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(57) ABSTRACT

Methods for image-based remote sensing of crop plants
include: acquiring images of the crop plants from a camera
flown over the crop by an unmanned/uncrewed aerial
vehicle (UAV); forming an artificial neural network (ANN);
and using the trained ANN to identify and/or measure one or
more phenotypic characteristics of the crop plants in the
images by classification and/or regression; and/or obtaining
multispectral images of the crop plants from a multispectral
camera flown over the crop by the UAV; mosaicking the
multispectral images together; determining crop measure-
ment metrics; crop height model (CHM), crop coverage
(CC) and crop volume (CV) representing the crop plants in
three dimensions from a fusion of a digital surface model
and a digital terrain model; determining various vegetation
indices (VIs) based on the multispectral orthomosaic reflec-
tance map; and determining a measurement of dry biomass
using CV and fresh biomass using CVxVls.
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SYSTEM AND METHOD FOR
IMAGE-BASED REMOTE SENSING OF
CROP PLANTS

TECHNICAL FIELD

[0001] The present disclosure relates to a system and a
method for image-based remote sensing of crop plants.

BACKGROUND

[0002] Efficient, precise and timely measurement of crop
plant traits is important in the assessment of a breeding
population. Modern plant breeding strategies rely on effi-
cient genotyping and phenotyping for improving yield, that
is, by studying the phenotypic responses in diverse germ-
plasm.

[0003] The traditional phenotyping method to measure
crop plant traits such as above-ground biomass (AGB)—
includes destructively harvesting samples of the crop to
measure fresh weight (FW), and oven drying the harvested
samples to measure dry weight (DW). Retrieving the AGB
measures such as the DW and the FW has remained chal-
lenging under field conditions with a variety of genotypes
having diverse growth response including during reproduc-
tive and senescence stages. Using the traditional method, to
investigate the biomass of a diverse number of genotypes in
field breeding research, a large number of plants needs to be
harvested regularly over different growth stages, which is
very time consuming and labour intensive. Moreover, as this
method is destructive, it is impossible to take multiple
measurements on the same plot at different time points.
Although some image processing methods and systems have
been proposed for remote sensing of crops, developing
high-performance algorithms for certain tasks with existing
tools remains time-consuming, resource expensive and
relies heavily on human expertise and trial-and-error pro-
cesses.

[0004] It is desired to address or ameliorate one or more
disadvantages or limitations associated with the prior art, or
to at least provide a useful alternative.

SUMMARY

[0005] Disclosed herein is a method for image-based
remote sensing of crop plants, the method including:

[0006] a. obtaining multispectral images of crop plants
from a multispectral camera flown over the crop by an
unmanned/uncrewed aerial vehicle (UAV);

[0007] b. mosaicking the multispectral images together
using a structure-from-motion (SfM) method to pro-
duce:

[0008] 1i.a multispectral orthomosaic reflectance map
of the crop plants,

[0009] 1ii. a digital surface model (DSM) of the crop
plants, and a

[0010]
plants;

[0011] c. determining a crop height model (CHM) rep-
resenting the crop plants in three dimensions (3D) from
a fusion of the DSM and the DTM;

[0012] d. determining an optimized soil adjusted veg-
etation index (OSAVI) based on the multispectral
orthomosaic reflectance map; and

iii. a digital terrain model (DTM) of the crop

Oct. 5, 2023

[0013] e. determining a measurement of biomass of the
crop plants by comparing the CHM and the OSAV],
including:

[0014] i. determining crop volume (CV) through a
fusion of CHM and crop coverage (CC) to measure
entire volume of the standing crop to model dry
weight (DW) biomass, and/or

[0015] ii. modelling fresh weight (FW) biomass
through a fusion of CV and vegetation indices (VIs).

[0016] The SfM method can include using green bands of
the multispectral images as a reference band.

[0017] The SfM method can include geometrically regis-
tering the orthomosaic reflectance map with the DSM and
the DTM using one or more ground control points (GCPs)
in the images adjacent to or in the crop.

[0018] The method can include determining the CC (op-
tionally in the form of a CC layer) from a fusion of the
OSAVI and the CHM. The fusion of the OSAVT (optionally
in the form of an OSAVT layer) and the CHM (optionally in
the form of a CHM layer) can include a pixel-wise product
of the OSAVI layer and the CHM layer.

[0019] The CHM and the multispectral orthomosaic
reflectance map are complementary and both represent the
same crop area.

[0020] Disclosed herein is a system for image-based
remote sensing of crop plants, the system including an aerial
data acquisition system with:

[0021] a. an unmanned/uncrewed aerial vehicle (UAV);
and
[0022] b. a multispectral camera mounted to the UAV

for acquiring multispectral images of the crop plants,
the system further including a computing system configured
to perform a data-processing method including:

[0023] a. mosaicking the multispectral images together
using a structure-from-motion (SfM) method to pro-
duce:

[0024] 1. a multispectral orthomosaic reflectance map
of the crop plants,

[0025] ii. a digital surface model (DSM) of the crop
plants, and a

[0026] iii. a digital terrain model (DTM) of the crop
plants;

[0027] b. determining a crop height model (CHM)
representing the crop plants in three dimensions (3D)
from a fusion of the DSM and the DTM;

[0028] c. determining an optimized soil adjusted veg-
etation index (OSAVI) based on the multispectral
orthomosaic reflectance map; and

[0029] d. determining a measurement of biomass of the
crop plants by comparing the CHM and the OSAV],
including:

[0030] 1i. determining crop volume (CV) through a
fusion of CHM and crop coverage (CC) to measure
entire volume of the standing crop to model dry
weight (DW) biomass, and/or

[0031] 1ii. modelling fresh weight (FW) biomass
through a fusion of CV and vegetation indices (VIs).

[0032] Disclosed herein is machine-readable storage
media including machine readable instructions that, when
executed by a computing system, perform a data-processing
method including:

[0033] a. mosaicking multispectral images of crop
plants together using a structure-from-motion (SfM)
method to produce:
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[0034] 1. a multispectral orthomosaic reflectance map
of the crop plants,

[0035] 1ii. a digital surface model (DSM) of the crop
plants, and a

[0036] iii. a digital terrain model (DTM) of the crop
plants;

[0037] b. determining a crop height model (CHM)
representing the crop plants in three dimensions (3D)
from a fusion of the DSM and the DTM;

[0038] c. determining an optimized soil adjusted veg-
etation index (OSAVI) based on the multispectral
orthomosaic reflectance map; and

[0039] d. determining a measurement of biomass of the
crop plants by comparing the CHM and the OSAV],
including:

[0040] i. determining crop volume (CV) through a
fusion of CHM and crop coverage (CC) to measure
entire volume of the standing crop to model dry
weight (DW) biomass, and/or

[0041] ii. modelling fresh weight (FW) biomass
through a fusion of CV and vegetation indices (VIs).

[0042] Disclosed herein is a method for image-based

remote sensing of crop plants, the method including:

[0043] a. acquiring images of the crop plants from a
camera flown over the crop by an unmanned/uncrewed
aerial vehicle (UAV);

[0044] b. forming an artificial neural network (ANN)
by:

[0045] 1. uploading the images to a neural architec-
ture search (NAS) module to select a neural archi-
tecture for the artificial neural network (ANN), and

[0046] 1ii. training the ANN using the images; and

[0047] c. using the trained ANN to identity and/or
measure one or more phenotypic characteristics of the
crop plants in the images by classification and/or
regression.

[0048] The crop plants may include wheat. The pheno-

typic characteristics of the crop plants include whether or

not there is wheat lodging (i.e., a classification task), and/or

a level (i.e., measure) of the wheat lodging using a lodging

estimator of levels in the images, i.e., a regression task.

[0049] The method may include generating an orthomo-

saic image of the acquired images with measured coordi-

nates of one or more ground control points (GCPs) used for
geo-rectification.

[0050] Disclosed herein is a system for image-based

remote sensing of crop plants, the system including an aerial

data acquisition system with:

[0051] a. an unmanned/uncrewed aerial vehicle (UAV);
and
[0052] b. an optical camera mounted to the UAV to

acquire images of the crop plants, the system further
including a:

[0053] a. receiving the images;

[0054] b. forming an artificial neural network (ANN)
by:
[0055] 1. uploading the images to a neural architec-

ture search (NAS) module to select a neural archi-
tecture for the artificial neural network (ANN), and
[0056] 1ii. training the ANN using the images; and
[0057] c. using the trained ANN to identity and/or
measure one or more phenotypic characteristics of the
crop plants in the images by classification and/or
regression.

Oct. 5, 2023

[0058] The aerial data acquisition system can include a

geotagging module to geotag each image.

[0059] The system can include one or more ground control

points (GCPs) for geometric correction of the geotagging

module.

[0060] Disclosed herein is machine-readable storage

media including machine readable instructions that, when

executed by a computing system, perform a data-processing
method including:

[0061] a. receiving images of crop plants from a camera
flown over the crop by an unmanned/uncrewed aerial
vehicle (UAV);

[0062] b. forming an artificial neural network (ANN)
by:

[0063] 1i. uploading the images to a neural architec-
ture search (NAS) module to select a neural archi-
tecture for the artificial neural network (ANN), and

[0064] ii. training the ANN using the images; and

[0065] c. using the trained ANN to identify and/or
measure one or more phenotypic characteristics of the
crop plants in the images by classification and/or
regression.

[0066] Disclosed herein is a method including:

[0067] a. receiving images of crop plants from a camera
flown over the crop by an unmanned/uncrewed aerial
vehicle (UAV);

[0068] b. classifying and/or regressing the images to
identify and/or measure one or more phenotypic char-
acteristics of the crop plants in the images using a
trained artificial neural network (ANN), wherein the
trained ANN has been trained by:

[0069] 1. uploading a training data set including train-
ing images of the crop plants to a neural architecture
search (NAS) module to select a neural architecture
for the artificial neural network (ANN), and

[0070] ii. training the ANN using the training images.

[0071] Disclosed herein is a system including computing

system configured to perform a data-processing method

including:

[0072] a. receiving images of crop plants from a camera
flown over the crop by an unmanned/uncrewed aerial
vehicle (UAV);

[0073] b. classifying and/or regressing the images to
identify and/or measure one or more phenotypic char-
acteristics of the crop plants in the images using a
trained artificial neural network (ANN), wherein the
trained ANN has been trained by:

[0074] 1. uploading a training data set including train-
ing images of the crop plants to a neural architecture
search (NAS) module to select a neural architecture
for the artificial neural network (ANN), and

[0075] ii. training the ANN using the training images.

[0076] Disclosed herein is machine-readable storage

media including machine readable instructions that, when

executed by a computing system, perform a classification
task, including:

[0077] a. receiving images of crop plants from a camera
flown over the crop by an unmanned/uncrewed aerial
vehicle (UAV);

[0078] b. classifying and/or regressing the images to
identify and/or measure one or more phenotypic char-
acteristics of the crop plants in the images using a
trained artificial neural network (ANN), wherein the
trained ANN has been trained by:
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[0079] 1i.uploading a training data set including train-
ing images of the crop plants to a neural architecture
search (NAS) module to select a neural architecture
for the artificial neural network (ANN), and

[0080] 1ii. training the ANN using the training images.

BRIEF DESCRIPTION OF THE DRAWINGS

[0081] Some embodiments of the present invention are
hereinafter described, by way of example only, with refer-
ence to the accompanying drawings, in which:

[0082] a. FIG. 1 are photographs of an example UAV, (a)
at rest, and (b) in flight;

[0083] b. FIG. 2 is a flowchart of a fusion-based data-
processing method described herein;

[0084] c. FIG. 3 is a graph of a correlation between
computed crop height model (CHM) and observed ground
truth (GT) height measurements at time points;

[0085] d. FIG. 4 is a set of images providing a visual
evaluation of the performance of the data-processing method
for computing crop coverage (CC) and CCxCHM at differ-
ent growth stages on three wheat varieties with variable
growth rates;

[0086] e. FIG. 5 is a set of graphs showing high-through-
put estimation of dry biomass or dry weight (DW), including
variability in the correlation of determination (R?) for mod-
elling performed using crop volume (CV) and standard
vegetation indices (VIs) (a) across different time points and
(b) at all the time points combined against observed DW;
and in (c) modelling results for DW derived from CV against
observed DW readings;

[0087] f. FIG. 6 is a set of graphs showing high-through-
put estimation of fresh biomass or fresh weight (FW),
including variability in the correlation of determination (R?)
of crop volume multiplied using standard vegetation indices
(CVxVlIs) (a) across different time points and (b) at all the
time points combined against observed FW; and in (c)
modelling results for FW derived from CVXEVI against
observed FW readings;

[0088] g. FIG. 7 is set of graphs showing a growth profile
of modelled (a) Dry weight (DW) and (b) Fresh Weight
(FW) at different time points;

[0089] h.FIG. 8is an image of an example wheat breeding
field experiment with ground control points (GCPs) indi-
cated using 2 by 2 black and white grids;

[0090] i.FIG.9 is a flowchart of steps in a neural network
method described herein;

[0091] ;. FIG. 10 is a set of images of mutually different
exemplary wheat lodging severities in which wheat plot
images were first classified as non-lodged or lodged using
ground truth data, then plot images identified as lodged were
assessed visually and divided into three lodging severities
(light, moderate and heavy) based on lodging angles;
[0092] k. FIG. 11(a) is an example AutoModel for image
classification, and 11(5) is an example ImageRegressor for
image regression;

[0093] 1. FIG. 12 is a diagram of a comparison ANN
implemented using transfer learning with the ResNet-50
architecture, in which outputs from the ResNet-50 were
joined to a global average pooling 2D layer and connected
to a final dense layer, with the activation function set as
either “sigmoid” for image classification or “linear” for
image regression;
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[0094] m. FIG. 13 is an example confusion matrix of the
classification results using (a) the comparator ResNet-50 and
(b) the NN model after 100 trials;

[0095] n. FIG. 14 is a model architecture diagram of an
experimental example best in test ANN architecture for
image classification in the form of a simple 2-layers CNN
mo

[0096] o. del with 43,895 parameters after 50 and 100
trials;
[0097] p. FIG. 15 is a bar graph of classification accuracy

versus the number of trials for the NN model (10, 25, 50 and
100 trials);
[0098] q. FIG. 16 is a model architecture diagram of an
experimental example best in test ANN architecture for
image regression: an 8-layers mini Xception model with
207,560 parameters was the best tested architecture discov-
ered in 50 and 100 trials, wherein the model included three
main parts (“entry flow”, “middle flow” and “exit flow”) and
two key features (“MaxPooling2D” and
“GlobalAveragePooling2D”) namely the depthwise sepa-
rable convolutional layers and skip connections from the
original Xception network may be discerned; and
[0099] r. FIG. 17 is a set of graphs of regression plots
formed by plotting predicted lodging scores (y_predict)
against actual scores (y_test), and including a regres-
sion line with a 95% confidence interval and dashed
black line indicating the 1:1 line, for predicted outputs
using (a) ResNet-50 and (b) the NN model.

DETAILED DESCRIPTION

Overview of Fusion Method

[0100] Disclosed herein is a method for image-based
remote sensing of crop plants. Also disclosed herein is a
system configured to perform the method.

[0101] The method (also referred to herein as the ‘fusion
method’) includes:

[0102] a. obtaining multispectral images of crop plants
(forming an above-ground crop) from a multispectral
camera flown over the crop by an unmanned/uncrewed
aerial vehicle (UAV);

[0103] b. mosaicking the multispectral images together
using a structure-from-motion (SfM) method to pro-
duce:

[0104] 1. a multispectral orthomosaic reflectance map
of the crop plants,

[0105] ii. a digital surface model (DSM) of the crop
plants, and a

[0106] iii. a digital terrain model (DTM) of the crop
plants;

[0107] c. determining a crop height model (CHM) rep-
resenting the crop plants in three dimensions (3D) from
a fusion of the DSM and the DTM;

[0108] d. determining an optimized soil adjusted veg-
etation index (OSAVI) based on the multispectral
orthomosaic reflectance map; and

[0109] e. determining a measurement of biomass of the
crop plants by comparing the CHM and the OSAV],
including:

[0110] i. determining crop volume (CV) through a
fusion of CHM and crop coverage (CC) to measure
entire volume of the standing crop to model dry
weight (DW) biomass, and/or
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[0111] ii. modelling fresh weight (FW) biomass
through a fusion of CV and vegetation indices (VIs).

[0112] The three fusion steps may provide substantially
improved accuracy. The DSM is a spectral representation of
the crop, and the DTM is structural representation of the
crop, so the DSM may be referred to as a “spectral layer”,
and the DTM may be referred to as a “structural layer”. The
method thus combines the spectral layer and the structural
layer in one of the fusion steps.

[0113] The SfM method can include using green bands of
the multispectral images as a reference band.

[0114] The method can include determining the CC (in the
form of a CC layer) from a fusion of the OSAVI and the
CHM. The fusion of the OSAVI (in the form of an OSAVI
layer) and the CHM (in the form of a CHM layer) can
include a pixel-wise product of the OSAVI layer and the
CHM layer.

[0115] The co-called intermediate traits, including crop
height model (CHM), crop coverage (CC) and crop volume
(CV), may be capable of inferring important agronomic
insights in high-throughput breeding research for screening
genotypes or identifying genotypic markers governing the
fundamental response of the genotypes. The method can
include determining a measurement of crop yield based on:
the crop coverage (CC) values; the crop volume (CV)
values; and/or the biomass or above-ground biomass (AGB)
values, which can be represented by a measure of a total dry
weight (DW) or a total fresh weight (FW) of organic matter
per unit area at a given time. Above-ground crop biomass is
an important factor in the study of plant functional biology
and growth, it is the basis of vigour and net primary
productivity, and may be crucial for monitoring grain yield.
[0116] The CHM and the multispectral orthomosaic
reflectance map are complementary and because they both
represent the same crop area.

[0117] The DTM may be referred to as the digital eleva-
tion model (DEM).

[0118] The system (also referred to herein as the ‘fusion
system’) includes an aerial data acquisition system with:
[0119] a. a multispectral camera (also referred to as a
“multispectral sensor”);

[0120]

[0121] c. the UAV with a gimbal mount and vibration
dampeners; and

[0122] d. a global positioning system (GPS) module for
recording locations of the respective multispectral
images.

[0123] The UAV is a small UAV. The UAV may be an
off-the-shelf small UAV in the form of a quadcopter, e.g., as
shown in FIG. 1.

[0124] The data acquisition system includes a switching
mode power supply to step down the output voltage of the
UAV to power the multispectral sensor.

[0125] The data acquisition system includes a gravity-
assisted gimbal bracket (3D printed) that fastens and
attaches the multispectral sensor to the gimbal mount.

[0126] The data acquisition system records position values
of the images, i.e., latitude, longitude and altitude, on
multispectral sensor tags using the GPS module.

[0127] The multispectral sensor may be an off-the-shelf
multispectral camera.

b. a downwelling light sensor (DLS);
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[0128] The multispectral sensor logs dynamic changes in
incident irradiance levels using the DLS.

[0129] The multispectral sensor may have five spectral
bands: blue (475 nm), green (560 nm), red (668 nm), red
edge (717 nm), and near-infrared (840 nm).

[0130] The multispectral sensor measures at-sensor radi-
ance, the radiant flux received by the sensor. The at-sensor
radiance is a function of surface radiance (i.e., flux of
radiation from the surface) and atmospheric disturbance
between the surface and the sensor, which may be assumed
to be negligible for UAV-based surveys.

[0131] The data acquisition system is configured to trigger
the multispectral sensor to acquire the images at a selected
height above the crop, e.g., 30 m to provide a ground
sampling distance (GSD) of 2 cm. The data acquisition
system is configured to trigger the multispectral sensor to
acquire adjacent images based on location from the GPS
module with a selected overlap between adjacent images,
e.g., 85% forward and side overlap.

[0132] The system includes at least one radiometric cali-
bration panel (also referred to as a “standardised reflectance
panel”) with known radiometric coefficients for individual
multispectral bands. The method includes the multispectral
sensor recording radiometric calibration measurements from
the radiometric calibration panel before individual flight
missions. The method includes image correction of the
acquired images using the radiometric calibration measure-
ments.

[0133] The camera records at-sensor radiance measure-
ments for each band in dynamically scaled digital numbers
(DNs) at a predetermined bit depth, thus forming the raw
images. The method includes using the at least one radio-
metric calibration panel to establish a linear empirical rela-
tionship between the DNs and surface reflectance during the
survey by measuring the surface reflectance of the radio-
metric calibration panel under consistent illumination con-
ditions during the survey. In the method, the logs from the
onboard DLS are used to account for changes in irradiation
during the acquisition of the images (by application of the
linear empirical relationship to the raw DNs).

[0134] The method includes acquiring the mutually over-
lapping images of a field site (also referred to as a ‘study
area’) that includes the crop plants.

[0135] The system includes one or more ground control
points (GCPs) for geometric correction of the GPS module,
for example 5 GCPs. The system can include a high-
precision positioning receiver to measure respective loca-
tions of the GCPs based on a multi-band global navigation
satellite system (GNSS), e.g., a real-time kinetic (RTK)
positioning receiver, with centimetre level precision, e.g., an
accuracy of 0.02 m in planimetry and 0.03 m in altimetry.
The positioning receiver may be an off-the-shelf receiver.
The method may include installing the GCPs adjacent to or
in the field site, and measuring the GCP locations within a
day of acquiring the images, e.g., on the same day. The
GCPs may be installed such that there is one GCP in a centre
of the field site, one GCP at each of the four corners of the
field site.
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[0136] The system includes a computing system config-
ured to receive the acquired images (i.e., the aerial multi-
spectral images) from the aerial data acquisition system.
[0137] The computing system is configured to process the
acquired images for modelling the DW and the FW by
performing a data-processing method illustrated in FIG. 2.
As shown in FIG. 2, the data-processing method includes:
[0138] a. in an upload step, receiving the acquired
images as raw images from the multispectral sensor,
and receiving the logs from the DLS corresponding to
the raw images;
[0139] b. in a photogrammetry step, geometrically and
radiometrically correcting the raw images;
[0140] c. in an SfM step, generating the orthomosaic,
the DSM and the DTM;
[0141] d. in a VI generation step, generating a plurality
of vegetation indices (VIs);

[0142] e. in a CHM step, generating the CHM,;
[0143] f in a CC step, generating the CC;
[0144] g. in a CV step, generating the CV;
[0145] h. in a DW step, generating the DW; and
[0146] 1i. in a FW step, generating the FW.
[0147] In the photogrammetry step, the photogrammetry

application is used to correct the raw images (i.e., the surface
radiance measurements) for the influence of incident radia-
tion. In the photogrammetry step, the DNs are converted into
absolute surface reflectance values (i.e., a component of the
surface radiance independent of the incident radiation/am-
bient illumination) using: a linear empirical relationship
between the DNs and the surface reflectance (wherein the
linear relationship is determined by multispectral sensor
images of the standardised reflectance panels under consis-
tent illumination), and a time-dependent factor using the
logs from onboard DLS sensor to account for changes in
irradiation during the acquisition of the images. In the
photogrammetry step, the computing system corrects optical
(filters and lenses) aberrations and vignetting effects to
maintain a consistent spectral response between images. The
photogrammetry step may use an off-the-shelf photogram-
metry application, e.g., Pix4D.

[0148] In the SfM step, composite images (of the
orthomosaic, the DSM and the DTM) are generated by
stitching hundreds of different calibrated images captured
from mutually separate, individual flight missions, e.g.,
using the photogrammetry application. The SfM step com-
bines the large number of images from a plurality of UAV
missions, e.g., based on an example SfM steps described in
Harwin et al (Harwin, S.; Lucieer, A. ‘Assessing the Accu-
racy of Georeferenced Point Clouds Produced via Multi-
View Stereopsis from Unmanned Aerial Vehicle (UAV)
Imagery’ in ‘Remote Sensing’ 2012, 4, 1573-1599, doi:10.
3390/rs4061573). The StM step includes a feature matching
step using a scale-invariant feature transform (SIFT) to
create optimized resection geometry for improving initial
multispectral sensor position accuracy obtained through the
recorded GPS tags. The SfM step includes optimizing the
multispectral sensor parameters based on any matched tri-
angulated target points between multiple images, wherein
the number of matched points can be selected, e.g., at 10,000
points. The SfM step includes a bundle adjustment step to
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generate a sparse model that contains generalized keypoints
that connect the images. The SfM step includes adding a
plurality of fine-scale keypoints during reconstruction of a
dense model, which may be crucial in improving geometric
composition of the composite images. The SfM step
includes using the known GCP locations (also referred to as
“GCPs”) of the GCPs in the images collected during the
aerial survey to geometrically register the orthomosaic and
the models. The StM step runs on a selected ‘reference’
band, which can be the ‘green’ bands of the multispectral
images as the raw images include primarily vegetation
features. The SfM step connects identical features in the
overlapping portion of adjacent images using the computed
keypoints. The SfM step produces the composite reflectance
orthomosaic, exported in rasterized (.tif) format. The StM
step recomputes bundle block adjustment to optimize the
orientation and positioning of the underlying densified point
cloud. The SfM step applies noise filtering to generate the
DSM and the DTM. The SfM step applies a sharp surface
smoothing to retain crop surface boundaries when generat-
ing the DSM and the DTM. The SfM step produces the DSM
and the DTM of the field site exported in rasterized (.tif)
format. The SIM step resamples the exported layers, namely
the orthomosaic, the DSM and the DTM, using an inverse
distance weighting function to a 2-cm ground sampling
distance (GSD) to provide consistent pixel dimensions.

[0149] The spectral and structural (DSM and DTM) layers
obtained from the multispectral sensor are used to compute
different intermediate layers which were fused at multiple
processing levels in the three fusion steps.

[0150] The VI generation step uses the orthomosaic—i.e.,
the spectral reflectance images from the SfM step—to
generate a plurality of values for vegetation indices (VIs).
Each VI may be regarded as a spectral transformation of two
or more multispectral bands to highlight a property of the
crops. The VI values may be used for a reliable spatial and
temporal inter-comparison of crop photosynthetic variations
and canopy structural profiles. The VIs are immune from
operator bias or assumptions regarding land cover class, soil
type, or climatic conditions, therefore may be suitable in
high-throughput phenotyping. Seasonal, interannual, and
long-term changes in crop structure, phenology, and bio-
physical parameters could be efficiently monitored using the
VIs measured from a plurality of surveys over time. The VI
generation step may compute a plurality of Vis, e.g., 12,
using one or more of the equations listed in Table 1. The VI
generation step generates at least the optimized soil adjusted
vegetation index (OSAVI) in an OSAVI layer using known
relationships, e.g., described in Fern et al. (Fern, R. R.;
Foxley, E. A.; Bruno, A.; Morrison, M. L. ‘Suitability of
NDVI and OSAVI as estimators of green biomass and
coverage in a semi-arid rangeland’ in ‘Ecological Indicators’
2018, 94, 16-21, doi:10.1016/j.ecolind.2018.06.029) or
Rondeaux et al. (Rondeaux, G.; Steven, M.; Baret, F. ‘Opti-
mization of soil-adjusted vegetation indices’ in ‘Remote
Sensing of Environment” 1996, 55, 95-107, doi:Doi
10.1016/0034-4257(95)00186-7).
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TABLE 1
multispectral vegetation indices derived and tested for assessment of
biomass:
Index Equation Reference
Normalized NIR —-RED (Rouse et al.
difference NDVI = NIR + RED 1974)
vegetation
index
Enhanced 2.5(NIR - RED) (Huete et al.
i EVI=

vegetation (NIR + 6 X RED — 7.5 x BLUE) + 1 2002)
index
Green NIR — GREEN (Gitelson and
normalized GNDVI = NIR + GREEN Merzlyak 1998)
difference
vegetation
index
Normalised NIR - RE (Barnes et al.
difference NDRE = =ro—r 2000)
red-edge
index
Renormalized NIR —-RED (Roujean
differeqce RDVI = VIR RED and Breon
vegetation 1995)
index
Optimized NIR —-RED (Rondeaux,
soil adjusted 084V = 1'6[NIR T RED+0.16 Steven, and
vegetation Baret 1996)
index
Modified "y (MR/RED) -1 (Chen 1996)
simple ratio = VIR/RED) 1 1
Modified MCARII = 1.2[2.5(NIR — GREEN) — (Haboudane
chlorophyll 1.3(RED — GREEN)] et al. 2004)
absorption
ratio index 1
Modified MCARI 3.75(NIR —RED) - 1.95(WIR — GREEN)  (Haboudane
chlorophyll = 2 et al. 2004)
absorption @XNIR+1)* = (6xNIR -5 «/RED) -05
ratio index 2
Modified MTVII = 1.2[1.2(NIR — GREEN) — 2.5(RED — GREEN)] (Haboudane
triangular et al. 2004)
vegetation
index 1
MTVI2 1.8(NVIR - GREEN) - 3.75(RED - GREEN)  (Haboudane

MIVI2 = et al. 2004)

\/(2><NIR+ 1)? = (6 X NIR — S/RED) - 0.5

Pigment NIR
specific PSSRA = RED
simple ratio

for

chlorophyll a

(Blackburn 1998)

where the References are:

[0151] a. Barnes, E M, T R Clarke, S E Richards, P D
Colaizzi, ] Haberland, M Kostrzewski, P Waller, C Choi,
E Riley, and T Thompson. 2000. Coincident detection of
crop water stress, nitrogen status and canopy density
using ground based multispectral data. Paper presented at
the Proceedings of the Fifth International Conference on
Precision Agriculture, Bloomington, MN, USA.

[0152] b. Blackburn, George Alan. 1998. “Quantifying
chlorophylls and caroteniods at leaf and canopy scales:
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An evaluation of some hyperspectral approaches.”
Remote Sensing of Environment 66 (3):273-85.

[0153]

c. Chen, Jing M. 1996. “Evaluation of Vegetation

Indices and a Modified Simple Ratio for Boreal Applica-
tions.” Canadian Journal of Remote Sensing 22 (3):229-
42. doi: 10.1080/07038992.1996.10855178.

[0154] d. Gitelson, Anatoly A., and Mark N. Merzlyak.
1998. “Remote sensing of chlorophyll concentration in
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higher plant leaves.” Advances in Space Research 22
(5):689-92. doi: https://doi.org/10.1016/S0273-1177(97)
01133-2.

[0155] e. Haboudane, Driss, John R. Miller, Elizabeth
Pattey, Pablo J. Zarco-Tejada, and Ian B. Strachan. 2004.
“Hyperspectral vegetation indices and novel algorithms
for predicting green LAI of crop canopies: Modeling and
validation in the context of precision agriculture.” Remote
Sensing of Environment 90 (3):337-52. doi: http://dx.doi.
org/10.1016/j.rse.2003.12.013.

[0156] f. Huete, A., K. Didan, T. Miura, E. P. Rodriguez,
X. Gao, and L. G. Ferreira. 2002. “Overview of the
radiometric and biophysical performance of the MODIS
vegetation indices.” Remote Sensing of Environment 83
(1-2):195-213. doi: http://dx.doi.org/10.1016/S0034-4257
(02)00096-2.

[0157] g. Rondeaux, G., M. Steven, and F. Baret. 1996.
“Optimization of soil-adjusted vegetation indices.”
Remote Sensing of Environment 55 (2):95-107. doi: Doi
10.1016/0034-4257(95)00186-7.

[0158] h. Roujean, Jean-Louis, and Francois-Marie Breon.
1995. “Estimating PAR absorbed by vegetation from
bidirectional reflectance measurements.” Remote Sensing
of Environment 51 (3):375-84. doi: https://doi.org/10.
1016/0034-4257(94)00114-3.

[0159] i. Rouse, ] W, R H Haas, J A Schell, D W Deering,
and J C Harlan. 1974. “Monitoring the vernal advance-
ment of retrogradation of natural vegetation (p. 371).”
Greenbelt, MD: NASA/GSFC (Type III, Final Report).

[0160] The CHM step performs a pixel-wise subtraction of

the DTM altitudes from the DSM altitudes to generate the

crop height model (CHM), representing the relief of the
entire crop surface. The accuracy of the CHM computed
using the SfM step may rely on interacting factors including
the complexity of the visible surface, resolution and radio-
metric depth, sun-object-sensor geometry, and type of sen-
sor. As the canopy surface, e.g., for wheat, may be very
complex containing reflectance anisotropy and micro-relief
height variation, a moving filter (e.g., a 3x3 pixel local
maximum moving filter) may be applied on the CHM layer
to enhance the highest peaks and reduce the micro-variation.

The implemented filter may move the pre-defined window

over the CHM and replace the centre pixel’s value with the

maximum value in the window if the centre pixel is not the
maximum in the window.

[0161] The CC step uses OSAVI to suppress background

soil spectrum to improve the detection of vegetation. The

CC step fuses the OSAVI layer and the CHM layer to create

a CC layer to mask the extent of the vegetation for individual

plots across all time points. In the CC step, individual

segmentation layers are prepared for OSAVI and CHM
using a dynamically computed threshold using an adaptive
thresholding method for binarization in image processing,

e.g., the Otsu method (described in Otsu, N. ‘A threshold

selection method from gray-level histograms’ in ‘IEEE

transactions on systems, man, and cybernetics’ 1979, V9,

62-66), in which the threshold is computed adaptively by

minimizing intra-class intensity variance (i.e., between

index values for OSAVI and height levels for CHM), or
equivalently, by maximizing inter-class variance. The adap-
tive thresholding method returns a single threshold that
separate pixels into two classes: vegetation and background.

The adaptive thresholding method may filter unwanted

low-value OSAVI and CHM pixels, corresponding to minor
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unwanted plants such as weeds or undulated ground profile
respectively. The CC step generates a pixel-wise product of
the segmented OSAVI and CHM pixels to prepare the CC
mask corresponding to vegetation, e.g., wheat. The CC step
uses the fusion of the OSAVI layer and the CHM layer to
resolve limitations that each layer has on its own. The
OSAVI layer provides the ‘greenness’ of the crop (which
‘greenness’ drops during flowering and after maturity). The
CHM provides the crop relief, which may be immune to
changes in ‘greenness’ (so applicable during flowering and
post-emergence of maturity), but suffers when the plants are
too small (e.g., less than 5 cm approximately) as the crop
canopy may be too fragile for the SfM step to generate a
dependable CHM. These independent limitations are
resolved in the CC step through the fusion of the OSAVI and
CHM layers, improving classification of the CC of the crop.
[0162] The crop volume (CV) step computes the CV by
multiplying the CHM and the CC pixelwise, then by sum-
ming the volume under the crop surface, e.g., using the
formula in Equation 1:

pixel(i,)=(mn) [¢8)
cv= >, ICHMxCC,
pixel(i, j)=(0,0)

or

i=m j=n (9]

cv = ZZCHMW- X CC;
i=1 j=n

where i and j represent the row and column number of the
image pixels for an mxn image, i.e., the size of an individual
plot. The multiplication of the CHM with the CC layer in the
CV step may mitigate errors from ground surface undula-
tions and edge-effects in surface reconstructed in the StM
step.

[0163] The dry weight (DW) step uses a linear model
relationship, e.g.. as in Equation (2), to compute the DW:

DW=0-CV+B @

where coefficients slope (o) and bias (B) are measured
parametrically using measured (ground truth) DW values,
which may be constant for a selected crop type (e.g., wheat)
and constant sowing rate. The DW step provides DW using
CV through non-invasive and non-destructive means appli-
cable for field high-throughput phenotyping.

[0164] The fresh weight (FW) step computes the FW by
fusing the CV with the set of derived VIs. CV is a canopy
structural metric computed through the SfM step and esti-
mates the dry tissue content or DW, but is void of the ability
to infer the fresh tissue water content or FW; however, Vs
are reflectance-derived biophysical parameters having the
ability to infer photosynthetic variations and related water
potential in vegetation. The fusion of the CV and the VIs
resolves the limitations of the individual parameters. The
fusion in the FW step can use a mathematical product in a
relationship shown in Equation 3:

FW=a-CVxVIs+p 3)

where the slope (o) and the bias () are the same as in
Equation 4, and where the model coefficient values (which
are the slope (o) and the bias (B)) vary corresponding to the
different VIs.
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[0165] The hereinbefore-described steps of the data-pro-
cessing module are performed by the computing system
executing machine readable instructions (in non-transient
storage media) that are defined by the hereinbefore-de-
scribed steps. The instructions can be generated from source
code written in Python 3.7.8 (Python Software Foundation.
Python Language Reference) using source packages includ-
ing os, fnmatch, matplotlib, numpy, Fiona, shapely, skim-
age, opencv2, rasterio, and geopandas.

[0166] A shapefile (.shp) consisting of the individual field
plot information can be created in the method using an
off-the-shelf application.

[0167] The coded method steps of the data-processing
module include generation of the intermediate geospatial
layer corresponding to individual traits, clipping the layers
to plot geometries, summarizing the traits in individual
plots, and analyzing and validating the summarized traits.

[0168] The method and system may be used for pheno-
typing germplasm in wheat and other crop species. The
method and system may be used for estimating crop param-
eters such as for AGB mapping, and for measuring leaf area
index, chlorophyll, nitrogen content, lodging, plant density
estimates, counting wheat-ear numbers, etc. The method and
system may be substantially accurate and may correlate with
AGB in reproductive and post-reproductive growth stages
(i.e., the example model relationship is valid across different
growth stages including during and post-reproductive peri-
ods) in breeding trials with wide diversity in growth
responses between genotypes (i.e., a variety of genotypes
with wide diversity in growth).

[0169] The method and the system may improve upon
alternative high-throughput technologies that use reflectance
spectra because reproductive growth does not relate to
reflectance spectra, and multiple growth stages exist con-
currently in diverse genotypes. The method and the system
may improve upon traditional technologies using vegetation
indices (VIs) that may saturate at high canopy coverage
(including in the red and near-infrared spectral bands), that
may fail to capture the plants’ vertical growth profile, and
that may lose their sensitivity in the reproductive growth
stages.

[0170] The system and method can provide or support
high-throughput phenotyping that is more cost and time-
efficient than traditional phenotyping, thus supporting crop
breeding programmes. Relevant application areas may
include nitrogen use efficiency, water use efficiency, heat
tolerance, salt tolerance, insect damage resistance, yield
forecasting, and other allied application areas. The fusion
system and method may be time-efficient and cost-effective
compared to other methods employing secondary sensor
systems such as SAR and LiDAR in addition to a multi-
spectral sensor or a dedicated hyperspectral sensor to com-
pute narrow band VIs. The fusion system and method
include the fusion of complementary spectral and structural
information derived using the same multispectral sensor to
provide a suitable and robust alternative to traditional meth-
ods involving purely spectral VIs. The fusion-based data-
processing method uses intermediate parameters or metric or
traits (i.e., the VIs, the CHM, the CC, and the CV), and the
interaction between these intermediate parameters at differ-
ent levels, to provide improved accuracy of parameters at
successive steps/stages, thereby developing the model rela-
tionship for DW and FW. As described herein, the fusion
steps are: (i) the logical ‘OR’ operation between the OSAVI
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segment and the CHM segment layer to derive the CC; (ii)
the mathematical product between the CC and the CHM
followed by summation over the plot area to calculate the
CV relating to the DW, and (iii) the multiplication between
the CV and the VIs to retrieve the FW (as shown in FIG. 2).
The estimation of DW by using CV and FW by using
CVxVIs could be understood by considering that with a
constant plant density for a crop, the density factor (D,,,,,.)
and air space within the canopy (V,,,) could be assumed to
be constant; therefore, DW of the tissue should linearly
correlate with CV (R*=0.96), and while water is present
inside the ‘plant tissue’, it may not significantly influence
CV, so as such may not be used robustly to measure FW
(e.g., R?>=0.62). VIs, on the other hand, are influenced
primarily by the chlorophyll content or greenness of the
plant, which in turn are influenced by photosynthetic poten-
tial and water uptake during the growth. In other words, high
FW can imply high water uptake in tissue, better photosyn-
thetic ability, and generally plants with more greenness
corresponding to higher values of VIs. However, the amount
of plant matter or CV undergoing the photosynthesis process
remains unaccounted for, which multiplying CV with VIs
can account for, increasing the simple linear model relation-
ship in measuring FW (R*>0.8 for all CVxVIs combinations
in FIG. 6(b); with best tested R*=0.89 for CVxEVTI in FIGS.
5(b) and 5(¢)).

[0171] The generated CHM and CC may be beneficial
agronomic traits. Traditionally, for short crops such as
wheat, plant height is measured using a ruler in the field by
selecting a single or a few representative plants to represent
the canopy height. The method is labour intensive, time-
consuming and expensive for large breeding trials. Measur-
ing variation in crop height associated with growth at finer
temporal rates (less than once per week) remains largely
impractical in widely distributed field trials. The CHM layer
derived herein achieved satisfactory model correlation in
estimating crop height in plots (as shown in FIG. 3),
acceptable to measure the fine-level of height growth with
genotypic variation in a population. The CC or crop frac-
tional cover is an important phenological trait of crops,
which can be used as an indicator of early vigour and crop
growth rates during the vegetative growth stages. The com-
puted CC layer may be more reliable and advantageous than
subjective visual scores (as shown in FIG. 4 and Table 2).
Inter-plot spacing may benefit extraction of the DTM,
thereby improving the calculation of the CHM and the CC.
Increasing the inter-plot spacing may, therefore, be advan-
tageous for accuracy while reducing the field use efficiency.
Additional factors such as variation in soil water content
upon rain or irrigated conditions, and presence of vegetation,
e.g., crop over-growth or weed in inter-plot spacing, may
impact the construction of the CHM and the CC, and reduce
their respective correlation with ground truth crop height
and coverage. The fusion method may therefore include
performing the image acquisition when the crop is dry from
applied water, i.e., avoiding for image acquisition after rain
or irrigation. Use of the described method allows CV to be
used as a proxy to DW, and CVXEVI to be used as a proxy
to FW, thus the metrics CV and CVxEVI could certainly be
used proxies to screen crop genotypes with higher or lower
biomass and monitor their growth patterns over time.

Experimental Examples of Fusion Method

[0172] In an example, the implemented method outper-
formed commonly used vegetation indices (VIs) derived
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from multispectral orthomosaics in all growth conditions
and variability, e.g., spectral VI based approaches to model
biomass/AGB using the simple regression techniques.
[0173] In an example, the intermediate metrics, CHM
(R2=0.81, SEE=4.19 cm) and CHM (0A=99.2%, K=0.98)
correlated well with equivalent ground truth measurements,
and the metrics CV and CVxVIs were used to develop an
effective and accurate model relationship with FW (R2=0.89
and SEE=333.54 g/m2) and DW (R2=0.96 and SEE=69.2
g/m2).

[0174] An experimental example of the method and sys-
tem was used at and for a site located in a mild temperate
climate that receives approximately 448 mm average rainfall
annually and has predominantly Self-mulching Vertosol soil
type. The experiment comprised 20 wheat genotypes with
four replications, each planted in Smx1 m plot, with a
density of approximately 150 plants m?. Five aerial flights
were undertaken at 30, 50, 90, 130 and 160 days after
sowing (DAS). For comparison with the experimental sys-
tem, a range of in situ data were collected concurrently with
use of the method, including: visual assessment of plant
condition in plots, measurements of plant height at two time
points (130 and 160 DAS), and harvesting plot replicates at
four time points (50, 90, 130 and 160) for destructively
measuring FW and DW biomass.

[0175] The experimental system included the data acqui-
sition system.
[0176] In an experimental example, the plant heights of

four replicates of 20 lines in 80 plots (i.e., 20 wheat
genotypes, each with four replications, planted in Smx1 m
plot, with a density of approximately 150 plants per m?)
were manually measured at the two time points on X DAS
and Y DAS, totaling 160 ground truth height observations.
Four representative wheat plants from each experimental
plot were measured using a measuring staff from the ground
level to the highest point of the overall plant, the average of
the four height measurements was used as a representative
ground truth measurement for the corresponding plot. Plant
heights in the breeding population were ranged from 54 to
91 cm on 130 DAS and 62 to 98 cm on 160 DAS with a
normal distribution (Kolmogorov-Smirnov test, P<0.001).
The mean plant heights were 71.8 and 78.9 cm on 130 DAS
and 160 DAS, respectively. To evaluate SfM derived CHM’s
performance with respect ground truth plot height measure-
ments a correlation-based assessment was sought (FIG. 3).
The assessment achieved a strong and statistically signifi-
cant (p-value<1.8x107°?) linear relationship between CHM
and ground truth plot height with a coefficient of determi-
nation (R?) of 0.81 and a standard error estimate (SEE) of
4.19 cm in wheat. To minimize differences due to plant
growth, the field measurements were carried out on the same
days of the aerial surveys. Unlike the highest points mea-
sured during ground-based surveys, the CHM represents the
entire relief of the crop surface, therefore, the CHM was
found to be about 34 cm systematically lower than the actual
canopy height. Images from UAVs are characterized by
low-oblique vantage, benefiting in the accurate estimation of
height in wheat plots. Human error may have contributed in
the collection of the ground truth plot height, especially for
selecting representative wheat plants where intra-plot varia-
tion exists.

[0177] In an experimental example, to potentially validate
the fusion-based steps described hereinbefore, FIG. 4 shows
the classified CC and CCxVIs images against RGB com-
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posite images generated using multispectral bands blue (475
nm), green (560 nm) and red (668 nm). A section of the
entire field trial was focused including three varieties with
different fraction density, plant height and variable growth
stage effect. The hereinbefore-described data-processing
method performed well throughout the vegetation part of the
plot with minor classification challenges around the edges of
vegetation. The characteristics of vegetation and ground
were too similar along the borders, so it was difficult to
achieve good results in these areas. The fractional nature of
wheat canopy affected the accuracy due to the presence of
noisy pixels comprising of mixed spectra from both wheat
and ground and a limitation of the SfM step to resolve the
finer details along high-gradient relief variations.

[0178] In an experimental example, a more rigorous
approach to evaluate the achieved classification accuracy for
the CC layer was performed through a comparison of CC
classified labels against ground truth across randomly
selected locations using a confusion or validation matrix
(shown in Table 2). Over the five time points, a total of 1500
ground truth points (i.e., 300 points in each time point) were
generated between the two classes: wheat CC and ground
using an equalized stratified random method, creating points
that are randomly distributed within each class, where each
class has the same number of points. The ground truth
corresponding to each point for validation was captured
manually through expert geospatial image interpretation
training using high-resolution (2 cm) RGB composite
orthomosaic images. Accuracy measures namely producer’s
accuracy, user’s accuracy, overall accuracy (OA) and kappa
coefficient (k) were computed using the confusion matrix.
The classification class CC, achieved a user’s accuracy of
98.9%, producer’s accuracy of 99.4% and overall accuracy
(OA) of 99.2%. In traditional accuracy classification, the
producer’s accuracy or ‘error of omission’ refers to the
conditional probability that a reference ground sample point
is correctly mapped, whereas the user’s accuracy or ‘error of
commission’ refers to the conditional probability that a pixel
labelled as a class in the map actually belongs to that class.
Overall accuracy refers to the percentage of classified map
that is correctly allocated, used as a combined accuracy
parameter from a user’s and producer’s perspective. In
addition to the traditional estimates, the classification
achieved a kappa coefficient (k) of 0.98, which is an
indicator of agreement between classified output and ground
truth values. A kappa value ranges between 0 and 1 repre-
senting the gradient of agreement between ‘no agreement’
and ‘perfect agreement’.

TABLE 2

classification accuracy of crop coverage
(CC) across all growth stages:

Crop User’s
Class Ground  Coverage  Total Accuracy Kappa
Ground 746 4 750 99.4%
Crop Coverage 8 742 750 98.9%
Total 754 746 1500
Prod.’s Accuracy 98.9% 99.4% 99.2%
Kappa 0.98
[0179] In an experimental example, the hereinbefore-de-

scribed modelling of the DW using the CV was compared
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against traditional VI based approaches. The comparison
shows the R? values obtained for predicted vs. observed DW
values when using CV and Vs, across different time points.
The linear regression demonstrates that the degree of cor-
relation (in terms of R?) for the VI based approached in
modelling DW become less accurate at progressive time
points from sowing, while the accuracy of CV based
approach for modelling DW remains consistently high (as
shown in FIG. 5(a)). For the interpretation of the results,
correlations were considered hereafter as low (R,<0.70),
moderate (0.70=R*<0.85) and high (R?20.85). This result
was influenced by the fact that research plots growing
different genotypes of wheat have variable growth trajecto-
ries influenced by the genomics and environmental effects,
common in high-throughput phenotyping research; exhibit-
ing variation in reflectance response which is limiting to the
accuracy of the linear model. The CV, on the other hand, is
derived through structural means using SfM and is substan-
tially immune to variation in spectral properties of plants
over different growth stages across research plots. Of the
four time points studied in the experiment for biomass
estimation, at the earliest time point, the genotypes in
different plots are in similar overall growth stages as such
the VI derived model prediction is well accurate with high
R? values. At later time points, genotypes attained different
growth stages influencing the spectral signatures and VIs in
the process, thereby lowering their R>. When data from all
the time points in the experiments were combined, ground
DW was still accurately predicted using CV, whereas tradi-
tional VIs failed considerably exhibiting low R? values (as
shown in FIG. 5(5)). The result might seem contradictory to
previous studies demonstrating high prediction potential of
Vs particularly related to structural characteristics of plants,
i.e., NDVI, GNDVI, OSAVI, MTVI1 and MTVI2, which
had established a successful relationship with biomass under
restricted complexities, i.e., either on a single genotype in a
field or in a single time point. The experimental example
study indicates that CV derived using the fusion method is
consistent with genotypic variation and across different time
points, as an accurate predictor (R*=0.96 and SEE=69.2
g/m?) of DW with statistical significance (p-value<0.001, or
<2.4x107'#) (as shown in FIG. 5(c)).

[0180] In an experimental example, the modelled FW
using CVxVIs products was evaluated using different CV
and VIs combinations, and against independent VIs. For
evaluating different CVxVIs combinations, a plot of the
corresponding R? values obtained for predicted vs. observed
FW values across different time points was used (as shown
in FIG. 6(a)). The performance of three combinations,
CVxGNDVI, CVxEVI and CVxNDRE was found to be
consistently higher across different time points from sowing
to post maturity, compared to the other CVxVIs. The per-
formance of CVXEVI was best amongst the three tested
CVxVIs combinations for FW estimation. When data from
all the four time points in the experiments for biomass
estimation were combined, the CVXEVI was again found to
outperform other CVxVIs (as shown in FIG. 6(5)). There-
fore, CVxEVI was used as an estimator to model FW
computation (as shown in FIG. 6(c)). The estimator
achieved a strong (R*=0.89 and SEE=333.54 g/m?) and
statistically significant (p-value<0.001, or <2.2x107?) lin-
ear relationship with ground truth measurements of FW in
wheat. The regression analysis demonstrates that the R? for
the original VI-based approaches in modelling FW increases
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significantly for all VIs when coupled with CV (as shown in
FIG. 6(b)). As mentioned hereinbefore, the fusion of
CVxVIs in the described data-processing method takes
advantage of both spectral and structural information pro-
vided by VIs and CV respectively, whereas original VIs are
unable to account for structural variations between different
genotypes in high-throughput phenotyping.

[0181] In an experimental example, the DW and the FW
generated from the method were used in scoring the perfor-
mance of selected genotypes. Predicted crop biomass (DW
and FW) estimated across the four dates showed expected
and consistent growth trends for wheat genotypes (as shown
in FIG. 7). Most varieties showed a steady growth of DW
until the third time point, followed by nearly exponential
growth between the third and fourth time point (as shown in
FIG. 7(a)). The FW, on the other hand, followed a steady
growth till fourth time point (as shown in FIG. 7(b)).
Importantly, the derived multitemporal biomass models
were able to capture this trend in plant development.
Amongst all the varieties Carnamah achieved highest and
Derrimut achieved the lowest DW and FW. Genotypes
Sunvale, Volcani DDI, Gladius, Fllison, Hartog, Ventura,
Carnamah, EGA Gregory, Kennedy and Sunco demon-
strated an early vigour, producing comparatively more bio-
mass during early to mid-vegetative growth. Overall, Car-
namah produced the most biomass, while Derrimut
produced the lowest DW and FW.

Overview of Neural Network Method

[0182] Disclosed herein is a method for image-based
remote sensing of crop plants. Also disclosed herein is a
system configured to perform the method.

[0183] The method (also referred to herein as the ‘neural

network method’ or NN method) includes:

[0184] a. acquiring images (also referred to as “training
images” in a “training data set) of the crop plants from
a camera flown over the crop by an unmanned/un-
crewed aerial vehicle (UAV);

[0185] b. forming an artificial neural network (ANN)
by:

[0186] 1i. uploading the (training) images to a neural
architecture search (NAS) module to select a neural
architecture for the artificial neural network (ANN),
and

[0187] 1ii. training the ANN using the (training)
images; and
[0188] c. using the trained ANN to identify and/or
measure one or more phenotypic characteristics of the
crop plants in the images by classification and/or
regression.

[0189] The crop plants may include wheat. The pheno-

typic characteristics of the crop plants include whether or

not there is wheat lodging (i.e., a classification task), and/or

a level (i.e., measure) of the wheat lodging using a lodging

estimator of levels in the images, i.e., a regression task.

[0190] The system (also referred to herein as the ‘neural

network system’ or NN system) includes the NAS-generated

ANNs for the image-based remote sensing of crop plants.

[0191] The neural architecture search (NAS) module

selects a well-performing neural architecture through selec-

tion and combination of various basic predefined modules
from a predefined search space. The predefined modules are
pre-existing modules configured to be combined in variable
configurations to form a variety of convolutional neural
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networks (CNN). The NAS module is configured to: select
a plurality of mutually different combinations of the pre-
defined modules to define a corresponding plurality of
mutually different CNNs; test the plurality of mutually
different CNNs; and select at least one of the plurality of
mutually different CNNs based on performance of the CNNs
in the test.
[0192] Due to the NAS, the step of forming the ANN is
automated, and thus this step may be referred to as including
“automated machine learning” or “AutoML.”.
[0193] The NN method and system may be used to pro-
vide high-throughput image-based plant phenotyping.
[0194] The NN system includes an aerial data acquisition
system for the acquiring of the images, the aerial data
acquisition system including:

[0195] a. an optical camera to acquire the images;

[0196] ©b. the UAV with a gimbal mount; and

[0197] c. a geotagging module to geotag each image.
[0198] The UAV is configured to support a payload of at
least 1 kg, or at least 6 kg, or between 1 kg and 6 kg. The
UAV may be an off-the-shelf UAV in the form of a quad-
copter. The data acquisition system includes a gimbal
bracket that fastens and attaches the optical camera to the
gimbal mount. The optical camera may have a 35.9
mmx24.0 mm sensor size, and/or a 42.4 megapixels reso-
lution. The optical camera may have a 55 mm fixed focal
length lens. The optical camera may have a 1 second interval
shooting with JPEG format in shutter priority mode. The
camera may be an off-the-shelf multispectral camera. The
geotagging module may be an off-the-shelf geotagging
module.
[0199] The NN system includes one or more (e.g., seven)
black and white checkered square panels (38 cmx38 cm)
distributed in the field to serve as ground control points
(GCPs) for accurate geo-positioning of images. The method
may include installing the GCPs adjacent to or in the field
site, and measuring the GCP locations within a day of
acquiring the images, e.g., on the same day. The GCPs may
be installed such that there is one GCP in a centre of the field
site, and at least one GCP on each edge of the field site (as
shown in FIG. 1). The NN system includes a real-time
kinematic global positioning system (RTK-GPS) receiver to
record the centre of each panel with <1 centimetre accuracy.
The positioning receiver may be an off-the-shelf receiver.
[0200] The NN system includes a computing system con-
figured to receive the acquired images (i.e., the aerial
multispectral images) from the aerial data acquisition sys-
tem. The computing system is configured to process the
acquired images by performing pre-processing steps. The
pre-processing steps include: generating an orthomosaic
image of the acquired images with the coordinates of the
GCPs used for geo-rectification (e.g., an orthomosaic with a
ground sampling distance (GSD) of 0.32 cm/pixel) using an
off-the-shelf software application; and clipping individual
plot images and storing them in TIFF format from the
orthomosaic using a field plot map with polygons corre-
sponding to the selected plot dimensions (e.g., 5 mx1 m for
the plot in FIG. 8) using an off-the-shelf software applica-
tion.
[0201] As shown in FIG. 9, the NN method includes a
visual assessment step (“lodged”) that includes manually
(i.e.. by a person) classifying the acquired images to gen-
erate a training data set. For example wheat crop images, the
lodging status may be determines to be lodged (yes) or
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non-lodged (no) based on visual inspection of the images
and/or corresponding ground truth information (“ground
truth”) to the geotagged image locations

[0202] As shown in FIG. 9, the NN method include a
scoring step (“lodging score”) that includes manually select-
ing scores (numerical values) for the respective acquired
images. Selecting the scores may include selecting an area
(e.g., lodged area) and a level (e.g., a severity of lodging) for
each acquired image. For wheat images, lodging severity
values of 1 to 3 may be manually selected (corresponding to
three main grades of lodging) based on the manually deter-
mined inclination angle between the wheat plant and the
vertical line as follows: light lodging (severity 1; 10 deg-30
deg), moderate lodging (severity 2; 30 deg-60 deg) and
heavy lodging (severity 3; 60 deg-90 deg). For wheat
images, the lodged area (%) may be determined visually
from the plot images as the percentage of area lodged in the
plot in proportion to the total plot area. The scoring step may
include determining a score based on the selected area and
level. For example, for wheat, a derived lodging score may
be defined to range between values of 1-100, with a score of
100 indicating that the entire plot was lodged with heavy
lodging based on the following equation:

Lodging severity

Lodging score = 3

X Lodged area (%)

[0203] The step of forming the ANN is executed in the
computing system of the NN system. The computing system
includes machine readable instructions in machine-readable
storage media (e.g., in RAM, a hard disk or cloud server)
that, when executed by the computing system, perform the
data-processing method. The instructions can be generated
from source code written in Python 3.7. The computing
system may include or access a publicly accessible machine-
learning framework, e.g., AutoKeras. The computing system
may include a high-speed graphical processing unit (GPU),
e.g., with 24 GB of memory.

[0204] The NN system and method may be fast enough for
real-time inferencing, e.g., with example interference speeds
under 10 ms.

Experimental Examples of Neural Network Method

[0205] In an experimental example for wheat lodging
assessment with UAV imagery, the NN method outputs from
the image classification and regression tasks were compared
to outputs from a manual approach using transfer learning
with publicly available CNNs (including VGG networks,
residual networks (ResNets), InceptionV3, Xception and
densely connected CNNs (DenseNets)), pretrained on the
publicly available ImageNet dataset. For image classifica-
tion, plot images were classified as either non-lodged or
lodged; for image regression, lodged plot images were used
as inputs to predict lodging scores. The best tested classifi-
cation performance of 93.2% was jointly achieved by trans-
fer learning with Xception and DenseNet-201 networks. In
contrast, the best in test example NN method and system
(based on AutoKeras, from 100 trials) achieved an accuracy
of 92.4%, which was substantially the same as those
obtained by transfer learning with ResNet-50. In another
text, the example NN method and system had the best in test
accuracy (92.0%) compared to the ResNet-50 (90.4%) in
image classification which assigned wheat plot images as
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either lodged or non-lodged. For image regression, lodged
plot images were used as inputs to predict lodging scores.
The example NN method and system performed better
(R?=0.8273, RMSE=10.65, MAE=8.24, MAPE=13.87%) in
this task compared to the ResNet-50 (R*=0.8079,
RMSE=10.81, MAE=7.84, MAPE=14.64%). In another
test, the best in test performance (R2=0.8303, RMSE=9.55,
MAE=7.03, MAPE=12.54%) was obtained using transfer
learning with DenseNet-201, followed closely by the
example NN method and system (AutoKeras, R2=0.8273,
RMSE=10.65, MAE=8.24, MAPE=13.87%) with the model
discovered from 100 trials. In both image classification and
regression tasks, transfer learning with DenseNet-201
achieved the best in test results. DenseNet can be considered
as an evolved version of the ResNet, where the outputs of the
previous layers are merged via concatenation with succeed-
ing layers to form blocks of densely connected layers;
however, similarly to image classification, the DenseNet-
201 had the slowest inference time (117.23+15.25 ms) on
the test dataset in image regression, making it potentially
less suitable for time-critical applications such as real-time
inferencing. In comparison, the example NN method and
system (AutoKeras) resembled a mini 8-layers Xception
model (207,560 parameters) and had the fastest inference
time (2.87+0.12 ms) on the test dataset, which was ~41-fold
faster compared to the DenseNet-201. In its original form,
the Xception network is 71-layers deep (~23 million param-
eters) and consists of three parts: the entry flow, middle flow
and exit flow, with ~10-fold faster inference speed (8.46
ms), making it suitable for real-time inferencing. These three
parts and two key features of the Xception network, namely
the depthwise separable convolutions and skip connections
originally proposed in ResNet were discernable from the
mini Xception model.

[0206] In an experimental example during the winter-
spring cropping season of 2018, wheat seeds were sown to
a planting density of 150 plants/m* in individual plots
measuring 5 m long and 1 m wide (5 m?), with a total of
1,248 plots (Lat:36°44°35.21"S Lon:142°6'18.01"E), as
shown in FIG. 8. Severe wind events toward the end of the
cropping season (30 November-9 December) resulted in
significant lodging of wheat plots across the experiment.
Ground truth labels for “lodged” and “non-lodged” were
provided by an experienced field technician and a plant
scientist. The high resolution aerial imaging of the wheat
plots with the mutually different lodging grades was per-
formed on 11 Dec. 2018 using the NN system. The flight
mission was performed at an altitude of 45 m with front and
side overlap of 75% under clear sky conditions.

[0207] In an experimental example of the image classifi-
cation, the image dataset consisted of 1,248 plot images with
528 plots identified as non-lodged (class 0) and 720 plots
identified as lodged (class 1). Images were first resized
(downsampled) to the dimensions of 128 widthx128
heightx3 channels and these were split 80:20 (seed num-
ber=123) into training (998 images) and test (250 images)
datasets. For image regression, the 720 resized plot images
identified as lodged were split 80:20 (seed number=123) into
training (576 images) and test (144 images) datasets. Images
were fed directly into the example NN method and system
(AutoKeras) without pre-processing. In contrast, images
were pre-processed to the ResNet-50 format using the
provided preprocess_input function in Keras. For model
training on both image classification and regression, the
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training dataset was split further 80:20 (seed number=456)
into training and validation datasets. The validation dataset
is used to evaluate training efficacy, with lower validation
loss indicating a better trained model. Performance of
trained models was evaluated on the test dataset. A custom
image classifier was defined using the AutoModel class
which allows the user to define a custom model by connect-
ing modules/blocks in AutoKeras (as shown in FIG. 11) such
that the user only needs to define the input node(s) and
output head(s) of the AutoModel, and the rest is inferred by
AutoModel itself. In the experimental example, the input
nodes were first an Imagelnput class accepting image inputs
(128x128x%3), which in turn was connected to an Image-
Block class which selects iteratively from a ResNet, Res-
Next, Xception or simple CNN building blocks to construct
neural networks of varying complexity and depth. The input
nodes were joined to a single output head, the Classifica-
tionHead class which performed the binary classification (as
shown in FIG. 11). The AutoModel was fitted to the training
dataset with the tuner set as “bayesian”, loss function as
“binary_crossentropy”, evaluation metrics as “accuracy”
and 200 training epochs (rounds) for 10, 25, 50 and 100
trials with a seed number of 10. For image regression, the
default Autokeras image regression class, ImageRegressor
was fitted to the training dataset with the loss function as
mean squared error (MSE), evaluation metrics as mean
absolute error (MAE) and mean absolute percentage error
(MAPE), and 200 training epochs for 10, 25, 50 and 100
trials with a seed number of 45 (as shown in FIG. 11). The
performance of the best tested models from 10, 25, 50 and
100 trials were evaluated on their respective test datasets,
and exported as Keras models to allow neural network
visualization using the open-source tool, Netron. Model
inference times were measured using the built-in Python
function, timeit and presented as meanzstandard deviation
in milliseconds (ms).

[0208] For comparison with the experimental example, the
pretrained CNNs (e.g., ResNet-50) were implemented in
Keras as a base model using the provided Keras API with the
following parameters: weights="imagenet”, include_
top=False and input_shape=(128, 128, 3) (as shown in FIG.
12). Outputs from the base model were joined to a global
average pooling 2D layer and connected to a final dense
layer, with the activation function set as either “sigmoid” for
image classification or “linear” for image regression. The
model was compiled with the batch size as 32, optimizer as
‘Adam’ and corresponding loss functions and evaluation
metrics as described hereinafter. Model training occurred in
two stages for both image classification and regression tasks:
in the first stage (100 epochs), weights of the pre-trained
layers were frozen and the Adam optimizer had a higher
learning rate (0.1 or 0.01) to allow faster training of the top
layers; in the second stage (200 epochs), weights of the
pre-trained layers were unfrozen and the Adam optimizer
had a smaller learning rate (0.01 or 10°(-5)) to allow
fine-tuning of the model. Learning rates were optimized for
each CNN and the values which provided the best tested
model performance are provided in Table 4. Performance of
the trained models was evaluated on their respective test
datasets as described hereinafter.

[0209] Model evaluation metrics were selected to compare
the pretrained CNNs (e.g., ResNet-50) with the example NN
system and method. For image classification, model perfor-
mance on the test dataset was evaluated using classification
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accuracy and Cohen’s kappa coefficient (Cohen, J. A Coef-
ficient of Agreement for Nominal Scales. Educational and
Psychological Measurement 1960, 20, 37-46). In addition,
classification results using ResNet-50 (transfer learning) and
the best in test example NN model (from AutoKeras) were
visualized using confusion matrices. For image regression,
in addition to the mean absolute error (MAE) and the mean
absolute percentage error (MAPE) provided by AutoKeras
and Keras, the coefficient of determination (R?) and the root
mean-squared error (RMSE) were also calculated to deter-
mine model performance on the test dataset. Results from
ResNet-50 and the best in test example NN model were
visualized using regression plots which plotted predicted
lodging scores (y_predict) against actual scores (y_test).
Models were also evaluated based on total model training
time (in minutes, min) and inference time on the test dataset
presented as meantstandard deviation per image in milli-
seconds (ms).

[0210] Accuracy: accuracy represents the proportion of
correctly predicted data points over all data points. It is the
most common way to evaluate a classification model and
works well when the dataset is balanced.

p+in
Accuracy = ————— x 100
W+ fpt+m+ fin

where tp=true positives, fp=false positives, tn=true nega-
tives and fn=false negatives.

[0211] Cohen’s kappa coefficient: Cohen’s kappa (k)
expresses the level of agreement between two annotators,
which in this case is the classifier and the human operator on
a classification problem. The kappa score ranges between —1
to 1, with scores above 0.8 generally considered good
agreement.

o = pe)

BT

where p, is the empirical probability of agreement on the
label assigned to any sample (the observed agreement ratio),
and p, is the expected agreement when both annotators
assign labels randomly.

[0212] Root mean-squared error (RMSE): root mean-
squared error provides an idea of how much error a model
typically makes in its prediction, with a higher weight for
large errors. As such, RMSE is sensitive to outliers and other
performance metrics may be more suitable when there are
many outlier districts.

w2
RMSE = Z()’i Vi)
n
=1

where ¥, . . . ¥, are predicted values, y, . . . y,, are observed
values, and n is the number of observations.

[0213] Mean absolute error (MAE): mean absolute error,
also called the average absolute deviation is another com-
mon metric used to measure prediction errors in a model by
taking the sum of absolute value of error. Compared to
RMSE, MAE gives equal weight to all errors and as such
may be less sensitive to the effects of outliers.
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L
MAE = ;Zm -3

where ¥, . . . ¥, are predicted values, y, . . . y, are observed
values, and n is the number of observations.

[0214] Mean absolute percentage error (MAPE): mean
absolute percentage error is the percentage equivalent of
MAE, with the errors scaled against the observed values.
MAPE may be less sensitive to the effects of outliers
compared to RMSE but is biased towards predictions that
are systematically less than the actual values due to the
effects of scaling.

x 100

15|y -9,
MAPE = _Z|u
e

where ¥, . . . ¥, are predicted values, y, . . . y, are observed
values, and n is the number of observations.

[0215] Coefficient of determination (R?): coefficient of
determination is a value between 0 and 1 that measures how
well a regression line fits the data. It can be interpreted as the
proportion of variance in the independent variable that can
be explained by the model.

PNRCESS

R =1-3E 5
L 0i=D

where ¥, . . . ¥, are predicted values, y, . . . y, are observed
values, y is the mean of observed values, and n is the number
of observations.

[0216] Both transfer learning with pretrained CNNs (e.g.,
ResNet-50) and the example NN model performed strongly
in the image classification task, as shown in Table 5. In one
test, best in test example NN model (from 100 trials)
achieved an accuracy of 92.0% (as shown in FIG. 13(b)),
which was higher than the accuracy of 90.4% obtained by
the ResNet-50 model (as shown in FIG. 13(a)), and a closer
inspection at the confusion matrices of both models in that
test showed that they had very similar classification perfor-
mance, with the better performance of the example NN
model explained by having a higher number of true nega-
tives (100) and lower false positives (2) when compared to
the ResNet-50 model (94 true negatives, 7 false positives).
The example NN model was able to achieve these results
using a simple 2-layers CNN (43,859 parameters) consisting
only of a single 2D convolutional layer (as shown in FIG.
14) as opposed to the 50-layers deep ResNet-50 architecture
(~25 million parameters). In another test, transfer learning
performance with the pretrained CNNs ranged from 91.6 to
93.2% classification accuracy, with Xception (accuracy=93.
2%, kappa=08612) and DenseNet-201 (accuracy=93.2%,
kappa=0.8599) giving the best tested overall accuracy
(Table 5). Among the pretrained CNNs, InceptionV3 had the
fastest training (5.42 min) and inference (0.4022+0.0603 ms
per image) times, whereas DenseNet-201 had the slowest
training (11.79 min) and inference (0.7524+0.0568 ms per
image) times. In comparison, the performance of the
example NN model ranged from 86.8 to 92.4% accuracy,
with performance improving as more models (trials) were
evaluated (Table 5). The best in test example NN model was
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discovered from 100 trials and had the same 92.4% accuracy
as the ResNet-50 (Table 5). Inference time on the test dataset
for the 2-layer CNN model (8.46 ms+46.6 us) was ~10-fold
faster compared to the ResNet-50 model (87.3 ms+18.9 ms),
~18-fold faster compared to the InceptionV3 and up to
~33-fold faster compared to the DenseNet-201 (Table 5);
however, model training times for the example NN model
were significantly higher compared to the transfer learning
approaches, with the longest training time of 251 min
recorded for 100 trials, which was ~21-fold higher compared
to the DenseNet-201 (Table 5). Confusion matrices of the
test set for the best tested models from transfer learning and
AutoML for image classification are presented in Table 6.
The example NN model’s performance improved as more
models (trials) were evaluated, as reflected in the increase in
model classification accuracy from 10 to 100 trials (as
shown in FIG. 15). Examination of the example NN model
returned by AutoKeras revealed that the best tested model
architecture resulting from the 10 and 25 trials was a deep
CNN model comparable in depth and complexity to the
ResNet-50, highlighting the ability of the example NN
method and system to explore deep CNN architectures even
in a small model search space. Subsequently, when the
model search space was extended to 50 and 100 trials in one
test, the best tested model architecture discovered by the
example NN method and system (using AutoKeras) was the
2-layers CNN model (as shown in FIG. 15).

[0217] For the image regression task test, transfer learning
with DenseNet-201 gave the best tested overall performance
(R?=0.8303, RMSE=9.55, MAE=7.03, MAPE=12.54%),
followed closely by the example NN model (from 100 trials)
(R*>=0.8273, RMSE=10.65, MAE=8.24, MAPE=13.87%)
compared to transfer learning, e.g., using ResNet-50 (R*=0.
8079, RMSE=10.81, MAE=7.84, MAPE=14.64%) (as
shown in Table 3). The CNN models varied in regression
performance, with R? ranging between 0.76-0.83. Within the
pretrained CNNs, DenseNet-201 had the slowest model
training (7.01 min) and per image inference (0.8141+0.1059
ms) times, with ResNet-50 having the fastest training (3.55
min) time, with a per image inference time of 0.5502+0.
0716 ms. For the tested example NN method and system,
performance generally improved from 10 to 100 trials (Table
7). The example NN method and system (using AutoKeras)
was able to achieve this performance using an 8-layers CNN
resembling a truncated mini Xception network with 207,560
total parameters (as shown in FIG. 16). Two prominent
features of the original 71-layers deep Xception network,
namely the use of depthwise separable convolution layers
and skip connections were evident in the example NN model
(as shown in FIG. 16). Inference time on the test dataset for
the mini Xception model (57.5 ms+17.8 ms) was compa-
rable to the ResNet-50 (55.1 ms+10.7 ms). Results from
these experiments showed continued performance gains
with more models being explored from 10 trials to 100 trials,
as reflected in lower error scores and an increase in R* from
0.7568 to 0.8273 (as shown in Table 3). In another test, the
mini Xception network outperformed the original pretrained
Xception network (R2=0.7709, RMSE=11.08, MAE=8.22,
MAPE=13.51%) (Table 7). Not surprisingly, the mini Xcep-
tion network had the fastest per image inference time
(0.0199+0.0008 ms) compared to the other models, which
was ~27-fold faster compared to the ResNet-50 and up to
41-fold faster compared to the DenseNet-201 (Table 7);
however, model training times for example NN method and
system was again significantly higher compared to the
transfer learning approaches, with the longest training time
of 325 min recorded for 100 trials, which was ~46 fold

Oct. 5, 2023

higher compared to the DenseNet-201 (Table 7). Examina-
tion of the model architectures returned by example NN
method and system (AutoKeras) revealed that the best tested
model architecture resulting from the 10 and 25 trials was a
deep CNN model (with more than 50 layers) whereas the
best tested model architecture discovered from 50 and 100
trials was the 8-layers mini Xception model (as shown in
FIG. 16).

TABLE 3

Performance metrics of modals in image regression (best tested
scores for each category are indicated with underlining):

Model R2 RMSE MAE  MAPE
ResNet-50 0.8079 10.81 7.84  14.64%
NN model (10 trials) 0.7568 12.43 9.54 14.55%
NN model (25 trials) 0.7772 12.28 8.62 14.38%
NN model (50 trials) 0.8133 10.71 8.31 13.92%
NN model (100 trials) 0.8273 10.65 8.24 13.87%

[0218] The best tested NN model had better performance
scores across the board compared to the ResNet-50 model,
with the exception that the ResNet-50 had a lower MAE of
7.84 compared to a score of 8.24 by the NN model (as shown
in Table 3). A closer inspection of the regression plots for
both models showed that the NN model had a much higher
number of predictions exceeding the maximum value of 100
(n=39), with the largest predicted value being 118 whereas
the ResNet-50 model only have one prediction exceeding
100 with a value of 100.29 (as shown in FIG. 17). This may
explain why the MAE score, which is the average of the
absolute difference between predicted scores and actual
scores for the ResNet-50 model was lower compared to the
NN model. The occurrence of predictions exceeding the
maximum limit of 100 was possible in the experiment, so
predicted values exceeding 100 were assigned or binned to
a value of 100, which led to a noticeable improvement in
performance scores for the NN model (R2=0.8351,
RMSE=10.10, MAE=7.09, MAPE=12.70%) with no
changes observed for the ResNet-50 model.

[0219] The exemplary use of lodging severity introduced
a fractional binning (1/3, 2/3, 3/3) of lodging scores, leading
to a slightly staggered distribution as evidenced in the
regression plots (as shown in FIG. 10).

[0220] Table 4, showing Adam optimizer learning rates
used in transfer learning, wherein the Adam optimizer was
applied with the indicated learning rate and decay=learning
rate/10:

Network Task 1% Training* 2" Training*
VGG16 classification 1 x 10e-2 1 x 10e-4
VGGI19 classification 1 x 10e-1 1 x 10e-4
ResNet-50 classification 1 x 10e-1 1 x 10e-4
ResNet-101 classification 1 x 10e-2 1 x 10e-4
InceptionV3 classification 1 x 10e-1 1 x 10e-4
Kception classification 1 x 10e-1 1 x 10e-4
DenseNet-169 classification 1 x 10e-2 1 x 10e-3
DenseNet-201 classification 1 x 10e-2 1 x 10e-3
VGG16 regression 1 x 10e-1 1 x 10e-4
VGG19 regression 1 x 10e-2 1 x 10e-5
ResNet-50 regression 1 x 10e-2 1 x 10e-3
ResNet-101 regression 1 x 10e-1 1 x 10e-3
InceptionV3 regression 1 x 10e-1 1 x 10e-3
Kception regression 1 x 10e-2 1 x 10e-3
DenseNet-169 regression 1 x 10e-1 1 x 10e-3
DenseNet-201 regression 1 x 10e-2 1 x 10e-3
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[0221] Table 5, showing model performance metrics for
image classification:
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cause the at least one processor to perform a set of opera-
tions comprising said method.

Training Inference Accuracy
Network Parameters (min) (ms) (%) Kappa
VGG16 14,715,201 6.03 0.5868 = 0.0821 92.0 0.8355
VGG19 20,024,897 7.01 0.6468 = 0.1035 91.6 0.8269
ResNet-50 23,589,761 5.89 0.4776 = 0.0621 92.4 0.8449
ResNet-101 42,660,225 9.88 0.7469 = 0.1046 92.8 0.8524
InceptionV3 21,804,833 5.42 0.4022 = 0.0603 92.8 0.8521
Kception 20,863,529 9.06 0.5928 = 0.0831 93.2 0.8612
DenseNet-169 12,644,545 9.23 0.6113 £ 0.0917 92.8 0.8528
DenseNet-201 18,323,905 11.79 0.7524 = 0.0568 93.2 0.8599
NN model 23,566,856 16.06 0.4094 = 0.0573 86.8 0.7484
(10 trials)
NN model 23,566,856 29.18 0.4418 = 0.0533 88.4 0.7595
(25 trials)
NN model 43,859 102.43 0.0233 = 0.0026 89.6 0.7901
(50 trials)
NN model 43,859 251.80 0.0228 = 0.0005 92.4 0.8457
(100 trials)
[0222] Table 6, showing confusion matrices for the test set [0225] Many modifications will be apparent to those

in Table 5 for the best tested models from transfer learning
and the NN model:

Model Classes Non-lodged Lodged

Kception Non-lodged 98 3
Lodged 14 135

DenseNet-201 Non-lodged 95 6
Lodged 11 138

NN model (100 Non-Lodged 99 2

trials) Lodged 17 132

[0223] Table 7, showing model performance metrics of

modals for image regression:

skilled in the art without departing from the scope of the
present invention.

[0226] The presence of “/” in a FIG. or text herein is
understood to mean “and/or” unless otherwise indicated.
The recitation of a particular numerical value or value range
herein is understood to include or be a recitation of an
approximate numerical value or value range, for instance,
within +/-20%, +/=15%, +/-10%, +/-5%, +/-2.5%, +/-2%,
+/-1%, +/-0.5%, or +/-0%. The terms “substantially” and
“essentially all” can indicate a percentage greater than or
equal to 90%, for instance, 92.5%, 95%, 97.5%, 99%, or
100%.

[0227] The reference in this specification to any prior
publication (or information derived from it), or to any matter
which is known, is not, and should not be taken as an

Training Inference MAPE
Network Parameters (min) (ms) R2 RMSE MAE (%)
VGG16 14,715,201 3.71 0.6310 = 0.0883  0.7590 11.37 897 14.02
VGG19 20,024,897 432 07213 £0.1141 07707 11.03 9.19 16.01
ResNet-50 23,589,761 3.55 0.5502 £ 0.0716 0.7844 1079 828 1551
ResNet-101 42,660,225 5.85 0.7977 £ 0.1117 07730 11.10 838 15.67
InceptionV3 21,804,833 332 04318 £0.0648 0.7642 11.09 807 13.90
Xeception 20,863,529 5.33 0.6452 £ 0.0903 0.7709 11.08 822 13.51
DenseNet-169 12,644,545 6.65 0.6545 = 0.0982 0.7985 1031 7.68 13.63
DenseNet-201 18,323,905 7.01 0.8141 = 0.1059  0.8303 9.55 7.03 12.54
NN model (10 23,566,856 32.25 0.5574 £ 0.0009 0.7568 1243 9.54 1455
trials)
NN model (25 23,566,856 123.08 05719 = 0.0008 0.7772 12.28 862 14.38
trials)
NN model (50 207,560 184.91 0.0198 = 0.0008 0.8133 10.71 831 13.92
trials)
NN model (100 207,560 325.62  0.0199 = 0.0008 0.8273 10.65 824 13.87

trials)

Interpretation

[0224] The reference herein to machine-readable storage
media including machine readable instructions that, when
executed by a computing system, perform a method,
includes a computer memory encoding computer-executable
instructions that, when executed by at least one processor,

acknowledgment or admission or any form of suggestion
that the prior publication (or information derived from it) or
known matter forms part of the common general knowledge
in the field of endeavour to which this specification relates.

[0228] Throughout this specification and the claims which
follow, unless the context requires otherwise, the word
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“comprise”, and variations such as “comprises” and “com-
prising”, will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not the
exclusion of any other integer or step or group of integers or
steps.

1. A method for image-based remote sensing of crop
plants, the method including:

obtaining multispectral images of crop plants from a

multispectral camera flown over the crop by an
unmanned/uncrewed aerial vehicle (UAV);

mosaicking the multispectral images together using a

structure-from-motion (SfM) method to produce:

a multispectral orthomosaic reflectance map of the crop

plants,

a digital surface model (DSM) of the crop plants, and

a digital terrain model (DTM) of the crop plants;
determining a crop height model (CHM) representing the

crop plants in three dimensions (3D) from a fusion of

the DSM and the DTM;

determining an optimized soil adjusted vegetation index

(OSAVI) based on the multispectral orthomosaic
reflectance map; and

determining a measurement of biomass of the crop plants

by comparing the CHM and the OSAV], including:

determining crop volume (CV) through a fusion of
CHM and crop coverage (CC) to measure entire
volume of the standing crop to model dry weight
(DW) biomass, and/or

modelling fresh weight (FW) biomass through a fusion
of CV and vegetation indices (VIs).

2. The method of claim 1, wherein the SfM method
includes using green bands of the multispectral images as a
reference band.

3. The method of claim 1, wherein the SfM method
includes geometrically registering the orthomosaic reflec-
tance map with the DSM and the DTM using one or more
ground control points (GCPs) in the images adjacent to or in
the crop.

4. The method of claim 1, including determining the CC
from a fusion of the OSAVI and the CHM.

5. The method of claim 1, wherein the CHM and the
multispectral orthomosaic reflectance map are complemen-
tary and both represent the same crop area.

6. A system for image-based remote sensing of crop
plants, the system including an aerial data acquisition sys-
tem with:

an unmanned/uncrewed aerial vehicle (UAV); and

a multispectral camera mounted to the UAV for acquiring

multispectral images of the crop plants,

the system further including a computing system config-

ured to perform a data-processing method including:

mosaicking the multispectral images together using a

structure-from-motion (SfM) method to produce:

a multispectral orthomosaic reflectance map of the crop

plants,

a digital surface model (DSM) of the crop plants, and

a digital terrain model (DTM) of the crop plants;
determining a crop height model (CHM) representing the

crop plants in three dimensions (3D) from a fusion of

the DSM and the DTM;
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determining an optimized soil adjusted vegetation index
(OSAVI) based on the multispectral orthomosaic
reflectance map; and
determining a measurement of biomass of the crop plants
by comparing the CHM and the OSAVI, including:

determining crop volume (CV) through a fusion of CHM
and crop coverage (CC) to measure entire volume of
the standing crop to model dry weight (DW) biomass,
and/or

modelling fresh weight (FW) biomass through a fusion of

CV and vegetation indices (VIs).

7. Machine-readable storage media including machine
readable instructions that, when executed by a computing
system, perform a data-processing method including:

mosaicking multispectral images of crop plants together

using a structure-from-motion (SfM) method to pro-

duce:

a multispectral orthomosaic reflectance map of the crop

plants,

a digital surface model (DSM) of the crop plants, and

a digital terrain model (DTM) of the crop plants;
determining a crop height model (CHM) representing the

crop plants in three dimensions (3D) from a fusion of

the DSM and the DTM;

determining an optimized soil adjusted vegetation index

(OSAVI) based on the multispectral orthomosaic
reflectance map; and

determining a measurement of biomass of the crop plants

by comparing the CHM and the OSAVI, including:

determining crop volume (CV) through a fusion of
CHM and crop coverage (CC) to measure entire
volume of the standing crop to model dry weight
(DW) biomass, and/or

modelling fresh weight (FW) biomass through a fusion
of CV and vegetation indices (VIs).

8. (canceled)

9. (canceled)

10. (canceled)

11. (canceled)

12. (canceled)

13. (canceled)

14. (canceled)

15. (canceled)

16. (canceled)

17. (canceled)

18. The method of claim 4, wherein the fusion of the
OSAVI and the CHM includes a pixel-wise product of the
OSAVTI and the CHM.

19. The method of claim 4, wherein any one or more of
the following applies:

i) the CC is in the form of a CC layer;

ii) the OSAVI is in the form of an OSAVI layer; and

iii) the CHM is in the form of a CHM layer.

20. The method of claim 4, wherein the OSAVT is in the
form of an OSAVT layer, the CHM is in the form of a CHM
layer, and the CC is in the form of a CC layer, wherein the
fusion of the OSAVI and the CHM includes a pixel-wise
product of the OSAVI layer and the CHM layer.
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