (LAN), Wireless
Local Area Network (WLAN), a Personal area network

Jun. 27,2019

(PAN), a Campus area network (CAN), a Metropolitan area
network (MAN), a Wide area network (WAN), a Wireless
wide area network (WWAN), or any broadband network,
and further enabled with technologies such as, by way of
example, Global System for Mobile Communications
(GSM), Personal Communications Service (PCS), Blu-
etooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G,
IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax,
WiMax 2, WirelessMAN-Advanced networks, enhanced
data rates for GSM evolution (EDGE), General packet radio
service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA,
HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging
protocols such as, TCP/IP, SMS, MMS, extensible messag-
ing and presence protocol (XMPP), real time messaging
protocol (RTMP), instant messaging and presence protocol
(IMPP), instant messaging, USSD, IRC, or any other wire-
less data networks, broadband networks, or messaging pro-
tocols.

[0116] FIG. 1C illustrates an example diagram of a proxy
and cache system distributed between the host server 100
and device 150 which facilitates network traffic management
between the device 150 and an application server or content
provider 110, or other servers such as an ad server 120A,
promotional content server 120B, or an e-coupon server
120C for resource conservation and content caching. The
proxy system distributed among the host server 100 and the
device 150 can further monitor mobile application activities
for malicious traffic on a mobile device and/or automatically
generate and/or distribute policy information regarding
malicious traffic in a wireless network.

[0117] The distributed proxy and/or cache system (e.g.,
(distributed) traffic optimizer, traffic management system,
(distributed) content caching mechanism for traffic allevia-
tion) (e.g., (distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic
alleviation) can include, for example, the proxy server 125
(e.g., remote proxy) and the server cache, 135 components
on the server side. The server-side proxy 125 and cache 135
can, as illustrated, reside internal to the host server 100. In
addition, the proxy server 125 and cache 135 on the server-
side can be partially or wholly external to the host server 100
and in communication via one or more of the networks 106
and 108. For example, the proxy server 125 may be external
to the host server and the server cache 135 may be main-
tained at the host server 100. Alternatively, the proxy server
125 may be within the host server 100 while the server cache
is external to the host server 100. In addition, each of the
proxy server 125 and the cache 135 may be partially internal
to the host server 100 and partially external to the host server
100. The application server/content provider 110 can by any
server including third party servers or service/content pro-
viders further including advertisement, promotional content,
publication, or electronic coupon servers or services. Simi-
larly, separate advertisement servers 120A, promotional
content servers 120B, and/or e-Coupon servers 120C as
application servers or content providers are illustrated by
way of example.

[0118] The distributed system can also, include, in one
embodiment, client-side components, including by way of
example but not limitation, a local proxy 175 (e.g., a mobile
client on a mobile device) and/or a local cache 185, which
can, as illustrated, reside internal to the device 150 (e.g., a
mobile device).

US 2019/0200258 Al

[0119] In addition, the client-side proxy 175 and local
cache 185 can be partially or wholly external to the device
150 and in communication via one or more of the networks
106 and 108. For example, the local proxy 175 may be
external to the device 150 and the local cache 185 may be
maintained at the device 150. Alternatively, the local proxy
175 may be within the device 150 while the local cache 185
is external to the device 150. In addition, each of the proxy
175 and the cache 185 may be partially internal to the host
server 100 and partially external to the host server 100.
[0120] In one embodiment, the distributed system can
include an optional caching proxy server 199. The caching
proxy server 199 can be a component which is operated by
the application server/content provider 110, the host server
100, or a network service provider 112, and or any combi-
nation of the above to facilitate network traffic management
for network and device resource conservation. Proxy server
199 can be used, for example, for caching content to be
provided to the device 150, for example, from one or more
of, the application server/provider 110, host server 100,
and/or a network service provider 112. Content caching can
also be entirely or partially performed by the remote proxy
125 to satisfy application requests or other data requests at
the device 150.

[0121] In context aware traffic management and optimi-
zation for resource conservation in a network (e.g., cellular
or other wireless networks), characteristics of user activity/
behavior and/or application behavior at a mobile device
(e.g., any wireless device) 150 can be tracked by the local
proxy 175 and communicated, over the network 106 to the
proxy server 125 component in the host server 100, for
example, as connection metadata. The proxy server 125
which in turn is coupled to the application server/provider
110 provides content and data to satisfy requests made at the
device 150.

[0122] In addition, the local proxy 175 can identify and
retrieve mobile device properties, including one or more of,
battery level, network that the device is registered on, radio
state, or whether the mobile device is being used (e.g.,
interacted with by a user). In some instances, the local proxy
175 can delay, expedite (prefetch), and/or modify data prior
to transmission to the proxy server 125, when appropriate, as
will be further detailed with references to the description
associated with the examples of FIG. 2-3.

[0123] The local database 185 can be included in the local
proxy 175 or coupled to the local proxy 175 and can be
queried for a locally stored response to the data request prior
to the data request being forwarded on to the proxy server
125. Locally cached responses can be used by the local
proxy 175 to satisfy certain application requests of the
mobile device 150, by retrieving cached content stored in the
cache storage 185, when the cached content is still valid.
[0124] Similarly, the proxy server 125 of the host server
100 can also delay, expedite, or modify data from the local
proxy prior to transmission to the content sources (e.g., the
application server/content provider 110). In addition, the
proxy server 125 uses device properties and connection
metadata to generate rules for satisfying request of applica-
tions on the mobile device 150. The proxy server 125 can
gather real time traffic information about requests of appli-
cations for later use in optimizing similar connections with
the mobile device 150 or other mobile devices.

[0125] In general, the local proxy 175 and the proxy server
125 are transparent to the multiple applications executing on

Jun. 27,2019

the mobile device. The local proxy 175 is generally trans-
parent to the operating system or platform of the mobile
device and may or may not be specific to device manufac-
turers. In some instances, the local proxy 175 is optionally
customizable in part or in whole to be device specific. In
some embodiments, the local proxy 175 may be bundled into
a wireless model, a firewall, and/or a router.

[0126] In one embodiment, the host server 100 can in
some instances, utilize the store and forward functions of a
short message service center (SMSC) 112, such as that
provided by the network service provider, in communicating
with the device 150 in achieving network traffic manage-
ment. Note that 112 can also utilize any other type of
alternative channel including USSD or other network con-
trol mechanisms. As will be further described with reference
to the example of FIG. 3, the host server 100 can forward
content or HTTP responses to the SMSC 112 such that it is
automatically forwarded to the device 150 if available, and
for subsequent forwarding if the device 150 is not currently
available.

[0127] In general, the disclosed distributed proxy and/or
cache system (e.g., (distributed) traffic optimizer, traffic
management system, (distributed) content caching mecha-
nism for traffic alleviation) (e.g., (distributed) traffic opti-
mizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) allows optimiza-
tion of network usage, for example, by serving requests from
the local cache 185, the local proxy 175 reduces the number
of requests that need to be satisfied over the network 106.
Further, the local proxy 175 and the proxy server 125 may
filter irrelevant data from the communicated data. In addi-
tion, the local proxy 175 and the proxy server 125 can also
accumulate low priority data and send it in batches to avoid
the protocol overhead of sending individual data fragments.
The local proxy 175 and the proxy server 125 can also
compress or transcode the traffic, reducing the amount of
data sent over the network 106 and/or 108. The signaling
traffic in the network 106 and/or 108 can be reduced, as the
networks are now used less often and the network traffic can
be synchronized among individual applications.

[0128] With respect to the battery life of the mobile device
150, by serving application or content requests from the
local cache 185, the local proxy 175 can reduce the number
of times the radio module is powered up. The local proxy
175 and the proxy server 125 can work in conjunction to
accumulate low priority data and send it in batches to reduce
the number of times and/or amount of time when the radio
is powered up. The local proxy 175 can synchronize the
network use by performing the batched data transfer for all
connections simultaneously.

[0129] FIG. 1D illustrates a diagram of one embodiment
the example components on the server side (e.g., the host
server 100 of FIG. 1C) of the distributed proxy and cache
system.

[0130] The server side of the distributed system can
include, for example a relay server 142, which interacts with
a traffic harmonizer 144, a polling server 145 and/or a policy
management server 143. Each of the various components
can communicate with the client side proxy (e.g., local
proxy 175 of FIG. 1A and FIG. 1C), or other third party (e.g.,
application server/service provider 110) and/or a reporting
and usage analytics system. Each or any component on the
server side may be implemented with redundancy.

US 2019/0200258 Al

[0131] Relay Server 142: The relay server 142 includes a
routing agent in the distributed proxy and/or caching archi-
tecture. The relay server 142 manages connections and
communications with the client side proxies (e.g., local
proxy 175), client installed on devices and provides an
administrative interface for reports, provisioning, platform
setup, etc.

[0132] Notification Server 141: The notification server
141 includes a module that connects to a network operator’s
SMSC gateways and delivers SMS notifications to clients
side or local proxies 175. SMS notifications can be used
when an IP link is not currently active, in order to avoid a
client side proxy or local proxy 175 activating a connection
over the wireless data channel, thus avoiding additional
signaling traffic. However, if an existing IP connection is
already open for some other traffic, the notification server
141 can utilize it for sending the notifications to the client.
[0133] User Database 142a: The user database 1424 of the
relay server 142 can store any or all operational data of the
distributed proxy and/or caching system, including but not
limited to, endpoint (MSISDN), organization and notifica-
tion server gateway for each resource (e.g., URIs or URLSs).
[0134] Traffic Harmonizer 144: The traffic harmonizer 144
can facilitate communication between the client side proxy
or local proxy 175 and the polling server 145. Traffic
harmonizer 144 can connect to the polling server 145
directly or through the data storage 130, and to the client-
side proxy or local proxy over 7TP. Traffic harmonizer 144
can also faciliate for traffic pipelining on the server side
(host server 100 or proxy server 125), for example, if there
is cached content in the data storage 130 for the same client
side proxy/local proxy 175 or mobile device, these can be
sent over to the same client in a single message.

[0135] Polling Server 145: In the distributed proxy and/or
caching system/architecture, the polling server 145 on the
server side proxy 125 or host server 100 can poll third party
application servers/content or service providers (e.g., appli-
cation server/service provider/content provider 110 of FIG.
1B and FIG. 1C on behalf of applications that are being
optimized). If a change occurs (i.e. new data available) for
an application, the polling server 145 can report to the traffic
harmonizer 144 which in turn can send a notification mes-
sage to the client-side proxy or local proxy 175 for it to clear
the cache and allow application to poll the application server
directly.

[0136] Policy Management Server 143: The policy man-
agement server 143 (PMS) allows administrators, network
operators, or other third parties to configure and store
policies for client side proxies or local proxies 175 (device
clients). It also allows administrators, network operators, or
other third parties to notify client side proxies or local
proxies 175 about policy changes.

[0137] Using policy management server 143 (PMS), each
operator or other third parties can configure traffic routing,
optimization, polling policies to work in the most efficient
way for the unique characteristics of each particular mobile
operator’s network or based on real time/current traffic/
network conditions including but not limited to usage,
congestion, tower outage, other equipment malfunction or
failure.

[0138] Reporting and Usage Analytics System 174: The
reporting and usage analytics system 174 detects, collects,
aggregates information both at the client side (e.g., client
side proxy/local proxy 175) and/or server side (host server

Jun. 27,2019

100, proxy server 125), and provides all the necessary tools
for generating, analyzing reports and usage, network, appli-
cation and/or user analytics that network operators and/or
other third parties can use for analyzing application signal-
ing and data consumption.

[0139] FIG. 1E-1R illustrate examples of reports gener-
ated by the reporting and usage analytics system 174. FIG.
1E illustrates an example report showing the number of
active users during a reported time period (e.g., past 30
days). FIG. 1F illustrates an example report showing the
total number of new users over a reported time period (e.g.,
past 30 days). FIG. 1G illustrates an example report showing
the amount of data depicting the total traffic (TT) vs. the data
saved total (DST) traffic in bytes. FIG. 1H illustrates an
example report showing amount of signaling depicting the
number of actual connections (AC) vs. the number of saved
connections (SC) traffic. FIG. 1I illustrates an example
report of connection time depicting the actual time (AT) vs.
saved time (ST). FIG. 17 illustrates an example report
showing battery consumption by depicting battery consump-
tion % per hour. The % value denote the drop in charge %
per user per hour when the device is not in charging mode.
[0140] FIG. 1K illustrates an example report showing
application optimization by depicting the top 10 applications
measured by amount of connection optimization achieved
over a reported of time (e.g., past 30 days). FIG. 1L
illustrates an example report showing application user by
depicting top applications measured by the number of users
using them over a reported period of time (e.g., past 30
days). FIG. 1M illustrates an example report showing appli-
cation data demand measured by the amount of data con-
sumed. FIG. 1IN illustrates an example report showing
applications measured by the amount of time connected.
FIG. 10 illustrates an example report showing device types
by depicting the top devices measured by amount of con-
nection optimization. FIG. 1P illustrates an example report
showing the device types by popularity measured by the
number of users. FIG. 1Q illustrates an example report
showing devices types ranked by the amount of data con-
sumed. FIG. 1R illustrates an example report showing
devices types ranked by the amount of battery consumed.
[0141] FIG. 2A depicts a block diagram illustrating an
example of client-side components in a distributed proxy
and/or cache system (e.g., (distributed) traffic optimizer,
traffic management system, (distributed) content caching
mechanism for traffic alleviation) (e.g., (distributed) traffic
optimizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) residing on a
mobile device (e.g., wireless device) 250 that manages
traffic in a wireless network (or broadband network) for
resource conservation, content caching, and/or traffic man-
agement. The client-side proxy (or local proxy 275) can
further categorize mobile traffic and/or implement delivery
policies based on application behavior, content priority, user
activity, and/or user expectations.

[0142] The device 250, which can be a portable or mobile
device (e.g., any wireless device), such as a portable phone,
generally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile
applications which may be proxy-unaware 210 or proxy-
aware 220. Note that the device 250 is specifically illustrated
in the example of FIG. 2 as a mobile device, such is not a
limitation and that device 250 may be any wireless, broad-
band, portable/mobile or non-portable device able to

US 2019/0200258 Al

receive, transmit signals to satisfy data requests over a
network including wired or wireless networks (e.g., WiFi,
cellular, Bluetooth, LAN, WAN, etc.).

[0143] The network interface 208 can be a networking
module that enables the device 250 to mediate data in a
network with an entity that is external to the host server 250,
through any known and/or convenient communications pro-
tocol supported by the host and the external entity. The
network interface 208 can include one or more of a network
adaptor card, a wireless network interface card (e.g., SMS
interface, WiFi interface, interfaces for various generations
of mobile communication standards including but not lim-
ited to 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, or whether
or not the connection is via a router, an access point, a
wireless router, a switch, a multilayer switch, a protocol
converter, a gateway, a bridge, a bridge router, a hub, a
digital media receiver, and/or a repeater.

[0144] Device 250 can further include, client-side com-
ponents of the distributed proxy and/or cache system (e.g.,
(distributed) traffic optimizer, traffic management system,
(distributed) content caching mechanism for traffic allevia-
tion) (e.g., (distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic
alleviation) which can include, a local proxy 275 (e.g., a
mobile client of a mobile device) and a cache 285. In one
embodiment, the local proxy 275 includes a user activity
module 215, a proxy API 225, a request/transaction manager
235, a caching policy manager 245 having an application
protocol module 248, a traffic shaping engine 255, and/or a
connection manager 265. The traffic shaping engine 255
may further include an alignment module 256 and/or a
batching module 257, the connection manager 265 may
further include a radio controller 266. The request/transac-
tion manager 235 can further include an application behav-
ior detector 236 and/or a prioritization engine 241, the
application behavior detector 236 may further include a
pattern detector 237 and/or and application profile generator
239. Additional or less components/modules/engines can be
included in the local proxy 275 and each illustrated com-
ponent.

[0145] As used herein, a “module,” “a manager,” a “han-
dler,” a “detector,” an “interface,” a “controller,” a “normal-
izer,” a “‘generator,” an “invalidator,” or an “engine”
includes a general purpose, dedicated or shared processor
and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-
specific or other considerations, the module, manager, han-
dler, detector, interface, controller, normalizer, generator,
invalidator, or engine can be centralized or its functionality
distributed. The module, manager, handler, detector, inter-
face, controller, normalizer, generator, invalidator, or engine
can include general or special purpose hardware, firmware,
or software embodied in a computer-readable (storage)
medium for execution by the processor.

[0146] As used herein, a computer-readable medium or
computer-readable storage medium is intended to include all
mediums that are statutory (e.g., in the United States, under
35 U.S.C. 101), and to specifically exclude all mediums that
are non-statutory in nature to the extent that the exclusion is
necessary for a claim that includes the computer-readable
(storage) medium to be valid. Known statutory computer-
readable mediums include hardware (e.g., registers, random
access memory (RAM), non-volatile (NV) storage, to name
a few), but may or may not be limited to hardware.

29 <

Jun. 27,2019

[0147] In one embodiment, a portion of the distributed
proxy and/or cache system (e.g., (distributed) traffic opti-
mizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) (e.g., (distributed)
traffic optimizer, traffic management system, (distributed)
content caching mechanism for traffic alleviation) for net-
work traffic management resides in or is in communication
with device 250, including local proxy 275 (mobile client)
and/or cache 285. The local proxy 275 can provide an
interface on the device 250 for users to access device
applications and services including email, IM, voice mail,
visual voicemail, feeds, Internet, games, productivity tools,
or other applications, etc.

[0148] The proxy 275 is generally application independent
and can be used by applications (e.g., both proxy-aware and
proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP connections to a remote server
(e.g., the server 100 in the examples of FIG. 1A-1C and/or
server proxy 125/325 shown in the examples of FIG. 1B and
FIG. 3A). In some instances, the local proxy 275 includes a
proxy API 225 which can be optionally used to interface
with proxy-aware applications 220 (or applications (e.g.,
mobile applications) on a mobile device (e.g., any wireless
device)).

[0149] The applications 210 and 220 can generally include
any user application, widgets, software, HI'TP-based appli-
cation, web browsers, video or other multimedia streaming
or downloading application, video games, social network
applications, email clients, RSS management applications,
application stores, document management applications, pro-
ductivity enhancement applications, etc. The applications
can be provided with the device OS, by the device manu-
facturer, by the network service provider, downloaded by the
user, or provided by others.

[0150] One embodiment of the local proxy 275 includes or
is coupled to a context API 206, as shown. The context API
206 may be a part of the operating system 204 or device
platform or independent of the operating system 204, as
illustrated. The operating system 204 can include any oper-
ating system including but not limited to, any previous,
current, and/or future versions/releases of, Windows Mobile,
i08S, Android, Symbian, Palm OS, Brew MP, Java 2 Micro
Edition (J2ME), Blackberry, etc.

[0151] The context API 206 may be a plug-in to the
operating system 204 or a particular client/application on the
device 250. The context API 206 can detect signals indica-
tive of user or device activity, for example, sensing motion,
gesture, device location, changes in device location, device
backlight, keystrokes, clicks—activated touch screen,
mouse click or detection of other pointer devices. The
context API 206 can be coupled to input devices or sensors
on the device 250 to identify these signals. Such signals can
generally include input received in response to explicit user
input at an input device/mechanism at the device 250 and/or
collected from ambient signals/contextual cues detected at
or in the vicinity of the device 250 (e.g., light, motion,
piezoelectric, etc.).

[0152] In one embodiment, the user activity module 215
interacts with the context API 206 to identify, determine,
infer, detect, compute, predict, and/or anticipate, character-
istics of user activity on the device 250. Various inputs
collected by the context API 206 can be aggregated by the
user activity module 215 to generate a profile for charac-
teristics of user activity. Such a profile can be generated by

US 2019/0200258 Al

the user activity module 215 with various temporal charac-
teristics. For instance, user activity profile can be generated
in real-time for a given instant to provide a view of what the
user is doing or not doing at a given time (e.g., defined by
a time window, in the last minute, in the last 30 seconds,
etc.), a user activity profile can also be generated for a
‘session’ defined by an application or web page that
describes the characteristics of user behavior with respect to
a specific task they are engaged in on the device 250, or for
a specific time period (e.g., for the last 2 hours, for the last
5 hours).

[0153] Additionally, characteristic profiles can be gener-
ated by the user activity module 215 to depict a historical
trend for user activity and behavior (e.g., 1 week, 1 mo., 2
mo., etc.). Such historical profiles can also be used to deduce
trends of user behavior, for example, access frequency at
different times of day, trends for certain days of the week
(weekends or week days), user activity trends based on
location data (e.g., IP address, GPS, or cell tower coordinate
data) or changes in location data (e.g., user activity based on
user location, or user activity based on whether the user is
on the go, or traveling outside a home region, etc.) to obtain
user activity characteristics.

[0154] In one embodiment, user activity module 215 can
detect and track user activity with respect to applications,
documents, files, windows, icons, and folders on the device
250. For example, the user activity module 215 can detect
when an application or window (e.g., a web browser or any
other type of application) has been exited, closed, mini-
mized, maximized, opened, moved into the foreground, or
into the background, multimedia content playback, etc.

[0155] In one embodiment, characteristics of the user
activity on the device 250 can be used to locally adjust
behavior of the device (e.g., mobile device or any wireless
device) to optimize its resource consumption such as bat-
tery/power consumption and more generally, consumption
of other device resources including memory, storage, and
processing power. In one embodiment, the use of a radio on
a device can be adjusted based on characteristics of user
behavior (e.g., by the radio controller 266 of the connection
manager 265) coupled to the user activity module 215. For
example, the radio controller 266 can turn the radio on or off,
based on characteristics of the user activity on the device
250. In addition, the radio controller 266 can adjust the
power mode of the radio (e.g., to be in a higher power mode
or lower power mode) depending on characteristics of user
activity.

[0156] In one embodiment, characteristics of the user
activity on device 250 can also be used to cause another
device (e.g., other computers, a mobile device, a wireless
device, or a non-portable device) or server (e.g., host server
100 and 300 in the examples of FIG. 1A-1C and FIG. 3A)
which can communicate (e.g., via a cellular or other net-
work) with the device 250 to modify its communication
frequency with the device 250. The local proxy 275 can use
the characteristics information of user behavior determined
by the user activity module 215 to instruct the remote device
as to how to modulate its communication frequency (e.g.,
decreasing communication frequency, such as data push
frequency if the user is idle, requesting that the remote
device notify the device 250 if new data, changed, data, or
data of a certain level of importance becomes available,
etc.).

Jun. 27,2019

[0157] In one embodiment, the user activity module 215
can, in response to determining that user activity character-
istics indicate that a user is active after a period of inactivity,
request that a remote device (e.g., server host server 100 and
300 in the examples of FIG. 1A-1C and FIG. 3A) send the
data that was buffered as a result of the previously decreased
communication frequency.

[0158] In addition, or in alternative, the local proxy 275
can communicate the characteristics of user activity at the
device 250 to the remote device (e.g., host server 100 and
300 in the examples of FIG. 1A-1C and FIG. 3A) and the
remote device determines how to alter its own communica-
tion frequency with the device 250 for network resource
conservation and conservation of device 250 resources.

[0159] One embodiment of the local proxy 275 further
includes a request/transaction manager 235, which can
detect, identify, intercept, process, manage, data requests
initiated on the device 250, for example, by applications 210
and/or 220, and/or directly/indirectly by a user request. The
request/transaction manager 235 can determine how and
when to process a given request or transaction, or a set of
requests/transactions, based on transaction characteristics.

[0160] The request/transaction manager 235 can prioritize
requests or transactions made by applications and/or users at
the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be deter-
mined by the request/transaction manager 235 by applying
a rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction,
time criticality of the transaction, time criticality of the data
transmitted in the transaction, and/or time criticality or
importance of an application making the request.

[0161] In addition, transaction characteristics can also
depend on whether the transaction was a result of user-
interaction or other user-initiated action on the device (e.g.,
user interaction with a application (e.g., a mobile applica-
tion)). In general, a time critical transaction can include a
transaction resulting from a user-initiated data transfer, and
can be prioritized as such. Transaction characteristics can
also depend on the amount of data that will be transferred or
is anticipated to be transferred as a result of the requested
transaction. For example, the connection manager 265, can
adjust the radio mode (e.g., high power or low power mode
via the radio controller 266) based on the amount of data that
will need to be transferred.

[0162] In addition, the radio controller 266/connection
manager 265 can adjust the radio power mode (high or low)
based on time criticality/sensitivity of the transaction. The
radio controller 266 can trigger the use of high power radio
mode when a time-critical transaction (e.g., a transaction
resulting from a user-initiated data transfer, an application
running in the foreground, any other event meeting a certain
criteria) is initiated or detected.

[0163] In general, the priorities can be set by default, for
example, based on device platform, device manufacturer,
operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for
example, the Facebook application (e.g., a mobile applica-
tion) can set its own priorities for various transactions (e.g.,
a status update can be of higher priority than an add friend
request or a poke request, a message send request can be of
higher priority than a message delete request, for example),
an email client or IM chat client may have its own configu-

US 2019/0200258 Al

12

rations for priority. The prioritization engine 241 may
include set of rules for assigning priority.

[0164] The prioritization engine 241 can also track net-
work provider limitations or specifications on application or
transaction priority in determining an overall priority status
for a request/transaction. Furthermore, priority can in part or
in whole be determined by user preferences, either explicit
or implicit. A user, can in general, set priorities at different
tiers, such as, specific priorities for sessions, or types, or
applications (e.g., a browsing session, a gaming session,
versus an IM chat session, the user may set a gaming session
to always have higher priority than an IM chat session,
which may have higher priority than web-browsing session).
A user can set application-specific priorities, (e.g., a user
may set Facebook-related transactions to have a higher
priority than LinkedIn-related transactions), for specific
transaction types (e.g., for all send message requests across
all applications to have higher priority than message delete
requests, for all calendar-related events to have a high
priority, etc.), and/or for specific folders.

[0165] The prioritization engine 241 can track and resolve
conflicts in priorities set by different entities. For example,
manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limi-
tations (e.g., set in default for a network service area,
geographic locale, set for a specific time of day, or set based
on service/fee type) may limit any user-specified settings
and/or application-set priorities. In some instances, a manual
synchronization request received from a user can override
some, most, or all priority settings in that the requested
synchronization is performed when requested, regardless of
the individually assigned priority or an overall priority
ranking for the requested action.

[0166] Priority can be specified and tracked internally in
any known and/or convenient manner, including but not
limited to, a binary representation, a multi-valued represen-
tation, a graded representation and all are considered to be
within the scope of the disclosed technology.

Jun. 27,2019

assignments can be made at more or less granular levels,
e.g., at the session level or at the application level, etc.
[0168] As shown by way of example in the above table, in
general, lower priority requests/transactions can include,
updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/
transactions, can in some instances include, status updates,
new IM chat message, new email, calendar event update/
cancellation/deletion, an event in a mobile gaming session,
or other entertainment related events, a purchase confirma-
tion through a web purchase or online, request to load
additional or download content, contact book related events,
a transaction to change a device setting, location-aware or
location-based events/transactions, or any other events/re-
quest/transactions initiated by a user or where the user is
known to be, expected to be, or suspected to be waiting for
a response, etc.

[0169] Inbox pruning events (e.g., email, or any other
types of messages), are generally considered low priority
and absent other impending events, generally will not trigger
use of the radio on the device 250. Specifically, pruning
events to remove old email or other content can be ‘piggy
backed’” with other communications if the radio is not
otherwise on, at the time of a scheduled pruning event. For
example, if the user has preferences set to ‘keep messages
for 7 days old,” then instead of powering on the device radio
to initiate a message delete from the device 250 the moment
that the message has exceeded 7 days old, the message is
deleted when the radio is powered on next. If the radio is
already on, then pruning may occur as regularly scheduled.
[0170] The request/transaction manager 235, can use the
priorities for requests (e.g., by the prioritization engine 241)
to manage outgoing traffic from the device 250 for resource
optimization (e.g., to utilize the device radio more efficiently
for battery conservation). For example, transactions/requests
below a certain priority ranking may not trigger use of the
radio on the device 250 if the radio is not already switched
on, as controlled by the connection manager 265. In contrast,

TABLE I
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not possible to sync
(Un)read email Low (Low if possible)
Move message Low New email in deleted items Low
Read more High Delete an email Low
Download attachment High (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar event High Any calendar change High
Add a contact High Any contact change High
Edit a contact High Wipe/lock device High
Search contacts High Settings change High
Change a setting High Any folder change High
Manual send/receive High Connector restart High (if no changes
IM status change Medium nothing is sent)
Auction outbid or change High Social Network Status Updates Medium
notification Sever Weather Alerts High
Weather Updates Low News Updates Low
[0167] Table 1 above shows, for illustration purposes,

some examples of transactions with examples of assigned
priorities in a binary representation scheme. Additional
assignments are possible for additional types of events,
requests, transactions, and as previously described, priority

the radio controller 266 can turn on the radio such a request
can be sent when a request for a transaction is detected to be
over a certain priority level.

[0171] In one embodiment, priority assignments (such as
that determined by the local proxy 275 or another device/

US 2019/0200258 Al

entity) can be used cause a remote device to modify its
communication with the frequency with the mobile device
or wireless device. For example, the remote device can be
configured to send notifications to the device 250 when data
of higher importance is available to be sent to the mobile
device or wireless device.

[0172] In one embodiment, transaction priority can be
used in conjunction with characteristics of user activity in
shaping or managing traffic, for example, by the traffic
shaping engine 255. For example, the traffic shaping engine
255 can, in response to detecting that a user is dormant or
inactive, wait to send low priority transactions from the
device 250, for a period of time. In addition, the traffic
shaping engine 255 can allow multiple low priority trans-
actions to accumulate for batch transferring from the device
250 (e.g., via the batching module 257). In one embodiment,
the priorities can be set, configured, or readjusted by a user.
For example, content depicted in Table I in the same or
similar form can be accessible in a user interface on the
device 250 and for example, used by the user to adjust or
view the priorities.

[0173] The batching module 257 can initiate batch transfer
based on certain criteria. For example, batch transfer (e.g.,
of multiple occurrences of events, some of which occurred
at different instances in time) may occur after a certain
number of low priority events have been detected, or after an
amount of time elapsed after the first of the low priority
event was initiated. In addition, the batching module 257 can
initiate batch transfer of the cumulated low priority events
when a higher priority event is initiated or detected at the
device 250. Batch transfer can otherwise be initiated when
radio use is triggered for another reason (e.g., to receive data
from a remote device such as host server 100 or 300). In one
embodiment, an impending pruning event (pruning of an
inbox), or any other low priority events, can be executed
when a batch transfer occurs.

[0174] In general, the batching capability can be disabled
or enabled at the event/transaction level, application level, or
session level, based on any one or combination of the
following: user configuration, device limitations/settings,
manufacturer specification, network provider parameters/
limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be
initiated when an application/window/file is closed out,
exited, or moved into the background; users can optionally
be prompted before initiating a batch transfer; users can also
manually trigger batch transfers.

[0175] In one embodiment, the local proxy 275 locally
adjusts radio use on the device 250 by caching data in the
cache 285. When requests or transactions from the device
250 can be satisfied by content stored in the cache 285, the
radio controller 266 need not activate the radio to send the
request to a remote entity (e.g., the host server 100, 300, as
shown in FIG. 1B and FIG. 3A or a content provider/
application server such as the server/provider 110 shown in
the examples of FIG. 1B and FIG. 1C). As such, the local
proxy 275 can use the local cache 285 and the cache policy
manager 245 to locally store data for satisfying data requests
to eliminate or reduce the use of the device radio for
conservation of network resources and device battery con-
sumption.

[0176] In leveraging the local cache, once the request/
transaction manager 225 intercepts a data request by an
application on the device 250, the local repository 285 can

Jun. 27,2019

be queried to determine if there is any locally stored
response, and also determine whether the response is valid.
When a valid response is available in the local cache 285, the
response can be provided to the application on the device
250 without the device 250 needing to access the cellular
network or wireless broadband network.

[0177] If a valid response is not available, the local proxy
275 can query a remote proxy (e.g., the server proxy 325 of
FIG. 3A) to determine whether a remotely stored response
is valid. If so, the remotely stored response (e.g., which may
be stored on the server cache 135 or optional caching server
199 shown in the example of FIG. 1C) can be provided to
the mobile device, possibly without the mobile device 250
needing to access the cellular network, thus relieving con-
sumption of network resources.

[0178] If a valid cache response is not available, or if
cache responses are unavailable for the intercepted data
request, the local proxy 275, for example, the caching policy
manager 245, can send the data request to a remote proxy
(e.g., server proxy 325 of FIG. 3A) which forwards the data
request to a content source (e.g., application server/content
provider 110 of FIG. 1B) and a response from the content
source can be provided through the remote proxy, as will be
further described in the description associated with the
example host server 300 of FIG. 3A. The cache policy
manager 245 can manage or process requests that use a
variety of protocols, including but not limited to HTTP,
HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync. The
caching policy manager 245 can locally store responses for
data requests in the local database 285 as cache entries, for
subsequent use in satisfying same or similar data requests.
[0179] The caching policy manager 245 can request that
the remote proxy monitor responses for the data request and
the remote proxy can notify the device 250 when an unex-
pected response to the data request is detected. In such an
event, the cache policy manager 245 can erase or replace the
locally stored response(s) on the device 250 when notified of
the unexpected response (e.g., new data, changed data,
additional data, etc.) to the data request. In one embodiment,
the caching policy manager 245 is able to detect or identify
the protocol used for a specific request, including but not
limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or
ActiveSync. In one embodiment, application specific han-
dlers (e.g., via the application protocol module 246 of the
caching policy manager 245) on the local proxy 275 allows
for optimization of any protocol that can be port mapped to
a handler in the distributed proxy (e.g., port mapped on the
proxy server 325 in the example of FIG. 3A).

[0180] Inone embodiment, the local proxy 275 notifies the
remote proxy such that the remote proxy can monitor
responses received for the data request from the content
source for changed results prior to returning the result to the
device 250, for example, when the data request to the
content source has yielded same results to be returned to the
mobile device. In general, the local proxy 275 can simulate
application server responses for applications on the device
250, using locally cached content. This can prevent utiliza-
tion of the cellular network for transactions where new/
changed data is not available, thus freeing up network
resources and preventing network congestion.

[0181] In one embodiment, the local proxy 275 includes
an application behavior detector 236 to track, detect,
observe, monitor, applications (e.g., proxy-aware and/or
unaware applications 210 and 220) accessed or installed on

US 2019/0200258 Al

the device 250. Application behaviors, or patterns in
detected behaviors (e.g., via the pattern detector 237) of one
or more applications accessed on the device 250 can be used
by the local proxy 275 to optimize traffic in a wireless
network needed to satisfy the data needs of these applica-
tions.

[0182] For example, based on detected behavior of mul-
tiple applications, the traffic shaping engine 255 can align
content requests made by at least some of the applications
over the network (wireless network) (e.g., via the alignment
module 256). The alignment module 256 can delay or
expedite some earlier received requests to achieve align-
ment. When requests are aligned, the traffic shaping engine
255 can utilize the connection manager to poll over the
network to satisfy application data requests. Content
requests for multiple applications can be aligned based on
behavior patterns or rules/settings including, for example,
content types requested by the multiple applications (audio,
video, text, etc.), device (e.g., mobile or wireless device)
parameters, and/or network parameters/traffic conditions,
network service provider constraints/specifications, etc.
[0183] In one embodiment, the pattern detector 237 can
detect recurrences in application requests made by the
multiple applications, for example, by tracking patterns in
application behavior. A tracked pattern can include, detect-
ing that certain applications, as a background process, poll
an application server regularly, at certain times of day, on
certain days of the week, periodically in a predictable
fashion, with a certain frequency, with a certain frequency in
response to a certain type of event, in response to a certain
type user query, frequency that requested content is the
same, frequency with which a same request is made, interval
between requests, applications making a request, or any
combination of the above, for example.

[0184] Such recurrences can be used by traffic shaping
engine 255 to offload polling of content from a content
source (e.g., from an application server/content provider 110
of FIG. 1A) that would result from the application requests
that would be performed at the mobile device or wireless
device 250 to be performed instead, by a proxy server (e.g.,
proxy server 125 of FIG. 1C or proxy server 325 of FIG. 3A)
remote from the device 250. Traffic shaping engine 255 can
decide to offload the polling when the recurrences match a
rule. For example, there are multiple occurrences or requests
for the same resource that have exactly the same content, or
returned value, or based on detection of repeatable time
periods between requests and responses such as a resource
that is requested at specific times during the day. The
offloading of the polling can decrease the amount of band-
width consumption needed by the mobile device 250 to
establish a wireless (cellular or other wireless broadband)
connection with the content source for repetitive content
polls.

[0185] As a result of the offloading of the polling, locally
cached content stored in the local cache 285 can be provided
to satisfy data requests at the device 250, when content
change is not detected in the polling of the content sources.
As such, when data has not changed, application data needs
can be satisfied without needing to enable radio use or
occupying cellular bandwidth in a wireless network. When
data has changed and/or new data has been received, the
remote entity to which polling is offloaded, can notify the
device 250. The remote entity may be the host server 300 as
shown in the example of FIG. 3A.

Jun. 27,2019

[0186] In one embodiment, the local proxy 275 can miti-
gate the need/use of periodic keep-alive messages (heartbeat
messages) to maintain TCP/IP connections, which can con-
sume significant amounts of power thus having detrimental
impacts on mobile device battery life. The connection man-
ager 265 in the local proxy (e.g., the heartbeat manager 267)
can detect, identify, and intercept any or all heartbeat (keep-
alive) messages being sent from applications.

[0187] The heartbeat manager 267 can prevent any or all
of these heartbeat messages from being sent over the cellu-
lar, or other network, and instead rely on the server com-
ponent of the distributed proxy system (e.g., shown in FIG.
1C) to generate and send the heartbeat messages to maintain
a connection with the backend (e.g., application server/
provider 110 in the example of FIG. 1A).

[0188] The local proxy 275 generally represents any one
or a portion of the functions described for the individual
managers, modules, and/or engines. The local proxy 275 and
device 250 can include additional or less components; more
or less functions can be included, in whole or in part, without
deviating from the novel art of the disclosure.

[0189] FIG. 2B depicts a block diagram illustrating a
further example of components in the cache system shown
in the example of FIG. 2A which is capable of caching and
adapting caching strategies for mobile application behavior
and/or network conditions.

[0190] In one embodiment, the caching policy manager
245 includes a metadata generator 203, a cache look-up
engine 205, a cache appropriateness decision engine 246, a
poll schedule generator 247, an application protocol module
248, a cache or connect selection engine 249 and/or a local
cache invalidator 244. The cache appropriateness decision
engine 246 can further include a timing predictor 246a,a
content predictor 2465, a request analyzer 246¢, and/or a
response analyzer 246d, and the cache or connect selection
engine 249 includes a response scheduler 249a. The meta-
data generator 203 and/or the cache look-up engine 205 are
coupled to the cache 285 (or local cache) for modification or
addition to cache entries or querying thereof.

[0191] The cache look-up engine 205 may further include
an ID or URI filter 2054, the local cache invalidator 244 may
further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine
247q and/or a time adjustment engine 2475. One embodi-
ment of caching policy manager 245 includes an application
cache policy repository 243. In one embodiment, the appli-
cation behavior detector 236 includes a pattern detector 237,
a poll interval detector 238, an application profile generator
239, and/or a priority engine 241. The poll interval detector
238 may further include a long poll detector 2384 having a
response/request tracking engine 238b. The poll interval
detector 238 may further include a long poll hunting detector
238c. The application profile generator 239 can further
include a response delay interval tracker 239a.

[0192] The pattern detector 237, application profile gen-
erator 239, and the priority engine 241 were also described
in association with the description of the pattern detector
shown in the example of FIG. 2A. One embodiment further
includes an application profile repository 242 which can be
used by the local proxy 275 to store information or metadata
regarding application profiles (e.g., behavior, patterns, type
of HTTP requests, etc.)

[0193] The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content

US 2019/0200258 Al

source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250
interacts and has content that may be suitable for caching.
For example, the decision engine 246 can use information
about a request and/or a response received for the request
initiated at the mobile device 250 to determine cacheability,
potential cacheability, or non-cacheability. In some
instances, the decision engine 246 can initially verify
whether a request is directed to a blacklisted destination or
whether the request itself originates from a blacklisted client
or application. If so, additional processing and analysis may
not be performed by the decision engine 246 and the request
may be allowed to be sent over the air to the server to satisfy
the request. The black listed destinations or applications/
clients (e.g., mobile applications) can be maintained locally
in the local proxy (e.g., in the application profile repository
242) or remotely (e.g., in the proxy server 325 or another
entity).

[0194] In one embodiment, the decision engine 246, for
example, via the request analyzer 246c¢, collects information
about an application or client request generated at the mobile
device 250. The request information can include request
characteristics information including, for example, request
method. For example, the request method can indicate the
type of HT'TP request generated by the mobile application or
client. In one embodiment, response to a request can be
identified as cacheable or potentially cacheable if the request
method is a GET request or POST request. Other types of
requests (e.g., OPTIONS, HEAD, PUT, DELETE, TRACE,
or CONNECT) may or may not be cached. In general, HTTP
requests with uncacheable request methods will not be
cached.

[0195] Request characteristics information can further
include information regarding request size, for example.
Responses to requests (e.g., HTTP requests) with body size
exceeding a certain size will not be cached. For example,
cacheability can be determined if the information about the
request indicates that a request body size of the request does
not exceed a certain size. In some instances, the maximum
cacheable request body size can be set to 8092 bytes. In
other instances, different values may be used, dependent on
network capacity or network operator specific settings, for
example.

[0196] Insome instances, content from a given application
server/content provider (e.g., the server/content provider 110
of FIG. 1C) is determined to be suitable for caching based
on a set of criteria, for example, criteria specifying time
criticality of the content that is being requested from the
content source. In one embodiment, the local proxy (e.g., the
local proxy 175 or 275 of FIG. 1C and FIG. 2A) applies a
selection criteria to store the content from the host server
which is requested by an application as cached elements in
a local cache on the mobile device to satisfy subsequent
requests made by the application.

[0197] The cache appropriateness decision engine 246,
further based on detected patterns of requests sent from the
mobile device 250 (e.g., by a mobile application or other
types of clients on the device 250) and/or patterns of
received responses, can detect predictability in requests
and/or responses. For example, the request characteristics
information collected by the decision engine 246, (e.g., the
request analyzer 246¢) can further include periodicity infor-
mation between a request and other requests generated by a

Jun. 27,2019

same client on the mobile device or other requests directed
to the same host (e.g., with similar or same identifier
parameters).

[0198] Periodicity can be detected, by the decision engine
246 or the request analyzer 246¢, when the request and the
other requests generated by the same client occur at a fixed
rate or nearly fixed rate, or at a dynamic rate with some
identifiable or partially or wholly reproducible changing
pattern. If the requests are made with some identifiable
pattern (e.g., regular intervals, intervals having a detectable
pattern, or trend (e.g., increasing, decreasing, constant, etc.)
the timing predictor 246a can determine that the requests
made by a given application on a device is predictable and
identify it to be potentially appropriate for caching, at least
from a timing standpoint.

[0199] An identifiable pattern or trend can generally
include any application or client behavior which may be
simulated either locally, for example, on the local proxy 275
on the mobile device 250 or simulated remotely, for
example, by the proxy server 325 on the host 300, or a
combination of local and remote simulation to emulate
application behavior.

[0200] In one embodiment, the decision engine 246, for
example, via the response analyzer 2464, can collect infor-
mation about a response to an application or client request
generated at the mobile device 250. The response is typically
received from a server or the host of the application (e.g.,
mobile application) or client which sent the request at the
mobile device 250. In some instances, the mobile client or
application can be the mobile version of an application (e.g.,
social networking, search, travel management, voicemail,
contact manager, email) or a web site accessed via a web
browser or via a desktop client.

[0201] For example, response characteristics information
can include an indication of whether transfer encoding or
chunked transfer encoding is used in sending the response.
In some instances, responses to HTTP requests with transfer
encoding or chunked transfer encoding are not cached, and
therefore are also removed from further analysis. The ratio-
nale here is that chunked responses are usually large and
non-optimal for caching, since the processing of these
transactions may likely slow down the overall performance.
Therefore, in one embodiment, cacheability or potential for
cacheability can be determined when transfer encoding is
not used in sending the response.

[0202] In addition, the response characteristics informa-
tion can include an associated status code of the response
which can be identified by the response analyzer 246d. In
some instances, HTTP responses with uncacheable status
codes are typically not cached. The response analyzer 2464
can extract the status code from the response and determine
whether it matches a status code which is cacheable or
uncacheable. Some cacheable status codes include by way of
example: 200—OK, 301—Redirect, 302—Found, 303—
See other, 304—Not Modified, 307 Temporary Redirect, or
500—Internal server error. Some uncacheable status codes
can include, for example, 403—Forbidden or 404—Not
found.

[0203] In one embodiment, cacheability or potential for
cacheability can be determined if the information about the
response does not indicate an uncacheable status code or
indicates a cacheable status code. If the response analyzer
246d detects an uncacheable status code associated with a
given response, the specific transaction (request/response

US 2019/0200258 Al

pair) may be eliminated from further processing and deter-
mined to be uncacheable on a temporary basis, a semi-
permanent, or a permanent basis. If the status code indicates
cacheability, the transaction (e.g., request and/or response
pair) may be subject to further processing and analysis to
confirm cacheability, as shown in the example flow charts of
FIG. 9-10.

[0204] Response characteristics information can also
include response size information. In general, responses can
be cached locally at the mobile device 250 if the responses
do not exceed a certain size. In some instances, the default
maximum cached response size is set to 115 KB. In other
instances, the max cacheable response size may be different
and/or dynamically adjusted based on operating conditions,
network conditions, network capacity, user preferences,
network operator requirements, or other application-spe-
cific, user specific, and/or device-specific reasons. In one
embodiment, the response analyzer 246d can identify the
size of the response, and cacheability or potential for cache-
ability can be determined if a given threshold or max value
is not exceeded by the response size.

[0205] Furthermore, response characteristics information
can include response body information for the response to
the request and other response to other requests generated by
a same client on the mobile device, or directed to a same
content host or application server. The response body infor-
mation for the response and the other responses can be
compared, for example, by the response analyzer 2464, to
prevent the caching of dynamic content (or responses with
content that changes frequently and cannot be efficiently
served with cache entries, such as financial data, stock
quotes, news feeds, real-time sporting event activities, etc.),
such as content that would no longer be relevant or up-to-
date if served from cached entries.

[0206] The cache appropriateness decision engine 246
(e.g., the content predictor 246b) can definitively identify
repeatability or identify indications of repeatability, poten-
tial repeatability, or predictability in responses received
from a content source (e.g., the content host/application
server 110 shown in the example of FIG. 1C). Repeatability
can be detected by, for example, tracking at least two
responses received from the content source and determines
if the two responses are the same. For example, cacheability
can be determined, by the response analyzer 2464, if the
response body information for the response and the other
responses sent by the same mobile client or directed to the
same host/server are same or substantially the same. The two
responses may or may not be responses sent in response to
consecutive requests. In one embodiment, hash values of the
responses received for requests from a given application are
used to determine repeatability of content (with or without
heuristics) for the application in general and/or for the
specific request. Additional same responses may be required
for some applications or under certain circumstances.

[0207] Repeatability in received content need not be 100%
ascertained. For example, responses can be determined to be
repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or
certain percentage of same/similar responses can be tracked
over a select period of time, set by default or set based on
the application generating the requests (e.g., whether the
application is highly dynamic with constant updates or less
dynamic with infrequent updates). Any indicated predict-
ability or repeatability, or possible repeatability, can be

Jun. 27,2019

utilized by the distributed system in caching content to be
provided to a requesting application or client on the mobile
device 250.

[0208] In one embodiment, for a long poll type request,
the local proxy 175 can begin to cache responses on a third
request when the response delay times for the first two
responses are the same, substantially the same, or detected
to be increasing in intervals. In general, the received
responses for the first two responses should be the same, and
upon veritying that the third response received for the third
request is the same (e.g., if RO=R1=R2), the third response
can be locally cached on the mobile device. Less or more
same responses may be required to begin caching, depend-
ing on the type of application, type of data, type of content,
user preferences, or carrier/network operator specifications.
[0209] Increasing response delays with same responses for
long polls can indicate a hunting period (e.g., a period in
which the application/client on the mobile device is seeking
the longest time between a request and response that a given
network will allow), as detected by the long poll hunting
detector 238¢ of the application behavior detector 236.
[0210] An example can be described below using TO, T1,
T2, where T indicates the delay time between when a request
is sent and when a response (e.g., the response header) is
detected/received for consecutive requests:

7T0=Response0(?)-Request0(r)=180 s. (+/-tolerance)
T1=Responsel(f)-Request1(#)=240 s. (+/-tolerance)

T2=Response2(t)—Request2(1)=500 s. (+/—tolerance)

[0211] In the example timing sequence shown above,
TO<T1<T2, this may indicate a hunting pattern for a long
poll when network timeout has not yet been reached or
exceeded. Furthermore, if the responses RO, R1, and R2
received for the three requests are the same, R2 can be
cached. In this example, R2 is cached during the long poll
hunting period without waiting for the long poll to settle,
thus expediting response caching (e.g., this is optional
accelerated caching behavior which can be implemented for
all or select applications).

[0212] As such, the local proxy 275 can specify informa-
tion that can be extracted from the timing sequence shown
above (e.g., polling schedule, polling interval, polling type)
to the proxy server and begin caching and to request the
proxy server to begin polling and monitoring the source
(e.g., using any of TO, T1, T2 as polling intervals but
typically T2, or the largest detected interval without timing
out, and for which responses from the source is received will
be sent to the proxy server 325 of FIG. 3 A for use in polling
the content source (e.g., application server/service provider
310)).

[0213] However, if the time intervals are detected to be
getting shorter, the application (e.g., mobile application)/
client may still be hunting for a time interval for which a
response can be reliably received from the content source
(e.g., application/server server/provider 110 or 310), and as
such caching typically should not begin until the request/
response intervals indicate the same time interval or an
increasing time interval, for example, for a long poll type
request.

[0214] An example of handling a detected decreasing
delay can be described below using TO, T1, T2, T3, and T4
where T indicates the delay time between when a request is

US 2019/0200258 Al

sent and when a response (e.g., the response header) is
detected/received for consecutive requests:

T0=Response0(f)-Request0(r)=160 s. (+/-tolerance)
T1=Responsel (£)-~Request1(#)=240 s. (+/-tolerance)
T2=Response2(f)-Request2(#)=500 s. (+/-tolerance)
73=Time out at 700 s. (+/—tolerance)

T4=Response4(t)-Request4(r)=600 (+/-tolerance)

[0215] If a pattern for response delays T1<T2<T3>T4 is
detected, as shown in the above timing sequence (e.g.,
detected by the long poll hunting detector 238¢ of the
application behavior detector 236), it can be determined that
T3 likely exceeded the network time out during a long poll
hunting period. In Request 3, a response likely was not
received since the connection was terminated by the net-
work, application, server, or other reason before a response
was sent or available. On Request 4 (after T4), if a response
(e.g., Response 4) is detected or received, the local proxy
275 can then use the response for caching (if the content
repeatability condition is met). The local proxy can also use
T4 as the poll interval in the polling schedule set for the
proxy server to monitor/poll the content source.

[0216] Note that the above description shows that caching
can begin while long polls are in hunting mode in the event
of detecting increasing response delays, as long as responses
are received and not timed out for a given request. This can
be referred to as the optional accelerated caching during
long poll hunting. Caching can also begin after the hunting
mode (e.g., after the poll requests have settled to a constant
or near constant delay value) has completed. Note that
hunting may or may not occur for long polls and when
hunting occurs; the proxy 275 can generally detect this and
determine whether to begin to cache during the hunting
period (increasing intervals with same responses) or wait
until the hunt settles to a stable value.

[0217] In one embodiment, the timing predictor 246a of
the cache appropriateness decision engine 246 can track
timing of responses received from outgoing requests from an
application (e.g., mobile application) or client to detect any
identifiable patterns which can be partially wholly repro-
ducible, such that locally cached responses can be provided
to the requesting client on the mobile device 250 in a manner
that simulates content source (e.g., application server/con-
tent provider 110 or 310) behavior. For example, the manner
in which (e.g., from a timing standpoint) responses or
content would be delivered to the requesting application/
client on the device 250. This ensures preservation of user
experience when responses to application or mobile client
requests are served from a local and/or remote cache instead
of being retrieved/received directly from the content source
(e.g., application, content provider 110 or 310).

[0218] In one embodiment, the decision engine 246 or the
timing predictor 246a determines the timing characteristics
a given application (e.g., mobile application) or client from,
for example, the request/response tracking engine 2384
and/or the application profile generator 239 (e.g., the
response delay interval tracker 239q). Using the timing
characteristics, the timing predictor 246a determines
whether the content received in response to the requests are
suitable or are potentially suitable for caching. For example,
poll request intervals between two consecutive requests

17

Jun. 27,2019

from a given application can be used to determine whether
request intervals are repeatable (e.g., constant, near constant,
increasing with a pattern, decreasing with a pattern, etc.) and
can be predicted and thus reproduced at least some of the
times either exactly or approximated within a tolerance
level.

[0219] In some instances, the timing characteristics of a
given request type for a specific application, for multiple
requests of an application, or for multiple applications can
be stored in the application profile repository 242. The
application profile repository 242 can generally store any
type of information or metadata regarding application
request/response characteristics including timing patterns,
timing repeatability, content repeatability, etc.

[0220] The application profile repository 242 can also
store metadata indicating the type of request used by a given
application (e.g., long polls, long-held HTTP requests,
HTTP streaming, push, COMET push, etc.) Application
profiles indicating request type by applications can be used
when subsequent same/similar requests are detected, or
when requests are detected from an application which has
already been categorized. In this manner, timing character-
istics for the given request type or for requests of a specific
application which has been tracked and/or analyzed, need
not be reanalyzed.

[0221] Application profiles can be associated with a time-
to-live (e.g., or a default expiration time). The use of an
expiration time for application profiles, or for various
aspects of an application or request’s profile can be used on
a case by case basis. The time-to-live or actual expiration
time of application profile entries can be set to a default
value or determined individually, or a combination thereof.
Application profiles can also be specific to wireless net-
works, physical networks, network operators, or specific
carriers.

[0222] One embodiment includes an application blacklist
manager 201. The application blacklist manager 201 can be
coupled to the application cache policy repository 243 and
can be partially or wholly internal to local proxy or the
caching policy manager 245. Similarly, the blacklist man-
ager 201 can be partially or wholly internal to local proxy or
the application behavior detector 236. The blacklist manager
201 can aggregate, track, update, manage, adjust, or dynami-
cally monitor a list of destinations of servers/host that are
‘blacklisted,” or identified as not cached, on a permanent or
temporary basis. The blacklist of destinations, when identi-
fied in a request, can potentially be used to allow the request
to be sent over the (cellular) network for servicing. Addi-
tional processing on the request may not be performed since
it is detected to be directed to a blacklisted destination.
[0223] Blacklisted destinations can be identified in the
application cache policy repository 243 by address identi-
fiers including specific URIs or patterns of identifiers includ-
ing URI patterns. In general, blacklisted destinations can be
set by or modified for any reason by any party including the
user (owner/user of mobile device 250), operating system/
mobile platform of device 250, the destination itself, net-
work operator (of cellular network), Internet service pro-
vider, other third parties, or according to a list of destinations
for applications known to be uncacheable/not suited for
caching. Some entries in the blacklisted destinations may
include destinations aggregated based on the analysis or
processing performed by the local proxy (e.g., cache appro-
priateness decision engine 246).

US 2019/0200258 Al

[0224] For example, applications or mobile clients on the
mobile device for which responses have been identified as
non-suitable for caching can be added to the blacklist. Their
corresponding hosts/servers may be added in addition to or
in lieu of an identification of the requesting application/
client on the mobile device 250. Some or all of such clients
identified by the proxy system can be added to the blacklist.
For example, for all application clients or applications that
are temporarily identified as not being suitable for caching,
only those with certain detected characteristics (based on
timing, periodicity, frequency of response content change,
content predictability, size, etc.) can be blacklisted.

[0225] The blacklisted entries may include a list of
requesting applications or requesting clients on the mobile
device (rather than destinations) such that, when a request is
detected from a given application or given client, it may be
sent through the network for a response, since responses for
blacklisted clients/applications are in most circumstances
not cached.

[0226] A given application profile may also be treated or
processed differently (e.g., different behavior of the local
proxy 275 and the remote proxy 325) depending on the
mobile account associated with a mobile device from which
the application is being accessed. For example, a higher
paying account, or a premier account may allow more
frequent access of the wireless network or higher bandwidth
allowance thus affecting the caching policies implemented
between the local proxy 275 and proxy server 325 with an
emphasis on better performance compared to conservation
of resources. A given application profile may also be treated
or processed differently under different wireless network
conditions (e.g., based on congestion or network outage,
etc.).

[0227] Note that cache appropriateness can be determined,
tracked, and managed for multiple clients or applications on
the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated
by a given client or application on the mobile device 250.
The caching policy manager 245, along with the timing
predictor 246a and/or the content predictor 2465 which
heuristically determines or estimates predictability or poten-
tial predictability, can track, manage and store cacheability
information for various application or various requests for a
given application. Cacheability information may also
include conditions (e.g., an application can be cached at
certain times of the day, or certain days of the week, or
certain requests of a given application can be cached, or all
requests with a given destination address can be cached)
under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine
246 and stored and/or updated when appropriate in the
application cache policy repository 243 coupled to the cache
appropriateness decision engine 246.

[0228] The information in the application cache policy
repository 243 regarding cacheability of requests, applica-
tions, and/or associated conditions can be used later on when
same requests are detected. In this manner, the decision
engine 246 and/or the timing and content predictors 246a/b
need not track and reanalyze request/response timing and
content characteristics to make an assessment regarding
cacheability. In addition, the cacheability information can in
some instances be shared with local proxies of other mobile
devices by way of direct communication or via the host
server (e.g., proxy server 325 of host server 300).

Jun. 27,2019

[0229] For example, cacheability information detected by
the local proxy 275 on various mobile devices can be sent to
a remote host server or a proxy server 325 on the host server
(e.g., host server 300 or proxy server 325 shown in the
example of FIG. 3A, host 100 and proxy server 125 in the
example of FIG. 1A-1C). The remote host or proxy server
can then distribute the information regarding application-
specific, request-specific cacheability information and/or
any associated conditions to various mobile devices or their
local proxies in a wireless network or across multiple
wireless networks (same service provider or multiple wire-
less service providers) for their use.

[0230] In general, the selection criteria for caching can
further include, by way of example but not limitation, the
state of the mobile device indicating whether the mobile
device is active or inactive, network conditions, and/or radio
coverage statistics. The cache appropriateness decision
engine 246 can in any one or any combination of the criteria,
and in any order, identifying sources for which caching may
be suitable.

[0231] Once application servers/content providers having
identified or detected content that is potentially suitable for
local caching on the mobile device 250, the cache policy
manager 245 can proceed to cache the associated content
received from the identified sources by storing content
received from the content source as cache elements in a local
cache (e.g., local cache 185 or 285 shown in the examples
of FIG. 1B-1C and FIG. 2A, respectively) on the mobile
device 250.

[0232] The response can be stored in the cache 285 (e.g.,
also referred as the local cache) as a cache entry. In addition
to the response to a request, the cached entry can include
response metadata having additional information regarding
caching of the response. The metadata may be generated by
the metadata generator 203 and can include, for example,
timing data such as the access time of the cache entry or
creation time of the cache entry. Metadata can include
additional information, such as any information suited for
use in determining whether the response stored as the cached
entry is used to satisfy the subsequent response. For
example, metadata information can further include, request
timing history (e.g., including request time, request start
time, request end time), hash of the request and/or response,
time intervals or changes in time intervals, etc.

[0233] The cache entry is typically stored in the cache 285
in association with a time-to-live (TTL), which for example
may be assigned or determined by the TTL manager 244a of
the cache invalidator 244. The time-to-live of a cache entry
is the amount of time the entry is persisted in the cache 285
regardless of whether the response is still valid or relevant
for a given request or client/application on the mobile device
250. For example, if the time-to-live of a given cache entry
is set to 12 hours, the cache entry is purged, removed, or
otherwise indicated as having exceeded the time-to-live,
even if the response body contained in the cache entry is still
current and applicable for the associated request.

[0234] A default time-to-live can be automatically used for
all entries unless otherwise specified (e.g., by the TTL
manager 244a), or each cache entry can be created with its
individual TTL (e.g., determined by the TTL manager 244a
based on various dynamic or static criteria). Note that each
entry can have a single time-to-live associated with both the
response data and any associated metadata. In some

US 2019/0200258 Al

instances, the associated metadata may have a different
time-to-live (e.g., a longer time-to-live) than the response
data.

[0235] The content source having content for caching can,
in addition or in alternate, be identified to a proxy server
(e.g., proxy server 125 or 325 shown in the examples of FIG.
1A-1C and FIG. 3A, respectively) remote from and in
wireless communication with the mobile device 250 such
that the proxy server can monitor the content source (e.g.,
application server/content provider 110) for new or changed
data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIG. 1A-1C and FIG. 2A, respectively) can identify
to the proxy server that content received from a specific
application server/content provider is being stored as cached
elements in the local cache 285.

[0236] Once content has been locally cached, the cache
policy manager 245, upon receiving future polling requests
to contact the application server/content host (e.g., 110 or
310), can retrieve the cached elements from the local cache
to respond to the polling request made at the mobile device
250 such that a radio of the mobile device is not activated to
service the polling request. For example, the cache look-up
engine 205 can query the cache 285 to identify the response
to be served to a response. The response can be served from
the cache in response to identifying a matching cache entry
and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache
look-up engine using a URI of the request or another type of
identifier (e.g., via the ID or URI filter 205a). The cache-
lookup engine 205 can further use the metadata (e.g., extract
any timing information or other relevant information) stored
with the matching cache entry to determine whether
response is still suited for use in being served to a current
request.

[0237] Note that the cache-look-up can be performed by
the engine 205 using one or more of various multiple
strategies. In one embodiment, multiple cook-up strategies
can be executed sequentially on each entry store din the
cache 285, until at least one strategy identifies a matching
cache entry. The strategy employed to performing cache
look-up can include a strict matching criteria or a matching
criteria which allows for non-matching parameters.

[0238] For example, the look-up engine 205 can perform
a strict matching strategy which searches for an exact match
between an identifier (e.g., a URI for a host or resource)
referenced in a present request for which the proxy is
attempting to identify a cache entry and an identifier stored
with the cache entries. In the case where identifiers include
URIs or URLs, the matching algorithm for strict matching
will search for a cache entry where all the parameters in the
URLs match. For example:

Example 1.

[0239] 1. Cache contains entry for http://test.com/prod-
ucts/2.

[0240] Request is being made to URI http://test.com/
products/

Strict strategy will find a match, since both URIs are same.

Example 2.

[0241] 1. Cache contains entry for http://test.com/prod-
ucts/?query=all

Jun. 27,2019

[0242] 2. Request is being made to URI http://test.com/
products/?query=sub

[0243] Under the strict strategy outlined above, a match
will not be found since the URIs differ in the query param-
eter.

[0244] In another example strategy, the look-up engine
205 looks for a cache entry with an identifier that partially
matches the identifier references in a present request for
which the proxy is attempting to identify a matching cache
entry. For example, the look-up engine 205 may look for a
cache entry with an identifier which differs from the request
identifier by a query parameter value. In utilizing this
strategy, the look-up engine 205 can collect information
collected for multiple previous requests (e.g., a list of
arbitrary parameters in an identifier) to be later checked with
the detected arbitrary parameter in the current request. For
example, in the case where cache entries are stored with URI
or URL identifiers, the look-up engine searches for a cache
entry with a URI differing by a query parameter. If found,
the engine 205 can examine the cache entry for information
collected during previous requests (e.g. a list of arbitrary
parameters) and checked whether the arbitrary parameter
detected in or extracted from the current URI/URL belongs
to the arbitrary parameters list.

Example 1.

[0245] 1. Cache contains entry for http://test.com/prod-
ucts/?query=all, where query is marked as arbitrary.
[0246] 2. Request is being made to URI http://text.com/
products/?query=sub

Match will be found, since query parameter is marked as
arbitrary.

Example 2.

[0247] 1. Cache contains entry for http://test.com/prod-
ucts/?query=all, where query is marked as arbitrary.
[0248] 2. Request is being made to URI http://test.com/
products/?query=sub&sort=asc

Match will not be found, since current request contains sort
parameter which is not marked as arbitrary in the cache
entry.

[0249] Additional strategies for detecting cache hit may be
employed. These strategies can be implemented singly or in
any combination thereof. A cache-hit can be determined
when any one of these strategies determines a match. A
cache miss may be indicated when the look-up engine 205
determines that the requested data cannot be served from the
cache 285, for any reason. For example, a cache miss may
be determined when no cache entries are identified for any
or all utilized look-up strategies.

[0250] Cache miss may also be determined when a match-
ing cache entry exists but determined to be invalid or
irrelevant for the current request. For example, the look-up
engine 205 may further analyze metadata (e.g., which may
include timing data of the cache entry) associated with the
matching cache entry to determine whether it is still suitable
for use in responding to the present request.

[0251] When the look-up engine 205 has identified a cache
hit (e.g., an event indicating that the requested data can be
served from the cache), the stored response in the matching
cache entry can be served from the cache to satisfy the
request of an application/client.

US 2019/0200258 Al

[0252] By servicing requests using cache entries stored in
cache 285, network bandwidth and other resources need not
be used to request/receive poll responses which may have
not changed from a response that has already been received
at the mobile device 250. Such servicing and fulfilling
application (e.g., mobile application) requests locally via
cache entries in the local cache 285 allows for more efficient
resource and mobile network traffic utilization and manage-
ment since the request need not be sent over the wireless
network further consuming bandwidth. In general, the cache
285 can be persisted between power on/off of the mobile
device 250, and persisted across application/client refreshes
and restarts.

[0253] For example, the local proxy 275, upon receipt of
an outgoing request from its mobile device 250 or from an
application or other type of client on the mobile device 250,
can intercept the request and determine whether a cached
response is available in the local cache 285 of the mobile
device 250. If so, the outgoing request is responded to by the
local proxy 275 using the cached response on the cache of
the mobile device. As such, the outgoing request can be
filled or satisfied without a need to send the outgoing request
over the wireless network, thus conserving network
resources and battery consumption.

[0254] In one embodiment, the responding to the request-
ing application/client on the device 250 is timed to corre-
spond to a manner in which the content server would have
responded to the outgoing request over a persistent connec-
tion (e.g., over the persistent connection, or long-held HTTP
connection, long poll type connection, that would have been
established absent interception by the local proxy). The
timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that
end user experience is not affected, or minimally affected by
serving stored content from the local cache 285 rather than
fresh content received from the intended content source
(e.g., content host/application server 110 of FIG. 1B-FIG.
1C). The timing can be replicated exactly or estimated
within a tolerance parameter, which may go unnoticed by the
user or treated similarly by the application so as to not cause
operation issues.

[0255] For example, the outgoing request can be a request
for a persistent connection intended for the content server
(e.g., application server/content provider of examples of
FIG. 1A-1C). In a persistent connection (e.g., long poll,
COMET-style push or any other push simulation in asyn-
chronous HTTP requests, long-held HTTP request, HTTP
streaming, or others) with a content source (server), the
connection is held for some time after a request is sent. The
connection can typically be persisted between the mobile
device and the server until content is available at the server
to be sent to the mobile device. Thus, there typically can be
some delay in time between when a long poll request is sent
and when a response is received from the content source. If
a response is not provided by the content source for a certain
amount of time, the connection may also terminate due to
network reasons (e.g., socket closure) if a response is not
sent.

[0256] Thus, to emulate a response from a content server
sent over a persistent connection (e.g., a long poll style
connection), the manner of response of the content server
can be simulated by allowing a time interval to elapse before
responding to the outgoing request with the cached
response. The length of the time interval can be determined

Jun. 27,2019

on a request by request basis or on an application by
application (client by client basis), for example.

[0257] In one embodiment, the time interval is determined
based on request characteristics (e.g., timing characteristics)
of an application on the mobile device from which the
outgoing request originates. For example, poll request inter-
vals (e.g., which can be tracked, detected, and determined by
the long poll detector 2384 of the poll interval detector 238)
can be used to determine the time interval to wait before
responding to a request with a local cache entry and man-
aged by the response scheduler 2494.

[0258] One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by an entity which is physi-
cally distinct and/or separate from the mobile device 250 in
monitoring the content source for one or more applications
(such that cached responses can be verified periodically by
polling a host server (host server 110 or 310) to which the
request is directed) on behalf of the mobile device. One
example of such an external entity which can monitor the
content at the source for the mobile device 250 is a proxy
server (e.g., proxy server 125 or 325 shown in the examples
of FIG. 1A-1C and FIG. 3A-C).

[0259] The polling schedule (e.g., including a rate/fre-
quency of polling) can be determined, for example, based on
the interval between the polling requests directed to the
content source from the mobile device. The polling schedule
or rate of polling may be determined at the mobile device
250 (by the local proxy). In one embodiment, the poll
interval detector 238 of the application behavior detector
236 can monitor polling requests directed to a content source
from the mobile device 250 in order to determine an interval
between the polling requests made from any or all applica-
tion (e.g., mobile application).

[0260] For example, the poll interval detector 238 can
track requests and responses for applications or clients on
the device 250. In one embodiment, consecutive requests are
tracked prior to detection of an outgoing request initiated
from the application (e.g., mobile application) on the mobile
device 250 by the same mobile client or application (e.g.,
mobile application). The polling rate can be determined
using request information collected for the request for which
the response is cached. In one embodiment, the rate is
determined from averages of time intervals between previ-
ous requests generated by the same client which generated
the request. For example, a first interval may be computed
between the current request and a previous request, and a
second interval can be computed between the two previous
requests. The polling rate can be set from the average of the
first interval and the second interval and sent to the proxy
server in setting up the caching strategy.

[0261] Alternate intervals may be computed in generating
an average; for example, multiple previous requests in
addition to two previous requests may be used, and more
than two intervals may be used in computing an average. In
general, in computing intervals, a given request need not
have resulted in a response to be received from the host
server/content source in order to use it for interval compu-
tation. In other words, the timing characteristics of a given
request may be used in interval computation, as long as the
request has been detected, even if the request failed in
sending, or if the response retrieval failed.

US 2019/0200258 Al

[0262] One embodiment of the poll schedule generator
247 includes a schedule update engine 2474 and/or a time
adjustment engine 2475. The schedule update engine 247a
can determine a need to update a rate or polling interval with
which a given application server/content host from a previ-
ously set value, based on a detected interval change in the
actual requests generated from a client or application (e.g.,
mobile application) on the mobile device 250.

[0263] For example, a request for which a monitoring rate
was determined may now be sent from the application (e.g.,
mobile application) or client at a different request interval.
The scheduled update engine 247a can determine the
updated polling interval of the actual requests and generate
a new rate, different from the previously set rate to poll the
host at on behalf of the mobile device 250. The updated
polling rate can be communicated to the remote proxy
(proxy server 325) over the cellular network for the remote
proxy to monitor the given host. In some instances, the
updated polling rate may be determined at the remote proxy
or remote entity which monitors the host.

[0264] In one embodiment, the time adjustment engine
247b can further optimize the poll schedule generated to
monitor the application server/content source (110 or 310).
For example, the time adjustment engine 2475 can option-
ally specify a time to start polling to the proxy server. For
example, in addition to setting the polling interval at which
the proxy server is to monitor the application, server/content
host can also specity the time at which an actual request was
generated at the mobile client/application.

[0265] However, in some cases, due to inherent transmis-
sion delay or added network delays or other types of
latencies, the remote proxy server receives the poll setup
from the local proxy with some delay (e.g., a few minutes,
or a few seconds). This has the effect of detecting response
change at the source after a request is generated by the
mobile client/application causing the invalidate of the
cached response to occur after it has once again been served
to the application after the response is no longer current or
valid.

[0266] To resolve this non-optimal result of serving the
out-dated content once again before invalidating it, the time
adjustment engine 2475 can specify the time (t0) at which
polling should begin in addition to the rate, where the
specified initial time t0 can be specified to the proxy server
325 as a time that is less than the actual time when the
request was generated by the mobile app/client. This way,
the server polls the resource slightly before the generation of
an actual request by the mobile client such that any content
change can be detected prior to an actual application request.
This prevents invalid or irrelevant out-dated content/re-
sponse from being served once again before fresh content is
served.

[0267] In one embodiment, an outgoing request from a
mobile device 250 is detected to be for a persistent connec-
tion (e.g., a long poll, COMET style push, and long-held
(HTTP) request) based on timing characteristics of prior
requests from the same application or client on the mobile
device 250. For example, requests and/or corresponding
responses can be tracked by the request/response tracking
engine 2386 of the long poll detector 238a of the poll
interval detector 238.

[0268] The timing characteristics of the consecutive
requests can be determined to set up a polling schedule for
the application or client. The polling schedule can be used to

Jun. 27,2019

monitor the content source (content source/application
server) for content changes such that cached content stored
on the local cache in the mobile device 250 can be appro-
priately managed (e.g., updated or discarded). In one
embodiment, the timing characteristics can include, for
example, a response delay time (‘D’) and/or an idle time
(‘IT).

[0269] In one embodiment, the response/request tracking
engine 2384 can track requests and responses to determine,
compute, and/or estimate, the timing diagrams for applicant
or client requests.

[0270] For example, the response/request tracking engine
2385 detects a first request (Request 0) initiated by a client
on the mobile device and a second request (Request 1)
initiated by the client on the mobile device after a response
is received at the mobile device responsive to the first
request. The second request is one that is subsequent to the
first request.

[0271] In one embodiment, the response/request tracking
engine 2384 can track requests and responses to determine,
compute, and/or estimate the timing diagrams for applicant
or client requests. The response/request tracking engine
2385 can detect a first request initiated by a client on the
mobile device and a second request initiated by the client on
the mobile device after a response is received at the mobile
device responsive to the first request. The second request is
one that is subsequent to the first request.

[0272] The response/request tracking engine 2385 further
determines relative timings between the first, second
requests, and the response received in response to the first
request. In general, the relative timings can be used by the
long poll detector 238a to determine whether requests
generated by the application are long poll requests.

[0273] Note that in general, the first and second requests
that are used by the response/request tracking engine 2385
in computing the relative timings are selected for use after
a long poll hunting period has settled or in the event when
long poll hunting does not occur. Timing characteristics that
are typical of a long poll hunting period can be, for example,
detected by the long poll hunting detector 238¢. In other
words, the requests tracked by the response/request tracking
engine 2386 and used for determining whether a given
request is a long poll occurs after the long poll has settled.
[0274] In one embodiment, the long poll hunting detector
238c¢ can identify or detect hunting mode, by identifying
increasing request intervals (e.g., increasing delays). The
long poll hunting detector 238a can also detect hunting
mode by detecting increasing request intervals, followed by
a request with no response (e.g., connection timed out), or by
detecting increasing request intervals followed by a decrease
in the interval. In addition, the long poll hunting detector
238c¢ can apply a filter value or a threshold value to request-
response time delay value (e.g., an absolute value) above
which the detected delay can be considered to be a long poll
request-response delay. The filter value can be any suitable
value characteristic of long polls and/or network conditions
(e.g.,2s,5s,10s,155,20s., etc.) and can be used as a filter
or threshold value.

[0275] The response delay time (‘D) refers to the start
time to receive a response after a request has been sent and
the idle refers to time to send a subsequent request after the
response has been received. In one embodiment, the outgo-
ing request is detected to be for a persistent connection based
on a comparison (e.g., performed by the tracking engine

US 2019/0200258 Al

238b) of the response delay time relative (‘D) or average of
(‘D’) (e.g., any average over any period of time) to the idle
time (‘I'T”), for example, by the long poll detector 238a. The
number of averages used can be fixed, dynamically adjusted,
or changed over a longer period of time. For example, the
requests initiated by the client are determined to be long poll
requests if the response delay time interval is greater than the
idle time interval (D>IT or D>>IT). In one embodiment, the
tracking engine 2385 of the long poll detector computes,
determines, or estimates the response delay time interval as
the amount of time elapsed between time of the first request
and initial detection or full receipt of the response.

[0276] In one embodiment, a request is detected to be for
a persistent connection when the idle time (I'T") is short since
persistent connections, established in response to long poll
requests or long poll HTTP requests for example, can also be
characterized in detecting immediate or near-immediate
issuance of a subsequent request after receipt of a response
to a previous request (e.g., [T ~0). As such, the idle time (IT")
can also be used to detect such immediate or near-immediate
re-request to identify long poll requests. The absolute or
relative timings determined by the tracking engine 2385 are
used to determine whether the second request is immediately
or near-immediately re-requested after the response to the
first request is received. For example, a request may be
categorized as a long poll request if D+RT+IT ~D+RT since
IT is small for this to hold true. IT may be determined to be
small if it is less than a threshold value. Note that the
threshold value could be fixed or calculated over a limited
time period (a session, a day, a month, etc.), or calculated
over a longer time period (e.g., several months or the life of
the analysis). For example, for every request, the average IT
can be determined, and the threshold can be determined
using this average IT (e.g., the average IT less a certain
percentage may be used as the threshold). This can allow the
threshold to automatically adapt over time to network con-
ditions and changes in server capability, resource availabil-
ity or server response. A fixed threshold can take upon any
value including by way of example but not limitation (e.g.,
1s5.2s.3s....etc.).

[0277] Inone embodiment, the long poll detector 238a can
compare the relative timings (e.g., determined by the tracker
engine 238b) to request-response timing characteristics for
other applications to determine whether the requests of the
application are long poll requests. For example, the requests
initiated by a client or application can be determined to be
long poll requests if the response delay interval time (‘D’) or
the average response delay interval time (e.g., averaged over
x number of requests or any number of delay interval times
averaged over x amount of time) is greater than a threshold
value.

[0278] The threshold value can be determined using
response delay interval times for requests generated by other
clients, for example by the request/response tracking engine
238b and/or by the application profile generator 239 (e.g.,
the response delay interval tracker 2394). The other clients
may reside on the same mobile device and the threshold
value is determined locally by components on the mobile
device. The threshold value can be determined for all
requests over all resources server over all networks, for
example. The threshold value can be set to a specific
constant value (e.g., 30 seconds, for example) to be used for

Jun. 27,2019

all requests, or any request which does not have an appli-
cable threshold value (e.g., long poll is detected if D>30
seconds).

[0279] In some instances, the other clients reside on dif-
ferent mobile devices and the threshold can be determined
by a proxy server (e.g., proxy server 325 of the host 300
shown in the example of FIG. 3A-B) which is external to the
mobile device and able to communicate over a wireless
network with the multiple different mobile devices, as will
be further described with reference to FIG. 3B.

[0280] In one embodiment, the cache policy manager 245
sends the polling schedule to the proxy server (e.g., proxy
server 125 or 325 shown in the examples of FIG. 1A-1C and
FIG. 3A) and can be used by the proxy server in monitoring
the content source, for example, for changed or new content
(updated response different from the cached response asso-
ciated with a request or application). A polling schedule sent
to the proxy can include multiple timing parameters includ-
ing but not limited to interval (time from request 1 to request
2) or a time out interval (time to wait for response, used in
long polls, for example). Referring to the timing diagram of
a request/response timing sequence timing intervals ‘RD’,
‘D’, ‘RT°, and/or ‘IT’, or some statistical manipulation of
the above values (e.g., average, standard deviation, etc.) may
all or in part be sent to the proxy server.

[0281] For example, in the case when the local proxy 275
detects a long poll, the various timing intervals in a request/
response timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT”) can
be sent to the proxy server 325 for use in polling the content
source (e.g., application server/content host 110). The local
proxy 275 can also identify to the proxy server 325 that a
given application or request to be monitored is a long poll
request (e.g., instructing the proxy server to set a ‘long poll
flag’, for example). In addition, the proxy server uses the
various timing intervals to determine when to send keep-
alive indications on behalf of mobile devices.

[0282] The local cache invalidator 244 of the caching
policy manager 245 can invalidate cache elements in the
local cache (e.g., cache 185 or 285) when new or changed
data (e.g., updated response) is detected from the application
server/content source for a given request. The cached
response can be determined to be invalid for the outgoing
request based on a notification received from the proxy
server (e.g., proxy 325 or the host server 300). The source
which provides responses to requests of the mobile client
can be monitored to determine relevancy of the cached
response stored in the cache of the mobile device 250 for the
request. For example, the cache invalidator 244 can further
remove/delete the cached response from the cache of the
mobile device when the cached response is no longer valid
for a given request or a given application.

[0283] In one embodiment, the cached response is
removed from the cache after it is provided once again to an
application which generated the outgoing request after deter-
mining that the cached response is no longer valid. The
cached response can be provided again without waiting for
the time interval or provided again after waiting for a time
interval (e.g., the time interval determined to be specific to
emulate the response delay in a long poll). In one embodi-
ment, the time interval is the response delay ‘D’ or an
average value of the response delay ‘D’ over two or more
values.

[0284] The new or changed data can be, for example,
detected by the proxy server (e.g., proxy server 125 or 325

US 2019/0200258 Al

shown in the examples of FIG. 1A-1C and FIG. 3A). When
a cache entry for a given request/poll has been invalidated,
the use of the radio on the mobile device 250 can be enabled
(e.g., by the local proxy 275 or the cache policy manager
245) to satisty the subsequent polling requests, as further
described with reference to the interaction diagram of FIG.
9-10.

[0285] One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request, made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the
radio of the mobile device needs to be activated to satisfy the
request made by the application (e.g., mobile application)
and also determine whether the cached response is still valid
for the outgoing request prior to responding to the outgoing
request using the cached response.

[0286] In one embodiment, the local proxy 275, in
response to determining that relevant cached content exists
and is still valid, can retrieve the cached elements from the
local cache to provide a response to the application (e.g.,
mobile application) which made the polling request such
that a radio of the mobile device is not activated to provide
the response to the application (e.g., mobile application). In
general, the local proxy 275 continues to provide the cached
response each time the outgoing request is received until the
updated response different from the cached response is
detected.

[0287] When it is determined that the cached response is
no longer valid, a new request for a given request is
transmitted over the wireless network for an updated
response. The request can be transmitted to the application
server/content provider (e.g., server/host 110) or the proxy
server on the host server (e.g., proxy 325 on the host 300)
for a new and updated response. In one embodiment the
cached response can be provided again as a response to the
outgoing request if a new response is not received within the
time interval, prior to removal of the cached response from
the cache on the mobile device.

[0288] FIG. 2C depicts a block diagram illustrating
another example of components in the application behavior
detector 236 and the caching policy manager 245 in the local
proxy 275 on the client-side of the distributed proxy system
shown in the example of FIG. 2A. The illustrated application
behavior detector 236 and the caching policy manager 245
can, for example, enable the local proxy 275 to detect cache
defeat and perform caching of content addressed by identi-
fiers intended to defeat cache.

[0289] In one embodiment, the caching policy manager
245 includes a cache defeat resolution engine 221, an
identifier formalizer 211, a cache appropriateness decision
engine 246, a poll schedule generator 247, an application
protocol module 248, a cache or connect selection engine
249 having a cache query module 229, and/or a local cache
invalidator 244. The cache defeat resolution engine 221 can
further include a pattern extraction module 222 and/or a
cache defeat parameter detector 223. The cache defeat
parameter detector 223 can further include a random param-

Jun. 27,2019

eter detector 224 and/or a time/date parameter detector 226.
One embodiment further includes an application cache
policy repository 243 coupled to the decision engine 246.
[0290] Inone embodiment, the application behavior detec-
tor 236 includes a pattern detector 237, a poll interval
detector 238, an application profile generator 239, and/or a
priority engine 241. The pattern detector 237 can further
include a cache defeat parameter detector 223 having also,
for example, a random parameter detector 233 and/or a
time/date parameter detector 234. One embodiment further
includes an application profile repository 242 coupled to the
application profile generator 239. The application profile
generator 239, and the priority engine 241 have been
described in association with the description of the applica-
tion behavior detector 236 in the example of FIG. 2A.
[0291] The cache defeat resolution engine 221 can detect,
identify, track, manage, and/or monitor content or content
sources (e.g., servers or hosts) which employ identifiers
and/or are addressed by identifiers (e.g., resource identifiers
such as URLs and/or URIs) with one or more mechanisms
that defeat cache or are intended to defeat cache. The cache
defeat resolution engine 221 can, for example, detect from
a given data request generated by an application or client
that the identifier defeats or potentially defeats cache, where
the data request otherwise addresses content or responses
from a host or server (e.g., application server/content host
110 or 310) that is cacheable.

[0292] In one embodiment, the cache defeat resolution
engine 221 detects or identifies cache defeat mechanisms
used by content sources (e.g., application server/content host
110 or 310) using the identifier of a data request detected at
the mobile device 250. The cache defeat resolution engine
221 can detect or identify a parameter in the identifier which
can indicate that cache defeat mechanism is used. For
example, a format, syntax, or pattern of the parameter can be
used to identify cache defeat (e.g., a pattern, format, or
syntax as determined or extracted by the pattern extraction
module 222).

[0293] The pattern extraction module 222 can parse an
identifier into multiple parameters or components and per-
form a matching algorithm on each parameter to identify any
of which match one or more predetermined formats (e.g., a
date and/or time format). For example, the results of the
matching or the parsed out parameters from an identifier can
be used (e.g., by the cache defeat parameter detector 223) to
identify cache defeating parameters which can include one
or more changing parameters.

[0294] The cache defeat parameter detector 223, in one
embodiment can detect random parameters (e.g., by the
random parameter detector 224) and/or time and/or date
parameters which are typically used for cache defeat. The
cache defeat parameter detector 223 can detect random
parameters and/or time/dates using commonly employed
formats for these parameters and performing pattern match-
ing algorithms and tests.

[0295] In addition to detecting patterns, formats, and/or
syntaxes, the cache defeat parameter detector 223 further
determines or confirms whether a given parameter is defeat-
ing cache and whether the addressed content can be cached
by the distributed caching system. The cache defeat param-
eter detector 223 can detect this by analyzing responses
received for the identifiers utilized by a given data request.
In general, a changing parameter in the identifier is identified
to indicate cache defeat when responses corresponding to

US 2019/0200258 Al

multiple data requests are the same even when the multiple
data requests uses identifiers with the changing parameter
being different for each of the multiple data requests. For
example, the request/response pairs illustrate that the
responses received are the same, even though the resource
identifier includes a parameter that changes with each
request.

[0296] For example, at least two same responses may be
required to identify the changing parameter as indicating
cache defeat. In some instances, at least three same
responses may be required. The requirement for the number
of same responses needed to determine that a given param-
eter with a varying value between requests is cache defeat-
ing may be application specific, context dependent, and/or
user dependent/user specified, or a combination of the
above. Such a requirement may also be static or dynamically
adjusted by the distributed cache system to meet certain
performance thresholds and/or either explicit/implicit feed-
back regarding user experience (e.g., whether the user or
application is receiving relevant/fresh content responsive to
requests). More of the same responses may be required to
confirm cache defeat, or for the system to treat a given
parameter as intended for cache defeat if an application
begins to malfunction due to response caching and/or if the
user expresses dissatisfaction (explicit user feedback) or the
system detects user frustration (implicit user cues).

[0297] The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content
source (e.g., application server/content provider 110 in the
example of FIG. 1C) with which a mobile device 250
interacts, has content that may be suitable for caching. In
some instances, content from a given application server/
content provider (e.g., the server/provider 110 of FIG. 1C) is
determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of
the content that is being requested from the content source).
In one embodiment, the local proxy (e.g., the local proxy
175 or 275 of FIG. 1A-1C and FIG. 2A) applies a selection
criteria to store the content from the host server which is
requested by an application as cached elements in a local
cache on the mobile device to satisfy subsequent requests
made by the application.

[0298] The selection criteria can also include, by way of
example, but not limitation, state of the mobile device
indicating whether the mobile device is active or inactive,
network conditions, and/or radio coverage statistics. The
cache appropriateness decision engine 246 can any one or
any combination of the criteria, and in any order, in iden-
tifying sources for which caching may be suitable.

[0299] Once application servers/content providers having
identified or detected content that is potentially suitable for
local caching on the mobile device 250, the cache policy
manager 245 can proceed to cache the associated content
received from the identified sources by storing content
received from the content source as cache elements in a local
cache (e.g., local cache 185 or 285 shown in the examples
of FIG. 1A-1C and FIG. 2A, respectively) on the mobile
device 250. The content source can also be identified to a
proxy server (e.g., proxy server 125 or 325 shown in the
examples of FIG. 1A-1C and FIG. 3 A, respectively) remote
from and in wireless communication with the mobile device
250 such that the proxy server can monitor the content
source (e.g., application server/content provider 110) for
new or changed data. Similarly, the local proxy (e.g., the

Jun. 27,2019

local proxy 175 or 275 of FIG. 1A-1C and FIG. 2A,
respectively) can identify to the proxy server that content
received from a specific application server/content provider
is being stored as cached elements in the local cache.
[0300] In one embodiment, cache elements are stored in
the local cache 285 as being associated with a normalized
version of an identifier for an identifier employing one or
more parameters intended to defeat cache. The identifier can
be normalized by the identifier normalizer module 211 and
the normalization process can include, by way of example,
one or more of: converting the URI scheme and host to
lower-case, capitalizing letters in percent-encoded escape
sequences, removing a default port, and removing duplicate
slashes.

[0301] Inanother embodiment, the identifier is normalized
by removing the parameter for cache defeat and/or replacing
the parameter with a static value which can be used to
address or be associated with the cached response received
responsive to a request utilizing the identifier by the nor-
malizer 211 or the cache defeat parameter handler 212. For
example, the cached elements stored in the local cache 285
(shown in FIG. 2A) can be identified using the normalized
version of the identifier or a hash value of the normalized
version of the identifier. The hash value of an identifier or of
the normalized identifier may be generated by the hash
engine 213.

[0302] Once content has been locally cached, the cache
policy manager 245 can, upon receiving future polling
requests to contact the content server, retrieve the cached
elements from the local cache to respond to the polling
request made at the mobile device 250 such that a radio of
the mobile device is not activated to service the polling
request. Such servicing and fulfilling application (e.g.,
mobile application) requests locally via local cache entries
allow for more efficient resource and mobile network traffic
utilization and management since network bandwidth and
other resources need not be used to request/receive poll
responses which may have not changed from a response that
has already been received at the mobile device 250.
[0303] One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG.
1A-1C and FIG. 3A) in monitoring the content source for
one or more applications. The polling schedule can be
determined, for example, based on the interval between the
polling requests directed to the content source from the
mobile device. In one embodiment, the poll interval detector
238 of the application behavior detector can monitor polling
requests directed to a content source from the mobile device
250 in order to determine an interval between the polling
requests made from any or all application (e.g., mobile
application).

[0304] In one embodiment, the cache policy manager 245
sends the polling schedule is sent to the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG.
1A-1C and FIG. 3A) and can be used by the proxy server in
monitoring the content source, for example, for changed or
new content. The local cache invalidator 244 of the caching
policy manager 245 can invalidate cache elements in the
local cache (e.g., cache 185 or 285) when new or changed
data is detected from the application server/content source

US 2019/0200258 Al

for a given request. The new or changed data can be, for
example, detected by the proxy server. When a cache entry
for a given request/poll has been invalidated and/or removed
(e.g., deleted from cache) after invalidation, the use of the
radio on the mobile device 250 can be enabled (e.g., by the
local proxy or the cache policy manager 245) to satisty the
subsequent polling requests, as further described with ref-
erence to the interaction diagram of FIG. 4B.

[0305] In another embodiment, the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG.
1A-1C and FIG. 3A) uses a modified version of a resource
identifier used in a data request to monitor a given content
source (the application server/content host 110 of FIG.
1A-1C to which the data request is addressed) for new or
changed data. For example, in the instance where the content
source or identifier is detected to employ cache defeat
mechanisms, a modified (e.g., normalized) identifier can be
used instead to poll the content source. The modified or
normalized version of the identifier can be communicated to
the proxy server by the caching policy manager 245, or more
specifically the cache defeat parameter handler 212 of the
identifier normalizer 211.

[0306] The modified identifier used by the proxy server to
poll the content source on behalf of the mobile device/
application (e.g., mobile application) may or may not be the
same as the normalized identifier. For example, the normal-
ized identifier may be the original identifier with the chang-
ing cache defeating parameter removed whereas the modi-
fied identifier uses a substitute parameter in place of the
parameter that is used to defeat cache (e.g., the changing
parameter replaced with a static value or other predeter-
mined value known to the local proxy and/or proxy server).
The modified parameter can be determined by the local
proxy 275 and communicated to the proxy server. The
modified parameter may also be generated by the proxy
server (e.g., by the identifier modifier module 353 shown in
the example of FIG. 3C).

[0307] One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the
request made by the application (e.g., mobile application). In
one embodiment, the local proxy 275, in response to deter-
mining that relevant cached content exists and is still valid,
can retrieve the cached elements from the local cache to
provide a response to the application (e.g., mobile applica-
tion) which made the polling request such that a radio of the
mobile device is not activated to provide the response to the
application (e.g., mobile application).

[0308] In one embodiment, the cached elements stored in
the local cache 285 (shown in FIG. 2A) can be identified
using a normalized version of the identifier or a hash value
of the normalized version of the identifier, for example,
using the cache query module 229. Cached elements can be
stored with normalized identifiers which have cache defeat-
ing parameters removed or otherwise replaced such that the

Jun. 27,2019

relevant cached elements can be identified and retrieved in
the future to satisfy other requests employing the same type
of cache defeat. For example, when an identifier utilized in
a subsequent request is determined to be utilizing the same
cache defeating parameter, the normalized version of this
identifier can be generated and used to identify a cached
response stored in the mobile device cache to satisfy the data
request. The hash value of an identifier or of the normalized
identifier may be generated by the hash engine 213 of the
identifier normalizer 211.

[0309] FIG. 2D depicts a block diagram illustrating
examples of additional components in the local proxy 275
shown in the example of FIG. 2A which is further capable
of performing mobile traffic categorization and policy
implementation based on application behavior and/or user
activity.

[0310] In this embodiment of the local proxy 275, the user
activity module 215 further includes one or more of, a user
activity tracker 215a, a user activity prediction engine 2155,
and/or a user expectation manager 215¢. The application
behavior detect 236 can further include a prioritization
engine 241a, a time criticality detection engine 2415, an
application state categorizer 241c, and/or an application
traffic categorizer 241d. The local proxy 275 can further
include a backlight detector 219 and/or a network configu-
ration selection engine 251. The network configuration
selection engine 251 can further include, one or more of, a
wireless generation standard selector 251a, a data rate
specifier 2515, an access channel selection engine 251c,
and/or an access point selector.

[0311] Inone embodiment, the application behavior detec-
tor 236 is able to detect, determined, identify, or infer, the
activity state of an application on the mobile device 250 to
which traffic has originated from or is directed to, for
example, via the application state categorizer 241¢ and/or
the traffic categorizer 241d. The activity state can be deter-
mined by whether the application is in a foreground or
background state on the mobile device (via the application
state categorizer 241c¢) since the traffic for a foreground
application vs. a background application may be handled
differently.

[0312] In one embodiment, the activity state can be deter-
mined, detected, identified, or inferred with a level of
certainty of heuristics, based on the backlight status of the
mobile device 250 (e.g., by the backlight detector 219) or
other software agents or hardware sensors on the mobile
device, including but not limited to, resistive sensors,
capacitive sensors, ambient light sensors, motion sensors,
touch sensors, etc. In general, if the backlight is on, the
traffic can be treated as being or determined to be generated
from an application that is active or in the foreground, or the
traffic is interactive. In addition, if the backlight is on, the
traffic can be treated as being or determined to be traffic from
user interaction or user activity, or traffic containing data that
the user is expecting within some time frame.

[0313] Inone embodiment, the activity state is determined
based on whether the traffic is interactive traffic or mainte-
nance traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that

US 2019/0200258 Al

may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

[0314] For example, a mail or message delete action at a
mobile device 250 generates a request to delete the corre-
sponding mail or message at the server, but the user typically
is not waiting for a response. Thus, such a request may be
categorized as maintenance traffic, or traffic having a lower
priority (e.g., by the prioritization engine 241a) and/or is not
time-critical (e.g., by the time criticality detection engine
214b).

[0315] Contrastingly, a mail ‘read’ or message ‘read’
request initiated by a user a the mobile device 250, can be
categorized as ‘interactive traffic’ since the user generally is
waiting to access content or data when they request to read
a message or mail. Similarly, such a request can be catego-
rized as having higher priority (e.g., by the prioritization
engine 241a) and/or as being time critical/time sensitive
(e.g., by the time criticality detection engine 2415).

[0316] The time criticality detection engine 2415 can
generally determine, identify, infer the time sensitivity of
data contained in traffic sent from the mobile device 250 or
to the mobile device from a host server (e.g., host 300) or
application server (e.g., app server/content source 110). For
example, time sensitive data can include, status updates,
stock information updates, IM presence information, email
messages or other messages, actions generated from mobile
gaming applications, webpage requests, location updates,
etc. Data that is not time sensitive or time critical, by nature
of the content or request, can include requests to delete
messages, mark-as-read or edited actions, application-spe-
cific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does
not frequently changing by nature, etc. In some instances
when the data is not time critical, the timing with which to
allow the traffic to pass through is set based on when
additional data needs to be sent from the mobile device 250.
For example, traffic shaping engine 255 can align the traffic
with one or more subsequent transactions to be sent together
in a single power-on event of the mobile device radio (e.g.,
using the alignment module 256 and/or the batching module
257). The alignment module 256 can also align polling
requests occurring close in time directed to the same host
server, since these request are likely to be responded to with
the same data.

[0317] Inthe alternate or in combination, the activity state
can be determined from assessing, determining, evaluating,
inferring, identifying user activity at the mobile device 250
(e.g., via the user activity module 215). For example, user
activity can be directly detected and tracked using the user
activity tracker 215a. The traffic resulting therefrom can
then be categorized appropriately for subsequent processing
to determine the policy for handling. Furthermore, user
activity can be predicted or anticipated by the user activity
prediction engine 2155. By predicting user activity or antici-
pating user activity, the traffic thus occurring after the
prediction can be treated as resulting from user activity and
categorized appropriately to determine the transmission
policy.

[0318] In addition, the user activity module 215 can also
manage user expectations (e.g., via the user expectation
manager 215¢ and/or in conjunction with the activity tracker
215 and/or the prediction engine 2155) to ensure that traffic
is categorized appropriately such that user expectations are
generally met. For example, a user-initiated action should be

Jun. 27,2019

analyzed (e.g., by the expectation manager 215) to deter-
mine or infer whether the user would be waiting for a
response. If so, such traffic should be handled under a policy
such that the user does not experience an unpleasant delay
in receiving such a response or action.

[0319] In one embodiment, an advanced generation wire-
less standard network is selected for use in sending traffic
between a mobile device and a host server in the wireless
network based on the activity state of the application on the
mobile device for which traffic is originated from or directed
to. An advanced technology standards such as the 3G, 3.5G,
3G+, 4G, or LTE network can be selected for handling traffic
generated as a result of user interaction, user activity, or
traffic containing data that the user is expecting or waiting
for. Advanced generation wireless standard network can also
be selected for to transmit data contained in traffic directed
to the mobile device which responds to foreground activi-
ties.

[0320] In categorizing traffic and defining a transmission
policy for mobile traffic, a network configuration can be
selected for use (e.g., by the network configuration selection
engine 251) on the mobile device 250 in sending traffic
between the mobile device and a proxy server (325) and/or
an application server (e.g., app server/host 110). The net-
work configuration that is selected can be determined based
on information gathered by the application behavior module
236 regarding application activity state (e.g., background or
foreground traffic), application traffic category (e.g., inter-
active or maintenance traffic), any priorities of the data/
content, time sensitivity/criticality.

[0321] The network configuration selection engine 2510
can select or specify one or more of, a generation standard
(e.g., via wireless generation standard selector 251a), a data
rate (e.g., via data rate specifier 2515), an access channel
(e.g., access channel selection engine 251c¢), and/or an
access point (e.g., via the access point selector 2514), in any
combination.

[0322] For example, a more advanced generation (e.g.,
3G, LTE, or 4G or later) can be selected or specified for
traffic when the activity state is in interaction with a user or
in a foreground on the mobile device. Contrastingly, an older
generation standard (e.g., 2G, 2.5G, or 3G or older) can be
specified for traffic when one or more of the following is
detected, the application is not interacting with the user, the
application is running in the background on the mobile
device, or the data contained in the traffic is not time critical,
or is otherwise determined to have lower priority.

[0323] Similarly, a network configuration with a slower
data rate can be specified for traffic when one or more of the
following is detected, the application is not interacting with
the user, the application is running in the background on the
mobile device, or the data contained in the traffic is not time
critical. The access channel (e.g., Forward access channel or
dedicated channel) can be specified.

[0324] FIG. 3A depicts a block diagram illustrating an
example of server-side components in a distributed proxy
and/or cache system (e.g., (distributed) traffic optimizer,
traffic management system, (distributed) content caching
mechanism for traffic alleviation) (e.g., (distributed) traffic
optimizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) residing on a host
server 300 that manages traffic in a wireless network for
resource conservation. The server-side proxy (or proxy
server 325) can further categorize mobile traffic and/or

US 2019/0200258 Al

implement delivery policies based on application behavior,
content priority, user activity, and/or user expectations.
[0325] The host server 300 generally includes, for
example, a network interface 308 and/or one or more
repositories 312, 314, and 316. Note that server 300 may be
any portable/mobile or non-portable device, server, cluster
of computers and/or other types of processing units (e.g.,
any number of a machine shown in the example of FIG. 16)
able to receive or transmit signals to satisfy data requests
over a network including any wired or wireless networks
(e.g., WiFi, cellular, Bluetooth, etc.).

[0326] The network interface 308 can include networking
module(s) or devices(s) that enable the server 300 to mediate
data in a network with an entity that is external to the host
server 300, through any known and/or convenient commu-
nications protocol supported by the host and the external
entity. Specifically, the network interface 308 allows the
server 300 to communicate with multiple devices including
mobile phone devices 350 and/or one or more application
servers/content providers 310.

[0327] The host server 300 can store information about
connections (e.g., network characteristics, conditions, types
of connections, etc.) with devices in the connection metadata
repository 312. Additionally, any information about third
party application or content providers can also be stored in
the repository 312. The host server 300 can store informa-
tion about devices (e.g., hardware capability, properties,
device settings, device language, network capability, manu-
facturer, device model, OS, OS version, etc.) in the device
information repository 314. Additionally, the host server 300
can store information about network providers and the
various network service areas in the network service pro-
vider repository 316.

[0328] The communication enabled by network interface
308 allows for simultaneous connections (e.g., including
cellular connections) with devices 350 and/or connections
(e.g., including wired/wireless, HT'TP, Internet connections,
LAN, WiFi, etc.) with content servers/providers 310 to
manage the traffic between devices 350 and content provid-
ers 310, for optimizing network resource utilization and/or
to conserver power (battery) consumption on the serviced
devices 350. The host server 300 can communicate with
mobile devices 350 serviced by different network service
providers and/or in the same/different network service areas.
The host server 300 can operate and is compatible with
devices 350 with varying types or levels of mobile capa-
bilities, including by way of example but not limitation, 1G,
2G, 2G transitional (2.5G, 2.75G), 3G (IMT-2000), 3G
transitional (3.5G, 3.75G, 3.9G), 4G (IMT-advanced), etc.
[0329] In general, the network interface 308 can include
one or more of a network adaptor card, a wireless network
interface card (e.g., SMS interface, WilFi interface, inter-
faces for various generations of mobile communication
standards including but not limited to 1G, 2G, 3G, 3.5G, 4G
type networks such as LTE, WiMAX, etc.), Bluetooth, WiFi,
or any other network whether or not connected via a router,
an access point, a wireless router, a switch, a multilayer
switch, a protocol converter, a gateway, a bridge, a bridge
router, a hub, a digital media receiver, and/or a repeater.
[0330] The host server 300 can further include server-side
components of the distributed proxy and/or cache system
(e.g., (distributed) traffic optimizer, traffic management sys-
tem, (distributed) content caching mechanism for traffic
alleviation) (e.g., (distributed) traffic optimizer, traffic man-

Jun. 27,2019

agement system, (distributed) content caching mechanism
for traffic alleviation) which can include a proxy server 325
and a server cache 335. In one embodiment, the proxy server
325 can include an HTTP access engine 345, a caching
policy manager 355, a proxy controller 365, a traffic shaping
engine 375, a new data detector 347 and/or a connection
manager 395.

[0331] The HTTP access engine 345 may further include
a heartbeat manager 398; the proxy controller 365 may
further include a data invalidator module 368; the traffic
shaping engine 375 may further include a control protocol
376 and a batching module 377. Additional or less compo-
nents/modules/engines can be included in the proxy server
325 and each illustrated component.

[0332] As used herein, a “module,” a “manager,” a “han-
dler,” a “detector,” an “interface,” a “controller,” a “normal-
izer,” a “‘generator,” an “invalidator,” or an “engine”
includes a general purpose, dedicated or shared processor
and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-
specific or other considerations, the module, manager, han-
dler, detector, interface, controller, normalizer, generator,
invalidator, or engine can be centralized or its functionality
distributed. The module, manager, handler, detector, inter-
face, controller, normalizer, generator, invalidator, or engine
can include general or special purpose hardware, firmware,
or software embodied in a computer-readable (storage)
medium for execution by the processor. As used herein, a
computer-readable medium or computer-readable storage
medium is intended to include all mediums that are statutory
(e.g., in the United States, under 35 U.S.C. 101), and to
specifically exclude all mediums that are non-statutory in
nature to the extent that the exclusion is necessary for a
claim that includes the computer-readable (storage) medium
to be valid. Known statutory computer-readable mediums
include hardware (e.g., registers, random access memory
(RAM), non-volatile (NV) storage, to name a few), but may
or may not be limited to hardware.

[0333] In the example of a device (e.g., mobile device
350) making an application or content request to an appli-
cation server or content provider 310, the request may be
intercepted and routed to the proxy server 325 which is
coupled to the device 350 and the application server/content
provider 310. Specifically, the proxy server is able to com-
municate with the local proxy (e.g., proxy 175 and 275 of the
examples of FIG. 1 and FIG. 2 respectively) of the mobile
device 350, the local proxy forwards the data request to the
proxy server 325 in some instances for further processing
and, if needed, for transmission to the application server/
content server 310 for a response to the data request.
[0334] In such a configuration, the host 300, or the proxy
server 325 in the host server 300 can utilize intelligent
information provided by the local proxy in adjusting its
communication with the device in such a manner that
optimizes use of network and device resources. For
example, the proxy server 325 can identify characteristics of
user activity on the device 350 to modify its communication
frequency. The characteristics of user activity can be deter-
mined by, for example, the activity/behavior awareness
module 366 in the proxy controller 365 via information
collected by the local proxy on the device 350.

[0335] Inone embodiment, communication frequency can
be controlled by the connection manager 395 of the proxy
server 325, for example, to adjust push frequency of content

US 2019/0200258 Al

or updates to the device 350. For instance, push frequency
can be decreased by the connection manager 395 when
characteristics of the user activity indicate that the user is
inactive. In one embodiment, when the characteristics of the
user activity indicate that the user is subsequently active
after a period of inactivity, the connection manager 395 can
adjust the communication frequency with the device 350 to
send data that was buffered as a result of decreased com-
munication frequency to the device 350.

[0336] In addition, the proxy server 325 includes priority
awareness of various requests, transactions, sessions, appli-
cations, and/or specific events. Such awareness can be
determined by the local proxy on the device 350 and
provided to the proxy server 325. The priority awareness
module 367 of the proxy server 325 can generally assess the
priority (e.g., including time-criticality, time-sensitivity,
etc.) of various events or applications; additionally, the
priority awareness module 367 can track priorities deter-
mined by local proxies of devices 350.

[0337] In one embodiment, through priority awareness,
the connection manager 395 can further modify communi-
cation frequency (e.g., use or radio as controlled by the radio
controller 396) of the server 300 with the devices 350. For
example, the server 300 can notify the device 350, thus
requesting use of the radio if it is not already in use when
data or updates of an importance/priority level which meets
a criteria becomes available to be sent.

[0338] In one embodiment, the proxy server 325 can
detect multiple occurrences of events (e.g., transactions,
content, data received from server/provider 310) and allow
the events to accumulate for batch transfer to device 350.
Batch transfer can be cumulated and transfer of events can
be delayed based on priority awareness and/or user activity/
application behavior awareness as tracked by modules 367
and/or 366. For example, batch transfer of multiple events
(of a lower priority) to the device 350 can be initiated by the
batching module 377 when an event of a higher priority
(meeting a threshold or criteria) is detected at the server 300.
In addition, batch transfer from the server 300 can be
triggered when the server receives data from the device 350,
indicating that the device radio is already in use and is thus
on. In one embodiment, the proxy server 325 can order the
each messages/packets in a batch for transmission based on
event/transaction priority such that higher priority content
can be sent first in case connection is lost or the battery dies,
etc.

[0339] In one embodiment, the server 300 caches data
(e.g., as managed by the caching policy manager 355) such
that communication frequency over a network (e.g., cellular
network) with the device 350 can be modified (e.g.,
decreased). The data can be cached, for example, in the
server cache 335 for subsequent retrieval or batch sending to
the device 350 to potentially decrease the need to turn on the
device 350 radio. The server cache 335 can be partially or
wholly internal to the host server 300, although in the
example of FIG. 3A it is shown as being external to the host
300. In some instances, the server cache 335 may be the
same as and/or integrated in part or in whole with another
cache managed by another entity (e.g., the optional caching
proxy server 199 shown in the example of FIG. 1C), such as
being managed by an application server/content provider
310, a network service provider, or another third party.

[0340] In one embodiment, content caching is performed
locally on the device 350 with the assistance of host server

Jun. 27,2019

300. For example, proxy server 325 in the host server 300
can query the application server/provider 310 with requests
and monitor changes in responses. When changed or new
responses are detected (e.g., by the new data detector 347),
the proxy server 325 can notify the mobile device 350 such
that the local proxy on the device 350 can make the decision
to invalidate (e.g., indicated as out-dated) the relevant cache
entries stored as any responses in its local cache. Alterna-
tively, the data invalidator module 368 can automatically
instruct the local proxy of the device 350 to invalidate
certain cached data, based on received responses from the
application server/provider 310. The cached data is marked
as invalid, and can get replaced or deleted when new content
is received from the content server 310.

[0341] Note that data change can be detected by the
detector 347 in one or more ways. For example, the server/
provider 310 can notify the host server 300 upon a change.
The change can also be detected at the host server 300 in
response to a direct poll of the source server/provider 310.
In some instances, the proxy server 325 can in addition,
pre-load the local cache on the device 350 with the new/
updated data. This can be performed when the host server
300 detects that the radio on the mobile device is already in
use, or when the server 300 has additional content/data to be
sent to the device 350.

[0342] One or more the above mechanisms can be imple-
mented simultaneously or adjusted/configured based on
application (e.g., different policies for different servers/
providers 310). In some instances, the source provider/
server 310 may notify the host 300 for certain types of
events (e.g., events meeting a priority threshold level). In
addition, the provider/server 310 may be configured to
notify the host 300 at specific time intervals, regardless of
event priority.

[0343] In one embodiment, the proxy server 325 of the
host 300 can monitor/track responses received for the data
request from the content source for changed results prior to
returning the result to the mobile device, such monitoring
may be suitable when data request to the content source has
yielded same results to be returned to the mobile device, thus
preventing network/power consumption from being used
when no new changes are made to a particular requested.
The local proxy of the device 350 can instruct the proxy
server 325 to perform such monitoring or the proxy server
325 can automatically initiate such a process upon receiving
a certain number of the same responses (e.g., or a number of
the same responses in a period of time) for a particular
request.

[0344] In one embodiment, the server 300, through the
activity/behavior awareness module 366, is able to identify
or detect user activity at a device that is separate from the
mobile device 350. For example, the module 366 may detect
that a user’s message inbox (e.g., email or types of inbox) is
being accessed. This can indicate that the user is interacting
with his/her application using a device other than the mobile
device 350 and may not need frequent updates, if at all.
[0345] The server 300, in this instance, can thus decrease
the frequency with which new or updated content is sent to
the mobile device 350, or eliminate all communication for as
long as the user is detected to be using another device for
access. Such frequency decrease may be application specific
(e.g., for the application with which the user is interacting
with on another device), or it may be a general frequency
decrease (E.g., since the user is detected to be interacting

US 2019/0200258 Al

with one server or one application via another device, he/she
could also use it to access other services) to the mobile
device 350.

[0346] In one embodiment, the host server 300 is able to
poll content sources 310 on behalf of devices 350 to con-
serve power or battery consumption on devices 350. For
example, certain applications on the mobile device 350 can
poll its respective server 310 in a predictable recurring
fashion. Such recurrence or other types of application behav-
iors can be tracked by the activity/behavior module 366 in
the proxy controller 365. The host server 300 can thus poll
content sources 310 for applications on the mobile device
350 that would otherwise be performed by the device 350
through a wireless (e.g., including cellular connectivity).
The host server can poll the sources 310 for new or changed
data by way of the HTTP access engine 345 to establish
HTTP connection or by way of radio controller 396 to
connect to the source 310 over the cellular network. When
new or changed data is detected, the new data detector 347
can notify the device 350 that such data is available and/or
provide the new/changed data to the device 350.

[0347] In one embodiment, the connection manager 395
determines that the mobile device 350 is unavailable (e.g.,
the radio is turned off) and utilizes SMS to transmit content
to the device 350, for instance, via the SMSC shown in the
example of FIG. 1C. SMS is used to transmit invalidation
messages, batches of invalidation messages, or even content
in the case where the content is small enough to fit into just
a few (usually one or two) SMS messages. This avoids the
need to access the radio channel to send overhead informa-
tion. The host server 300 can use SMS for certain transac-
tions or responses having a priority level above a threshold
or otherwise meeting a criteria. The server 300 can also
utilize SMS as an out-of-band trigger to maintain or wake-
up an IP connection as an alternative to maintaining an
always-on [P connection.

[0348] Inone embodiment, the connection manager 395 in
the proxy server 325 (e.g., the heartbeat manager 398) can
generate and/or transmit heartbeat messages on behalf of
connected devices 350 to maintain a backend connection
with a provider 310 for applications running on devices 350.
[0349] For example, in the distributed proxy system, local
cache on the device 350 can prevent any or all heartbeat
messages needed to maintain TCP/IP connections required
for applications from being sent over the cellular, or other,
network and instead rely on the proxy server 325 on the host
server 300 to generate and/or send the heartbeat messages to
maintain a connection with the backend (e.g., application
server/provider 110 in the example of FIG. 1A). The proxy
server can generate the keep-alive (heartbeat) messages
independent of the operations of the local proxy on the
mobile device.

[0350] The repositories 312, 314, and/or 316 can addition-
ally store software, descriptive data, images, system infor-
mation, drivers, and/or any other data item utilized by other
components of the host server 300 and/or any other servers
for operation. The repositories may be managed by a data-
base management system (DBMS), for example, which may
be but is not limited to Oracle, DB2, Microsoft Access,
Microsoft SQL Server, PostgreSQL, MySQL, FileMaker,
etc.

[0351] The repositories can be implemented via object-
oriented technology and/or via text files and can be managed
by a distributed database management system, an object-

Jun. 27,2019

oriented database management system (OODBMS) (e.g.,
ConceptBase, FastDB Main Memory Database Manage-
ment System, JDOInstruments, ObjectDB, etc.), an object-
relational database management system (ORDBMS) (e.g.,
Informix, OpenLink Virtuoso, VMDS, etc.), a file system,
and/or any other convenient or known database management
package.

[0352] FIG. 3B depicts a block diagram illustrating a
further example of components in the caching policy man-
ager 355 in the cache system shown in the example of FIG.
3A which is capable of caching and adapting caching
strategies for application (e.g., mobile application) behavior
and/or network conditions.

[0353] The caching policy manager 355, in one embodi-
ment, can further include a metadata generator 303, a cache
look-up engine 305, an application protocol module 356, a
content source monitoring engine 357 having a poll schedule
manager 358, a response analyzer 361, and/or an updated or
new content detector 359. In one embodiment, the poll
schedule manager 358 further includes a host timing simu-
lator 3584, a long poll request detector/manager 35856, a
schedule update engine 358c, and/or a time adjustment
engine 358d. The metadata generator 303 and/or the cache
look-up engine 305 can be coupled to the cache 335 (or,
server cache) for modification or addition to cache entries or
querying thereof.

[0354] In one embodiment, the proxy server (e.g., the
proxy server 125 or 325 of the examples of FIG. 1A-1C and
FIG. 3A) can monitor a content source for new or changed
data via the monitoring engine 357. The proxy server, as
shown, is an entity external to the mobile device 250 of FIG.
2A-B. The content source (e.g., application server/content
provider 110 of FIG. 1A-1C) can be one that has been
identified to the proxy server (e.g., by the local proxy) as
having content that is being locally cached on a mobile
device (e.g., mobile device 150 or 250). The content source
can be monitored, for example, by the monitoring engine
357 at a frequency that is based on polling frequency of the
content source at the mobile device. The poll schedule can
be generated, for example, by the local proxy and sent to the
proxy server. The poll frequency can be tracked and/or
managed by the poll schedule manager 358.

[0355] For example, the proxy server can poll the host
(e.g., content provider/application server) on behalf of the
mobile device and simulate the polling behavior of the client
to the host via the host timing simulator 3584. The polling
behavior can be simulated to include characteristics of a
long poll request-response sequences experienced in a per-
sistent connection with the host (e.g., by the long poll
request detector/manager 3585). Note that once a polling
interval/behavior is set, the local proxy 275 on the device-
side and/or the proxy server 325 on the server-side can
verify whether application and application server/content
host behavior match or can be represented by this predicted
pattern. In general, the local proxy and/or the proxy server
can detect deviations and, when appropriate, re-evaluate and
compute, determine, or estimate another polling interval.
[0356] In one embodiment, the caching policy manager
355 on the server-side of the distribute proxy can, in
conjunction with or independent of the proxy server 275 on
the mobile device, identify or detect long poll requests. For
example, the caching policy manager 355 can determine a
threshold value to be used in comparison with a response
delay interval time in a request-response sequence for an

US 2019/0200258 Al

application request to identify or detect long poll requests,
possible long poll requests (e.g., requests for a persistent
connection with a host with which the client communicates
including, but not limited to, a long-held HTTP request, a
persistent connection enabling COMET style push, request
for HTTP streaming, etc.), or other requests which can
otherwise be treated as a long poll request.

[0357] For example, the threshold value can be deter-
mined by the proxy 325 using response delay interval times
for requests generated by clients/applications across mobile
devices which may be serviced by multiple different cellular
or wireless networks. Since the proxy 325 resides on host
300 is able to communicate with multiple mobile devices via
multiple networks, the caching policy manager 355 has
access to application/client information at a global level
which can be used in setting threshold values to categorize
and detect long polls.

[0358] By tracking response delay interval times across
applications across devices over different or same networks,
the caching policy manager 355 can set one or more thresh-
old values to be used in comparison with response delay
interval times for long poll detection. Threshold values set
by the proxy server 325 can be static or dynamic, and can be
associated with conditions and/or a time-to-live (an expira-
tion time/date in relative or absolute terms).

[0359] In addition, the caching policy manager 355 of the
proxy 325 can further determine the threshold value, in
whole or in part, based on network delays of a given wireless
network, networks serviced by a given carrier (service
provider), or multiple wireless networks. The proxy 325 can
also determine the threshold value for identification of long
poll requests based on delays of one or more application
server/content provider (e.g., 110) to which application (e.g.,
mobile application) or mobile client requests are directed.
[0360] The proxy server can detect new or changed data at
a monitored content source and transmits a message to the
mobile device notifying it of such a change such that the
mobile device (or the local proxy on the mobile device) can
take appropriate action (e.g., to invalidate the cache ele-
ments in the local cache). In some instances, the proxy
server (e.g., the caching policy manager 355) upon detecting
new or changed data can also store the new or changed data
in its cache (e.g., the server cache 135 or 335 of the
examples of FIG. 1C and FIG. 3A, respectively). The
new/updated data stored in the server cache 335 can be used
in some instances to satisfy content requests at the mobile
device; for example, it can be used after the proxy server has
notified the mobile device of the new/changed content and
that the locally cached content has been invalidated.
[0361] The metadata generator 303, similar to the meta-
data generator 203 shown in the example of FIG. 2B, can
generate metadata for responses cached for requests at the
mobile device 250. The metadata generator 303 can generate
metadata for cache entries stored in the server cache 335.
Similarly, the cache look-up engine 305 can include the
same or similar functions are those described for the cache
look-up engine 205 shown in the example of FIG. 2B.
[0362] The response analyzer 361 can perform any or all
of the functionalities related to analyzing responses received
for requests generated at the mobile device 250 in the same
or similar fashion to the response analyzer 2464 of the local
proxy shown in the example of FIG. 2B. Since the proxy
server 325 is able to receive responses from the application
server/content source 310 directed to the mobile device 250,

Jun. 27,2019

the proxy server 325 (e.g., the response analyzer 361) can
perform similar response analysis steps to determine cache-
ability, as described for the response analyzer of the local
proxy. The responses can be analyzed in addition to or in lieu
of the analysis that can be performed at the local proxy 275
on the mobile device 250.

[0363] Furthermore, the schedule update engine 358¢ can
update the polling interval of a given application server/
content host based on application request interval changes of
the application at the mobile device 250 as described for the
schedule update engine in the local proxy 275. The time
adjustment engine 3584 can set an initial time at which polls
of the application server/content host is to begin to prevent
the serving of out of date content once again before serving
fresh content as described for the schedule update engine in
the local proxy 275. Both the schedule updating and the time
adjustment algorithms can be performed in conjunction with
or in lieu of the similar processes performed at the local
proxy 275 on the mobile device 250.

[0364] FIG. 3C depicts a block diagram illustrating
another example of components in the caching policy man-
ager 355 in the proxy server 375 on the server-side of the
distributed proxy system shown in the example of FIG. 3A
which is capable of managing and detecting cache defeating
mechanisms and monitoring content sources.

[0365] The caching policy manager 355, in one embodi-
ment, can further include a cache defeating source manager
352, a content source monitoring engine 357 having a poll
schedule manager 358, and/or an updated or new content
detector 359. The cache defeating source manager 352 can
further include an identifier modifier module 353 and/or an
identifier pattern tracking module 354.

[0366] In one embodiment, the proxy server (e.g., the
proxy server 125 or 325 of the examples of FIG. 1A-1C and
FIG. 3A) can monitor a content source for new or changed
data via the monitoring engine 357. The content source (e.g.,
application server/content provider 110 of FIG. 1A-1C or
310 of FIG. 3A) can be one that has been identified to the
proxy server (e.g., by the local proxy) as having content that
is being locally cached on a mobile device (e.g., mobile
device 150 or 250). The content source 310 can be moni-
tored, for example, by the monitoring engine 357 at a
frequency that is based on polling frequency of the content
source at the mobile device. The poll schedule can be
generated, for example, by the local proxy and sent to the
proxy server 325. The poll frequency can be tracked and/or
managed by the poll schedule manager 358.

[0367] In one embodiment, the proxy server 325 uses a
normalized identifier or modified identifier in polling the
content source 310 to detect new or changed data (re-
sponses). The normalized identifier or modified identifier
can also be used by the proxy server 325 in storing responses
on the server cache 335. In general, the normalized or
modified identifiers can be used when cache defeat mecha-
nisms are employed for cacheable content. Cache defeat
mechanisms can be in the form of a changing parameter in
an identifier such as a URI or URL and can include a
changing time/data parameter, a randomly varying param-
eter, or other types parameters.

[0368] The normalized identifier or modified identifier
removes or otherwise replaces the changing parameter for
association with subsequent requests and identification of
associated responses and can also be used to poll the content
source. In one embodiment, the modified identifier is gen-

US 2019/0200258 Al

erated by the cache defeating source manager 352 (e.g., the
identifier modifier module 353) of the caching policy man-
ager 355 on the proxy server 325 (server-side component of
the distributed proxy system). The modified identifier can
utilize a substitute parameter (which is generally static over
a period of time) in place of the changing parameter that is
used to defeat cache.

[0369] The cache defeating source manager 352 option-
ally includes the identifier pattern tracking module 354 to
track, store, and monitor the various modifications of an
identifier or identifiers that address content for one or more
content sources (e.g., application server/content host 110 or
310) to continuously verify that the modified identifiers
and/or normalized identifiers used by the proxy server 325
to poll the content sources work as predicted or intended
(e.g., receive the same responses or responses that are
otherwise still relevant compared to the original, unmodified
identifier).

[0370] In the event that the pattern tracking module 354
detects a modification or normalization of an identifier that
causes erratic or unpredictable behavior (e.g., unexpected
responses to be sent) on the content source, the tracking
module 354 can log the modification and instruct the cache
defeating source manager 352 to generate another modifi-
cation/normalization, or notify the local proxy (e.g., local
proxy 275) to generate another modification/normalization
for use in polling the content source. In the alternative or in
parallel, the requests from the given mobile application/
client on the mobile device (e.g., mobile device 250) can
temporarily be sent across the network to the content source
for direct responses to be provided to the mobile device
and/or until a modification of an identifier which works can
be generated.

[0371] In one embodiment, responses are stored as server
cache elements in the server cache when new or changed
data is detected for a response that is already stored on a
local cache (e.g., cache 285) of the mobile device (e.g.,
mobile device 250). Therefore, the mobile device or local
proxy 275 can connect to the proxy server 325 to retrieve the
new or changed data for a response to a request which was
previously cached locally in the local cache 285 (now
invalid, out-dated, or otherwise determined to be irrelevant).
[0372] The proxy server 325 can detect new or changed
data at a monitored application server/content host 310 and
transmits a message to the mobile device notifying it of such
a change such that the mobile device (or the local proxy on
the mobile device) can take appropriate action (e.g., to
invalidate the cache elements in the local cache). In some
instances, the proxy server (e.g., the caching policy manager
355), upon detecting new or changed data, can also store the
new or changed data in its cache (e.g., the server cache 135
or 335 of the examples of FIG. 1C and FIG. 3A, respec-
tively). The updated/new data stored in the server cache can
be used, in some instances, to satisfy content requests at the
mobile device; for example, it can be used after the proxy
server has notified the mobile device of the new/changed
content and that the locally cached content has been invali-
dated.

[0373] FIG. 3D depicts a block diagram illustrating
examples of additional components in proxy server 325
shown in the example of FIG. 3A which is further capable
of performing mobile traffic categorization and policy
implementation based on application behavior and/or traffic
priority.

Jun. 27,2019

[0374] In one embodiment of the proxy server 325, the
traffic shaping engine 375 is further coupled to a traffic
analyzer 336 for categorizing mobile traffic for policy defi-
nition and implementation for mobile traffic and transactions
directed to one or more mobile devices (e.g., mobile device
250 of FIG. 2A-2D) or to an application server/content host
(e.g., 110 of FIG. 1A-1C). In general, the proxy server 325
is remote from the mobile devices and remote from the host
server, as shown in the examples of FIG. 1A-1C. The proxy
server 325 or the host server 300 can monitor the traffic for
multiple mobile devices and is capable of categorizing traffic
and devising traffic policies for different mobile devices.
[0375] In addition, the proxy server 325 or host server 300
can operate with multiple carriers or network operators and
can implement carrier-specific policies relating to categori-
zation of traffic and implementation of traffic policies for the
various categories. For example, the traffic analyzer 336 of
the proxy server 325 or host server 300 can include one or
more of, a prioritization engine 341a, a time criticality
detection engine 34154, an application state categorizer 341c,
and/or an application traffic categorizer 341d.

[0376] Each of these engines or modules can track differ-
ent criterion for what is considered priority, time critical,
background/foreground, or interactive/maintenance based
on different wireless carriers. Different criterion may also
exist for different mobile device types (e.g., device model,
manufacturer, operating system, etc.). In some instances, the
user of the mobile devices can adjust the settings or criterion
regarding traffic category and the proxy server 325 is able to
track and implement these user adjusted/configured settings.
[0377] In one embodiment, the traffic analyzer 336 is able
to detect, determined, identify, or infer, the activity state of
an application on one or more mobile devices (e.g., mobile
device 150 or 250) which traffic has originated from or is
directed to, for example, via the application state categorizer
341c¢ and/or the traffic categorizer 341d. The activity state
can be determined based on whether the application is in a
foreground or background state on one or more of the mobile
devices (via the application state categorizer 341c¢) since the
traffic for a foreground application vs. a background appli-
cation may be handled differently to optimize network use.
[0378] In the alternate or in combination, the activity state
of an application can be determined by the wirelessly
connected mobile devices (e.g., via the application behavior
detectors in the local proxies) and communicated to the
proxy server 325. For example, the activity state can be
determined, detected, identified, or inferred with a level of
certainty of heuristics, based on the backlight status at
mobile devices (e.g., by a backlight detector) or other
software agents or hardware sensors on the mobile device,
including but not limited to, resistive sensors, capacitive
sensors, ambient light sensors, motion sensors, touch sen-
sors, etc. In general, if the backlight is on, the traffic can be
treated as being or determined to be generated from an
application that is active or in the foreground, or the traffic
is interactive. In addition, if the backlight is on, the traffic
can be treated as being or determined to be traffic from user
interaction or user activity, or traffic containing data that the
user is expecting within some time frame.

[0379] The activity state can be determined from assess-
ing, determining, evaluating, inferring, identifying user
activity at the mobile device 250 (e.g., via the user activity
module 215) and communicated to the proxy server 325. In
one embodiment, the activity state is determined based on

US 2019/0200258 Al

whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that
may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

[0380] The time criticality detection engine 3415 can
generally determine, identify, infer the time sensitivity of
data contained in traffic sent from the mobile device 250 or
to the mobile device from the host server 300 or proxy server
325, or the application server (e.g., app server/content
source 110). For example, time sensitive data can include,
status updates, stock information updates, IM presence
information, email messages or other messages, actions
generated from mobile gaming applications, webpage
requests, location updates, etc.

[0381] Data that is not time sensitive or time critical, by
nature of the content or request, can include requests to
delete messages, mark-as-read or edited actions, applica-
tion-specific actions such as a add-friend or delete-friend
request, certain types of messages, or other information
which does not frequently changing by nature, etc. In some
instances when the data is not time critical, the timing with
which to allow the traffic to be sent to a mobile device is
based on when there is additional data that needs to the sent
to the same mobile device. For example, traffic shaping
engine 375 can align the traffic with one or more subsequent
transactions to be sent together in a single power-on event of
the mobile device radio (e.g., using the alignment module
378 and/or the batching module 377). The alignment module
378 can also align polling requests occurring close in time
directed to the same host server, since these request are
likely to be responded to with the same data.

[0382] In general, whether new or changed data is sent
from a host server to a mobile device can be determined
based on whether an application on the mobile device to
which the new or changed data is relevant, is running in a
foreground (e.g., by the application state categorizer 341c¢),
or the priority or time criticality of the new or changed data.
The proxy server 325 can send the new or changed data to
the mobile device if the application is in the foreground on
the mobile device, or if the application is in the foreground
and in an active state interacting with a user on the mobile
device, and/or whether a user is waiting for a response that
would be provided in the new or changed data. The proxy
server 325 (or traffic shaping engine 375) can send the new
or changed data that is of a high priority or is time critical.

[0383] Similarly, the proxy server 325 (or the traffic shap-
ing engine 375) can suppressing the sending of the new or
changed data if the application is in the background on the
mobile device. The proxy server 325 can also suppress the
sending of the new or changed data if the user is not waiting
for the response provided in the new or changed data;
wherein the suppressing is performed by a proxy server
coupled to the host server and able to wirelessly connect to
the mobile device.

[0384] In general, if data, including new or change data is
of'a low priority or is not time critical, the proxy server can
waiting to transfer the data until after a time period, or until

Jun. 27,2019

there is additional data to be sent (e.g. via the alignment
module 378 and/or the batching module 377).

[0385] FIG. 4A depicts a block diagram illustrating
another example of client-side components in a distributed
proxy and cache system, further including a reporting engine
and usage analytics engine 401. FIG. 4B depicts a block
diagram illustrating additional components in the client-side
reporting engine and usage analytics engine 401 shown in
the example of FIG. 4A.

[0386] The client-side reporting engine and usage analyt-
ics engine 401 can include, for example, an optimization
efficiency tracker 402, a connection tracker 404, a data use
tracker 405, and/or a battery consumption tracker 406.
Additional or less modules maybe included. The engine 401
and/or its internal components can perform reporting and/or
usage analytics processes in combination or independently.

[0387] FIG. 5A depicts a block diagram illustrating an
example of server-side components in a distributed proxy
and cache system, further including a reporting engine and
usage analytics engine 501. FIG. 5B depicts a block diagram
illustrating additional components in the server-side report-
ing engine and usage analytics engine 501 shown in the
example of FIG. 5A.

[0388] The reporting engine and usage analytics engine
501 can include, for example, an optimization reporting
engine 508, a user statistics reporting engine 510, a custom-
ized analysis reporting engine 504, a data statistics reporting
engine 511, a signaling statistics reporting engine 512, an
application statistics reporting engine 505, a device statistics
reporting engine 506, a trending engine 507, and/or a
rankings engine 508. Additional or less modules maybe
included. The engine 501 and/or its internal components can
perform reporting and analytics generating features in com-
bination or independently, and further in combination with
or in lieu of the client-side reporting engine and usage
analytics engine 401. Some reports which may be generated
are illustrated in the example FIG. 1E-1R and can include,
for example:

[0389] Standard Reports—Standard reports can be deliv-
ered to mobile or network operators on a regular basis (daily,
weekly, bi-weekly, monthly, etc.). Reports can also be
queried at any time by the mobile or network operators. The
standard reports can include, for example:

[0390] Daily Reports: Daily reports can include accumu-
lated information for a period of 30 days. Daily reports can
include, for example:

[0391] Total Optimization Efficiency—Trend chart show-
ing overall optimization efficiency (bytes, radio state
changes, radio connection time) for traffic over mobile
network and absolute traffic (Wi-Fi and Mobile). The opti-
mization efficiency can be determined by the optimization
efficiency tracker 402 of the reporting engine and usage
analytics engine 401 on the client-side proxy or the local
proxy 275 on the mobile device 250 and reported and/or
determined by the optimization reporting engine 509 of the
reporting engine and usage analytics engine 501 on the
server side proxy (e.g., host server 300 or proxy server 325).
[0392] Total Users—Trend chart showing the current and
new users (e.g., by the user statistics and reporting engine
510).

[0393] Total Data: Cumulative area chart showing the total
data traffic and total saved traffic for traffic over mobile

US 2019/0200258 Al

network and absolute traffic (Wi-Fi and Mobile) (e.g., via the
data use tracker 405 and/or the data statistics reporting
engine 511).

[0394] Total Connection (Signaling)—Cumulative area
chart showing actual and saved connections for traffic over
mobile network and absolute traffic (Wi-Fi and Mobile)
(e.g., via the connection tracker 404).

[0395] Total Time Connected—Cumulative area chart
showing actual and saved connection time for traffic over
mobile network and absolute traffic (Wi-Fi and Mobile)
(e.g., via the connection tracker 404).

[0396] Total Battery Consumption—Trend Chart showing
battery consumption per hour (e.g., via the battery consump-
tion tracker 406).

[0397] Monthly Reports: Monthly reports include accu-
mulated information for a period of 12 months. Monthly
reports are described below:

[0398] Total Efficiency—Trend chart showing overall
optimization efficiency (bytes, radio state changes, radio
connection time) for traffic over mobile network and abso-
lute traffic (Wi-Fi and Mobile) (e.g., by the optimization
reporting engine 509 and/or the trending engine 507).
[0399] Total Users—Trend chart showing the current and
new users (e.g., by the user statistics reporting engine 510
and/or the trending engine 507).

[0400] Total Data—Cumulative area chart showing the
total data traffic and total saved traffic for traffic over mobile
network and absolute traffic (Wi-Fi and Mobile) (e.g., by the
data statistics reporting engine 511).

[0401] Total Signaling—Cumulative area chart showing
actual and saved connections for traffic over mobile network
and absolute traffic (Wi-Fi and Mobile) (e.g., via the sig-
naling statistics reporting engine 512).

[0402] Total Time Connected—Cumulative area chart
showing actual and saved connection time for traffic over
mobile network and absolute traffic (Wi-Fi and Mobile)
(e.g., via the signaling statistics reporting engine 512) (e.g.,
by the optimization reporting engine 509 and/or the trending
engine 507).

[0403] Total Battery Consumption—Trend Chart showing
Battery consumption (e.g., by the optimization reporting
engine 509 and/or the trending engine 507).

[0404] Total Ranking Reports—Ranking reports show top
10 ranked devices and applications based on signaling
efficiency, no. of users, traffic data, connections data, battery
consumption data (device aggregation only) (e.g., by the
optimization reporting engine 509, application statistics
reporting engine 505, user statistics reporting engine 510,
data statistics reporting engine 511, the trending engine 507,
and/or the rankings engine 508).

[0405] Advanced Reports—Advanced report service can
include a richer set of reports than standard reporting
including Efficiency, Data, Battery, and Signaling Reports
per application, device type, bearer type, host and operation
as well as ranking reports (top devices, top applications, top
bearers, top hosts, and top protocols. The reports can be
generated on an hourly, daily, weekly, monthly, and yearly
basis. The advanced reporting service can also export raw
data (up to transaction level) collected both by client side-
proxy and/or the server-side proxy in any of the formats
listed above to third party servers. Advanced trend and
rankings reports can be generated, aggregated, computed by
any combination of the components in the reporting and
usage analytics engine 501 using data aggregated by the

Jun. 27,2019

client side components (e.g., the engine 401 on the mobile
device 250) and can include, for example:
[0406] Advanced Trend Reports

[0407] Multiple Trend Efficiency Reports (efficiency by
application, by bearer, by device, by operation and by
host).

[0408] Multiple Trend Data Reports (total data by appli-
cation, by bearer, by device, by operation, by host).

[0409] Multiple Trend Battery & Signaling Reports
(total battery consumption, total radio state transitions,
total time connected).

[0410] Multiple Trend User Reports (total users by
application, by bearer, by host, by operation, by
device).

[0411] Advanced Rankings Reports

[0412] Top Devices Reports (top devices by efficiency
(%), top devices by # of active devices, top devices by
of total devices).

[0413] Top Applications Reports (top applications by
efficiency (%), top applications by amount of data
sent/received, top applications by # of total users).

[0414] Top Bearers Reports (top bearer by efficiency
(%), top bearer by # of active units, top bearer by # of
total units).

[0415] Top Hosts Reports (top hosts by efficiency (%),
top host by # of active device units, top hosts by # of
total device units).

[0416] Top Protocol Reports (top protocol by efficiency
(%), top protocol by applications by amount of data
sent/received, top protocol by # of total users).

[0417] The advanced reporting service can deliver reports
in multiple formats including but not limited to: PDF, CSV,
Plain Text Format, Excel (xls), HTML, RTF.

[0418] Custom Analysis and Data Availability

[0419] Built on “Big Data” technologies, the Reporting &
Usage Analysis engine has the capability to store and
process detailed transactional information for over several
years. This availability of the transactional data, allows
unlimited “slicing and dicing” of the data and trending of
historical records over long periods of time (e.g., over
several years via the customized analysis reporting engine
504). Reporting can be delivered as a separate Professional
Services project. Examples of custom analyses can include:

[0420] Analysis, comparison, trending across single or
multiple dimensions simultaneously.

[0421] Time-of-the-day, day-of-the-week analyses with
trending over time.

[0422] Time-series analyses (for example, which appli-
cations promote use of others).

[0423] Predictive analyses (for example, usage profile
predicting increase in usage or bad behavior; usage
profile predicting churn).

[0424] Alerts for crossing trend lines, changing trends
(for example, Identifying viral take-up of a new appli-
cation).

[0425] Data feed to CRM/network operations/policy
management in real-time, hourly, daily, weekly, bi
weekly, quarterly, bi-annually, or monthly basis.

[0426] FIG. 6A depicts another flow diagram illustrating
an example process for distributed content caching between
a mobile device and a proxy server and the distributed
management of content caching.

[0427] As shown in the distributed system interaction
diagram in the example of FIG. 4, the disclosed technology

US 2019/0200258 Al

is a distributed caching model with various aspects of
caching tasks split between the client-side/mobile device
side (e.g., mobile device 450 in the example of FIG. 4) and
the server side (e.g., server side 470 including the host server
485 and/or the optional caching proxy 475).

[0428] In general the device-side responsibilities can
include deciding whether a response to a particular request
can be and/or should be cached. The device-side of the proxy
can make this decision based on information (e.g., timing
characteristics, detected pattern, detected pattern with heu-
ristics, indication of predictability or repeatability) collected
from/during both request and response and cache it (e.g.,
storing it in a local cache on the mobile device). The device
side can also notify the server-side in the distributed cache
system of the local cache event and notify it monitor the
content source (e.g., application server/content provider 110
of FIG. 1A-1C).

[0429] The device side can further instruct the server side
of the distributed proxy to periodically validate the cache
response (e.g., by way of polling, or sending polling requests
to the content source). The device side can further decide
whether a response to a particular cache request should be
returned from the local cache (e.g., whether a cache hit is
detected). The decision can be made by the device side (e.g.,
the local proxy on the device) using information collected
from/during request and/or responses received from the
content source.

[0430] In general, the server-side responsibilities can
include validating cached responses for relevancy (e.g.,
determine whether a cached response is still valid or relevant
to its associated request). The server-side can send the
mobile device an invalidation request to notify the device
side when a cached response is detected to be no longer valid
or no longer relevant (e.g., the server invalidates a given
content source). The device side then can remove the
response from the local cache.

[0431] The diagram of FIG. 6A illustrates caching logic
processes performed for each detected or intercepted request
(e.g., HTTP request) detected at a mobile device (e.g.,
client-side of the distributed proxy). In step 602, the client-
side of the proxy (e.g., local proxy 275 shown in FIG. 2A-B
or mobile device 450 of FIG. 4) receives a request (from an
application (e.g., mobile application) or mobile client). In
step 604, URL is normalized and in step 606 the client-side
checks to determine if the request is cacheable. If the request
is determined to be not cacheable in step 612, the request is
sent to the source (application server/content provider) in
step 608 and the response is received 610 and delivered to
the requesting application 622, similar to a request-response
sequence without interception by the client side proxy.
[0432] Ifthe request is determined to be cacheable, in step
612, the client-side looks up the cache to determine whether
a cache entry exists for the current request. If so, in step 624,
the client-side can determine whether the entry is valid and
if so, the client side can check the request to see if includes
a validator (e.g., a modified header or an entity tag) in step
615. For example, the concept of validation is eluded to in
section 13.3 of RFC 2616 which describes in possible types
of headers (e.g., €eTAG, Modified_Since, must_revlaidate,
pragma no_cache) and forms a validating response 632 if so
to be delivered to the requesting application in step 622. If
the request does not include a validator as determined by
step 615, a response is formed from the local cache in step
630 and delivered to the requesting application in step 622.

Jun. 27,2019

This validation step can be used for content that would
otherwise normally be considered un-cacheable.

[0433] If, instead, in step 624, the cache entry is found but
determined to be no longer valid or invalid, the client side
of the proxy sends the request 616 to the content source
(application server/content host) and receives a response
directly fro the source in step 618. Similarly, if in step 612,
a cache entry was not found during the look up, the request
is also sent in step 616. Once the response is received, the
client side checks the response to determine if it is cacheable
in step 626. If so, the response is cached in step 620. The
client then sends another poll in step 614 and then delivers
the response to the requesting application in step 622.
[0434] FIG. 6B depicts a diagram showing how data
requests from a mobile device 450 to an application server/
content provider 495 in a wireless network can be coordi-
nated by a distributed proxy system 460 in a manner such
that network and battery resources are conserved through
using content caching and monitoring performed by the
distributed proxy system 460.

[0435] In satistying application or client requests on a
mobile device 450 without the distributed proxy system 460,
the mobile device 450, or the software widget executing on
the device 450, performs a data request 452 (e.g., an HTTP
GET, POST, or other request) directly to the application
server 495 and receives a response 404 directly from the
server/provider 495. If the data has been updated, the widget
455 on the mobile device 450 can refreshes itself to reflect
the update and waits for small period of time and initiates
another data request to the server/provider 495.

[0436] In one embodiment, the requesting client or soft-
ware widget 455 on the device 450 can utilize the distributed
proxy system 460 in handling the data request made to
server/provider 495. In general, the distributed proxy system
460 can include a local proxy 465 (which is typically
considered a client-side component of the system 460 and
can reside on the mobile device 450), a caching proxy 475
(considered a server-side component 470 of the system 460
and can reside on the host server 485 or be wholly or
partially external to the host server 485), and a host server
485. The local proxy 465 can be connected to the caching
proxy 475 and host server 485 via any network or combi-
nation of networks.

[0437] When the distributed proxy system 460 is used for
data/application requests, the widget 455 can perform the
data request 456 via the local proxy 465. The local proxy
465, can intercept the requests made by device applications,
and can identify the connection type of the request (e.g., an
HTTP get request or other types of requests). The local
proxy 465 can then query the local cache for any previous
information about the request (e.g., to determine whether a
locally stored response is available and/or still valid). If a
locally stored response is not available or if there is an
invalid response stored, the local proxy 465 can update or
store information about the request, the time it was made,
and any additional data, in the local cache. The information
can be updated for use in potentially satisfying subsequent
requests.

[0438] The local proxy 465 can then send the request to
the host server 485 and the host server 485 can perform the
request 456 and returns the results in response 458. The local
proxy 465 can store the result and, in addition, information
about the result and returns the result to the requesting
widget 455.

US 2019/0200258 Al

[0439] In one embodiment, if the same request has
occurred multiple times (within a certain time period) and it
has often yielded same results, the local proxy 465 can
notify 460 the server 485 that the request should be moni-
tored (e.g., steps 462 and 464) for result changes prior to
returning a result to the local proxy 465 or requesting widget
455.

[0440] In one embodiment, if a request is marked for
monitoring, the local proxy 465 can now store the results
into the local cache. Now, when the data request 466, for
which a locally response is available, is made by the widget
455 and intercepted at the local proxy 465, the local proxy
465 can return the response 468 from the local cache without
needing to establish a connection communication over the
wireless network.

[0441] In addition, the server proxy performs the requests
marked for monitoring 470 to determine whether the
response 472 for the given request has changed. In general,
the host server 485 can perform this monitoring indepen-
dently of the widget 455 or local proxy 465 operations.
Whenever an unexpected response 472 is received for a
request, the server 485 can notify the local proxy 465 that the
response has changed (e.g., the invalidate notification in step
474) and that the locally stored response on the client should
be erased or replaced with a new response.

[0442] In this case, a subsequent data request 476 by the
widget 455 from the device 450 results in the data being
returned from host server 485 (e.g., via the caching proxy
475), and in step 478, the request is satisfied from the
caching proxy 475. Thus, through utilizing the distributed
proxy system 460, the wireless (cellular) network is intel-
ligently used when the content/data for the widget or soft-
ware application 455 on the mobile device 450 has actually
changed. As such, the traffic needed to check for the changes
to application data is not performed over the wireless
(cellular) network. This reduces the amount of generated
network traffic and shortens the total time and the number of
times the radio module is powered up on the mobile device
450, thus reducing battery consumption and, in addition,
frees up network bandwidth.

[0443] FIG. 7 depicts a table 700 showing examples of
different traffic or application category types which can be
used in implementing network access and content delivery
policies. For example, traffic/application categories can
include interactive or background, whether a user is waiting
for the response, foreground/background application, and
whether the backlight is on or off.

[0444] FIG. 8 depicts a table 800 showing examples of
different content category types which can be used in
implementing network access and content delivery policies.
For example, content category types can include content of
high or low priority, and time critical or non-time critical
content/data.

[0445] FIG. 9 depicts an interaction diagram showing how
application (e.g., mobile application) 955 polls having data
requests from a mobile device to an application server/
content provider 995 over a wireless network can be can be
cached on the local proxy 965 and managed by the distrib-
uted caching system (including local proxy 965 and the host
server 985 (having server cache 935 or caching proxy server
975)).

[0446] In one example, when the mobile application/
widget 955 polls an application server/provider 932, the poll
can locally be intercepted 934 on the mobile device by local

Jun. 27,2019

proxy 965. The local proxy 965 can detect that the cached
content is available for the polled content in the request and
can thus retrieve a response from the local cache to satisfy
the intercepted poll 936 without requiring use of wireless
network bandwidth or other wireless network resources. The
mobile application/widget 955 can subsequently receive a
response to the poll from a cache entry 938.

[0447] In another example, the mobile application widget
955 polls the application server/provider 940. The poll is
intercepted 942 by the local proxy 965 and detects that cache
content is unavailable in the local cache and decides to set
up the polled source for caching 944. To satisfy the request,
the poll is forwarded to the content source 946. The appli-
cation server/provider 995 receives the poll request from the
application and provides a response to satisfy the current
request 948. In 950, the application (e.g., mobile applica-
tion)/widget 955 receives the response from the application
server/provider to satisfy the request.

[0448] In conjunction, in order to set up content caching,
the local proxy 965 tracks the polling frequency of the
application and can set up a polling schedule to be sent to the
host server 952. The local proxy sends the cache set up to the
host server 954. The host server 985 can use the cache set up
which includes, for example, an identification of the appli-
cation server/provider to be polled and optionally a polling
schedule 956. The host server 985 can now poll the appli-
cation server/provider 995 to monitor responses to the
request 958 on behalf of the mobile device. The application
server receives the poll from the host server and responds
960. The host server 985 determines that the same response
has been received and polls the application server 995
according to the specified polling schedule 962. The appli-
cation server/content provider 995 receives the poll and
responds accordingly 964.

[0449] The host server 985 detects changed or new
responses and notifies the local proxy 965. The host server
985 can additional store the changed or new response in the
server cache or caching proxy 968. The local proxy 965
receives notification from the host server 985 that new or
changed data is now available and can invalidate the affected
cache entries 970. The next time the application (e.g., mobile
application)/widget 955 generates the same request for the
same server/content provider 972, the local proxy deter-
mines that no valid cache entry is available and instead
retrieves a response from the server cache 974, for example,
through an HTTP connection. The host server 985 receives
the request for the new response and sends the response back
976 to the local proxy 965. The request is thus satisfied from
the server cache or caching proxy 978 without the need for
the mobile device to utilize its radio or to consume mobile
network bandwidth thus conserving network resources.
[0450] Alternatively, when the application (e.g., mobile
application) generates the same request in step 980, the local
proxy 965, in response to determining that no valid cache
entry is available, forwards the poll to the application
server/provider in step 982 over the mobile network. The
application server/provider 995 receives the poll and sends
the response back to the mobile device in step 984 over the
mobile network. The request is thus satisfied from the
server/provider using the mobile network in step 986.
[0451] FIG. 10 depicts an interaction diagram showing
how application 1055 polls for content from an application
server/content provider 1095 which employs cache-defeat-
ing mechanisms in content identifiers (e.g., identifiers

US 2019/0200258 Al

intended to defeat caching) over a wireless network can still
be detected and locally cached.

[0452] In one example, when the application (e.g., mobile
application)/widget 1055 polls an application server/pro-
vider in step 1032, the poll can locally be intercepted in step
1034 on the mobile device by local proxy 1065. In step
1034, the local proxy 1065 on the mobile device may also
determine (with some level of certainty and heuristics) that
a cache defeating mechanism is employed or may be
employed by the server provider.

[0453] The local proxy 1065 can detect that the cached
content is available for the polled content in the request and
can thus retrieve a response from the local cache to satisfy
the intercepted poll 1036 without requiring use of wireless
network bandwidth or other wireless network resources. The
application (e.g., mobile application)/widget 1055 can sub-
sequently receive a response to the poll from a cache entry
in step 1038 (e.g., a locally stored cache entry on the mobile
device).

[0454] In another example, the application (e.g., mobile
application) widget 1055 polls the application server/pro-
vider 1095 in step 1040. The poll is intercepted in step 1042
by the local proxy 1065 which determines that a cache defeat
mechanism is employed by the server/provider 1095. The
local proxy 1065 also detects that cached content is unavail-
able in the local cache for this request and decides to setup
the polled content source for caching in step 1044. The local
proxy 1065 can then extract a pattern (e.g., a format or
syntax) of an identifier of the request and track the polling
frequency of the application to setup a polling schedule of
the host server 1085 in step 1046.

[0455] To satisfy the request, the poll request is forwarded
to the content provider 1095 in step 1048. The application
server/provider 1095 receives the poll request from the
application and provides a response to satisfy the current
request in step 1050. In step 1052, the application (e.g.,
mobile application)/widget 1055 receives the response from
the application server/provider 1095 to satisfy the request.
[0456] In conjunction, in order to setup content caching,
the local proxy 1065 caches the response and stores a
normalized version of the identifier (or a hash value of the
normalized identifier) in association with the received
response for future identification and retrieval in step 1054.
The local proxy sends the cache setup to the host server 1085
in step 1056. The cache setup includes, for example, the
identifier and/or a normalized version of the identifier. In
some instances, a modified identifier, different from the
normalized identifier, is sent to the host server 1085.
[0457] The host server 1085 can use the cache setup,
which includes, for example, an identification of the appli-
cation server/provider to be polled and optionally a polling
schedule in step 1058. The host server 1085 can now poll the
application server/provider 1095 to monitor responses to the
request in step 1060 on behalf of the mobile device. The
application server 1095 receives the poll from the host
server 1085 responds in step 1062. The host server 1085
determines that the same response has been received and
polls the application server 1095, for example, according to
the specified polling schedule and using the normalized or
modified identifier in step 1064. The application server/
content provider 1095 receives the poll and responds accord-
ingly in step 1066.

[0458] This time, the host server 1085 detects changed or
new responses and notifies the local proxy 1065 in step

Jun. 27,2019

1068. The host server 1085 can additionally store the
changed or new response in the server cache 1035 or caching
proxy 1075 in step 1070. The local proxy 1065 receives
notification from the host server 1085 that new or changed
data is now available and can invalidate the affected cache
entries in step 1072. The next time the application (e.g.,
mobile application)/widget generates the same request for
the same server/content provider 1095 in step 1074, the local
proxy 1065 determines that no valid cache entry is available
and instead retrieves a response from the server cache in step
1076, for example, through an HTTP connection. The host
server 1085 receives the request for the new response and
sends the response back to the local proxy 1065 in step 1078.
The request is thus satisfied from the server cache or caching
proxy in step 1080 without the need for the mobile device to
utilize its radio or to consume mobile network bandwidth
thus conserving network resources.

[0459] Alternatively, when the application (e.g., mobile
application) 1055 generates the same request, the local
proxy 1065, in response to determining that no valid cache
entry is available in step 1084, forwards the poll to the
application server provider 1095 in step 1082 over the
mobile network. The application server/provider 1095
receives the poll and sends the response back to the mobile
device in step 1086 over the mobile network. The request is
thus satisfied from the server/provider using the mobile
network 1086 in step 1088.

[0460] FIG. 11 depicts a flow chart illustrating an example
process for collecting information about a request and the
associated response to identify cacheability and caching the
response.

[0461] In process 1102, information about a request and
information about the response received for the request is
collected. In processes 1104 and 1106, information about the
request initiated at the mobile device and information about
the response received for the request are used in aggregate
or independently to determine cacheability at step 1108. The
details of the steps for using request and response informa-
tion for assessing cacheability are illustrated at flow A as
further described in the example of FIG. 12.

[0462] Instep 1108, if based on flow A it is determined that
the response is not cacheable, then the response is not
cached in step 1110, and the flow can optionally restart at
1102 to collect information about a request or response to
again assess cacheability.

[0463] Instep 1108, if it is determined from flow A that the
response is cacheable, then in 1112 the response can be
stored in the cache as a cache entry including metadata
having additional information regarding caching of the
response. The cached entry, in addition to the response,
includes metadata having additional information regarding
caching of the response. The metadata can include timing
data including, for example, access time of the cache entry
or creation time of the cache entry.

[0464] After the response is stored in the cache, a parallel
process can occur to determine whether the response stored
in the cache needs to be updated in process 1120. If so, the
response stored in the cache of the mobile device is inva-
lided or removed from the cache of the mobile device, in
process 1122. For example, relevance or validity of the
response can be verified periodically by polling a host server
to which the request is directed on behalf of the mobile
device. The host server can be polled at a rate determined at
the mobile device using request information collected for the

US 2019/0200258 Al

request for which the response is cached. The rate is deter-
mined from averages of time intervals between previous
requests generated by the same client which generated the
request.

[0465] The verifying can be performed by an entity that is
physically distinct from the mobile device. In one embodi-
ment, the entity is a proxy server coupled to the mobile
device and able to communicate wirelessly with the mobile
device and the proxy server polls a host server to which the
request is directed at the rate determined at the mobile
device based on timing intervals between previous requests
generated by the same client which generated the request.

[0466] In process 1114, a subsequent request for the same
client or application is detected. In process 1116, cache
look-up in the local cache is performed to identify the cache
entry to be used in responding to the subsequent request. In
one embodiment, the metadata is used to determine whether
the response stored as the cached entry is used to satisty the
subsequent response. In process 1118, the response can be
served from the cache to satisfy a subsequent request. The
response can be served in response to identifying a matching
cache entry for the subsequent request determined at least in
part using the metadata.

[0467] FIG. 12 depicts a flow chart illustrating an example
process for a decision flow to determine whether a response
to a request can be cached.

[0468] Process 1202 determines if the request is directed
to a blacklisted destination. If so, the response is not cached,
in step 1285. If a blacklisted destination is detected, or if the
request itself is associated with a blacklisted application, the
remainder of the analysis shown in the figure may not be
performed. The process can continue to steps 1204 and 1206
if the request and its destination are not blacklisted.

[0469] In process 1204, request characteristics informa-
tion associated with the request is analyzed. In analyzing the
request, in process 1208, the request method is identified and
in step 1214, it is determined whether the response can be
cached based on the request method. If an uncacheable
request is detected, the request is not cached and the process
may terminate at process 1285. If the request method is
determined to be cacheable, or not uncacheable, then the
response can be identified as cacheable or potentially cache-
able (e.g., cacheable but subject to the other tests and
analysis shown in the figure) at step 1295.

[0470] In process 1210, the size of the request is deter-
mined. In process 1216, it is determined whether the request
size exceeds a cacheable size. If so, the response is not
cached and the analysis may terminate here at process 1285.
If the request size does not exceed a cacheable size in step
1216, then the response can be identified as cacheable or
potentially cacheable (e.g., cacheable but subject to the other
tests and analysis shown in the figure) at step 1295.
[0471] In step 1212, the periodicity information between
the request and other requests generated by the same client
is determined. In step 1218, it is determined whether peri-
odicity has been identified. If not, the response is not cached
and the analysis may terminate here at process 1285. If so,
then the response can be identified as cacheable or poten-
tially cacheable (e.g., cacheable but subject to the other tests
and analysis shown in the figure) at step 1295.

[0472] In process 1206, the request characteristics infor-
mation associated with the response received for the request
is analyzed.

Jun. 27,2019

[0473] In process 1220, the status code is identified and
determined whether the status code indicates a cacheable
response status code in process 1228. If an uncacheable
status code is detected, the request is not cached and the
process may terminate at process 1285. If the response status
code indicates cacheability, or not uncacheable, then the
response can be identified as cacheable or potentially cache-
able (e.g., cacheable but subject to the other tests and
analysis shown in the figure) at step 1295.

[0474] In process 1222, the size of the response is deter-
mined. In process 1230, it is determined whether the
response size exceeds a cacheable size. If so, the response is
not cached and the analysis may terminate here at process
1285. If the response size does not exceed a cacheable size
in step 1230, then the response can be identified as cacheable
or potentially cacheable (e.g., cacheable but subject to the
other tests and analysis shown in the figure) at step 1295.

[0475] In process 1224, the response body is analyzed. In
process 1232, it is determined whether the response contains
dynamic content or highly dynamic content. Dynamic con-
tent includes data that changes with a high frequency and/or
has a short time to live or short time of relevance due to the
inherence nature of the data (e.g., stock quotes, sports scores
of fast pace sporting events, etc.). If so, the response is not
cached and the analysis may terminate here at process 1285.
If not, then the response can be identified as cacheable or
potentially cacheable (e.g., cacheable but subject to the other
tests and analysis shown in the figure) at step 1295.

[0476] Process 1226 determines whether transfer encod-
ing or chunked transfer encoding is used in the response. If
s0, the response is not cached and the analysis may terminate
here at process 1285. If not, then the response can be
identified as cacheable or potentially cacheable (e.g., cache-
able but subject to the other tests and analysis shown in the
figure) at step 1295.

[0477] Not all of the tests described above need to be
performed to determined whether a response is cached.
Additional tests not shown may also be performed. Note that
any of the tests 1208, 1210, 1212, 1220, 1222, 1224, and
1226 can be performed, singly or in any combination to
determine cacheability. In some instances, all of the above
tests are performed. In some instances, all tests performed
(any number of the above tests that are actually performed)
need to confirm cacheability for the response to be deter-
mined to be cacheable. In other words, in some cases, if any
one of the above tests indicate non-cacheability, the response
is not cached, regardless of the results of the other tests. In
other cases, different criteria can be used to determine which
tests or how many tests need to pass for the system to decide
to cache a given response, based on the combination of
request characteristics and response characteristics.

[0478] FIG. 13 depicts a flow chart illustrating an example
process for determining potential for cacheability based on
request periodicity and/or response repeatability.

[0479] In process 1302, requests generated by the client
are tracked to detect periodicity of the requests. In process
1306, it is determined whether there are predictable patterns
in the timing of the requests. If so, the response content may
be cached in process 1395. If not, in process 1308 it is
determined whether the request intervals fall within a tol-
erance level. If so, the response content may be cached in
process 1395. If not, the response is not cached in process
1385.

US 2019/0200258 Al

[0480] In process 1304, responses received for requests
generated by the client are tracked to detect repeatability in
content of the responses. In process 1310, hash values of
response bodies of the responses received for the client are
examined and in process 1312 the status codes associated
with the responses are examined. In process 1314, it is
determined whether there is similarity in the content of at
least two of the responses using hash values and/or the status
codes. If so, the response may be cached in process 1395. If
not, the response is not cached in 1385.

[0481] FIG. 14 depicts a flow chart illustrating an example
process for dynamically adjusting caching parameters for a
given request or client.

[0482] In process 1402, requests generated by a client or
directed to a host are tracked at the mobile device to detect
periodicity of the requests. Process 1404 determines if the
request intervals between the two or more requests are the
same or approximately the same. In process 1406, it is
determined that the request intervals between the two or
more requests fall within the tolerance level.

[0483] Based on the results of steps 1404 and 1406, the
response for the requests for which periodicity is detected is
received in process 1408.

[0484] In process 1412, a response is cached as a cache
entry in a cache of the mobile device. In process 1414, the
host is monitored at a rate to verify relevance or validity of
the cache entry, and simultaneously, in process 1416, the
response can be served from the cache to satisfy a subse-
quent request.

[0485] In process 1410, a rate to monitor a host is deter-
mined from the request interval, using, for example, the
results of processes 1404 and/or 1406. In process 1420, the
rate at which the given host is monitored is set to verify
relevance or validity of the cache entry for the requests. In
process 1422, a change in request intervals for requests
generated by the client is detected. In process 1424, a
different rate is computed based on the change in request
intervals. The rate at which the given host is monitored to
verify relevance or validity of the cache entry for the
requests is updated in step 1420.

[0486] FIG. 15 depicts a flow chart illustrating example
processes for application and/or traffic (data) categorization
while factoring in user activity and expectations for imple-
mentation of network access and content delivery policies.
[0487] Inprocess 1502, a system or server detects that new
or changed data is available to be sent to a mobile device.
The data, new, changed, or updated, can include one or more
of, IM presence updates, stock ticker updates, weather
updates, mail, text messages, news feeds, friend feeds, blog
entries, articles, documents, any multimedia content (e.g.,
images, audio, photographs, video, etc.), or any others that
can be sent over HTTP or wireless broadband networks,
either to be consumed by a user or for use in maintaining
operation of an end device or application.

[0488] In process 1504, the application to which the new
or changed data is directed is identified. In process 1506, the
application is categorized based on the application. In pro-
cess 1508, the priority or time criticality of the new or
changed data is determined. In process 1510, the data is
categorized. Based on the information determined from the
application and/or priority/time-sensitivity of the relevant
data, any or all of a series of evaluations can be performed
to categorize the traffic and/or to formulate a policy for
delivery and/or powering on the mobile device radio.

Jun. 27,2019

[0489] For example, using the identified application infor-
mation, in process 1512, it is determined whether the
application is in an active state interacting with a user on a
mobile device. In process 1514, it is determined if the
application is running in the foreground on the mobile
device.

[0490] If the answer is ‘Yes’ to any number of the test of
processes 1512 or 1514, the system or server can then
determine that the new or changed data is to be sent to the
mobile device in step 1526, and sent without delay. Alter-
natively, the process can continue at flow ‘C’ where the
timing, along with other transmission parameters such as
network configuration, can be selected, as further illustrated
in the example of FIG. 31. If the answer is ‘No” to the tests
0f' 1512 or 1514, the other test can be performed in any order.
As long as one of the tests 1512 or 1514 is ‘Yes,” then the
system or server having the data can proceed to step 1526
and/or flow ‘C.

[0491] If the answer is ‘No’ to the tests 1512 and 1514
based on the application or application characteristics, then
the process can proceed to step 1524, where the sending of
the new or changed data is suppressed, at least on a
temporary basis. The process can continue in flow ‘A’ for
example steps for further determining the timing of when to
send the data to optimize network use and/or device power
consumption, as further described in the example of flow
chart in FIG. 29.

[0492] Similarly, in process 1516, it is determined whether
the application is running in the background. If so, the
process can proceed to step 1524 where the sending of the
new or changed data is suppressed. However, even if the
application is in the background state, any of the remaining
tests can be performed. For example, even if an application
is in the background state, new or changed data may still be
sent if of a high priority or is time critical.

[0493] Using the priority or time sensitivity information,
in process 1518, it is determined whether the data is of high
priority 1518. In process 1520, it is determined whether the
data is time critical. In process 1522, it is determined
whether a user is waiting for a response that would be
provided in the available data.

[0494] If the answer is ‘Yes’ to any number of the test of
processes 1518, 1520, or 1522, the system or server can then
determine that the new or changed data is to be sent to the
mobile device in step 1526, and sent without delay. Alter-
natively, the process can continue at flow ‘C’ where the
timing, along with other transmission parameters such as a
network configuration, can be selected, as further illustrated
in the example of FIG. 31. If the answer is ‘No’ to any of
these tests, the other test can be performed in any order. As
long as one of the tests 1518, 1520, or 1522 is ‘Yes,” then the
system or server having the data can proceed to step 1526
and/or flow ‘C.

[0495] If the answer is ‘No’ to one or more of the tests
1518, 1520, or 1522, then the process can proceed to step
1524, where the sending of the new or changed data is
suppressed, at least on a temporary basis. The process can
continue in flow ‘A’ for example steps for further determin-
ing the timing of when to send the data to optimize network
use and/or device power consumption. The process can
continue to step 1524 with or without the other tests being
performed if one of the tests yields a ‘No’ response.
[0496] The determined application category in step 1504
can be used in lieu of or in conjunction with the determined

US 2019/0200258 Al

data categories in step 1510. For example, the new or
changed data that is of a high priority or is time critical can
be sent at step 1526 even if the application in the foreground
state but not actively interacting with the user on the mobile
device or if the application is not in the foreground, or in the
background.

[0497] Similarly, even if the user is not waiting for a
response which would be provided in the new or change data
(in step 1522), the data can be sent to the mobile device 1526
if the application is in the foreground, or if the data is of high
priority or contains time critical content.

[0498] In general, the suppression can be performed at the
content source (e.g., originating server/content host of the
new or changed data), or at a proxy server. For example, the
proxy server may be remote from the recipient mobile
device (e.g., able to wirelessly connect to the receiving
mobile device). The proxy server may also be remote from
the originating server/content host. Specifically, the logic
and intelligence in determining whether the data is to be sent
or suppressed can exist on the same server or be the same
entity as the originator of the data to be sent or partially or
wholly remote from it (e.g., the proxy is able to communi-
cate with the content originating server).

[0499] In one embodiment, the waiting to transfer the data
is managed by a local proxy on the mobile device which is
able to wirelessly communicate with a recipient server (e.g.,
the host server for the mobile application or client). The
local proxy on the mobile device can control the radio use
on the mobile device for transfer of the data when the time
period has elapsed, or when additional data to be sent is
detected.

[0500] FIG. 16A depicts a flow chart illustrating example
processes for handling traffic which is to be suppressed at
least temporarily determined from application/traffic catego-
rization.

[0501] For example, in process 1602, a time period is
elapsed before the new or change data is transmitted in step
1606. This can be performed if the data is of low priority or
is not time critical, or otherwise determined to be suppressed
for sending (e.g., as determined in the flow chart of FIG. 15).
The time period can be set by the application, the user, a
third party, and/or take upon a default value. The time period
may also be adapted over time for specific types of appli-
cations or real-time network operating conditions. If the new
or changed data to be sent is originating from a mobile
device, the waiting to transfer of the data until a time period
has elapsed can be managed by a local proxy on the mobile
device, which can communicate with the host server. The
local proxy can also enable or allow the use radio use on the
mobile device for transfer of the data when the time period
has elapsed.

[0502] In some instances, the new or changed data is
transmitted in 1606 when there is additional data to be sent,
in process 1604. If the new or changed data to be sent is
originating from a mobile device, the waiting to transfer of
the data until there is additional data to be sent, can be
managed by a local proxy on the mobile device, which can
communicate with the host server. The local proxy can also
enable or allow the use radio use on the mobile device for
transfer of the data when there is additional data to be sent,
such that device resources can be conserved. Note that the
additional data may originate from the same mobile appli-
cation/client or a different application/client. The additional
data may include content of higher priority or is time critical.

Jun. 27,2019

The additional data may also be of same or lower priority.
In some instances, a certain number of non priority, or non
time-sensitive events may trigger a send event.

[0503] If the new or changed data to be sent is originating
from a server (proxy server or host server of the content), the
waiting to transfer of the data until a time period has elapsed
or waiting for additional data to be sent, can be managed by
the proxy server which can wirelessly communicate with the
mobile device. In general, the proxy server waits until
additional data is available for the same mobile device
before sending the data together in a single transaction to
minimize the number of power-ons of device battery and to
optimize network use.

[0504] FIG. 16B depicts a flow chart illustrating an
example process for selection of a network configuration for
use in sending traffic based on application and/or traffic
(data) categorization.

[0505] In process 1608, an activity state of an application
on the mobile device is detected for which traffic is directed
to or originated from is detected. In parallel or in lieu of
activity state, a time criticality of data contained in the traffic
to be sent between the mobile device and the host server can
be determined, in process 1610. The activity state can be
determined in part or in while, by whether the application is
in a foreground or background state on the mobile device.
The activity state can also be determined by whether a user
is interacting with the application.

[0506] Using activity state and/or data characteristics,
when it has determined from that the data is to be sent to the
mobile device in step 1612 of FIG. 15, the process can
continue to step 3006 for network configuration selection.

[0507] For example, in process 1614, a generation of
wireless standard is selected. The generation of wireless
standard which can be selected includes 2G or 2.5G, 3G,
3.5G, 3G+, 3GPP, LTE, or 4G, or any other future genera-
tions. For example, slower or older generation of wireless
standards can be specified for less critical transactions or
traffic containing less critical data. For example, older stan-
dards such as 2G, 2.5G, or 3G can be selected for routing
traffic when one or more of the following is detected, the
application is not interacting with the user, the application is
running in the background on the mobile device, or the data
contained in the traffic is not time critical. Newer genera-
tions such as can be specified for higher priority traffic or
transactions. For example, newer generations such as 3G,
LTE, or 4G can be specified for traffic when the activity state
is in interaction with a user or in a foreground on the mobile
device.

[0508] In process 1616, the access channel type can be
selected. For example, forward access channel (FACH) or
the dedicated channel (DCH) can be specified. In process
1618, a network configuration is selected based on data rate
or data rate capabilities. For example, a network configura-
tion with a slower data rate can be specified for traffic when
one or more of the following is detected, the application is
not interacting with the user, the application is running in the
background on the mobile device, or the data contained in
the traffic is not time critical

[0509] In process 1620, a network configuration is
selected by specifying access points. Any or all of the steps
1614, 1616, 1618, and 1620 can be performed or in any
combination in specifying network configurations.

US 2019/0200258 Al

[0510] FIG. 16C depicts a flow chart illustrating an
example process for implementing network access and con-
tent delivery policies based on application and/or traffic
(data) categorization.

[0511] In process 1634, an activity state of an application
on a mobile device to which traffic is originated from or
directed to is detected. For example, the activity state can be
determined by whether the application is in a foreground or
background state on the mobile device. The activity state can
also be determined by whether a user is expecting data
contained in the traffic directed to the mobile device.
[0512] Inprocess 1636, a time criticality of data contained
in the traffic to be sent between the mobile device and the
host server is detected. For example, when the data is not
time critical, the timing with which to allow the traffic to
pass through can be set based on when additional data needs
to be sent. Therefore, the traffic can be batched with the other
data so as to conserve network and/or device resources.
[0513] The application state and/or data characteristics
can be used for application categorization and/or data cat-
egorization to determine whether the traffic resulting there-
from is to be sent to the mobile device or suppressed at least
on a temporary basis before sending, as illustrated in the
flow chart shown in the example of FIG. 15.

[0514] Continuing at flow C after a determination has been
made to send the traffic, the parameters relating to how and
when the traffic is to be sent can be determined. For
example, in process 1638, a timing with which to allow the
traffic to pass through, is determined based on the activity
state or the time criticality.

[0515] In process 1640, radio use on the mobile device is
controlled based on the timing with which the traffic is
allowed to pass through. For example, for traffic initiated
from the mobile device, a local proxy can residing on the
mobile device can control whether the radio is to be turned
on for a transaction, and if so, when it is to be turned on,
based on transaction characteristics determined from appli-
cation state, or data priority/time-sensitivity.

[0516] In process 1642, a network configuration in the
wireless network is selected for use in passing traffic to
and/or from the mobile device. For example, a higher
capacity or data rate network (e.g., 3G, 3G+, 3.5G, LTE, or
4G networks) can be selected for passing through traffic
when the application is active or when the data contained in
the traffic is time critical or is otherwise of a higher priority/
importance.

[0517] FIG. 17 depicts a flow chart illustrating an example
process for network selection based on mobile user activity
or user expectations.

[0518] In process 1702, the backlight status of a mobile
device is detected. The backlight status can be used to
determine or infer information regarding user activity and/or
user expectations. For example, in process 1704, user inter-
action with an application on a mobile device is detected
and/or in process 1706, it is determined that a user is
expecting data contained in traffic directed to the mobile
device, if the backlight is on.

[0519] The user interaction 1704 and/or user expectation
1706 can be determined or inferred via other direct or
indirect cues. For example, device motion sensor, ambient
light, data activity, detection of radio activity and patterns,
call processing, etc. can be used alone or in combination to
make an assessment regarding user activity, interaction, or
expectations.

Jun. 27,2019

[0520] In process 1708, an activity state of an application
on the mobile device for which traffic is originated from or
directed to, is determined. In one embodiment, the activity
state of the application is determined by user interaction
with the application on the mobile device and/or by whether
auser is expecting data contained in the traffic directed to the
mobile device.

[0521] In process 1710, 3G, 4G, or LTE network is
selected for use in sending traffic between a mobile device
and a host server in the wireless network. Other network
configurations or technologies can be selected as well,
including but not limited to 2.5G GSM/GPRS networks,
EDGE/EGPRS, 3.5G, 3G+, turbo 3G, HSDPA, etc. For
example, a higher bandwidth or higher capacity network can
be selected when user interaction is detected with an appli-
cation requesting to access the network. Similarly, if it can
be determined or inferred with some certainty that the user
may be expecting data contained in traffic requesting net-
work access, a higher capacity or higher data rate network
may be selected as well.

[0522] The activity state can also be determined by
whether data contained in the traffic directed to the mobile
device responds to foreground activities in the application.
For applications which are in the foreground, a higher
capacity (e.g., 3.5G, 4G, or LTE) network may be selected
for use in carrying out the transaction.

[0523] The activity state can be determined via device
parameters such as the backlight status of the mobile device
or any other software or hardware based device sensors
including but not limited to, resistive sensors, capacitive
sensors, light detectors, motion sensors, proximity sensors,
touch screen sensors, etc. The network configuration which
is selected for use can be further based on a time criticality
and/or priority of data contained in the traffic to be sent
between the mobile device and the host server.

[0524] FIG. 18 depicts a data timing diagram 1800 show-
ing an example of detection of periodic request which may
be suitable for caching.

[0525] In the example shown, a first request from a
client/application on a mobile device is detected at time 1:00
(t1). At this time, a cache entry may be created in step 1802.
At time 2:00 (t2), the second request is detected from the
same client/application, and the cache entry that was created
can now be updated with the detected interval of 1 hour
between time t2 and t1 at step 1804. The third request from
the same client is now detected at time t3=3:00, and it can
now be determined that a periodic request is detected in step
1806. The local proxy can now cache the response and send
a start poll request specifying the interval (e.g., 1 hour in this
case) to the proxy server.

[0526] The timing diagram further illustrates the timing
window between 2:54 and 3:06, which indicates the bound-
aries of a window within which periodicity would be deter-
mined if the third request is received within this time frame
1810. The timing window 1808 between 2:54 and 3:06
corresponds to 20% of the previous interval and is the
example tolerance shown. Other tolerances may be used,
and can be determined dynamically or on a case by case
(application by application) basis.

[0527] FIG. 19 depicts a data timing diagram 1900 show-
ing an example of detection of change in request intervals
and updating of server polling rate in response thereto.
[0528] At step 1902, the proxy determines that a periodic
request is detected, the local proxy caches the response and

US 2019/0200258 Al

sets the polling request to the proxy server, and the interval
is set to 1 hour at the 3rd request, for example. At time
14=3:55, the request is detected 55 minutes later, rather than
1 hour. The interval of 55 minutes still fits in to the window
1904 given a tolerance of 20%. However, at step 1906, the
5th request is received at time t5=4:50, which no longer fits
within the tolerance window set determined from the inter-
val between the 1st and second, and second and third
requests of 1 hour. The local proxy now retrieves the
resource or response from the proxy server, and refreshes the
local cache (e.g., cache entry not used to serve the S5th
request). The local proxy also resends a start poll request to
the proxy server with an updated interval (e.g., 55 minutes
in the example) and the window defined by the tolerance, set
by example to 20%, now becomes 11 minutes, rather than 12
minutes.

[0529] Note that in general, the local proxy notifies the
proxy server with an updated polling interval when an
interval changes is detected and/or when a new rate has been
determined. This is performed, however, typically only for
background application requests or automatic/programmatic
refreshes (e.g., requests with no user interaction involved).
In general, if the user is interacting with the application in
the foreground and causing out of period requests to be
detected, the rate of polling or polling interval specified to
the proxy server is typically not update, as illustrated in FI1G.
20. FIG. 20 depicts a data timing diagram 2000 showing an
example of serving foreground requests with cached entries.
[0530] Forexample, between the times of t=3:00 and 3:30,
the local proxy detects 1st and 2nd foreground requests at
t=3:10 and t=3:20. These foreground requests are outside of
the periodicity detected for background application or auto-
matic application requests. The response data retrieved for
the foreground request can be cached and updated, however,
the request interval for foreground requests are not sent to
the server in process 2008.

[0531] As shown, the next periodic request detected from
the application (e.g., a background request, programmatic/
automatic refresh) at t=4:00, the response is served from the
cache, as is the request at t=5:00.

[0532] FIG. 21 depicts a data timing diagram 2100 show-
ing an example of a non-optimal effect of cache invalidation
occurring after outdated content has been served once again
to a requesting application.

[0533] Since the interval of proxy server polls is set to
approximately the same interval at which the application
(e.g., mobile application) is sending requests, it is likely the
case that the proxy server typically detects changed content
(e.g., at t=5:02) after the cached entry (now outdated) has
already been served for a request (e.g., to the Sth request at
t=5:00). In the example shown, the resource updates or
changes at t=4:20 and the previous server poll which occurs
at t=4:02 was not able to capture this change until the next
poll at 5:02 and sends a cache invalidation to the local proxy
at 2110. Therefore, the local cache does not invalidate the
cache at some time after the 5th request at time t=5:00 has
already been served with the old content. The fresh content
is now not provided to the requesting application until the
6th request at t=6:00, 1 period later at process 2106.
[0534] To optimize caching performance and to resolve
this issue, the local proxy can adjust time setup by specify-
ing an initial time of request, in addition to the polling
interval to the proxy server. The initial time of request here
is set to some time before (e.g., a few minutes) the request

Jun. 27,2019

actually occurred such that the proxy server polls occur
slightly before actual future application requests. This way,
the proxy can pick up any changes in responses in time to be
served to the subsequent application request.

[0535] FIG. 22 depicts a data timing diagram 2200 show-
ing cache management and response taking into account the
time-to-live (TTL) set for cache entries.

[0536] In one embodiment, cached response data in the
local cache specifies the amount of time cache entries can be
stored in the local cache until it is deleted or removed.
[0537] The time when a response data in a given cache
entry is to be removed can be determined using the formula:
<response data_cache time>+<ITL>, as shown at t=3:00,
the response data is automatically removed after the TTL has
elapsed due to the caching at step 2212 (e.g., in this example,
24 hours after the caching at step 2212). In general the time
to live (TTL) applies to the entire cache entry (e.g., includ-
ing both the response data and any metadata, which includes
information regarding periodicity and information used to
compute periodicity). In one embodiment, the cached
response data TTL is set to 24 hours by default or some other
value (e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may
also be dynamically adjustable or reconfigured by the
admin/user and/or different on a case-by-case, device, appli-
cation, network provider, network conditions, operator, and/
or user-specific basis.

[0538] FIG. 23 illustrates a flow chart showing an example
flow of providing a report to a mobile network operator by
distributed aggregation of data to show network optimiza-
tion efficiency.

[0539] In process 2302, functions related to battery con-
sumption reduction are performed at a mobile device, by a
client-side proxy (local proxy). In addition, the in process
2304, the client-side proxy (local proxy) can also perform
functions related to functions related to traffic optimization
and management.

[0540] As a result of processes 2302 and 2304, optimiza-
tion efficiency for traffic at the mobile device can be tracked
by the client-side proxy, as in process 2306. Optimization
efficiency can be determined via several metrics including
but not limited to those illustrated in FIG. 24. Note that in
general, the traffic for which the optimization efficiency is
tracked includes mobile network traffic and/or Wifi traffic.
[0541] In process 2308, battery consumption data of the
mobile device is determined by the client-side proxy. In
process 2310, the report to be provided to the mobile
network operator is generated. In one embodiment, the
client-side proxy is native to an operating system of the
mobile device.

[0542] In process 2312, the report is provided to the
mobile network operator. The report can be automatically
provided periodically or queried by the mobile network
operator In one embodiment, the optimization efficiency
and/or the battery consumption data of the mobile device is
included in the reports provided to the mobile network
operator. Note that in one embodiment, the distributed
aggregation of the data further includes data aggregated by
a server-side proxy remote from the client-side proxy. The
server-side proxy and the client-side proxy are components
of a distributed proxy and/or cache system where, each
individually or in conjunction performs traffic management
and optimization functions. In one embodiment, the local
proxy 175 (e.g., client-side proxy) is also a component in
performing traffic optimization and/or management as

US 2019/0200258 Al

described in correspondence with the description of at least
FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and
FIG. 6-FIG. 22.

[0543] FIG. 24 illustrates a flow chart showing an example
flow for determining optimization efficiency at a mobile
device or in a wireless network.

[0544] In process 2402, connections or signaling at the
mobile device are determined/detected at the mobile device.
In process 2404, the amount of data communicated is
determined. In process 2406, radio state changes are deter-
mined/detected. In process 2408, radio connection time is
determined/detected. In process 2412, optimization effi-
ciency information specific to individual applications on the
mobile device can be is determined. In process 2414,
statistical data is generated from the optimization efficiency
for the wireless network. In process 2416, statistical data is
generated from the optimization efficiency across multiple
wireless networks serviced by multiple network operators.
In process 2418, trending reports and/or ranking reports are
generated from the optimization efficiency

[0545] In one embodiment, the server-side proxy gener-
ates the report to be provided to the mobile network operator
by aggregating data aggregated from client-side proxies of
multiple mobile devices. In addition, the server-side proxy
can determine the statistical metrics using the data aggre-
gated from the multiple mobile devices. The statistical
metrics includes, one or more of, trending information using
information aggregated from the multiple mobile devices
and ranking information using information aggregated from
the multiple mobile devices.

[0546] FIG. 25 illustrates a flow chart showing an example
flow for generating a report to be provided to a network
operator including optimization efficiency effectuated by
performing traffic optimization and management functions
in a wireless network.

[0547] In process 2502, functions related to traffic opti-
mization and management in the wireless network are
performed, by a server-side proxy (e.g., proxy server). In
process 2504, optimization efficiency for wireless network
traffic is determined by the server-side proxy. Note that the
optimization efficiency can include information specific to
different mobile applications on mobile devices. The server-
side proxy can perform functions related to traffic optimi-
zation and management in the wireless network effectuating
in traffic alleviation in the wireless network measured by the
optimization efficiency. The optimization efficiency is deter-
mined in part from information provided by a client-side
proxy on a mobile device in the wireless network. In one
embodiment, the client-side proxy and the server-side proxy
as components of a distributed proxy and/or caching system
which performs traffic optimization and management in the
wireless network.

[0548] In process 2406, user-related information in the
wireless network is tracked by the server-side proxy. Process
flow ‘B’ of FIG. 26 further illustrates examples of data used
in determining optimization efficiency. In process 2508, the
report to be delivered to the network operator or queried by
the network operator is generated. In process 2510, a cus-
tomized report can be generated for the network operator.
The report can be individually customizable for different
network operators.

[0549] Customized reports can include custom analyses
including one or more of, analysis, comparison, trending
across single or multiple dimensions. Customized reports

Jun. 27,2019

can also include one or more of, time-of-the-day, day-of-
the-week analyses with trending over time, or predictive
analyses including, one or more of usage profile predicting
increase in usage and usage profile predicting churn, or
alerts for crossing trend lines, changing trends including
detecting viral take-up of a new application. The customi-
zation can also include data feed to CRM, network opera-
tions, or policy management in real-time, hourly, daily,
weekly, monthly, or any other periodic basis.

[0550] In process 2512, statistical data is generated from
the optimization efficiency for the wireless network. In
process 2514, statistical data is generated from the optimi-
zation efficiency across multiple wireless networks serviced
by multiple network operators. In process 2516, trending
reports and/or ranking reports are generated from the opti-
mization efficiency. In process 2518, the report is provided
to the network operator.

[0551] The traffic optimization and management tech-
niques performed by the client-side or local proxy and/or the
server-side (proxy) server can further include traffic man-
agement strategies described in detail with respect to at least
FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and
FIG. 6-FIG. 22. The optimization strategies described in
accordance with the innovation include by way of example,
not limitation, batching requests originated from the mobile
device, categorization based on foreground or background
traffic, prioritization of the traffic based on time criticality,
alignment or delay of polling requests from the mobile
device, monitoring of application behavior on the mobile
device, and/or optimizing the traffic based on user behavior
at the mobile device. The optimization strategies can further
include content caching at the mobile device and/or at a
remote proxy server (e.g., the proxy server of FIG. 5A) to
decrease future traffic requests from network access. Such
caching strategies are described in detail at least with respect
to FIG. 18-FIG. 22.

[0552] FIG. 26 illustrates a flow chart showing examples
comparisons of data shown in reports of optimization effi-
ciency provided to network operators. For example, in
process 2602, data traffic and saved data traffic are com-
pared. In process 2604, actual connections and saved con-
nections are compared. In process 2606, actual connection
time and saved connection time are compared. Examples of
charts that can be included in the reports are illustrated by
way of example in FIG. 1E-FIG. 1R.

[0553] FIG. 27 shows a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

[0554] In alternative embodiments, the machine operates
as a standalone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client
machine in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment.

[0555] The machine may be a server computer, a client
computer, a personal computer (PC), a user device, a tablet
PC, a laptop computer, a set-top box (STB), a personal
digital assistant (PDA), a cellular telephone, an iPhone, an
iPad, a Blackberry, a processor, a telephone, a web appli-
ance, a network router, switch or bridge, a console, a
hand-held console, a (hand-held) gaming device, a music

US 2019/0200258 Al

player, any portable, mobile, hand-held device, or any
machine capable of executing a set of instructions (sequen-
tial or otherwise) that specify actions to be taken by that
machine.

[0556] While the machine-readable medium or machine-
readable storage medium is shown in an exemplary embodi-
ment to be a single medium, the term “machine-readable
medium” and “machine-readable storage medium” should
be taken to include a single medium or multiple media (e.g.,
a centralized or distributed database and/or associated
caches and servers) that store the one or more sets of
instructions. The term “machine-readable medium” and
“machine-readable storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instructions for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the presently disclosed technique and
innovation.

[0557] In general, the routines executed to implement the
embodiments of the disclosure may be implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions referred
to as “computer programs.” The computer programs typi-
cally comprise one or more instructions set at various times
in various memory and storage devices in a computer that,
when read and executed by one or more processing units or
processors in a computer, cause the computer to perform
operations to execute elements involving the various aspects
of the disclosure.

[0558] Moreover, while embodiments have been
described in the context of fully functioning computers and
computer systems, those skilled in the art will appreciate that
the various embodiments are capable of being distributed as
a program product in a variety of forms, and that the
disclosure applies equally regardless of the particular type of
machine or computer-readable media used to actually effect
the distribution.

[0559] Further examples of machine-readable storage
media, machine-readable media, or computer-readable (stor-
age) media include but are not limited to recordable type
media such as volatile and non-volatile memory devices,
floppy and other removable disks, hard disk drives, optical
disks (e.g., Compact Disk Read-Only Memory (CD ROMS),
Digital Versatile Disks, (DVDs), etc.), among others, and
transmission type media such as digital and analog commu-
nication links.

[0560] Unless the context clearly requires otherwise,
throughout the description and the claims, the words “com-
prise,” “comprising,” and the like are to be construed in an
inclusive sense, as opposed to an exclusive or exhaustive
sense; that is to say, in the sense of “including, but not
limited to.” As wused herein, the terms ‘“connected,”
“coupled,” or any variant thereof, means any connection or
coupling, either direct or indirect, between two or more
elements; the coupling of connection between the elements
can be physical, logical, or a combination thereof. Addition-
ally, the words “herein,” “above,” “below,” and words of
similar import, when used in this application, shall refer to
this application as a whole and not to any particular portions
of this application. Where the context permits, words in the
above Detailed Description using the singular or plural
number may also include the plural or singular number
respectively. The word “or,” in reference to a list of two or
more items, covers all of the following interpretations of the

Jun. 27,2019

word: any of the items in the list, all of the items in the list,
and any combination of the items in the list.

[0561] The above detailed description of embodiments of
the disclosure is not intended to be exhaustive or to limit the
teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines hav-
ing steps, or employ systems having blocks, in a different
order, and some processes or blocks may be deleted, moved,
added, subdivided, combined, and/or modified to provide
alternative or sub-combinations. Each of these processes or
blocks may be implemented in a variety of different ways.
Also, while processes or blocks are at times shown as being
performed in series, these processes or blocks may instead
be performed in parallel, or may be performed at different
times. Further any specific numbers noted herein are only
examples: alternative implementations may employ differ-
ing values or ranges.

[0562] The teachings ofthe disclosure provided herein can
be applied to other systems, not necessarily the system
described above. The elements and acts of the various
embodiments described above can be combined to provide
further embodiments.

[0563] Any patents and applications and other references
noted above, including any that may be listed in accompa-
nying filing papers, are incorporated herein by reference.
Aspects of the disclosure can be modified, if necessary, to
employ the systems, functions, and concepts of the various
references described above to provide yet further embodi-
ments of the disclosure.

[0564] These and other changes can be made to the
disclosure in light of the above Detailed Description. While
the above description describes certain embodiments of the
disclosure, and describes the best mode contemplated, no
matter how detailed the above appears in text, the teachings
can be practiced in many ways. Details of the system may
vary considerably in its implementation details, while still
being encompassed by the subject matter disclosed herein.
As noted above, particular terminology used when describ-
ing certain features or aspects of the disclosure should not be
taken to imply that the terminology is being redefined herein
to be restricted to any specific characteristics, features, or
aspects of the disclosure with which that terminology is
associated. In general, the terms used in the following claims
should not be construed to limit the disclosure to the specific
embodiments disclosed in the specification, unless the above
Detailed Description section explicitly defines such terms.
Accordingly, the actual scope of the disclosure encompasses
not only the disclosed embodiments, but also all equivalent
ways of practicing or implementing the disclosure under the
claims.

[0565] While certain aspects of the disclosure are pre-
sented below in certain claim forms, the inventors contem-
plate the various aspects of the disclosure in any number of
claim forms. For example, while only one aspect of the
disclosure is recited as a means-plus-function claim under
35U.S.C. § 112, 916, other aspects may likewise be embod-
ied as a means-plus-function claim, or in other forms, such
as being embodied in a computer-readable medium. (Any
claims intended to be treated under 35 U.S.C. § 112, 916 will

US 2019/0200258 Al

begin with the words “means for.”) Accordingly, the appli-
cant reserves the right to add additional claims after filing
the application to pursue such additional claim forms for
other aspects of the disclosure.

1-20. (canceled)

21. A mobile device comprising:

a memory;

and a processor, the mobile device configured for:

adjusting a timing of background application data
requests in order to conserve battery;

monitoring battery resource consumption of multiple
applications operating on a mobile device;

monitoring a time of use of the multiple applications
operating on the mobile device;

generating a first report that displays battery consump-
tion, wherein the first report displays battery
resource consumption of the multiple applications
operating on the mobile device, including battery
resource consumption of background application
data requests and battery resource consumption rela-
tive to a unit of time; and

generating a second report that displays the time of use
of the multiple applications on the mobile device.

22. The mobile device of claim 21, wherein adjusting a
timing of background application data requests includes
adjusting timing of background application data requests
while a screen of the mobile device is off.

23. The mobile device of claim 21, wherein the second
report is generated on a weekly basis.

24. The mobile device of claim 21, wherein the first report
is generated on a daily basis.

25. The mobile device of claim 21, wherein the unit of
time includes an hour of time.

26. The mobile device of claim 21, wherein the first report
displays battery resource consumption of the multiple appli-
cations by arranging the applications in descending order
relative to their respective battery resource consumption.

27. The mobile device of claim 26, wherein the battery
resource consumption includes a percentage relative to full
charge of battery consumption.

28. The mobile device of claim 26, wherein the second
report is generated for another mobile device.

29. The mobile device of claim 21, wherein adjusting a
timing is enabled on an application by application basis.

30. The mobile device of claim 21, wherein adjusting a
timing is enabled for the mobile device.

Jun. 27,2019

31. The mobile device of claim 21, wherein the mobile
device is configured for generating a third report that dis-
plays cellular data used.

32. A method comprising:

adjusting a timing of background application data

requests on a mobile device in order to conserve
battery;

monitoring battery resource consumption of multiple

applications operating on a mobile device;
monitoring a time of use of the multiple applications
operating on the mobile device;
generating a first report that displays battery consumption,
wherein the first report displays battery resource con-
sumption of the multiple applications operating on the
mobile device, including battery resource consumption
of background application data requests and battery
resource consumption relative to a unit of time; and

generating a second report that displays the time of use of
the multiple applications on the mobile device.

33. The method of claim 32, wherein adjusting a timing
of background application data requests includes adjusting
timing of background application data requests while a
screen of the mobile device is off.

34. The method of claim 32, wherein the second report is
generated on a weekly basis.

35. The method of claim 32, wherein the first report is
generated on a daily basis.

36. The method of claim 32, wherein the unit of time
includes an hour of time.

37. The method of claim 32, wherein the first report
displays battery resource consumption of the multiple appli-
cations by arranging the applications in descending order
relative to their respective battery resource consumption.

38. The method of claim 37, wherein the battery resource
consumption includes a percentage relative to full charge of
battery consumption.

39. The method of claim 37, wherein the second report is
generated for another mobile device.

40. The method of claim 32, wherein adjusting a timing
is enabled on an application by application basis.

41. The method of claim 32, wherein adjusting a timing
is enabled for the mobile device.

42. The mobile device of claim 32, wherein the mobile
device is configured for generating a third report that dis-
plays cellular data used.

#* #* #* #* #*

