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METHODS AND SYSTEMS FOR
MODIFYING SPEECH GENERATED BY A
TEXT-TO-SPEECH SYNTHESISER

FIELD

[0001] Embodiments described herein relate to methods
and systems for modifying speech generated by a text-to-
speech synthesiser.

BACKGROUND

[0002] Text-to-speech (TTS) synthesis methods and sys-
tems are used in many applications, for example in devices
for navigation and personal digital assistants. TTS synthesis
methods and systems can also be used to provide speech
segments for games, movies, audio books, or other media
comprising speech.

[0003] TTS systems often comprise algorithms that need
to be trained using training samples. TTS systems are often
configured to generate speech signals that have different
characteristics or sound different.

[0004] There is a continuing need to improve TTS systems
and methods for generating speech that have different char-
acteristics.

BRIEF DESCRIPTION OF FIGURES

[0005] Systems and methods in accordance with non-
limiting examples will now be described with reference to
the accompanying figures in which:

[0006] FIG. 1 shows a schematic illustration of a method
of modifying a speech signal;

[0007] FIG. 2 shows a schematic illustration of another
method of modifying a speech signal;

[0008] FIG. 3 (a) shows a schematic illustration of a text
to speech (TTS) synthesiser;

[0009] FIG. 3 (b) shows an example of a schematic
illustration of a prediction network used in the synthesiser of
FIG. 3 (a);

[0010] FIG. 3 (c¢) shows a schematic illustration of a
configuration for training the prediction network of FIG. 3
(&)

[0011] FIG. 4 shows a flow chart illustrating the steps for
generating a modified speech signal using a TTS system;
[0012] FIG. 5 shows a flow chart illustrating a step of FIG.
4 in more detail;

[0013] FIG. 6 (a) shows the modification of a pitch track
by a user;
[0014] FIG. 6 (b) shows an example of modification of the

timing of a speech signal by way of a user interface;
[0015] FIG. 7 (a) shows a user interface (UI) for modify-
ing properties of a speech signal;

[0016] FIG. 7 (b) shows a user interface (UI) for modify-
ing the pitch and intensity of a speech signal;

[0017] FIG. 8 (a) shows a shows a schematic illustration
of a TTS system comprising a controllable speech model;
[0018] FIG. 8 (b) shows a shows a schematic illustration
of the training of a TTS system of FIG. 8 (a);

[0019] FIG. 9 shows a schematic illustration of a system
for modifying a speech signal;

[0020] FIG. 10(a) is a schematic showing an example
interface for varying the prominence;

[0021] FIG. 10(b) shows a flowchart for varying the
prominence;
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[0022] FIG. 11(a) shows an example of a prominence
model,;

[0023] FIG. 11(b) shows an example of training the promi-
nence model;

[0024] FIG. 12(a) shows an example of an interface that

can be used for varying the intonation of a text input;

[0025] FIG. 12 (b) shows an arrangement for varying the
intonation;

[0026] FIG. 12 (c¢) shows another arrangement for varying
the intonation;

[0027] FIG. 13 (a) shows an illustration of an alignment
matrix;

[0028] FIG. 13 (b) shows a time aligned phoneme pitch for
the intonation vector that has been resampled to the decoder
timesteps;

[0029] FIG. 14 (a) shows a flowchart illustrating the basic

steps of the one stage arrangement; and
[0030] FIG. 14 (b) shows a single-stage synthesis for the
modified intonation vector.

DETAILED DESCRIPTION

[0031] According to a first aspect of the invention, there is
provided a method of modifying a speech signal generated
by a text-to-speech synthesiser, the method comprising:
receiving a text signal;

[0032] generating a speech signal from the text signal;

[0033] deriving a control feature vector, wherein the
control feature vector represents modifications to the
speech signal;

[0034] inputting the control feature vector in the text-
to-speech synthesiser, wherein the text-to-speech syn-
thesiser is configured to generate a modified speech
signal using the control feature vector; and

[0035] outputting the modified speech signal.

[0036] The above allows a user to synthesise speech from
text using a standard speech synthesiser text to speech (TTS)
model. The system analyses the speech output and extracts
acoustic features which can then be used to control and
modify the output. The user can modify the acoustic features
via a user interface. A vector, incorporating the modified
acoustic features, is then input with the text to be synthesised
into a further text to speech system (which will be termed the
controllable model) and the controllable model outputs
modified speech.

[0037] In an embodiment, deriving the control feature
vector comprises:

[0038] analysing the speech signal;

[0039] obtaining a first feature vector from the analysed
speech signal;

[0040] obtaining a user input;

[0041] modifying the first feature vector using the user
input to obtain the control feature vector.

[0042] For example, the user input may be obtained via a
user interface. The user input may additionally or alterna-
tively comprise a reference speech signal. For example, the
reference speech signal may be a spoken speech signal
provided by the user. Using a spoken speech signal as user
input enables voice control. For example, the spoken speech
signal is obtained by a user recording speech using a
microphone. The spoken speech signal is then analyzed to
derive a user input and used to modify the first feature
vector.

[0043] In an embodiment the text-to-speech synthesiser
comprises a first model configured to generate the speech
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signal, and a controllable model configured to generate the
modified speech signal. This two-stage workflow allows a
user to modify just one or two features of the modified
speech. The controllable model may be a trained model.
[0044] The controllable model may be trained using
speech signals generated by the first model.
[0045] The controllable model may comprise an encoder
module, a decoder module, and an attention module linking
the encoder module to the decoder module. The encoder and
decoder may be of the RNN type and so provide a sequence
to sequence model.
[0046] The first feature vector may be inputted at the
decoder module. Prior to inputting the first feature vector
into the decoder module, the first feature vector may be
modified by a pre-net. The first feature vector may represent
one of the properties of pitch or intensity.
[0047] In a further embodiment, the method further com-
prises deriving a second feature vector, wherein the second
feature vector represents features of the generated speech
signal that are used to generate the modified speech; and
[0048] inputting the second feature vector in the text-
to-speech synthesiser,
[0049] wherein the second feature vector is obtained
from the analysed speech signal.
[0050] The second feature vector may be derived from the
speech signal and not modified prior to input into the
controllable model.
[0051] The second feature vector may also be inputted at
the decoder module of the controllable model.
[0052] A representation of the speech signal may also be
inputted at the encoder module of the controllable model.
For example, an embedding of the speech signal is created
as an encoder input.
[0053] In an embodiment, the method further comprises
deriving a modified alignment from the user input, wherein
the modified alignment indicates modifications to the timing
of the speech signal. For example, the controllable model
has an attention module which comprises an alignment
matrix that aligns the encoder input with the decoder output
and the modified alignment imposes changes on the align-
ment matrix.
[0054] Deriving a modified alignment may comprise:
deriving an alignment from the first model, and then modi-
fying said alignment based on the user input to obtain a
modified alignment.
[0055] The first model may also comprises an encoder
module, a decoder module, and an attention module linking
the encoder module to the decoder module.
[0056] It is possible to derive a third feature vector from
the attention module of the first model, wherein the third
feature vector corresponds to the timing of phonemes of the
received text signal; and
[0057] inputting the third feature vector in the encoder
module of the controllable model. The third feature
vector is not modified by a user. The third feature vector
is passed to the encoder module of the controllable
model. The third feature vector is used by the control-
lable model for generating modified speech.
[0058] It is also possible to derive a modified alignment
from the attention module of the first model. For example,
deriving a modified alignment may comprise: deriving an
alignment from the attention module of the first model, and
then modifying said alignment based on the user input to
obtain a modified alignment.
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[0059] In further embodiment, there is provided a method
of training a text-to-speech synthesiser configured to modify
a speech signal generated by the text-to-speech synthesiser.
When the text-to-speech synthesiser comprises a first model
configured to generate the speech signal, and a controllable
model configured to generate the modified speech signal the
first model may be pre-trained in advance using standard
methods. The pre-trained first model may be used to gen-
erate training speech signals and the controllable model may
then be trained using training speech signals generated by
the first model.
[0060] When the first model comprises an encoder mod-
ule, a decoder module, and an attention module linking the
encoder module to the decoder module, the pre-trained first
model may be used to generate alignment matrices.
[0061] The method of training the text-to-speech synthe-
siser may comprise training using: a training text signal;
[0062] atraining speech signal generated from the train-
ing text signal using the pre-trained first model;
[0063] atraining control feature vector derived from the
training speech signal; and
[0064] an alignment matrix obtained generated by the
pre-trained first model for the training text signal.
[0065] The method of training may use a training loss
function such as a mean squared error. The training loss may
be computed by comparing the speech output by the con-
trollable model with the training speech signal generated by
the pre-trained first model.
[0066] In a further embodiment, a system for modifying a
speech signal generated by a text-to-speech synthesiser is
provided, the system comprising a processor and a memory,
the processor being configured to:

[0067] receive a text signal;
[0068] generate a speech signal from the text signal;
[0069] derive a control feature vector, wherein the con-

trol feature vector represents modifications to the
speech signal;

[0070] input the control feature vector in the text-to-
speech synthesiser, wherein the text-to-speech synthe-
siser is configured to generate a modified speech signal
using the control feature vector; and

[0071] output the modified speech signal.

[0072] The above-described model allows fine grain con-
trol of the acoustics of synthesised speech.

[0073] The following method is directed towards control-
ling the overall style. Here, the user inputs text and a
‘prominence vector’ is chosen by user, or by system auto-
matically. The text and prominence vector is then input into
a ‘Prominence’ model and speech is output.

[0074] In a third aspect, a method of varying the emphasis
in a synthesised speech signal generated by a text-to-speech
synthesiser is provided to allow parts of the synthesised
speech signal to be output with a controllable emphasis, the
method comprising:

[0075] receiving text to be synthesised;

[0076] generating a prominence vector corresponding
to said text to be synthesised, said prominence vector
indicating parts of said input text which are to be
emphasised in said synthesised speech;

[0077] inputting the text to be synthesised and the
prominence vector into the synthesiser and generating
the speech signal with the emphasis controlled by the
prominence vector.
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[0078] The above provides a model which allows overall
control of the style for the synthesised speech.

[0079] In an embodiment, the prominence vector com-
prises a time sequence of pitch values, the time sequence
corresponding to sequence of phonemes in the input text.
The pitch values may be values assigned to frequency bands.
In such an arrangement, the frequency bands are determined
for each phoneme such that it is possible to determine the
average pitch for a phoneme, a high pitch (or prominence)
for a phoneme and a low pitch (or prominence) for a
phoneme. There can be three bands, for example, 0,1,2 or
low, normal, high, but there may be greater or fewer bands.
The bands are phoneme dependent, a high prominence for
one phoneme may not be the same pitch as a high promi-
nence for a different phoneme.

[0080] The speech synthesis model (or “prominence
model”) comprises an encoder and decoder linked by atten-
tion. The encoder and decoder may be of the RNN type to
allow sequence to sequence mapping. The input text may be
divided into a sequence of phonemes and the sequence of
phonemes are inputted into the encoder, in the form of an
input vector where each phoneme represents an encoder
timestep.

[0081] In an embodiment, the prominence vector is input
into the encoder. For example, the prominence vector is
concatenated with the output of the encoder prior to the
attention network.

[0082] In an embodiment, the prominence vector selected
from a plurality of pre-set prominence vectors. In a further
embodiment, the prominence vector is generated from the
text input. A prominence vector may be provide to the user
and the pitch values of the prominence vector are modifiable
by a user.

[0083] Ina fourth aspect, a method is provided for training
a speech synthesis model which allows parts of the synthe-
sised speech signal to be output with a controllable empha-
sis, the model comprising:

[0084] a text input for receiving text to be synthesised;

[0085] a prominence vector input for receiving a promi-
nence vector corresponding to said text to be synthe-
sised, said prominence vector indicating parts of said
input text which are to be emphasised in said synthe-
sised speech; and

[0086] a model mapping a sequence of input text to a
time varying speech signal, the training method com-
prising:

[0087] obtaining training data comprising text and cor-
responding speech signals;

[0088] deriving a pitch track from the corresponding
speech signals and obtaining said prominence vector
from a time sequence of pitch values derived from said
pitch track corresponding to said phonemes; and

[0089] training said model using said text and corre-
sponding prominence vector as inputs and said speech
signal as an output.

[0090] In the above, obtaining the prominence vector for
a text input may comprise:

[0091] obtaining, for each phoneme in the training data
set, an average value for the pitch of each phoneme and
the range of pitch for each phoneme;

[0092] assigning n frequency bands to each phoneme
based on the an average value for the pitch of each
phoneme and the range of pitch for each phoneme,
where n is an integer having a value of at least two;
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[0093] deriving a pitch track from the corresponding
speech signals for said text input, determining the
average pitch for each phoneme in the text input and
assigning a value derived from an index of the fre-
quency bands for each phoneme to produce said promi-
nence vector.

[0094] The speech signals used to train the model may be
synthesised speech signals.

[0095] Ina further aspect, a system is provided for varying
the emphasis in a synthesised speech signal generated by a
text-to-speech synthesiser to allow parts of the synthesised
speech signal to be output with a controllable emphasis, the
system comprising a processor and a memory, the processor
being configured to:

[0096] receive text to be synthesised;

[0097] generate a prominence vector corresponding to
said text to be synthesised, said prominence vector
indicating parts of said input text which are to be
emphasised in said synthesised speech; and

[0098] input the text to be synthesised and the promi-
nence vector into the synthesiser and generating the
speech signal with the emphasis controlled by the
prominence vector.

[0099] In a further aspect, a system is provided for training
a speech synthesis model which allows parts of the synthe-
sised speech signal to be output with a controllable empha-
sis, the model comprising:

[0100] a text input for receiving text to be synthesised;

[0101] a prominence vector input for receiving a promi-
nence vector corresponding to said text to be synthe-
sised, said prominence vector indicating parts of said
input text which are to be emphasised in said synthe-
sised speech; and

[0102] a model mapping a sequence of input text to a
time varying speech signal, the system further com-
prising:

[0103] obtaining training data comprising text and cor-
responding speech signals;

[0104] deriving a pitch track from the corresponding
speech signals and obtaining said prominence vector
from a time sequence of pitch values derived from said
pitch track corresponding to said phonemes; and

[0105] training said model using said text and corre-
sponding prominence vector as inputs and said speech
signal as an output.

[0106] In the above methods, data is automatically ana-
lysed to extract ‘prominence’ features. In an embodiment, a
speaker’s full dataset is analysed to establish global values
for that speaker and these global values to decide if the
individual line has a prominence peak (value in a high
frequency band for that phoneme).

[0107] Finally a third method will be discussed where the
level of control is between the fine control of the first
method, but finer than the overall style control provided by
the second method.

[0108] In a yet further aspect, a method is provided of
varying the intonation in a synthesised speech signal gen-
erated by a first speech synthesis model to allow parts of the
synthesised speech signal to be output with a controllable
intonation, the method comprising:

[0109] receiving text to be synthesised;

[0110] generating an intonation vector corresponding to
said text to be synthesised, said intonation vector
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indicating the intonation that said input text is to be
output as synthesised speech;

[0111] inputting the text to be synthesised and the
intonation vector into the first speech synthesis model
and generating the speech signal with the intonation
controlled by the intonation vector.

[0112] The above method can be implemented as two
stage process or a single stage process. For the two-stage
process, generating the intonation vector comprises:

[0113] synthesising speech from the received text using
a second speech synthesis model;

[0114] obtaining a pitch track from synthesised speech;

[0115] determining the average pitch of each phoneme
and generating a pitch vector; and

[0116] varying the pitches of one or more phonemes to
produce an intonation vector.

[0117] As for the above first and second methods, the first
speech synthesis model comprises an encoder and decoder
linked by an attention mechanism. The encoder and decoder
may be of the RNN type to allow sequence to sequence
mapping. The input text may be divided into a sequence of
phonemes and the sequence of phonemes are inputted into
the encoder, in the form of an input vector where each
phoneme represents an encoder timestep.

[0118] In an embodiment, the intonation vector is input to
the decoder. To allow the intonation vector to be input into
the decoder it may be upsampled from the encoder timesteps
to the timesteps of the decoder input.

[0119] The second speech synthesis model may also com-
prise an encoder and decoder linked by an attention mecha-
nism. The encoder and decoder may be of the RNN type to
allow sequence to sequence mapping. The attention mecha-
nism of the second speech synthesis model comprises an
alignment matrix that aligns the encoder timesteps and
decoder timesteps and the intonation vector may be
upsampled from the encoder timesteps to the decoder
timesteps using the alignment matrix.

[0120] During synthesis of the modified speech, the align-
ment matrix of the second speech synthesis model may be
forced on the alignment matrix of the attention network of
the first speech synthesis model.

[0121] The third method may also be implemented as a
single stage method where said intonation vector comprises
receiving a vector with a pitch allocated to each phoneme of
the input text and the user selects the pitch for at least one
phoneme.

[0122] In a further aspect, a method is provided of training
a speech synthesis model which allows parts of the synthe-
sised speech signal to be output with controllable intonation,
the model comprising:

[0123] a text input for receiving text to be synthesised;

[0124] an intonation vector input for receiving an into-
nation vector corresponding to said text to be synthe-
sised, said intonation vector indicating the intonation
that said input text is to be output as synthesised
speech; and

[0125] a first speech synthesis model mapping a
sequence of input text to a time varying speech signal,
the training method comprising:

[0126] obtaining training data comprising text and cor-
responding speech signals;

[0127] deriving a pitch track from the corresponding
speech signals and obtaining said intonation vector
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from a time sequence of pitch values derived from said
pitch track corresponding to said phonemes; and

[0128] training said model using said text and corre-
sponding intonation vector as inputs and said speech
signal as an output.

[0129] The first speech synthesis model comprises an
encoder and decoder linked by an attention mechanism and
the intonation vector may be upsampled to timesteps of the
decoder and is input into the decoder. The training data may
be derived from a second speech synthesis model that
comprises an encoder and decoder linked by an attention
mechanism, wherein the attention mechanism comprises an
alignment matrix that aligns the encoder timesteps and
decoder timesteps and said intonation vector is upsampled
from the encoder timesteps to the decoder timesteps using
the alignment matrix of the second speech synthesis model.
[0130] Ina further aspect, a system is provided for varying
the intonation in a synthesised speech signal generated by a
first speech synthesis model to allow parts of the synthesised
speech signal to be output with a controllable intonation, the
system comprising a processor and a memory, the processor
being configured to:

[0131] receive text to be synthesised;

[0132] generate an intonation vector corresponding to
said text to be synthesised, said intonation vector
indicating the intonation that said input text is to be
output as synthesised speech; and

[0133] input the text to be synthesised and the intona-
tion vector into the first speech synthesis model and
generating the speech signal with the intonation con-
trolled by the intonation vector.

[0134] Ina further aspect, a system is provided for training
a speech synthesis model which allows parts of the synthe-
sised speech signal to be output with controllable intonation,
the model comprising:

[0135] a text input for receiving text to be synthesised;

[0136] an intonation vector input for receiving an into-
nation vector corresponding to said text to be synthe-
sised, said intonation vector indicating the intonation
that said input text is to be output as synthesised
speech; and

[0137] a first speech synthesis model mapping a
sequence of input text to a time varying speech signal,

the system comprising a processor and a memory, the
processor being configured to:

[0138] obtain training data comprising text and corre-
sponding speech signals;

[0139] derive a pitch track from the corresponding
speech signals and obtaining said intonation vector
from a time sequence of pitch values derived from said
pitch track corresponding to said phonemes; and

[0140] train said model using said text and correspond-
ing intonation vector as inputs and said speech signal as
an output.

[0141] Methods in accordance with embodiments
described herein provide a method of modifying the speech
generated by a trained TTS system. Training of TTS systems
is time consuming and requires large training datasets. The
methods described herein enable the output speech that
would be generated by a trained TTS system to be modified.
The modification is performed at inference, without addi-
tional training of the TTS system. The methods enable
modification of the speech signal while maintaining the
accuracy and quality of the trained TTS system.
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[0142] The methods are computer-implemented methods.
Since some methods in accordance with examples can be
implemented by software, some examples encompass com-
puter code provided to a general purpose computer on any
suitable carrier medium. The carrier medium can comprise
any storage medium such as a floppy disk, a CD ROM, a
magnetic device or a programmable memory device, or any
transient medium such as any signal e.g. an electrical,
optical or microwave signal. The carrier medium may com-
prise a non-transitory computer readable storage medium.
[0143] FIG. 1 shows a schematic illustration of a method
of modifying a speech signal. In S01, a user provides input
text which is provided to a text-to-speech (TTS) system 1.
The input text can be provided via an input device such as
a keyboard, the user may also select the input text from one
or more possible options provided to them. For example, if
the user is reviewing the quality of synthesised speech
produced from a book, script etc, the user may be provided
an option to select the text corresponding synthesised speech
to be modified. The TTS system 10 is configured to convert
the text signal that is inputted into a speech signal. In S03,
the speech signal is provided to the user. Note that the speech
signal may be an audio file of synthesised speech and/or
information that enables generation of audible speech. The
speech may be played back to the user as an audible sound,
and/or a representation of the speech signal may be shown
to the user. The TTS system 10 is also configured to analyse
the text signal and/or the speech signal. How the analysis is
performed will be described in more detail below. In S04,
the analysed data is provided to the user. In S05, parameters
from the user is inputted into the TTS 10. The parameters
from the user reflects modifications to the speech signal. In
S07, the TTS 10 is configured to output a modified speech
signal.

[0144] FIG. 2 shows a schematic illustration of a method
of modifying a speech signal. In S01, a user provides input
text that is provided to a text-to-speech (TTS) system 11.
The TTS system 11 is configured to analyse the text signal
and/or the speech signal. How the analysis is performed will
be described in more detail below. In S14, the analysed data
is provided to the user. In S15, parameters from the user is
inputted into the TTS 11. The parameters from the user
reflects modifications to the speech signal. In S17, the TTS
11 is configured to output a modified speech signal.
[0145] In the methods of FIGS. 1 and 2, some of the steps
may be performed on the TTS system 10 or 11, while others
are performed on a user terminal (not shown). For example,
steps that may be carried out on the user terminal include
receipt of the analysis S04, S14, modification of parameters
S05, S15 that are sent to the TTS, and receipt of speech
signals for playback S03, S07, and S17. Other steps such as
synthesis of a first audio sample S03, or synthesis of a
modified speech signal S07, S17, analysis of the speech
and/or text signal to for delivery to the user S04, S14, or
derivation of modifications from the parameters provided by
the user S05, S15 are performed on the TTS system.
[0146] FIG. 3 (a) shows a schematic illustration of a text
to speech synthesiser 1 for generating speech 9 from text 7.
The synthesiser 1 can be trained to generate speech. The
generated speech may have a speech attribute. A speech
attribute may comprise emotions such as sadness, anger,
happiness, etc . . . ; and/or intentions such as sarcasm; and/or
a different projections such as a whisper, a shout; and/or
different paces; and/or different accents such as French,
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British English, American English, etc. . . . . A speech
attribute (also referred to as an attribute) refers to how the
generated speech is perceived by a human listener.

[0147] The system comprises a prediction network 21
configured to convert input text 7 into speech data 25. The
speech data 25 is also referred to as the intermediate speech
data 25. The system further comprises a Vocoder that
converts the intermediate speech data 25 into an output
speech 9. The prediction network 21 comprises a neural
network (NN). The Vocoder also comprises a NN.

[0148] The prediction network 21 receives a text input 7
and is configured to convert the text input 7 into an inter-
mediate speech data 25. The intermediate speech data 25
comprises information from which an audio waveform may
be derived. The intermediate speech data 25 may be highly
compressed while retaining sufficient information to convey
vocal expressiveness. The generation of the intermediate
speech data 25 will be described further below in relation to
FIG. 2.

[0149] The text input 7 may be in the form of a text file or
any other suitable text form such as ASCII text string. The
text may be in the form of single sentences or longer samples
of text. A text front-end, which is not shown, converts the
text sample into a sequence of individual characters (e.g.
“a”, “b”, “c”, ... ). In another example, the text front-end
converts the text sample into a sequence of phonemes (/k/,
It/ Ipl, . . . ). Phonemes are units of sound that distinguish
a word from another in a particular language. For example,
in English, the phonemes /p/, /b/, /d/, and/t/occur in the
words pit, bit, din, and tin respectively for example.
[0150] The intermediate speech data 25 comprises data
encoded in a form from which a speech sound waveform can
be obtained. For example, the intermediate speech data may
be a frequency domain representation of the synthesised
speech. In a further example, the intermediate speech data is
a spectrogram. A spectrogram may encode a magnitude of a
complex number as a function of frequency and time. In a
further example, the intermediate speech data 25 may be a
mel spectrogram. A mel spectrogram is related to a speech
sound waveform in the following manner: a short-time
Fourier transform (STFT) is computed over a finite frame
size, where the frame size may be 50 ms, and a suitable
window function (e.g. a Hann window) may be used; and the
magnitude of the STFT is converted to a mel scale by
applying a non-linear transform to the frequency axis of the
STFT, where the non-linear transform is, for example, a
logarithmic function.

[0151] The Vocoder module takes the intermediate speech
data 25 as input and is configured to convert the intermediate
speech data 25 into a speech output 9. The speech output 9
is an audio file of synthesised speech and/or information that
enables generation of speech. The Vocoder module will be
described further below.

[0152] Alternatively, the intermediate speech data 25 is in
a form from which an output speech 9 can be directly
obtained. In such a system, the Vocoder 23 is optional.
[0153] FIG. 3 (b) shows a schematic illustration of the
prediction network 21 according to a non-limiting example.
It will be understood that other types of prediction networks
that comprise neural networks (NN) could also be used.
[0154] The prediction network 21 comprises an Encoder
31, an attention network 33, and decoder 35. As shown in
FIG. 3 (b), the prediction network maps a sequence of
characters to intermediate speech data 25. In an alternative
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example which is not shown, the prediction network maps a
sequence of phonemes to intermediate speech data 25. In an
example, the prediction network is a sequence to sequence
model. A sequence to sequence model maps a fixed length
input from one domain to a fixed length output in a different
domain, where the length of the input and output may differ.
[0155] The Encoder 31 takes as input the text input 7. The
encoder 31 comprises a character embedding module (not
shown) which is configured to convert the text input 7,
which may be in the form words, sentences, paragraphs, or
other forms, into a sequence of characters. Alternatively, the
encoder may convert the text input into a sequence of
phonemes. Each character from the sequence of characters
may be represented by a learned 512-dimensional character
embedding. Characters from the sequence of characters are
passed through a number of convolutional layers. The num-
ber of convolutional layers may be equal to three for
example. The convolutional layers model longer term con-
text in the character input sequence. The convolutional
layers each contain 512 filters and each filter has a 5x1 shape
so that each filer spans 5 characters. To the outputs of each
of the three convolutional layers, a batch normalization step
(not shown) and a ReLLU activation function (not shown) are
applied. The encoder 31 is configured to convert the
sequence of characters (or alternatively phonemes) into
encoded features 311 which is then further processed by the
attention network 33 and the decoder 35.

[0156] The output of the convolutional layers is passed to
a recurrent neural network (RNN). The RNN may be a
long-short term memory (LSTM) neural network (NN).
Other types of RNN may also be used. According to one
example, the RNN may be a single bi-directional LSTM
containing 512 units (256 in each direction). The RNN is
configured to generate encoded features 311. The encoded
features 311 output by the RNN may be a vector with a
dimension k.

[0157] The Attention Network 33 is configured to sum-
marize the full encoded features 311 output by the RNN and
output a fixed-length context vector 331. The fixed-length
context vector 331 is used by the decoder 35 for each
decoding step. The attention network 33 may take informa-
tion (such as weights) from previous decoding steps (that is,
from previous speech frames decoded by decoder) in order
to output a fixed-length context vector 331. The function of
the attention network 33 may be understood to be to act as
a mask that focusses on the important features of the
encoded features 311 output by the encoder 31. This allows
the decoder 35, to focus on different parts of the encoded
features 311 output by the encoder 31 on every step. The
output of the attention network 33, the fixed-length context
vector 331, may have dimension m, where m may be less
than k. According to a further example, the Attention net-
work 33 is a location-based attention network.

[0158] Additionally or alternatively, the attention network
33 takes as input an encoded feature vector 311 denoted as
h={h1, h2, . . ., hk}. A(Q) is a vector of attention weights
(called alignment). The vector A(i) is generated from a
function attend(s(i-1), A(i-1), h),_where s(i-1) is a previ-
ous decoding state and A(i-1) is a previous alignment. s(i-1)
is O for the first iteration of first step. The attend( ) function
is implemented by scoring each element in h separately and
normalising the score. G(i) is computed from G(i)=2* A(,
k)xh,. G(1) is the context vector. The output of the attention
network 33 is generated as Y(i)=generate(s(i-1), G(i)),
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where generate( ) may be implemented using a recurrent
layer of 256 gated recurrent units (GRU) units for example.
The attention network 33 also computes a new state s(i)
=recurrency(s(i-1), G(1), Y(1)), where recurrency( ) is imple-
mented using LSTM.

[0159] The decoder 35 is an autoregressive RNN which
decodes information one frame at a time. The information
directed to the decoder 35 is be the fixed length context
vector 331 from the attention network 33. In another
example, the information directed to the decoder 35 is the
fixed length context vector 331 from the attention network
33 concatenated with a prediction of the decoder 35 from the
previous step. In each decoding step, that is, for each frame
being decoded, the decoder may use the results from pre-
vious frames as an input to decode the current frame. In an
example, as shown in FIG. 3 (), the decoder autoregressive
RNN comprises two uni-directional LSTM layers with 1024
units. The prediction from the previous time step is first
passed through a small pre-net (not shown) containing 2
fully connected layers of 256 hidden RelLU units. The output
of the pre-net, and the attention context vector are concat-
enated and then passed through the two uni-directional
LSTM layers. The output of the LSTM layers is directed to
a predictor 39 where it is concatenated with the fixed-length
context vector 331 from the attention network 33 and
projected trough a linear transform to predict a target mel
spectrogram. The predicted mel spectrogram is further
passed through a 5-layer convolutional post-net which pre-
dicts a residual to add to the prediction to improve the
overall reconstruction. Each post-net layer is comprised of
512 filters with shape 5x1 with batch normalization, fol-
lowed by tanh activations on all but the final layer. The
output of the predictor 39 is the speech data 25.

[0160] The parameters of the encoder 31, decoder 35,
predictor 39 and the attention weights of the attention
network 33 are the trainable parameters of the prediction
network 21.

[0161] According to another example, the prediction net-
work 21 comprises an architecture according to Shen et al.
“Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions.” 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018.

[0162] Returning to FIG. 3 (a), the Vocoder 23 is config-
ured to take the intermediate speech data 25 from the
prediction network 21 as input, and generate an output
speech 9. In an example, the output of the prediction
network 21, the intermediate speech data 25, is a mel
spectrogram representing a prediction of the speech wave-
form.

[0163] According to an embodiment, the Vocoder 23 com-
prises a convolutional neural network (CNN). The input to
the Vocoder 23 is a frame of the mel spectrogram provided
by the prediction network 21 as described above in relation
to FIG. 3 (a). The mel spectrogram 25 may be input directly
into the Vocoder 23 where it is inputted into the CNN. The
CNN of the Vocoder 23 is configured to provide a prediction
of an output speech audio waveform 9. The predicted output
speech audio waveform 9 is conditioned on previous
samples of the mel spectrogram 25. The output speech audio
waveform may have 16-bit resolution. The output speech
audio waveform may have a sampling frequency of 24 kHz.
[0164] Alternatively, the Vocoder 23 comprises a convo-
Iutional neural network (CNN). The input to the Vocoder 23
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is derived from a frame of the mel spectrogram provided by
the prediction network 21 as described above in relation to
FIG. 3 (b). The mel spectrogram 25 is converted to an
intermediate speech audio waveform by performing an
inverse STFT. Each sample of the speech audio waveform is
directed into the Vocoder 23 where it is inputted into the
CNN. The CNN of the Vocoder 23 is configured to provide
a prediction of an output speech audio waveform 9. The
predicted output speech audio waveform 9 is conditioned on
previous samples of the intermediate speech audio wave-
form. The output speech audio waveform may have 16-bit
resolution. The output speech audio waveform may have a
sampling frequency of 24 kHz.

[0165] Additionally or alternatively, the Vocoder 23 com-
prises a WaveNet NN architecture such as that described in
Shen et al. “Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions.” 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018.

[0166] Additionally or alternatively, the Vocoder 23 com-
prises a WaveGlow NN architecture such as that described
in Prenger et al. “Waveglow: A flow-based generative net-
work for speech synthesis.” ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019.

[0167] Alternatively, the Vocoder 23 comprises any deep
learning based speech model that converts an intermediate
speech data 25 into output speech 9.

[0168] According to another alternative embodiment, the
Vocoder 23 is optional. Instead of a Vocoder, the prediction
network 21 further comprises a conversion module (not
shown) that converts intermediate speech data 25 into output
speech 9. The conversion module may use an algorithm
rather than relying on a trained neural network. In an
example, the Griffin-Lim algorithm is used. The Griffin-Lim
algorithm takes the entire (magnitude) spectrogram from the
intermediate speech data 25, adds a randomly initialised
phase to form a complex spectrogram, and iteratively esti-
mates the missing phase information by: repeatedly convert-
ing the complex spectrogram to a time domain signal,
converting the time domain signal back to frequency domain
using STFT to obtain both magnitude and phase, and updat-
ing the complex spectrogram by using the original magni-
tude values and the most recent calculated phase values. The
last updated complex spectrogram is converted to a time
domain signal using inverse STFT to provide output speech
9.

[0169] FIG. 3 (c¢) shows a schematic illustration of a
configuration for training the prediction network 21 accord-
ing to a comparative example. The prediction network 21 is
trained independently of the Vocoder 23. According to an
example, the prediction network 21 is trained first and the
Vocoder 23 is then trained independently on the outputs
generated by the prediction network 21.

[0170] According to an example, the prediction network
21 is trained from a first training dataset 41 of text data 41a
and audio data 415 pairs as shown in FIG. 3 (¢). The Audio
data 415 comprises one or more audio samples. In this
example, the training dataset 41 comprises audio samples
from a single speaker. In an alternative example, the training
set 41 comprises audio samples from different speakers.
When the audio samples are from different speakers, the
prediction network 21 comprises a speaker ID input (e.g. an
integer or learned embedding), where the speaker ID inputs
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correspond to the audio samples from the different speakers.
In the figure, solid lines (-) represent data from a training
sample, and dash-dot-dot-dash (- - - -) lines represent the
update of the weights ® of the neural network of the
prediction network 21 after every training sample. Training
text 41a in fed in to the prediction network 21 and a
prediction of the intermediate speech data 255 is obtained.
The corresponding audio data 415 is converted using a
converter 47 into a form where it can be compared with the
prediction of the intermediate speech data 255 in the com-
parator 43. For example, when the intermediate speech data
25b is a mel spectrogram, the converter 47 performs a STFT
and a non-linear transform that converts the audio waveform
into a mel spectrogram. The comparator 43 compares the
predicted first speech data 255 and the converted audio data
41b6. According to an example, the comparator 43 may
compute a loss metric such as a cross entropy loss given by:
—(actual converted audio data) log (predicted first speech
data). Alternatively, the comparator 43 may compute a loss
metric such as a mean squared error. The gradients of the
error with respect to the weights ® of the prediction network
may be found using a back propagation through time algo-
rithm. An optimiser function such as a gradient descent
algorithm may then be used to learn revised weights ©.
Revised weights are then used to update (represented by - -
- - in FIG. 3 (¢)) the NN model in the prediction network 21.
[0171] FIG. 4 shows a flow chart illustrating the steps for
generating a modified speech signal using a TTS system.
The method of FIG. 4 enables fine-grained control of the
acoustics. By fine-grained control, what is meant is that
specific parts of the generated speech signal may be modi-
fied, while leaving the remaining parts unchanged. For
example, the intensity and/or pitch of a particular part of the
speech signal may be modified.
[0172] The TTS system comprises synthesisers similar to
that described in relation to FIG. 3(a) to 3(b) and will be
described further below in relation to FIGS. 8(a) and 8(b).
In S100, a text signal is inputted. In S103, a speech signal
is obtained from the text signal using the TTS system. In
S105, a control feature vector is derived. The control feature
vector refers to a vector that can be inputted into the TTS
system to modify the speech signal that is subsequently
generated. The control feature vector is derived from one or
more of the text signal, the speech signal, and parameters
provided by a user. How the control feature vector is derived
will be described in more detail below. In S107, the control
feature vector is inputted into a model of the TTS system. In
S109, the TTS system generates a modified speech signal.
[0173] FIG. 5 shows a flow chart illustrating how a control
feature vector is derived in S105 of FIG. 4. In S105-1, the
speech signal obtained in S103 of FIG. 4 is analysed. The
analysis in S105-1 relates to the extraction of one or more
properties of the obtained speech signal. The properties
comprise the following: pitch, intensity, formants, and har-
monicity.
[0174] The pitch of a speech signal has units of Hz and
relates to the relative highness or lowness of a tone as
perceived by the ear. The pitch is related to the fundamental
frequency (f,,) of a signal. f;, may be used to approximate the
pitch.
[0175] The f, of the speech signal may be obtained using,
for example, the following steps:

[0176] 1) Split the audio signal into small chunks or

“analysis windows”—the width of the windows is
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chosen to match the duration that each Mel frame
represents. For example, when the mels are extracted
every 0.0116 seconds, the width of the analysis win-
dows is chosen to be 0.0116 seconds. Additionally and
optionally, the “analysis windows™ may be overlapping
when the mel frames overlap. The analysis windows
correspond to the position and duration of the mel
frames. For example, if the Mel frames overlap by a
quarter of the total window length (e.g. when the mel
frame has a width of 0.0116 seconds, the overlap is
0.0029 seconds).

[0177] 2) For each of these windows apply a filter e.g.
The Hanning Filter or Gaussian filter, where each
sample in the audio signal is multiplied by the corre-
sponding value of the filter function.

[0178] 3) Divide this filtered audio signal by the nor-
malised autocorrelation curve of the filter function (e.g.
Hanning or Gaussian).

[0179] 4) Find the position of the peak in the result of
the above in terms of number of samples. Convert the
position into frequency using the equation f,=1/(Peak_
Position/Sample_Rate). Thus, a value of {; is obtained
for each of the analysis windows (which correspond to
the number of mel frames).

[0180] The intensity of a speech signal has units of dB.
The intensity relates to the relative loudness of the speech
signal, as perceived by the human ear. The intensity may be
obtained by:

[0181] 1) taking the square of the sample values of the
speech signal;

[0182] 2) convolving with a Gaussian analysis window
In an example, the effective duration of the analysis
window is 3.2/(minimum_pitch). For example, when
the minimum pitch is 10 Hz, then the analysis window
is 0.32 seconds. In another example, the analysis win-
dows are taken to be the same windows used to
compute the Mel frames, including overlapping win-
dows when the mel frame windows overlap.

[0183] The intensity of the speech signal has the form of
a vector (an intensity vector). The vector has a length that
corresponds to the number of Mel frames. Each element of
the vector is obtained from the mean value of the intensity
over the time window each Mel Frame corresponds to. For
example, when the Mel frames are 0.0116 seconds long and
overlap by 0.0029 seconds, then the mean is obtained over
each of those time windows.

[0184] Formants relate to how energy is concentrated
around distinctive frequency components in a speech signal.
Formants may be visualised as peaks in the frequency
spectrum of the speech signal. Formants correspond to
resonances in the human vocal tract. A speech signal may be
characterised by its formants. In an example, three formants
(F1, F2, F3) are used to characterise the speech signal. In a
further example, five formants (F1, F2, F3, F4, F5) are used
to characterise the speech signal. By using five formants, the
quality of the generated speech signal may be improved. The
formants may be obtained using the following steps:

[0185] 1) Taking segments or analysis windows of the
audio signal. The width of the analysis windows is
chosen to match the windows used to compute the Mel
frames. Additionally and optionally, the analysis win-
dows may be overlapping when the Mel frames over-
lap. The analysis windows correspond to the position
and duration of the Mel frames. For example, if the Mel
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frames overlap by a quarter of the total window length
then. when the mel frame has a width of 0.0116
seconds, the overlap is 0.0029 seconds.

[0186] 2) For each of these analysis windows, multiply
by a window function e.g. the Hamming window
function.

[0187] 3) Apply a pre-emphasis filter, for example a
high pass filter.

[0188] 4) Obtain the coefficients of a linear predictor.
The order of the linear predictor is selected to be two
times the expected number of formants plus two. For
example, when three formants are sought, the linear
predictor order is set to 8.

[0189] 5) Obtain the roots of the linear predictor from
the coeflicients of the linear predictor. As the coeffi-
cients of the linear predictor is real valued, the roots
occur in complex conjugate pairs. Select only one root
of the each pair (e.g. the root with a positive imaginary
part) and determine the angle corresponding to these
roots.

[0190] 6) Convert the angle of the roots from rad/
sample to Hz. Calculate the bandwidth of the formant,
which correspond to the distance of the zeros of the
linear predictor from the unit circle. The angle of the
roots, in Hz, that have a corresponding bandwidth less
than, e.g. 400 Hz, correspond to the formants.

[0191] Harmonicity relates to the periodicity of a speech
signal and has units of dB. Harmonicity is also referred to as
Harmonics-to-Noise Ratio (HNR). HNR is a measure of
how much energy of a signal is in the harmonic part, in
relation to the amount of energy that is noise. The harmo-
nicity may be obtained using the following steps:

[0192] 1) window the sound—the width of the windows
is chosen to match the duration that each Mel frame
represents. For example, when the mels are extracted
every 0.0116 seconds, the width of the analysis win-
dows is chosen to be 0.0116 seconds.

[0193] 2) For each window compute the autocorrelation
r(t) as a function of the lag time, t.

[0194] 3) Find the position of highest maxima (outside
the maxima at t=0), and record this as t_max

[0195] 4) Compute the normalised autocorrelation func-
tion r'(t)=r(t)/r(0)

[0196] 5) The HNR in dB is then given by A*log(r'(t_
max)/1-r'(t_max)) (where A is a prefactor to convert to

[0197] The decoder time steps (num_decoder_timesteps)
match up to a fixed number of Mel frames. In an example,
the matching is one to one, i.e. num_decoder_timesteps
corresponds to the number of Mel frames.

[0198] The above properties are extracted at the same rate
as the mel spectrograms generated by the TTS system. In an
example, the mels are extracted every 0.0116 seconds. Using
the same rate ensures that the control feature vector of S105
in FIG. 4 has the same length as the number of frames of the
resulting speech signal. The control feature vector has a
dimension of 1x num_decoder_timesteps, where num_de-
coder_timesteps corresponds to how many Mel frames the
resulting audio has.

[0199] From the analysis step of S105-1, two properties
are obtained. As mentioned above, the properties are
extracted at the same rate as the mels output by the TTS and
correspond to feature vectors each having a length 1x
num_decoder_timesteps.
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[0200] In S105-5 a control feature vector is obtained. The
control feature vector is modified by a user in S105-3. In
S105-3, the user receives a property from S105-1 and
modifies said property. The control feature vector may be
derived from any one of the properties of pitch, intensity,
formants, and harmonicity. In an example, the control fea-
ture vector is selected from pitch or intensity. The purpose
of'the control feature vector is to enable controllability of the
speech that is generated.

[0201] In S105-4 a synthesis feature vector is obtained.
The synthesis feature vector is not modified by a user and
obtained directly from the analysis of S105-1. The synthesis
feature vector comprises any one of the properties of for-
mant or harmonicity. The purpose of the synthesis feature
vector is to improve the quality of the modified speech signal
that is subsequently generated. How this is achieved will be
discussed below in relation to FIG. 8.

[0202] In S105-7, the control feature vector and the syn-
thesis feature vector are concatenated to an input of the
model in S107 of FIG. 4.

[0203] Although FIG. 5 and the above description
describe how two properties are analysed in S105-1 and
used to obtain a control feature vector and a synthesis feature
vector, it will be understood that one or more control feature
vectors and/or one or more synthesis feature vector may be
used. In other words, more than two properties may be
analysed to obtain more than two vectors. These vectors may
concatenated to an input of the model in S105-7.

[0204] Inan example, a pitch and an intensity attribute are
obtained and modified by a user to form two control feature
vectors. A formant and a harmonicity attribute are obtained
but left unmodified to form two synthesis feature vectors.
These vectors are then concatenated at an input of the model
in S105-7.

[0205] Additionally and optionally, any of the feature
vectors may be modified by a pre-net (not shown in FIG. 5).
When more than one feature vector is inputted, each feature
vector is modified through a separate pre-net and the output
of each pre-net is concatenated at an input of the model in
S105-7. Each pre-net receives a feature vector as input and
outputs a vector of the same size. The purpose of the pre-net
is to pre-process the feature vectors and present it in a form
that is more readable to the model. The pre-net is part of the
model and is trained together with the model. The pre-net
comprises one or more 1D linear or convolutional layers
with, for example, a 5x1 kernel size. In an example, the
pre-net comprises three layers. In another example, when the
pre-net comprises convolutional layers, the pre-net com-
prises 5 layers each with 5x1 kernel size.

[0206] FIG. 6 (a) shows the modification of a pitch track
by a user. The pitch track show the variation of a pitch (in
Hz) against the number of decoder steps (num_decoder_
timesteps) or mel frames. The dots (*) are the result of the
analysis in S105-1. The dashed line (- -) shows the modified
pitch trace after modification by the user in S105-3. The
dashed line represents the control feature vector of S105-5
of FIG. 5. Although FIG. 6 (@) shows a control feature vector
that corresponds to the pitch attribute, it will be understood
that different properties could be extracted instead, or in
addition. For example, the attribute of ‘intensity’ could be
used instead, or in addition.

[0207] The modified pitch trace, corresponding to the
feature vector, may be modified by way of the user editing
the value of each element in the pitch trace vector (repre-
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sented by dots ¢). Alternatively, the feature vector may be
modified using a user interface (UI) and this is described
further below in relation to FIG. 7. Both methods of modi-
fying the pitch trace provide fine-grained control in the sense
that specific frames at the output of the decoder may be
modified.

[0208] FIG. 6 (b) is an example of the modification of the
timing of a speech signal by way of a user interface. The
modification of timing is obtained differently from the
control and synthesis feature vectors described above. How
it is obtained will be described further below in relation to
FIG. 8.

[0209] The timing of the phonemes is provided to the user,
e.g. the start and end time of each phoneme. The user then
modifies these timings using a slider to generate timing
parameters. The timing parameters relate to the timing of the
phonemes in the text signal and inputted in the TTS system.
The modified timings are then used to up/down sample with
interpolation the alignment matrix along the time axis.
[0210] First the phoneme times are translated to decoder
steps. (e.g. each decoder step corresponds to a fixed forward
movement in time, so the reverse calculation is possible
going from time to the decoder step number). For example,
if the phoneme started at decoder step 10 and finished at
decoder step 20 for the original timing, and for the modified
timing the phoneme starts at decoder step 10 and finishes at
decoder step 30, then upsampling by a factor of 2 with
interpolation is applied to that part of the alignment matrix.
[0211] The controllable model is forced to use this new
modified attention matrix. So if in the attention matrix at
decoder step 10, a first model attends to phoneme 5, then this
is forced to be true in the controllable model. How the
attention matrix of the first model is used in the controllable
will be described further below in relation to FIG. 8 (a).
[0212] FIG. 7 (a) shows a user interface (UI) for modify-
ing properties of a speech signal. The Ul comprises a text
input 71 fora user to provide an input text signal. The Ul also
includes a user button that provides an unmodified speech
signal (the provision of an unmodified speech signal to the
user corresponds to S03 of FIG. 1).

[0213] The UI also shows a ‘line read’ feature 75. The ‘line
read’feature 75 is a means of controlling the generated
signal using voice. The user speaks a line of text, which
corresponds to a spoken speech signal. With reference to
FIG. 4, the spoken speech signal is obtained after a synthe-
sised speech signal is obtained in step S103. The spoken
speech signal is analysed and a control feature vector is
extracted. The control feature vector is then passed as an
input to the model (similar to S107 of FIG. 4).

[0214] In an example, the analysis of the spoken speech
signal relates to the pitch of the spoken speech signal. The
pitch vector may be extracted steps similar to that described
above.

[0215] The steps are the following:

[0216] Compute the pitch vector of the signal. Option-
ally, silence is removed from the recorded audio of the
spoken speech signal either before or after computing
the pitch vector.

[0217] Squish (compress) or stretch the pitch vector
from the spoken speech signal to match the length of
the synthesised speech signal obtained in step S103.

[0218] FIG. 7 (b) shows a user interface (UI) for modify-
ing the pitch and intensity of a speech signal. A text signal
is obtained using the interface of FIG. 7 (a) above. An
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analysis of the signal 74 is provided in the Ul The analysis
corresponds to S04 of FIG. 1 or S14 of FIG. 2. In FIG. 7 (b)
the analysis refers to pitch and intensity; however, the
analysis may also refer to any of the properties described in
relation to FIG. 5.

[0219] As described in FIG. 6, the pitch track or the
intensity track each correspond to a control feature vector.
To make the vectors easier to edit, a subset of the pitch or
intensity values are chosen to be editable using a slider. The
sliders are shown as dots on the traces 75 in FIG. 7 (4). The
changes to the values between these directly editable values
are determined using linear interpolation with respect to the
values that are editable before and after it. In the case of
pitch, to keep the changes within a “safe” range, i.e. a range
which is likely to avoid low quality or bad speech signal
output, the data used to train the model is analysed for
changes in pitch. The frequency axis is binned into a
sufficiently large number of bins, e.g. integer values, from
the minimum to the maximum pitch of the dataset. For each
of these bins the changes in pitch are analysed by finding all
the examples of that pitch in all the pitch tracks, and looking
at the change in pitch+60 or —-60 samples either side.
Modelling this set of values we arrive at a standard deviation
for each bin, and therefore a set of pitch dependent safe
frequency ranges over which the pitch may be varied in the
UI. This pitch range can be seen in 74 as a shaded area
around the white line (pitch track). The sensitivity of the
sliders on the traces 75 is automatically adjusted so that the
pitch will not go out of this safe range when dragged to the
top or bottom of the UI. Between the sliders, linear inter-
polation is used to determine the change in pitch, taking into
account the slider before and after. For example, if x is the
initial pitch value, d1 is the distance to slider 1, d2 is the
distance to slider 2 and the new pitch value is y then
y=(d2/(d1+d2))*(slider_1*sensitivity_1)+(d1/(d1+d2))*
(slider 2*sensitivity_2)+x. The safe range may be used to
clip the new value y and keep it in the safe range for
example.

[0220] As will be described in relation to FIG. 9, some of
the processes of the system may be carried out on a user
terminal, while others are carried out on a separate TTS
system, which may be based on a server.

[0221] The steps carried out on the user terminal are the
receipt of the analysis (e.g. pitch and intensity tracks and
alignments for the synthesised audio), the modification of
these pitch, intensity and alignments, and the sending off to
the TTS system and the receipt of the modified speech audio
once this has been rendered by the TTS system. The rest is
carried out on the TTS system, i.e. the synthesis of the first
audio example given the text received from the users ter-
minal, the generation of the pitch, intensity and alignments
and the delivery of all those to the user. The receipt of the
modified pitch, intensity and alignments and the synthesis
with the controllable model that produces the modified audio
and the delivery of the modified audio to the user, are
performed on the TTS system.

[0222] FIG. 8 (a) shows a shows a schematic illustration
of a TTS system comprising a controllable speech model.
The TTS system comprises two stages: stage 1 and stage 2,
as shown in the figure. In stage 1, a first speech model 81 is
used. The first speech model has an architecture as described
in relation to FIG. 3, for example. In stage 2 a second speech
model 89, also referred to as a controllable model, is used.
The controllable model has an architecture similar to that
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described in FIG. 3 except that additional inputs are pro-
vided at the encoder, attention and decoder modules.
[0223] In the diagram, boxes with a dashed (- -) outline
indicates that the values are identical, e.g. the text signal 80
is the same in both stage 1 and stage 2. Boxes with a
dash-dot (- - -) outline indicates points at which user
manipulation occurs.

[0224] InStage 1, atext signal is inputted into a first model
81 configured to convert an input text signal 80 into a speech
signal 85. The first model corresponds to a sequence-to
sequence model as described in relation to FIG. 3 (a) to 3 (¢).
In stage 1, the text signal 80, the attention/alignment matrix
87, and the speech signal 85 is made available for stage 2.
[0225] In stage 2, the speech signal 85 is analysed. The
analysis is similar to that described in relation to FIG. 5. In
stage 2 as shown, pitch and intensity properties are derived
and provided to the user. The user controls or modifies those
properties as described above. The modified pitch and
intensity properties take the form of separate control feature
vectors, as described above. In addition to pitch and inten-
sity, the properties of formants and harmonicity are also
derived from the speech signal 85. These properties are
unmodified and form separate synthesis feature vectors. The
properties that are unmodified by the user are used to
improve the quality of the speech signal generated in stage
2. As described in relation to FIG. 5, which properties are
derived and/or modified or not may be varied.

[0226] In addition to the speech signal 85, the attention/
alignment matrix 87 is available in stage 2. The attention/
alignment matrix 87 is used to (i) control the timing of the
modified speech signal, and (ii) to derive a ‘Phoneme
Timings’ vector (also referred to as a timing vector), which
is then used to synthesise the modified speech signal.
[0227] The attention matrix 87 relates to the timing of the
speech signal. The attention matrix is a num_encoder_
stepsxnum_decoder_timesteps matrix. “num_decoder_
timesteps” corresponds to how many frames the resulting
audio has, as described above. “num_encoder_steps” corre-
sponds to how many input phonemes the input text has. The
elements of the matrix correspond to which phoneme (en-
coder output) the decoder is attending to at each step of the
decoder. From the values, the first and last decoder step
(time) that the decoder is attending to a given phoneme can
be determined. The start and end times are editable by a user.
The user may modify the alignment matrix as described in
relation to FIG. 6 (b), for example. The edited start and end
times are used to stretch or shrink the attention using
interpolation.

[0228] The second speech model 89 is then configured to
use the modified attention matrix derived from the first
speech model and modified by the user. This enables control
of the timings of the modified speech signal 91 generated by
the second speech model.

[0229] The attention matrix is also used to derive a ‘pho-
neme timings’ vector. The phoneme timings vector has four
values: start time, end time, duration and difference of time
with the previous phone normalized by mean phone dura-
tion. The function of the phoneme timings vector is to
synthesise the modified speech signal with high quality and
accuracy. The phoneme timings vector has a dimension of
4xnum_encoder_steps. The phoneme timings vector is con-
catenated to the encoder output of the controllable model.
[0230] The feature vectors corresponding to the formants,
harmonicity, modified pitch and modified intensity are then
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concatenated to the decoder input of the controllable speech
model (also referred to as the second speech model) 89. The
concatenated vector is fed frame-by frame to the decoder
autoregression/feedback system. The concatenated vector
may be understood as an input to the controllable speech
model 89.

[0231] Additionally and optionally, as described in rela-
tion to FIG. 5, the feature vectors may be modified by a
pre-net (not shown) before being concatenated. The pre-net
is trained together with the controllable model.

[0232] To generate a modified speech signal 91 in stage 2,
the text signal 80 and the speech signal 85 generated in the
first stage are provided as input to the controllable model 89.
[0233] The speech audio 85 is passed through a global
style tokens (GST) encoder that generates embeddings that
are then fed into the encoder of the controllable model 89.
The GST takes as input a mel (the mel is derivable from the
speech signal 85) which is passed through a stack of
convolutional layers followed by a recurrent GRU network.
In an example, the mel spectrogram is passed to a stack of
six 2-D convolutional layers with 3x3 kernel, 2x2 stride
batch normalization and ReLLU activation function, and then
passed to a recurrent GRU network. The GST outputs
embeddings are concatenated with the text embedding of the
encoder in the controller model.

[0234] FIG. 8 (b) shows a shows a schematic illustration
of'the training of a TTS system of FIG. 8 (a). The first model
is trained in advance, for example using a method such as
that described in relation to FIG. 3. The first model may be
a single speaker or a multi-speaker model. Using the pre-
trained first model, in stage 1, training data for the control-
lable model is generated by inputting a training text signal
80-5 and generating a training speech signal 85-5. When the
controllable model is configured as a single speaker model,
the training speech signal 85-b is synthesised for a single
speaker. When the controllable mode is configured for
multiple speaker model, the training speech signal 85-b is
synthesised for a multi-speaker model. In addition, mels
85-c corresponding to the speech signal 85-b and attention/
alignment matrices 87-b are generated for training. Boxes
shown in dash-dash (- -) in stage 1 correspond to compo-
nents of the training dataset generated in stage 1, and used
for training the controllable model in stage 2.

[0235] Once the datasets of text, audio, attention/align-
ment and speech audio have been obtained, the controllable
model 89-b is trained to reproduce the mel spectrograms
given the inputs that are derived from the speech audio 80-5,
alignment/attention and text, as shown in stage 2 of FIG. 8
(b). In more detail, the speech audio 85-b is analysed to
derive training feature vectors based on the properties of
pitch, intensity, formants and harmonicity. These feature
vectors are concatenated at the decoder of the controllable
model. Optionally, when one or more of the feature vectors
are passed through a pre-net (not shown) before being
concatenated at the decoder of the controllable model 89-5,
the parameters of the pre-net are also determined during the
training of the controllable model, using the same training
loss. Although FIG. 8 (b) shows feature vectors derived from
pitch, intensity, formants, and harmonicity, it will be under-
stood that only some of those properties may be used to
derive training feature vectors that are then fed at the
decoder.

[0236] The attention/alignment matrix 87-b from stage 1 is
used to derive a phoneme timings vector, which is fed into
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the encoder of the controllable model being trained 89-b.
The controllable model 89-5 is configured to use the atten-
tion matrix 87-b passed from stage 1.

[0237] Other inputs for training comprise the training text
signal 80-5, which is inputted at the encoder of the control-
lable model, and the training speech signal 85-b, which is
converted to embeddings using a GST encoder and also fed
to the encoder. The parameters of the GST encoder are also
trained together with the parameters of the controllable
model 89-5 (that is, using the same training loss).

[0238] The training loss is obtained by comparing mel
spectrograms output by the decoder and of the controllable
model 89-5 with mels 85-c generated in stage 1. The training
loss is computed using a mean squared error, for example.
[0239] Alternatively, in the TTS system of FIGS. 8 (a) and
8 (b), a duration predictor (also referred to as a duration
prediction network) is used to link the encoder and the
decoder network, instead of the attention module. The
duration prediction network enables non-autoregressive
architectures to be used at the decoder end. The duration
prediction network enables mapping the N phoneme length
output onto an M length mel spectrogram output (where
N<M) in the non-autoregressive case. This is an alternative
intermediate architecture and makes it possible for, e.g.
Transformer or Convolutional networks to be used as
decoder networks.

[0240] The duration prediction may comprise a series of 1
D convolution layers with batch normalisation e.g. 5. Each
convolution layer may comprise a 5x1 kernel. The training
of the duration prediction network will be described below.
[0241] The duration prediction network receives N pho-
neme length vector as input and outputs an N phoneme
length vector which contains the duration of each phoneme
in terms of the number of mel frames each phoneme
corresponds to. The output of the duration prediction net-
work is referred to as a duration vector. This duration vector
can then be used to expand the output of encoder network.
E.g. if the output of the duration prediction network is
[2,2,4,5] and the output of the encoder network is a series of
vectors [v1,v2,v3,v4] then the encoder output is enlarged to
[vl,vl,v2,v2,v3,v3,v3,v3,v4,v4,v4 v4 v4], where each vec-
tor output is repeated according to the output of its corre-
sponding predicted duration. This vector is now at the same
length as the number of mel frames. A decoder may then be
used, either auto-regressive or non-auto-regressive to con-
vert this series to a series of mel frames.

[0242] To train the duration prediction network, the dura-
tion of all phonemes in a text audio pair dataset is obtained.
This can be done using a standard TTS model with attention.
From the standard TTS model trained on the audio text pair
dataset, the ground truth aligned attentions may be taken, i.e.
the attentions produced during the training of the attention
based TTS model. From the attention matrices obtained for
each text <> audio pair, the durations of each phoneme may
be obtained by taking the argmax along the encoder dimen-
sion which returns the encoder output the model is attending
to at each step of the decoder. By counting how many times
each encoder output is attended the phoneme duration is
obtained. The durations of the phonemes form a duration
vector. The final output vector of the duration predictor is
compared with the duration vector obtained above and a
mean squared error loss is computed. The weights of the
duration prediction network are then updated via back
propagation.
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[0243] Similar to the attention/alignment 87 of FIG. 8 (a),
the output of the duration predictor of stage 1 is available in
stage 2. The output of the duration predictor is used to (i)
control the timing of the modified speech signal, and (ii) to
derive the ‘Phoneme Timings’ vector (also referred to as a
timing vector), which is then used to synthesise the modified
speech signal.

[0244] To control the timing of the modified speech signal,
the duration vector output by the duration predictor is
modified so that the phonemes’ durations are increased or
decreased according to the users input. So, rather than
warping the alignment matrix using interpolation, the dura-
tion vector values are increased and decreased. This modi-
fied duration vector can then be used to calculate the timing
vector as above.

[0245] To derive the phoneme timings vector, the dura-
tions of the phonemes from the duration vector are used to
obtain the start time, end time, duration and difference of
time with the previous phone normalized by mean phone
duration that make up the phoneme timings vector. For
example, the start time of a phoneme is the sum of all
durations prior to that phoneme (converted to time in the
same way that decoder steps are converted to time), etc . .

[0246] The attention modules in both stages may each be
replaced by a duration predictor, or it is also possible to
replace only the attention module in the second stage by a
duration predictor (and retain the attention module in the
first stage). The latter is possible because the phoneme
durations (i.e. a duration vector) can be extracted from the
attention matrix, as described in relation to the training of
the duration predictor.

[0247] FIG. 9 shows a schematic illustration of a system
for moditfying a speech signal according to an embodiment.
[0248] The TTS system 1100 comprises a processor 3 and
a computer program 5 stored in a non-volatile memory. The
TTS system 1100 takes as input a text input 7. The text input
7 may be a text file and/or information in the form of text.
[0249] Alternatively or optionally, the TTS system takes
as input a spoken speech file 13. The spoken speech input 13
may be a voice recording provided by a user.

[0250] Additionally and optionally, the TTS system takes
as input control parameters 15. The control parameters 15
may be data from which instructions for running the com-
puter program 5 are derived.

[0251] The computer program 5 stored in the non-volatile
memory can be accessed by the processor 3 so that the
processor 3 executes the computer program 5. The processor
3 may comprise logic circuitry that responds to and pro-
cesses the computer program instructions. The TTS system
1100 provides as output a speech output 9. The speech
output 9 may be an audio file of the synthesised speech
and/or information that enables generation of speech.
[0252] Additionally and optionally, the TTS system pro-
vides as output an analysis 19.

[0253] The text input 7 may be obtained from an external
storage medium, a communication network or from hard-
ware such as a keyboard or other user input device (not
shown).

[0254] The spoken speech input 13 may be obtained from
an external storage medium, a communication network or
from hardware such as a microphone or other user input
device (not shown). The output 9 may be provided to an
external storage medium, a communication network, or to
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hardware such as a loudspeaker (not shown) or a display.
The output analysis 19 may be data that is displayed on a
display means (not shown).

[0255] In an example, the TTS system 1100 may be
implemented on a cloud computing system, which transmits
and receives data. Although a single processor 3 is shown in
FIG. 9, the system may comprise two or more remotely
located processors configured to perform different parts of
the processing and transmit data between them.

[0256] Additionally and optionally, the text input 7, the
output 9, the analysis 19 (when present), the spoken speech
input 13, when present, or the control parameters 15, when
present, are provided on a user terminal. The user terminal
may be a personal computer or portable device (e.g. mobile
phone, tablet or laptop) that is separate from the TTS system
1100.

[0257] In a further embodiment, a method is provided for
modifying a synthesised speech output to vary how the
output emphasizes or varies the prominence of words or
certain parts of the sentence.

[0258] FIG. 10(a) is a schematic showing an example
interface for varying the prominence. Here, the user inputs
text and can either indicate to the interface where the
prominence should fall in the sentence or the user can await
a synthesised output of the speech and then indicate how to
vary the prominence. For example, if the user enters the
words “quick brown fox jumps”, the user can indicate
whether each word needs to be output with a high, normal
or low prominence. It will be appreciated that this is an
example interface and it is possible to have greater or fewer
levels of prominence and other graphical methods could be
used to allow the user to select the desired prominence of a
word or the direct the emphasis in the text to the vicinity of
words with a high prominence.

[0259] FIG. 10(b) shows a flowchart for varying the
prominence.
[0260] In step S200, the user inputs input text. For

example “the quick brown fox jumps over the lazy dog”. In
step S205, a prominence vector is obtained for the input text.
The prominence vector is a vector where each phoneme of
the input text is assigned to a pitch. How this is done will be
described with reference to FIGS. 11(a) and (b). Once
prominence vector has been derived, the user can modify the
prominence vector to change the emphasis in the input text.
In an embodiment, the user may be presented with a
representation of the text and the user can highlight certain
words in that representation in order to indicate that they
should be more prominent. Alternatively, the user may be
presented with a numerical or graphical representation of the
sentence and the user may increase or decrease the numbers
assigned to certain words or move certain features of the
graph to indicate which words should be emphasised as
suggested in FIG. 10(a).

[0261] Once the user has modified the prominence vector,
the prominence vector is applied to the prominence model in
step S207 which is then used to output modified speech in
step S209.

[0262] FIG. 11(a) shows an example of the prominence
model that can be used in step S207.

[0263] The prominence model 253 is of the encoder 255
decoder 259 type described with reference to FIG. 3 with the
output of the encoder 255 is subjected to attention 257. The
text is input into the encoder 255. In addition, the promi-
nence vector 261 is also input into the encoder. The promi-
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nence vector has the length of the number of time steps of
the encoder and reflects the relative prominence of parts of
the input text. Prior to inputting the prominence vector, the
prominence vector is modified by 2 linear layers or “prenet”.
These convolutional layers may have a 5x1 kernel size, for
example.

[0264] The vector is concatenated to the encoder outputs.
The prominence vector is therefore subject to selection by
the weights of the alignment matrix, so if the decoder attends
entirely to the first encoder output, it also “sees” only the
first element of the prominence vector.

[0265] The output of the decoder 259 is a sequence of mel
spectrograms 263 which are then passed through vocoder
265 to produce modified output speech 267.

[0266] To understand the prominence vector, the training
of the system will now be described with reference to FIG.
11(6). To avoid unnecessary repetition, like reference
numerals will be used to denote like features from FIG.
11(a).

[0267] For the prominence model a dataset of text audio
pairs is obtained for a single speaker (or multiple speakers
if training a multi-speaker model). For each audio example
the pitch track is obtained 275 and the average pitch is
obtained for each phoneme in the sentence in 277, producing
a n phoneme length vector (n_encoder outputs) in 279.
[0268] There are many methods for obtaining an associa-
tion between pitch and phonemes in 277. For example, it is
possible to train a normal synthesis model and use the
alignment matrix from in the attention network produced
during training to determine at which time each phoneme
starts and ends. It is also possible to use a “forced aligner”.
[0269] The average pitch is then calculated for each pho-
neme by averaging the pitch between the start and end time
of each phoneme.

[0270] Once the pitch has been obtained for each pho-
neme, an n_encoder steps vector is produced where each
step corresponds to the average pitch for the phoneme in
279.

[0271] This vector can then be simplified or “coarse
grained” by binning/scaling/grouping the pitch values into N
bins or groups according to pitch/frequency in 281. In an
example, N is three which provides integer values {0, 1, 2}.
These bins may be obtained by calculating the min and max
for the entire dataset in 271 and 273 and splitting that range
into three equally sized bins. Using these pitch/frequency
bins the average phoneme pitch vector is turned into an
integer vector containing the values 0 (lowest frequency bin)
to 2 (highest frequency bin).

[0272] Once the prominence vector is obtained from the
training data, the model is trained as usual, feeding in the
text and the prominence vector and learning to produce the
Mel spectrogram of the audio by back-propagating the mean
squared error loss between the synthesised Mel-spectrogram
and the real Mel-spectrogram.

[0273] Returning now to the synthesis of FIG. 11(5), the
prominence vector selected by the user is scaled to have a
value of 0, 1 or 2 from the interface which represented the
0, 1 or 2 values explained in the training. However, it should
be noted that even if the training just trains values 0, 1, 2, it
is possible in the synthesis to award higher values, e.g. 50
and for this still to work. This enables the user to synthesise
sentences with degrees of emphasis/pitch/expressivity
beyond what is found in the training set, as the model learns
to generalise from the smaller set of values.
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[0274] In an embodiment, at synthesis time, there are
many possible options for obtaining prominence vectors.
For example, the user can choose from preset prominence
vectors. Alternatively, the system might predict a promi-
nence vector for a given input text, for example using a
different model for predicting the emphasis of the sentence.
In a further embodiment, the system samples a preset
prominence vector e.g. prominence vectors from the training
data and the user then chooses a scale factor. The sampling
can be done using the training data, though other datasets
could be used. One method is to take the input text and get
the number of phonemes, then find all prominence vectors in
the training set that are the same length as required for this
number of phonemes. Then either sample randomly from
that set or pick the prominence vector that is most common.

[0275] For predicting the prominence vector, it is possible
to train a model that takes in text and outputs a prominence
vector as described above. This would be trained using
prominence vectors derived from a datasets of text-audio
pairs, where all the prominence vectors for that datasets are
calculated as described above. In an embodiment, a mean
squared error loss is used to train the model. The same
dataset as the prominence model was trained on could be
used to train a model for predicting the prominence model,
alternatively it is possible to transfer the prominence vectors
of one actor used to produce a training set for the synthesis
model onto another.

[0276] The above model allows an overall style to be
selected for a line of text by emphasising a word which has
been selected to be output with increased prominence and
the surrounding words. The ‘Prominence vector’ can be
viewed as a style vector that the model interprets as, ‘Say
this line with emphasis’.

[0277] Alternatively, in the TTS system of FIGS. 11 (a)
and 11 (b), a duration predictor (also referred to as a duration
prediction network) is used to link the encoder and the
decoder network, instead of the attention module. The
configuration and training of the duration predictor is as
described in relation to FIGS. 8 (a) and 8 (b).

[0278] In a further embodiment, a method is provided for
modifying a synthesised speech output to vary the intonation
of a synthesised output of text. Varying the intonation of a
sentence allows the sentence to be output with different
inflections. For example, the same text can be synthesised as
a question or a statement dependent on the intonation of the
synthesised speech.

[0279] FIG. 12(a) shows an example of a possible inter-
face that can be used for varying the intonation of a text
input. The interface comprises a graphical output of the
individual phonemes of a text input in time order along the
X axis against frequency (pitch) on the y axis. The user has
an interface which allows them to raise or lower the pho-
nemes pitch to vary the intonation of the sentence.

[0280] In the embodiments described below the synthe-
sised speech is output using the synthesis system comprising
an encoder/decoder framework discussed with reference to
FIG. 3. The input to the encoder is taken from the input text
which is split into phonemes to form a sequence of pho-
nemes. The sequence of phonemes is sometimes referred to
as a sequence of encoder timesteps. The output from the
decoder will be a sequence of Mel frames representing the
synthesised speech, the sequence of Mel frames will also be
referred to as a sequence of decoder timesteps.
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[0281] Two possible arrangements for varying the intona-
tion will be described below. In the first arrangement, there
is a two-stage method for producing modified synthesised
speech, a first stage where synthesised speech is determined
from input text and a second stage where the synthesised
speech or signals derived from the synthesised speech are
modified and inputted into a second model, along with the
input text to output the modified speech. In the second
arrangement, the input text is provided directly to a model
and the user selects parameters to also input into the model
to output and modify the synthesised speech.

[0282] The first arrangement will be described with ref-
erence to FIG. 12(b). First, the user inputs the text in step
S300 to be output by a speech synthesis system. In step 305,
synthesised speech is obtained from said input text.

[0283] FIG. 12(c) shows a diagram of the first and second
stages, the text input from step S300 of FIG. 12(b) is
directed as text input 351 of FIG. 12(c¢) into the speech
synthesis model 353. The speech synthesis model 353
comprises an encoder 355 and a decoder 359 linked by an
attention network 357. The speech synthesis model 353 is
described in more detail with reference to FIG. 3.

[0284] The input text 351, is input into encoder 355. The
encoder 355 is of the RNN type where the input text is fed
as a sequence of phonemes, phoneme by phoneme into the
encoder 355 such that each phoneme is fed as a new state
into the encoder in each encoder timestep. The sequence is
mapped to a hidden space which is then decoded back into
a sequence of decoder timesteps by the decoder 359. An
attention network 357 operates on the hidden space prior to
decoding, the attention network is described with reference
to FIG. 3. In response to input speech, the attention network
produces an alignment matrix 361 which is an n_encoderx
n_decoder steps matrix. The values inside the alignment
matrix correspond to which phoneme the decoder is attend-
ing to at each step. This is then fed into the decoder to allow
the decoder to weight the inputs from the encoder dependent
on the alignment matrix 361.

[0285] The output from the decoder 361 is a sequence of
Mel Spectrograms 363 which are then converted by the
vocoder 365 into speech audio 367.

[0286] This speech audio 367 is the speech signal that is
obtained in S303 of FIG. 12(b)

[0287] In step S305, intonation vector is then obtained for
the input text in step S300. In an embodiment, the intonation
vector is derived from a pitch track that is extracted from the
synthesised speech 367 derived from the input text.

[0288] The intonation vector is a real valued single dimen-
sion pitch vector with a length equal to the number of time
steps of the decoder output. In an embodiment, the intona-
tion vector is obtained from a real valued pitch vector with
the length of phonemes or encoder input steps and this is
then sampled to a vector with a length equal to the decoder
timesteps.

[0289] The intonation vector is derived from the pitch
vector which has pitch values for encoder timesteps. This is
shown in stage 2 of FIG. 12(c). The audio track is taken from
synthesised speech 367. This is then analysed in 369 to
obtain the start and end times of each phoneme. In an
embodiment, the start and end times of each phoneme can be
obtained from the alignments produced in the attention
network during synthesis. The average pitch is then calcu-
lated for each phoneme by averaging the pitch between the
start and end time of each phoneme.
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[0290] Once the pitch has been obtained for each pho-
neme, an n_encoder steps vector is produced where each
step corresponds to the average pitch for the phoneme in
371.
[0291] Once the pitch vector has been derived from the
synthesised speech, the user can modify the vector by the
user control 373. This allows the user to increased and/or
decrease the pitch of one or more of the phonemes. Refer-
ring back to the interface shown in FIG. 12(a), the interface
shows the encoder time step pitch vector and the interface
allow it is possible to move with a mouse one or more of the
phonemes to increase or decrease its pitch to produce the
intonation vector.
[0292] Additionally and optionally, the pitch for each of
the one or more phonemes may by increased or decreased by
the user within a predetermined range. The predetermined
range may depend on the speaker model.
[0293] When the user is then satisfied with the modified
intonation vector in 375 this is the obtained intonation vector
and it is resampled in 377 to the length of the decoder
timesteps using the alignment matrix 361. This process
allows a single average pitch for each phoneme for control
which is then upsampled to allow it to be used for a detector
input.
[0294] As explained above, the alignment matrix is an
n_encoderxn_decoder steps matrix which is produced at
synthesis time as shown schematically in FIG. 13(a). FIG.
13(a) is a simplified version where only the highest value for
each decoder timestep of the attention is shown as a black
dot. In practice, a value will be assigned to each position in
the matrix. However, only encoder steps that correspond to
decoder steps should have a high value.
[0295] The values inside the alignment matrix correspond
to which phoneme the decoder is attending to at each step.
E.g. if attention[1, 2]=1 then at decoder timestep 2, the
decoder was attending to the 1st phoneme. The values are
normalised so that the sum attention[0, n]+attention[1, n] .
.. +attention[n_encoder, n]=1 (i.e. the sum along the encoder
dimension is 1). Starting with an empty feature vector [ ], for
each decoder step it is determined which phoneme is
attended to the most (i.e. has the largest value in along the
encoder axis) and then the average pitch for that phoneme is
appended to the feature vector. FIG. 13(b) shows the time
aligned phoneme pitch for the intonation vector that has
been resampled to the decoder timesteps.
[0296] Referring to FIG. 12(5), the intonation vector is
then input into an intonation model in step 307 and modified
speech is then output in step S309.
[0297] FIG. 12(c) shows the intonation model 381 which
is very similar to the model 353 of stage 1. The intonation
model 381 has an encoder 383 decoder 387 architecture
where the encoder 383 and decoder 387 are linked by an
attention network 385. However, the intonation model 381
differs in a number of significant ways:
[0298] i) The model 381 has been trained using text and
synthesised speech as opposed to real speech
[0299] ii) The alignment matrix of the attention network
383 is not predicted from the input text, but the
alignment matrix is taken from stage 1 and imposed on
the output of the encoder of stage 2.
[0300] iii) The decoder 387 also receives the intonation
vector.
[0301] Before the upsampled intonation vector 379 is fed
into the decoder 387, it is modified by convolutional layers
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“prenet” and then fed frame-by-frame to the decoder 387
autoregression/feedback system (here it becomes a model
input). This is done by appending each value of the intona-
tion vector to the “decoder input” vector. This decoder input
vector is essentially the previous Mel Frame after it’s passed
through a different prenet.

[0302] The above description has used pitch as an example
of an intonation vector. However, it is also possible for the
intonation vector to be an intensity vector. An intensity track
can be derived in the same way as a pitch track and then an
intonation intensity vector is obtained from an intensity
track in the same way as an intonation pitch vector is derived
from a pitch track. Any parameter of the speech can be used
as an intonation vector. It is possible for different types of
intonation vector, i.e. pitch, intensity to be provided to the
model.

[0303] In the same way of for model 353, the output of
intonation model 381 is a sequence of mel spectrograms 389
which are then passed through vocoder 391 to produce
modified output speech 393.

[0304] FIG. 14(a) is a flowchart showing the basic steps of
the one stage arrangement. As the two-stage arrangement,
input text is acquired at step S400. Next, in step S405, the
user obtains an intonation vector. The intonation vector may
be selected by the system, for example, if the user suggests
that he wishes the intonation to indicate a question, the
system can set intonation vector whether pitch of the later
phonemes on the question is increased.

[0305] Referring back to the user interface shown in FIG.
12(a), the user may be provided with phonemes at a par-
ticular pitch, for example one that is typical for the selected
input text and the user can drag the phonemes to increase or
decrease their pitch as required. In such an arrangement, the
user will be giving a pitch vector which may have been
obtained from historical audio recordings or prior synthesis.
In one embodiment, the initial pitch vector is all at the same
pitch for the entire sentence and the user can increase or
decrease the pitch as required. Once the user has obtained
their intonation vector, it is then fed into the intonation
model in step S407 and modified speech is generated in step
S409.

[0306] FIG. 14(b) shows a single-stage synthesis for the
modified intonation vector. As before, input text 501 is input
into intonation model 503. The intonation model is similar
to that described in relation to FIG. 3 and also in FIG. 12(¢).
The intonation model 503 comprises an encoder which is
linked to a decoder 509 fire and attention network 507.
[0307] The difference between the intonation model 503
and the model described in the first stage of the synthesis in
FIG. 12(4) is that an intonation vector is directly input into
the decoder 509.

[0308] Prior to being input into the model 503, the into-
nation vector is upsampled from vector having the length of
the number of encoder time steps to one that has a number
of decoder time steps. However, in this instance, the full
alignment matrix will not be available so the upsampling
occurs during synthesis. This is done in the following way.
At each step of synthesis a single value of the intonation
vector is fed into the decoder. Which value is determined by
the argmax of the attention vector from the previous step of
synthesis. e.g. The first attention vector is assumed to be the
vector (1,0,0,0,0,0 . . . ) (i.e. attending to the first encoder
output). The argmax of this vector is 0 (assuming index
counting starts at 0), therefore the zeroth (i.e. first) value in
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the intonation vector is fed into the decoder at this step. Note
that argmax(f) is a function that returns the argument or
arguments for the function f that returns the maximum value
from f.

[0309] Inthis case, if a prenet is used, it is an RNN prenet,
which accepts each value at each step of synthesis one by
one. (The convolutional prenet requires all values to be
present at the start of synthesis as it receives the full
upsampled intonation vector as input)

[0310] Before the upsampled intonation vector 511 is fed
into the decoder 509, it is modified by convolutional layers
“prenet” and then fed frame-by-frame to the decoder 509
autoregression/feedback system (here it becomes a model
input). For example, the convolutional layers have a 5x1
kernel size. The output of intonation model 503 is a
sequence of mel spectrograms 513 which are then passed
through vocoder 515 to produce modified output speech
517.

[0311] The single stage and two stage intonation models
are trained as follows. For the two stage model the synthesis
stage is a known speech synthesis model and is trained using
datasets of text audio pairs from a single speaker (or multiple
speakers if the model is to be trained for multiple speakers).
For each original audio sample, the pitch track is analysed
and the average pitch is obtained for each phoneme in the
sentence, producing a n phoneme length vector (n_encoder
outputs). These average phoneme pitches are then
upsampled to full time aligned vectors with the same length
as the number of decoder steps. In an embodiment, this is
done by pre-training a model on the text audio pairs and
extracting the alignments that result during the training
process. Once the model is trained these alignments show
which phoneme is being attended to at each decoder step,
using this it is possible to count number of decoder steps
each phoneme is attended to and upsample the average pitch
vector accordingly.

[0312] Then, with the text, original audio, and time
aligned average phoneme pitch it is possible to train the
intonation model for the single stage model and/or the
two-stage model. In an embodiment, the loss function used
is a MSE error loss between the exact Mel spectrogram and
the predicted spectrogram.

[0313] During the training, even though in second stage
model, the alignment matrix is supplied (forced) on the
model, there is no need for training with the forced align-
ment. This is because the model will learn alignments very
similar to the pre-trained model (since the datasets are the
same, the timing and type of phoneme are exactly the same),
and will therefore be very similar to the alignments used to
produce the intonation vectors.

[0314] Alternatively, in the TTS system of FIGS. 12 (¢)
and 14 (b), a duration predictor (also referred to as a duration
prediction network) is used to link the encoder and the
decoder network, instead of the attention module. The
configuration and training of the duration predictor is as
described in relation to FIG. 8 (a) and FIG. 8 ().

[0315] In relation to the two-stage model of FIG. 12 (c¢),
similar to the attention/alignment 361 of FIG. 12 (¢), the
output of the duration predictor of stage 1 is available in
stage 2. The output of the duration predictor of the first stage
would be used by the second model, rather than running the
second stage duration predictor. This is equivalent to the
alignment matrix being taken from stage 1 and imposed on
the output of the encoder of stage 2, as for FIG. 12 (¢). Here,
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the second stage network is forced to use the given duration
vector. Once the pitch for each phoneme is obtained, the
resampling 377 involves repeating the pitch values as pre-
scribed by the duration vector. For example, when the
phoneme pitch vector is [100,200,100] and the duration
vector is [1, 2, 2] then the resampled pitch vector is [100,
200, 200, 100, 100]. If the duration vector contains floats e.g.
[0.9, 1.9, 0.9] the vector may be rounded to the nearest
integer e.g. [1, 2, 1].

[0316] Inrelation to the single stage model of FIG. 14 (b),
prior to being input into the model 503, the intonation vector
is up-sampled from vector having the length of the number
of encoder time steps to one that has a number of decoder
time steps. Upsampling may be performed during synthesis
using the duration vector as described above, instead of
using an alignment matrix.

[0317] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inven-
tions. Indeed the novel methods and apparatus described
herein may be embodied in a variety of other forms; fur-
thermore, various omissions, substitutions and changes in
the form of methods and apparatus described herein may be
made.

[0318] FIG. 15 shows a schematic illustration of a repre-
sentation of a text signal by a sequence of units, where each
unit is represented by a plurality of embedding vectors.
[0319] In a further embodiment, a text signal may be
represented by a sequence of units, wherein each unit is
represented by a plurality of embedding vectors.

[0320] In an embodiment, an embedding vector is an
embedding comprising an M dimensional, vector, where M
is whole number. For example, an embedding vector is an
embedding comprising a vector having the form 1xM. For
example, M may be greater than 1.

[0321] The representation of a text signal by a sequence of
units, wherein each unit is represented by a plurality of
embedding vectors, may be applied to any of the embodi-
ments described herein. For example, the representation may
be applied to the TTS system described in relation to FIG.
8 (a) and FIG. 8 (b); the TTS system of FIG. 11 (a) and FIG.
11 (b); the TTS system of FIG. 12 (¢) and the TTS system
of FIG. 14 (b).

[0322] By representing the text signal as a sequence of
units, wherein each unit is further represented by a plurality
of embedding vectors, the quality of the speech signal may
be improved.

[0323] A unit may be a character or phoneme, for
example.
[0324] In an embodiment, a method is provided for modi-

fying a speech signal generated by a text-to-speech synthe-
siser. The method comprises:

[0325] receiving a text signal;
[0326] representing the text signal as a sequence of
units,

wherein each unit is further represented by a plurality of
embedding vectors;
[0327] generating a speech signal from the text signal;
[0328] deriving a control feature vector, wherein the
control feature vector represents modifications to the
speech signal;
[0329] inputting the control feature vector in the text-
to-speech synthesiser, wherein the text-to-speech syn-
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thesiser is configured to generate a modified speech
signal using the control feature vector; and

[0330] outputting the modified speech signal.

[0331] Inanembodiment, deriving a control feature vector
comprises:

[0332] Determining an acoustic feature vector from the
received text signal, by way of an acoustic prediction
network;

[0333] Obtaining a user input, and

[0334] Modifying the acoustic feature vector using the
user input to obtain the control feature vector.

[0335] The method allows a user to synthesise speech
from text using a standard speech synthesiser text to speech
(TTS) model. The system analyses the speech output and
extracts acoustic features which can then be used to control
and modify the output. The user can modify the acoustic
features via a user interface. A vector, incorporating the
modified acoustic features, is then input with the text to be
synthesised into a further text to speech system (which will
be termed the controllable model) and the controllable
model outputs modified speech.

[0336] By representing the text signal as a sequence of
units, wherein each unit is further represented by a plurality
of embedding vectors, the quality of the modified speech
signal may be improved and the modifications to the speech
signal may be controlled more precisely.

[0337] The representation of a unit, such as a phoneme, by
a plurality of embedding vectors, may be referred to as
sub-phoneme representation. For ease of language, the
expression “sub-phoneme representation” may also be used
to refer to the representation of another unit, such as a
character, by a plurality of embedding vectors.

[0338] The controllable model may comprise an encoder
module. The encoder module is as described herein.
[0339] The encoder module may be configured to take, as
an input, a representation of the text signal as a sequence of
units, wherein each unit is further represented by a plurality
of embedding vectors.

[0340] The controllable model may comprise an encoder
module, a decoder module, and either an attention module
linking the encoder module to the decoder module, or a
duration predictor linking the encoder to the decoder mod-
ule.

[0341] The encoder and decoder may be of the RNN type
and so provide a sequence to sequence model.

[0342] The duration prediction network is as described
previously.
[0343] FIG. 15 shows a schematic illustration of repre-

senting each unit in a sequence of units by a plurality of
embedding vectors.

[0344] In FIG. 15, a text signal comprises the word “Pit”.
The text signal is represented as a sequence of phonemes (or
alternatively characters). The text signal “Pit” is represented
by a sequence of: [“/p/”, “/i/”, “/t/’]. The number of pho-
nemes or characters is represented by Nc. In this case, Nc=3.
[0345] Each phoneme (i.e. each unit) is further represented
by a plurality of embedding vectors (embeddings). The
number of embedding vectors used to represent each unit is
represented by N, where N is >1. Each embedding vector is
an M dimensional vector. In FIG. 15, each phoneme is
represented by three embedding vectors (N=3). E.g. the
phoneme “/p/” is represented by vectors pl, p2 and p3.
Vectors pl, p2 and p3 are each M dimensional embedding
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vectors. Similarly, the phoneme “/i/” is represented by
vectors i1, 12 and i3, and the phoneme “/t/” is represented by
vectors t1, t2 and t3.

[0346] In FIG. 15, M=512. Each phoneme is then repre-
sented by a N, M dimensional embedding. Note that an
embedding vector may also be referred to as a character
embedding or an embedding.

[0347] Although M=512 in the example of FIG. 15, M
may be any positive integer. For example, M>1.

[0348] The representation of the text signal may be fed
into an encoder, and the encoder input length is then NcxN.
In FIG. 15, for the text signal “Pit”, Nc=3 and N=3 such that
the encoder input length is 9.

[0349] Each character from the sequence of characters
may be represented by N, M-dimensional character embed-
ding, where M in an embodiment is 512 and N in an
embodiment may be 3. In the case where the characters
represent phonemes, the previous embodiment where N=3
represents a tri-phone representation of each phoneme. In
the example of FIG. 15, the phoneme “/p/” is represented by
three character embedding vectors, pl, p2 and p3. The
values of these character embeddings are learnt by the
network at training time. The character embeddings are
learnt as described in relation to FIG. 8 (@) and FIG. 8 (b),
for example.

[0350] The advantages of the N-Phone representation are
that a more fine-grained control over the phonemes duration
and sound may be obtained. The quality of the TTS may be
improved.

[0351] In particular, the quality of the TTS, as measured in
terms of a mean opinion score (MOS), in a case where a hard
monotonic attention (where only values of 1 or 0 are allowed
in the attention matrix/alignment) or in a case where a
duration prediction is used may be improved. The N-phone
representation allows for smoother transitions between
phones.

[0352] The representation of a text signal by a sequence of
units, wherein each unit is represented by a plurality of
embedding vectors may be applied to the TTS system
described in relation to FIG. 8 (a) and FIG. 8 (b); the TTS
system of FIG. 11 (@) and FIG. 11 (b); the TTS system of
FIG. 12 (¢) and the TTS system of FIG. 14 (), for example.
[0353] The representation of a text signal by a sequence of
units, wherein each unit is represented by a plurality of
embedding vectors may be applied to any of the embodi-
ments described herein.

[0354] Duration Control

[0355] The modification of timing of a speech signal has
been described previously in relation to FIG. 6 () and FIG.
8 (a).

[0356] In the example shown in FIG. 8 (@) and FIG. 8 (b)

it is described how the alignment matrix may be modified to
control the timings of the modified speech signal generated
by the second speech model.

[0357] When the text signal is represented by a sequence
of Nc units, wherein each unit is represented by a plurality
of embedding vectors (N), the attention/alignment matrix 87
may be used to (i) control the timing of the modified speech
signal, and (ii) to derive a ‘Phoneme Timings’ vector (also
referred to as a timing vector), which is then used to
synthesise the modified speech signal in a similar manner to
that described in relation to FIG. 6 (a) and FIG. 8 (a), except
that the encoder input length is then NcxN. In other words,
“num_encoder_steps” becomes equal to NcxN. Represent-
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ing each phoneme or character by more than one character
embedding enables control of the duration at the sub-
phoneme level by modifying the alignment for that encoder
output such that the number of decoder steps for which that
encoder output is “attended” is increased/decreased.

[0358] In relation to FIG. 8 (a) and FIG. 8 (4), an
alternative arrangement where a duration predictor (also
referred to as a duration prediction network) is used to link
the encoder and the decoder network, instead of the attention
module, is also described. This alternative arrangement may
also be combined with the representation of a text signal by
a sequence of units, wherein each unit is represented by a
plurality of embedding vectors.

[0359] For the arrangement with the duration predictor,
representing each phoneme or character by more than one
character embedding also enables control of the duration at
the sub-phoneme level. For the duration predictor arrange-
ment, the duration of the encoder output is increased. E.g.,
as described previously, the duration predictor is used to
expand the output of the encoder network. For example, the
duration predictor is used to map from [v1,v2,v3]->[vl,vl,
v2,v2,v2,v3,v3,v3,v3,v3] using predicted durations d=[2,3,
5], where v1 might represent a sub-phone of the phoneme
“/v/” and the duration of that sub-phone may be manipulated
by altering the value at position 1 in the duration array d.

[0360] Alternatively, the length of the full phoneme may
be altered, rather than a sub-phone (as sub-phones might be
too precise). Suppose an increase in length of the phoneme
“v/” by 10% is desired in the above example (where
d=[2,3,5]). The total duration is 2+3+5=10. 10% of 10 is 1,
so an increase of the total duration by 1 is desired. Since the
durations have to be integers, the duration increase may not
be applied evenly (to every sub-phone) in this case, but a
sub-phone must be selected for applying the duration. How
to select a sub-phone and apply the duration increase may be
performed in different ways. Some examples may including
random assignment, left-to-right assignment, middle out-
wards assignment and middle outwards assignment with the
constraint that the middlemost phoneme must always have
the largest increment.

[0361] Examples of how the duration vector d, may be
modified to alter the length of the full phoneme are illus-
trated below. In the below “inc” represents the duration
increment to be applied to a phoneme. “inc”=1 represents
when a duration increment of 1 is to be applied, “inc”=2
represents when a duration increment of 2, andsoon . . ..
For each example, it is illustrated how the values v1, v2, v3
in the duration vector d=[v1, v2, v3], could be altered to
achieve the desired duration increment (inc).

[0362]

inc=1, [v1+1,y2,v3]

Left to right assignment

inc=2, [v1+1,v2+1,y3]
inc=3, [vl+1, v2+1, v3+1]
inc=4, [v1+2, v2+1, v3+1]

[0363]

inc=1, [v1,y2+1,v3]

middle outwards assignment (left first)

inc=2, [v1+1,v2+1,y3]
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inc=3, [vl+1, v2+1, v3+1]

inc=4, [vl+1, v2+2, v3+1]
[0364]

inc=1, [v1,y2+1,v3]

middle outwards assignment (right first)

inc=2, [v1,2+1,v3+1]
inc=3, [vl+1, v2+1, v3+1]

inc=4, [vl+1, v2+2, v3+1]

[0365] middle outwards assignment (left first) with the
constraint that the middlemost phoneme must always
have the largest increment

inc=1, [v1,y2+1,v3]
inc=2, [vl, v2+2, v3]
inc=3, [vl+1, v2+2, v3]

inc=4, [vl+1, v2+2, v3+1]

[0366] Phone/Character or Sub-Phone/Character Level
Acoustic Prediction Network

[0367] In relation to FIGS. 5 and 8 (a) it is described how
attributes such as pitch, intensity, formant, harmonicity may
be derived.

[0368] In an alternative embodiment, the acoustic features
are derived using an acoustic prediction network. The acous-
tic prediction network may be used to derive features such
as pitch, intensity, formant, harmonicity. The acoustic pre-
diction network may also predict attributes such as spectral
tilt.

[0369] Spectral Tilt

[0370] In an embodiment, spectral tilt is obtained as
follows. Given a frame of a spectrogram e.g. mel spectro-
gram, linear regression can be performed to find a line that
best fits the values in the frame. In an example, a mel
spectrogram of dimension N_f by N_b is provided, where
N_f is the number of frames and N_b is the number of
frequency bins. For example, N_b=80. The first frame is
then a vector of 80 values. Linear regression may be used to
find an equation of the form y=mx+c that best fits the 80
values. The spectral tilt is then defined as the slope of this
line of best fit, i.e. the value m.

[0371] Returning to FIG. 16 (a), FIG. 16 (a) shows a
schematic illustration of the prediction of acoustic features
using an acoustic prediction network. FIG. 16 (b) shows a
schematic illustration of the acoustic prediction network.
[0372] InFIG. 16 (a), an input text 1600 is converted to a
character sequence 1602, which is further represented by
character embeddings 1604. The character embeddings 1604
may correspond to any character embeddings described
herein. For example, the character embeddings 1604 may
correspond to the representation described in relation to
FIG. 15. Alternatively, the character embeddings 1604 may
correspond to the character embedding described in relation
to FIG. 3 ().

[0373] The character embeddings are then fed to an
encoder 1606. Encoder 1606 may correspond to the encoder
of any of the TTS systems described herein. The output of
the encoder is fed to the acoustic prediction network 1608.
The output of acoustic prediction network 1608 is a vector
representing acoustic features 1610.
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[0374] FIG. 16 (b) shows that the encoder outputs are
directed to the acoustic prediction network 1608. The acous-
tic prediction network comprises a series of 1D convolution
layers (Conv 1D) with batch normalisation (Batch/layer
Norm). For example, there may be a series of five Conv 1D
and batch/layer Norm. Each convolution layer may com-
prise a 5x1 kernel. The final layer is a linear projection
(Projection) projecting down to the number of acoustic
features being predicted. For example, in the case of a
prediction network that predicts two acoustic features
(N_af=2) and has an encoder character embedding dimen-
sion of 512 (M=512), the final layer projects the N_c by M
vectors down to N_c by N_af, where N_c is the number of
characters/phones in the character sequence, and N_afis the
number of acoustic features predicted by the network.
[0375] When the input text 1600 is represented using the
sub-phone representation of FIG. 15, N_c is replaced by
N_cxN. In other words, for sub-phone representation, the
final layer projects the (N_cxN) by M vectors down to
(N_cxN) by N_af.

[0376] The N_c by N_af vector or the (N_cxN) by N_af
may be referred to as an acoustic feature vector. The acoustic
feature vector is the vector outputted by the acoustic pre-
diction network. The acoustic feature vector relates to one or
more (=N_af) acoustic features. The acoustic feature vector
is obtained from a text signal.

[0377] The acoustic prediction network 1608 may be
trained as described in relation to FIG. 17 ().

[0378] FIG. 17 (a) shows a schematic illustration of the
acoustic prediction network together with a TTS system.
The TTS system may be any of the TTS system described
herein.

[0379] The combination of the acoustic prediction net-
work with the TTS system forms an alternative TTS system.
The alternative TTS system may be used for generating a
speech signal and/or optionally for generating a modified
speech signal.

[0380] In FIG. 17 (a), a text signal 1700 is provided and
directed to a TTS system 1702. The TTS system 1702 may
correspond to any of the TTS systems described herein.
Although the Figure shows an attention module lining the
encoder and decoder modules, it will be understood that,
instead, a duration predictor may link the encoder and
decoder modules, as described herein. The output of the TTS
system is a mel spectrogram 1704, which is fed into a
vocoder 1706 to obtain speech audio 1708. The outputting of
a mel spectrogram, the vocoder 1706, and the obtaining of
speech audio 1708 corresponds to the any of the TTS
systems described herein.

[0381] InFIG. 17 (a), the output of the encoder of the TTS
system 1702 is directed to an acoustic prediction network
1608, and a combine module 1710. Here “Combine” might,
for example, represent concatenation, where the N_c by M
encoder outputs become N_c by (M+N_af) as the acoustic
features are appended along the character embedding dimen-
sion. Alternatively it might represent projection and addi-
tion, where the N_c by N_af output of the acoustic feature
prediction network are projected back using a linear layer to
have dimensions N_c by M (the same as the encoder
outputs) so that they can be added together. In the projection
case another neural network (with the same or similar
architecture to any encoder described herein) may be used to
process the projected acoustic features before adding to the
encoder outputs.
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[0382] The encoder output, combined 1710 with the
acoustic feature vector, is then directed to the Attention
module of the TTS system 1702.

[0383] Note that N_c may be replaced by (N_cxN) when
a sub-phone representation is used.

[0384] The purpose of the alternative TTS system is to
enable acoustic features to be computed directly from a text
signal. From the text signal and the predicted acoustic
features, a speech signal may be generated.

[0385] Optionally, the acoustic features may be modified
by the user, and then used to modify a generated speech
signal. For example, the acoustic features may be modified
as described in relation to any of the embodiments described
herein.

[0386] Moditying the acoustic feature vectors by the user
means that one or more elements in the acoustic feature
vector are modified. The modified acoustic feature vector
may then be combined with the encoder output as described
above, to generate a modified speech signal.

[0387] FIG. 17 (b) shows a schematic illustration of train-
ing of the acoustic prediction network in the TTS system of
FIG. 17 (a).

[0388] The training data comprises a target audio 1720
and corresponding text 1700. The training data may be the
same data used to train the TTS system 1702. From the
corresponding text 1700, a predicted mel spectrogram 1704
is obtained, by way of the TTS system 1702. A predicted
acoustic feature vector is derived, by way of the acoustic
prediction network 1608. From the target audio 1720, a
target mel spectrogram 1721 is obtained. The difference
between the target mel spectrogram 1721 and the predicted
mel spectrogram 1704 is then obtained using an [.1 (based
on the absolute difference) or .2 (based on the squared
differences) loss function and a first loss is obtained. The
target audio 1720 is also analyzed in 1722 to obtain one or
more target acoustic features. The difference between the
target acoustic feature resulting from the analysis 1722 and
the predicted acoustic feature vector from the acoustic
prediction network 1608 is then obtained using an [.1 or [.2
loss and a second loss is obtained. The obtained first and
second losses are added 1730 and the total loss is then
backward propagated to update the weights of the acoustic
prediction network.

[0389] Optionally, the TTS system 1702 is trained at the
same time as the acoustic prediction network.

[0390] The acoustic feature analysis 1722 may comprise
an analysis to obtain any one or more of pitch, intensity,
formant, harmonicity, and spectral tilt. Each of these attri-
butes may be obtained as described herein.

[0391] Alternative TTS Architecture: Transformer/Con-
former Encoder

[0392] The encoder has been described previously as an
RNN based network as described in relation to FIG. 3 (b),
for example. However, as an alternative to the RNN based
network, the encoder may instead comprise a conformer.
Such an encoder may be referred to as a conformer encoder
18-23. The conformer encoder 18-23 is described below and
illustrated in FIG. 18.

[0393] In an embodiment, the encoder module comprises
a conformer. The conformer comprises self-attention layers.
The conformer is more robust to received text having
variable lengths. The conformer provides improved encod-
ing of received text having long lengths. The effect of the
conformer is to cause the synthesised speech to be more
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natural and realistic. The encoder module comprising a
conformer may use used as an alternative to the encoder
described previously herein. The encoder takes as input a
text signal as described herein.

[0394] FIG. 18 shows a schematic illustration of an
encoder 18-23. The encoder 18-23 is a conformer encoder.
The encoder 18-23 is used in the prediction network 21, as
described in relation to FIG. 3 (a). The encoder 18-23 takes
as input a text signal. The text signal may comprise a
sequence of characters or phonemes as described herein. The
encoder 18-23 returns an encoder state.

[0395] The conformer encoder 18-23 comprises a first
feed forward layer 18-231, a self-attention layer 18-233, a
convolution layer 18-235, and a second feed forward layer
18-237. As shown in FIG. 18, the conformer 18-23 com-
prises said layers. Optionally, the conformer 18-23 com-
prises a stack of multiple blocks, where each block com-
prises said layers. Each block may be represented by the
index n. There may be N blocks, where N is a whole number.
[0396] The first feed forward layer (FFL) 18-231 takes as
input the text signal, for the first block n=1. For later blocks
(n>1), the output from the previous block (n-1) is fed as
input to the first FFL 18-231. The first feed forward layer
18-231 comprises two linear transformations and a nonlinear
activation between them. A residual connection is added
over the feed forward layers. Layer normalisation is applied
to the input (text signal) within the residual unit before the
first linear transformation. The nonlinear activation com-
prises a swish activation function (the swish function is
defined as axsigmoid(a)). The text signal is passed through
the first FFL 18-231 with a half step residual connection.
[0397] The output of the first FFL 18-231 may be repre-
sented as:

X, =x,+¥2FFN(x,),

[0398] where x,, is the input into block n, and FFNO
represents the first FFL. For the first block (n=1) or
when there is only one block (N=1), x,, corresponds to
the text input. For later blocks (n>1), x,, corresponds to
the output from the previous block.

[0399] The output of the first feed forward layer 18-231 is
directed to the self-attention layer 18-233. For example, the
self-attention layer 18-233 may be a multi-headed self-
attention (MSA) layer. The MSA layer 18-233 comprises
layer normalisation followed by multi-head attention with
relative positional embedding. Dropout may be used in
training to regularise the model. The input to the MSA layer
18-233 is X,. A residual connection is added over the layer
normalisation and multi-head attention.

[0400] The multi-head attention with relative positional
embedding is as follows. For ease of explanation, initially,
the self-attention will be derived in relation to a single
self-attention head. The derivation of self-attention for an
input comprises the following steps:

[0401] (i) From the vector X, inputted to the MSA layer
18-233, a query, a key, and a value matrix are obtained.
These matrices are obtained by multiplying the input
with corresponding weight matrices that are trained.

[0402] (ii) Obtain a score by multiplying the query and
key matrices

[0403] (iii)) Normalise the score
[0404] (iv) Multiply the value matrix by the normalised
score
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[0405] The relative positional embedding is performed
together with the above steps and this is described further
below.

[0406] The steps for deriving the self-attention may be
represented mathematically as follows:

ZJ=E W W, gE AE W, W, R, +u" W, £E +
vTWk,RRi—ja

[0407] Where, the first term E_~ qu W, 2L, represents
content based addressing, the second term E,*W "W, R,
represents a content dependent positional bias, the third term
u'w, sP.; governs global content bias, and the fourth term
vT W, xR,_, represents a global positional bias. R, ; is a
relative positional embedding that is a sinusoid encoding
matrix without learnable parameters. u? and v* are trainable
parameters that corresponds to a query. W, is a trainable
weight matrix that is used for obtaining a obtaining a query.
W, and W, » are trainable weight matrices that is used for
obtaining a key. E_, is a matrix representing an embedding of
the input.
[0408] When multiple attention heads are used, the above
steps are performed separately for each head. Each attention
head provides a separate output matrix Zij’eZ. The separate
output matrices are concatenated and multiplied with a
further weight matrix trained jointly with the model. The
resulting matrix is the output of the multi-headed self-
attention.
[0409] Optionally, the number of attention heads used is 4
or 8. Although the above is described as multi-headed
self-attention, it will be understood that, alternatively, a
single attention head may be used.
[0410] The output of the MSA 18-233 may be represented
as:

x', =%, +MHSA(,),

[0411] where X, is inputted into the MSA 18-233. %X, is
the output of the first FFL 18-231. MHSA(.) represents
the output of the multi-headed self-attention.

[0412] The convolution layer 18-235 takes the output of
the MSA 18-233 as input. The convolution layer 18-235
comprises gating, by way of a point-wise convolution and a
gated linear unit (GLU), followed by a 1D depthwise
convolution layer. Batchnorm is deployed after convolution
during training. The convolution kernel size may be any of
3,7, 17, 32, or 65. For example, the kernel size is 32. A
residual connection is added over the gating and convolution
layer.

[0413] The output of the convolution layer 18-235 may be
represented as:

x",=x"+Conv(x’,),

[0414] where Conv(.) represents the convolution.
[0415] The second feedforward layer 18-237 takes the
output of the convolution layer 18-235 as input. The second
feedforward layer 18-237 is similar to the first feedforward
layer 18-231, except that, in addition, layer normalisation is
performed.

[0416] The output of the second feedforward layer 18-237
may be represented as:

y,=Layernorm(x",+Y2FFN(x",)),

[0417] where Layernorm(.) represents layer normalisa-
tion.
[0418] The output of a block n of the conformer encoder

is the output of the second feedforward layer 18-237 of said
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block (y,,). The output of the encoder module 18-23 is the
output of the last block (n=N). The output of the encoder
module 18-23 is also referred to as the encoder state.
[0419] In an alternative, the conformer encoder corre-
sponds to that according to Gulati et al. “Conformer: Con-
volution-augmented transformer for speech recognition.”
arXiv preprint arXiv:2005.08100 (2020).

[0420] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inven-
tions. Indeed the novel methods and apparatus described
herein may be embodied in a variety of other forms; fur-
thermore, various omissions, substitutions and changes in
the form of methods and apparatus described herein may be
made.

1. A method of modifying a speech signal generated by a
text-to-speech synthesiser, the method comprising:

receiving a text signal;

generating a speech signal from the text signal;

deriving a control feature vector, wherein the control

feature vector represents modifications to the speech
signal;

inputting the control feature vector in the text-to-speech

synthesiser, wherein the text-to-speech synthesiser is
configured to generate a modified speech signal using
the control feature vector; and

outputting the modified speech signal;

wherein:

the text-to-speech synthesiser comprises a first model
configured to generate the speech signal, and a
controllable model configured to generate the modi-
fied speech signal; and

the controllable model is trained using speech signals
generated by the first model.

2. A method according to claim 1, wherein deriving the
control feature vector comprises:

analysing the speech signal;

obtaining a first feature vector from the analysed speech

signal;

obtaining a user input; and

modifying the first feature vector using the user input to

obtain the control feature vector.

3. A method according to claim 2, wherein the user input
comprises a reference speech signal.

4. (canceled)

5. (canceled)

6. A method according to claim 1, wherein the control-
lable model comprises an encoder module, a decoder mod-
ule, and an attention module linking the encoder module to
the decoder module.

7. A method according to claim 6, wherein the first feature
vector is inputted at the decoder module.

8. A method according to claim 7, wherein the first feature
vector is modified by a pre net before being inputted at the
decoder module of the controllable model.

9. A method according to claim 2, wherein the first feature
vector represents one of the properties of pitch or intensity.

10. A method according to claim 1, the method further
comprising deriving a second feature vector, wherein the
second feature vector represents features of the generated
speech signal that are used to generate the modified speech
signal; and
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inputting the second feature vector in the text-to-speech
synthesiser, wherein the second feature vector is
obtained from the analysed speech signal.

11. A method according to claim 10, wherein:

the controllable model comprises an encoder module, a

decoder module, and an attention module linking the
encoder module to the decoder module, and

the second feature vector is inputted at the decoder

module of the controllable model.

12. A method according to claim 6, wherein a represen-
tation of the speech signal is inputted at the encoder module
of the controllable model.

13. A method according to claim 6, wherein the method
further comprises deriving a modified alignment from the
user input, wherein the modified alignment indicates modi-
fications to a timing of the speech signal.

14. A method according to claim 13, wherein the modified
alignment is inputted at the attention module of the control-
lable model.

15. A method according to claim 6, wherein the first
model comprises an encoder module, a decoder module, and
an attention module linking the encoder module to the
decoder module.

16. A method according to claim 15, the method further
comprising:

deriving a third feature vector from the attention module

of the first model, wherein the third feature vector
corresponds to a timing of phonemes of the received
text signal; and

inputting the third feature vector in the encoder module of

the controllable model.

17. A system for modifying a speech signal generated by
a text-to-speech synthesiser, the system comprising a pro-
cessor and a memory, the processor being configured to:

receive a text signal;

generate a speech signal from the text signal;
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derive a control feature vector, wherein the control feature
vector represents modifications to the speech signal;

input the control feature vector in the text-to-speech
synthesiser, wherein the text-to-speech synthesiser is
configured to generate a modified speech signal using
the control feature vector; and

output the modified speech signal;

wherein:

the text-to-speech synthesiser comprises a first model
configured to generate the speech signal, and a
controllable model configured to generate the modi-
fied speech signal; and

the controllable model is trained using speech signals
generated by the first model.

18-47. (canceled)

48. A system according to claim 17, wherein the processor
is further configured to:

analyse the speech signal;

obtain a first feature vector from the analysed speech

signal;

obtain a user input; and

modify the first feature vector using the user input to

obtain the control feature vector.

49. A system according to claim 48, wherein the user input
comprises a reference speech signal.

50. A system according to claim 49, wherein the control-
lable model comprises an encoder module, a decoder mod-
ule, and an attention module linking the encoder module to
the decoder module.

51. A system according to claim 50, wherein the first
feature vector is inputted at the decoder module.

52. A system according to claim 51, wherein the first
feature vector is modified by a pre net before being inputted
at the decoder module of the controllable model.
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