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(57) ABSTRACT

Example methods and systems for generating dose estima-
tion models for radiotherapy treatment planning are pro-
vided. One example method may comprise obtaining model
configuration data that specifies multiple anatomical struc-
tures based on which dose estimation is performed by a dose
estimation model. The method may also comprise obtaining
training data that includes a first treatment plan associated
with a first past patient and multiple second treatment plans
associated with respective second past patients. The method
may further comprise: in response to determination that
automatic segmentation is required for the first treatment
plan, performing automatic segmentation on image data
associated with the first past patient to generate an improved
first treatment plan, and generating the dose estimation
model based on the improved first treatment plan and the
multiple second treatment plans.
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METHODS AND SYSTEMS FOR
GENERATING DOSE ESTIMATION MODELS
FOR RADIOTHERAPY TREATMENT
PLANNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related in subject matter to U.S.
patent application Ser. No. 15/784,200 (Attorney Docket
No. 12-0025-US-CIP1) and Ser. No. 16/145,461 (Attorney
Docket No. 2018-012USO01). The U.S. patent applications,
including any appendices or attachments thereof, are incor-
porated by reference herein in their entirety.

BACKGROUND

[0002] Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion
in this section.

[0003] Radiotherapy is an important part of a treatment for
reducing or eliminating unwanted tumors from patients.
Unfortunately, applied radiation does not inherently dis-
criminate between an unwanted tumor and any proximal
healthy structures such as organs, etc. This necessitates
careful administration to restrict the radiation to the tumor
(i.e., target). Ideally, the goal is to deliver a lethal or curative
radiation dose to the tumor, while maintaining an acceptable
dose level in the proximal healthy structures. However, in
practice, there are various challenges associated with radio-
therapy treatment planning to deliver radiation doses that
achieve this goal.

SUMMARY

[0004] According to examples of the present disclosure,
methods and systems for generating dose estimation models
for radiotherapy treatment planning. One example method
may comprise obtaining model configuration data that speci-
fies multiple anatomical structures based on which dose
estimation is performed by a dose estimation model. The
method may also comprise obtaining training data that
includes a first treatment plan associated with a first past
patient and multiple second treatment plans associated with
respective second past patients. The method may further
comprise: in response to determination that automatic seg-
mentation is required for the first treatment plan, performing
automatic segmentation on image data associated with the
first past patient to generate an improved first treatment plan,
and generating the dose estimation model based on the
improved first treatment plan and the multiple second treat-
ment plans.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a schematic diagram illustrating an
example process flow for radiotherapy treatment;

[0006] FIG. 2 is a flowchart of an example process for a
computer system to generate a dose estimation model for
radiotherapy treatment planning;

[0007] FIG. 3 is a schematic diagram illustrating an
example detailed process for a computer system to generate
a dose estimation model for radiotherapy treatment plan-
ning;
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[0008] FIG. 4A is a schematic diagram illustrating a first
example automatic segmentation engine for radiotherapy
treatment planning;

[0009] FIG. 4B is a schematic diagram illustrating a
second example automatic segmentation engine for radio-
therapy treatment planning;

[0010] FIG. 5 is a flowchart of an example process for a
computer system to generate dose data using a dose estima-
tion model;

[0011] FIG. 6 is a schematic diagram of an example
radiotherapy treatment system for treatment delivery
according to dose data generated according to the example
in FIG. 5; and

[0012] FIG. 7 is a schematic diagram of an example
computer system to generate a dose estimation model for
radiotherapy treatment planning and an example radio-
therapy treatment system for treatment delivery.

DETAILED DESCRIPTION

[0013] The technical details set forth in the following
description enable a person skilled in the art to implement
one or more embodiments of the present disclosure.
[0014] FIG. 1 is a schematic diagram illustrating example
process tlow 100 for radiotherapy treatment. Example pro-
cess 100 may include one or more operations, functions, or
actions illustrated by one or more blocks. The various blocks
may be combined into fewer blocks, divided into additional
blocks, and/or eliminated based upon the desired implemen-
tation. In the example in FIG. 1, radiotherapy treatment
generally includes various stages, such as an imaging system
performing image data acquisition for a patient (see 110); a
radiotherapy treatment planning system (see 130) generating
a suitable treatment plan (see 156) for the patient; and a
treatment delivery system (see 160) delivering treatment
according to the treatment plan.

[0015] In more detail, at 110 in FIG. 1, image data
acquisition may be performed using an imaging system to
capture image data 120 associated with a patient (particu-
larly the patient’s anatomy). Any suitable medical image
modality or modalities may be used, such as computed
tomography (CT), cone beam computed tomography
(CBCT), positron emission tomography (PET), magnetic
resonance imaging (MRI), single photon emission computed
tomography (SPECT), any combination thereof, etc. For
example, when CT or MRI is used, image data 120 may
include a series of two-dimensional (2D) images or slices,
each representing a cross-sectional view of the patient’s
anatomy, or may include volumetric or three-dimensional
(3D) images of the patient, or may include a time series of
2D or 3D images of the patient (e.g., four-dimensional (4D)
CT or 4D CBCT).

[0016] At 130 in FIG. 1, radiotherapy treatment planning
may be performed during a planning phase to generate
treatment plan 156 based on image data 120. Any suitable
number of treatment planning tasks or steps may be per-
formed, such as segmentation, dose prediction, projection
data prediction, treatment plan generation, etc. For example,
segmentation may be performed to generate structure data
140 identifying various segments or structures may from
image data 120. In practice, a three-dimensional (3D) vol-
ume of the patient’s anatomy may be reconstructed from
image data 120. The 3D volume that will be subjected to
radiation is known as a treatment or irradiated volume that
may be divided into multiple smaller volume-pixels (voxels)
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142. Each voxel 142 represents a 3D element associated
with location (i, j, k) within the treatment volume. Structure
data 140 may be include any suitable data relating to the
contour, shape, size and location of patient’s anatomy 144,
target 146, organ-at-risk (OAR) 148, or any other structures
of interest (e.g., tissues, bones). For example, using image
segmentation, a line may be drawn around a section of an
image and labelled as target 146 (e.g., tagged with
label="prostate”). Everything inside the line would be
deemed as target 146, while everything outside would not.
[0017] In another example, dose prediction may be per-
formed to generate dose data 150 specifying radiation dose
to be delivered to target 146 (denoted “D,,” at 152) and
radiation dose for OAR 148 (denoted “D, " at 154). In
practice, target 146 may represent a malignant tumor (e.g.,
prostate tumor, etc.) requiring radiotherapy treatment, and
OAR 148 a proximal healthy structure or non-target struc-
ture (e.g., rectum, bladder, etc.) that might be adversely
affected by the treatment. Target 146 is also known as a
planning target volume (PTV). Although an example is
shown in FIG. 1, the treatment volume may include multiple
targets 146 and OARs 148 with complex shapes and sizes.
Further, although shown as having a regular shape (e.g.,
cube), voxel 142 may have any suitable shape (e.g., non-
regular). Depending on the desired implementation, radio-
therapy treatment planning at block 130 may be performed
based on any additional and/or alternative data, such as
prescription, disease staging, biologic or radiomic data,
genetic data, assay data, biopsy data, past treatment or
medical history, any combination thereof, etc.

[0018] Based on structure data 140 and dose data 150,
treatment plan 156 may be generated include 2D fluence
map data for a set of beam orientations or angles. Each
fluence map specifies the intensity and shape (e.g., as
determined by a multileaf collimator (MLC)) of a radiation
beam emitted from a radiation source at a particular beam
orientation and at a particular time. For example, in practice,
intensity modulated radiotherapy treatment (IMRT) or any
other treatment technique(s) may involve varying the shape
and intensity of the radiation beam while at a constant gantry
and couch angle. Alternatively or additionally, treatment
plan 156 may include machine control point data (e.g., jaw
and leaf positions), volumetric modulated arc therapy
(VMAT) trajectory data for controlling a treatment delivery
system, etc. In practice, block 130 may be performed based
on goal doses prescribed by a clinician (e.g., oncologist,
dosimetrist, planner, etc.), such as based on the clinician’s
experience, the type and extent of the tumor, patient geom-
etry and condition, etc.

[0019] At 160 in FIG. 1, treatment delivery is performed
during a treatment phase to deliver radiation to the patient
according to treatment plan 156. For example, radiotherapy
treatment delivery system 160 may include rotatable gantry
164 to which radiation source 166 is attached. During
treatment delivery, gantry 164 is rotated around patient 170
supported on structure 172 (e.g., table) to emit radiation
beam 168 at various beam orientations according to treat-
ment plan 156. Controller 162 may be used to retrieve
treatment plan 156 and control gantry 164, radiation source
166 and radiation beam 168 to deliver radiotherapy treat-
ment according to treatment plan 156.

[0020] It should be understood that any suitable radio-
therapy treatment delivery system(s) may be used, such as
mechanic-arm-based systems, tomotherapy type systems,
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and internal radiotherapy delivery systems such as brachy-
therapy systems, radioembolization microspheres, and any
combination thereof, etc. Additionally, examples of the
present disclosure may be applicable to particle delivery
systems (e.g., proton, carbon ion, etc.). Such systems may
employ either a scattered particle beam that is then shaped
by a device akin to an MLC, or a scanning beam of
adjustable energy, spot size and dwell time.

[0021] An important aspect of radiotherapy treatment
planning 130 is estimating the level of radiation dose to be
applied to the patient. In practice, knowledge-based treat-
ment planning may be used to estimate achievable doses for,
inter alia, target 146 and OAR 148 based on existing clinical
knowledge. This involves training a “dose estimation
model” (also known as “dose prediction model”) using a set
of treatment plans (also known as “training data) previ-
ously devised for past patients. Ideally, the training data
should be of high quality, and sufficiently similar to a
treatment being planned for a new patient (e.g., similar
treatment area, etc.). Once trained, the dose estimation
model may be used to automatically generate treatment plan
156 for the new patient, or assist with the plan generation
process.

[0022] Any suitable knowledge-based planning software
may be used, such as RapidPlan™ (a trademark of Varian
Medical Systems, Inc.), etc. Depending on the desired
implementation, a dose estimation model may specify a
relationship or rules to transform structure data or patient
geometry data (i.e., known prior to optimization and called
“independent data”) into dose data (i.e., known after the
optimization and called “dependent data). When used with
an optimization algorithm, estimates produced by the dose
estimation model may be optimized according to optimiza-
tion objectives set by a clinician to produce complete
treatment plan 156. In other words, users (e.g., clinicians)
may construct their own dose estimation models where the
input for model training is a set of existing treatment plans,
which are in turn analyzed automatically using a dedicated
algorithm.

[0023] Conventionally, gathering enough treatment plans
for the purpose of generating dose estimation model may be
time and labor intensive. For example, to construct a dose
estimation model for a set of anatomical structures of
interest (e.g., OARs), a clinician should be careful to add
enough treatment plans (i.e., training data) to properly
model each of these anatomical structures. Otherwise, there
will not be enough data to generate a dose estimation model
that produces meaningful results to satisfy the desired treat-
ment objectives. The process of adjusting and re-adjusting
the training data is often manual, iterative and relies on the
expertise of the clinician designing the dose estimation
model.

[0024] Dose Estimation Model Generation Using Auto-
matic Segmentation

[0025] According to examples of the present disclosure,
radiotherapy treatment planning may be improved using
automatic segmentation in combination with dose estima-
tion model generation. Examples of the present disclosure
may be implemented to improve the efficiency of radio-
therapy treatment planning and possibly the treatment out-
come, such as increasing the tumor control probability
and/or reducing the likelihood of health complications or
death due to radiation overdose in the healthy structures. For
example, automatic segmentation would be of great benefit
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in speeding up the workflow of generating dose estimation
models for radiotherapy treatment planning.

[0026] In more detail, FIG. 2 is a flowchart of example
process 200 for a computer system to generate a dose
estimation model for radiotherapy treatment planning.
Example process 200 may include one or more operations,
functions, or actions illustrated by one or more blocks, such
as 210 to 250. The various blocks may be combined into
fewer blocks, divided into additional blocks, and/or elimi-
nated based upon the desired implementation. Example
process 200 may be implemented using any suitable com-
puter system(s), an example of which will be discussed
using FIG. 7.

[0027] At 210 in FIG. 2, model configuration data asso-
ciated with a dose estimation model may be obtained. The
model configuration data may specify any suitable param-
eter(s) of the dose estimation model, including multiple
anatomical structures based on which dose estimation is
performed by the dose estimation model. In practice, the
anatomical structures specified by the model configuration
data may include target(s) 146, OAR(s) 148 and other
proximal structure(s), etc. For example, in relation to pros-
tate cancer treatment, a dose estimation model may perform
dose estimation based on structure data associated with
prostate (i.e., target), rectum, bladder, and femoral heads.

[0028] At 220 in FIG. 2, training data that includes a first
treatment plan associated with a first past patient and mul-
tiple second treatment plans associated with respective mul-
tiple second past patients may be obtained. As used herein,
the term “obtain” at blocks 210-220 may refer generally to
retrieving the relevant data from any suitable storage (e.g.,
database storing the model configuration data, database of
historical treatment plans) accessible by the computer sys-
tem, receiving the data from another source via any suitable
communication link, etc.

[0029] At 230 in FIG. 2, it is determined whether auto-
matic segmentation is required for the first treatment plan.
As will be discussed using FIG. 3, the determination at block
230 may involve determining whether the first treatment
plan is an “outlier” based on at least one of the following:
model configuration data, first structure data extracted from
the first treatment plan, and first dose data extracted from the
first treatment plan. Here, the term “outlier” may refer
generally to a particular treatment plan from the training
data that may adversely affect the optimality of the resulting
dose estimation model.

[0030] Depending on the sub-optimal characteristic(s)
detected, the first treatment plan may be a geometric outlier,
dosimetric outlier, etc. Here, the term “sub-optimal charac-
teristic” may refer to any suitable characteristic associated
with the first treatment plan that may be reduced, or elimi-
nated, to improve the optimality or quality of the first
treatment plan (and subsequent dose estimation model). In
one example, the first treatment plan to be a geometric
outlier based on a sub-optimal characteristic associated with
the first structure data, such as missing data due to missing
contours of an organ, etc. In the case of prostate cancer
treatment, for example, contours of femoral heads in the
patient’s prostate region might be missing. In another
example, the first treatment plan to be a geometric outlier
based on a sub-optimal characteristic associated with the
first dose data, such as the first dose data not satistying a
threshold or following a dose distribution, etc.
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[0031] At 240 in FIG. 2, in response to determination that
automatic segmentation is required, automatic segmentation
may be performed to generate an improved first treatment
plan. Further, at 250 in FIG. 2, the dose estimation model
may be generated based on the improved first treatment plan
and the multiple second treatment plans. The improved first
treatment plan includes structure data generated using auto-
matic segmentation, the structure data identifying anatomi-
cal structure(s) specified by the model configuration data at
block 210. Using automatic segmentation during radio-
therapy treatment planning, the dose estimation model may
be generated more efficiently. In practice, automatic seg-
mentation may be used to achieve more consistent contours
across the training data. A user (e.g., clinician) may apply
automatic segmentation to a large set of training data to
speed up the process of generating the dose estimation
model.

[0032] Examples of the present disclosure should be con-
trasted against conventional approaches that rely on manual
segmentation, which is slow, somewhat inconsistent and
error prone. For example, it usually requires a team of highly
skilled and trained oncologists and dosimetrists to manually
delineate anatomical structures of interest by drawing con-
tours or segmentations on image data. These structures are
manually reviewed by a clinician, possibly requiring adjust-
ment or re-drawing. In many cases, manual segmentation of
critical organs can be the most time-consuming part of
radiation treatment planning. Organs are contoured one-by-
one, and if a new organ needs to be added, the new organ
needs to be contoured in all the plans (or at least in enough
plans for dose estimation modelling purposes).

[0033] Manual segmentation steps are often complicated
by a lack of consensus among different physicians and/or
clinical regions as to what constitutes “good” contours or
segmentation. In practice, there might be a huge variation in
the way structures or segments are drawn by different
clinical experts. The variation may result in uncertainty in
target volume size and shape, as well as the exact proximity,
size and shape of OARs that should receive minimal radia-
tion dose. Even for a particular expert, there might be
variation in the way segments are drawn on different days.
Examples of the present disclosure mitigate issue(s) asso-
ciated with manual segmentation. In the following, various
examples will be discussed using FIG. 3 to FIG. 7.

[0034] Model Configuration Data and Training Data

[0035] FIG. 3 is a schematic diagram illustrating example
detailed process 300 for a computer system to generate a
dose estimation model for radiotherapy treatment planning.
Example process 300 may include one or more operations,
functions, actions or data items illustrated by one or more
blocks, such as 310 to 380. The various blocks may be
combined into fewer blocks, divided into additional blocks,
and/or eliminated based upon the desired implementation.
Similar to the example in FIG. 2, example process 300 may
be implemented using any suitable computer system, an
example of which will be discussed using FIG. 7.

[0036] At 310 in FIG. 3 (related to 210 in FIG. 2), model
configuration data associated with a dose estimation model
is obtained. Here, the term “model configuration data” may
refer generally to any suitable data defining feature(s) or
parameter(s) of the dose estimation model for a particular
treatment site. In the example in FIG. 3, model configuration
data 310 may specify anatomical structures based on which
dose estimation may be performed by a desired dose esti-
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mation model. In relation to prostate cancer, the dose
estimation model may be generated to estimate dose data
based on structure data associated with anatomical struc-
tures=(prostate, rectum, bladder, femoral head(s), etc.). The
goal of dose estimation model training is to estimate a
relationship between output=dose data, and input=structure
data.

[0037] In practice, any additional and/or alternative radio-
therapy treatment site(s) may be considered. For example, in
relation to lung cancer, the dose estimation model may be
configured to estimate dose data based on structure data
associated with structures=(cancerous lung tissue, healthy
lung tissue, esophagus, heart), etc. In relation to brain
cancer, the dose estimation model may be configured to
estimate dose data based on structure data associated with
structures=(brain tumor, optic nerve, brain stem), etc. The
structure data may identify any additional and/or alternative
anatomical structure(s) in the treatment site. The model
configuration data may be stored in a datastore in any
suitable format (e.g., model binary).

[0038] Depending on the desired implementation, model
configuration data 310 may be generated based on a user’s
input. For example, the parameter(s) of a dose estimation
model may be selected or entered via a graphical user
interface (GUI) provided by a computer system implement-
ing a knowledge-based planning system, etc. The specific
parameter(s) may depend on the clinician’s experience and
knowledge, type of radiotherapy treatment required, beam
configuration (e.g., energy, collimator size and orientations),
etc. The clinician may also rely on any expertise or knowl-
edge relating to the biological effect of radiation on target
146 and/or OAR 148, such as based on tumor control
probability, normal tissue complication probability, etc. The
tumor control probability is the probability of eradicating all
tumor cells as a function of dose. The normal tissue com-
plication probability is the probability of, as a function of
dose, inducing some particular complication (a collective
word for describing a variety of conditions such as nausea,
vomiting, etc.) in a normal organ. Multiple targets and
OARs of any suitable shapes and sizes may be modeled.

[0039] At 320 in FIG. 3 (related to 220 in FIG. 2), training
data that includes N treatment plans (see 325) associated
with respective multiple past patients is obtained, such as by
retrieving from a database of past treatment plans (see 315),
receiving from another computer system via a communica-
tion link, etc. Training data 325 may be obtained based on
their relevance to a particular treatment site, such as the
prostate region in the example in FIG. 3. A search may be
performed based on any suitable search criteria, such as
target name, treatment site, dose prescription level, patient’s
data (e.g., gender, age), diagnostic data (if available), exist-
ing contours, etc. A particular treatment plan in training data
320 may be denoted as the i” treatment plan, where i=1, . .
., N

[0040] At 330 in FIG. 3, training data 325 may be pro-
cessed to extract various data required to train or generate
the dose estimation model (as defined by model configura-
tion data 310). Here, the term “process” or “processing” may
include any suitable data processing operation(s), such as
data analysis, feature extraction, calculation, derivation,
transformation, any combination thereof, etc. In particular,
the i” treatment plan may be processed to determine (X,, Y,),
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where X =structure data identifying K=1 anatomical struc-
ture parameter(s), Y,~dose data identifying [.=1 dose param-
eter(s) and i=1, . .., N.

[0041] In practice, X,=(X,;, . . . , X,x) represents the
“independent” parameter(s) of the dose estimation model.
For example, X, may include any suitable structure param-
eter(s) that can be extracted or derived from the i” treatment
plan, such as target volume, OAR volume, relative overlap
volume (i.e., fraction of target volume overlapping with
OAR volume), relative out-of-field volume (i.e., fraction of
target or OAR volume outside of the treatment field),
distance-to-target histogram (DTH) values, any combination
thereof, etc. DTH values measure the distance of a particular
structure (e.g., OAR) from a particular target.

[0042] Further, Y=(Y,, ..., Y,;) represents the “depen-
dent” parameter(s) of the dose estimation model. For
example, Y, may include any suitable dose parameter(s) that
can be extracted or derived from the i treatment plan, such
as mean dose, median dose, 3D dose distribution, dose-
volume histograms (DVH), etc. In general, a 3D dose
distribution defines the magnitude of radiation at each voxel
representing a target or OAR. 3D dose distributions may be
summarized using DVH in a 2D format. Radiation dose may
be measured in Gray (Gy), which represents the absorption
of one joule of radiation energy in one kilogram of matter.

[0043] For simplicity, consider an example with K=4 and
L~=1 for prostate cancer treatment planning in FIG. 3. In this
case, Y, is a 1D vector with a singular value Y,. Accordingly,
structure data and dose data from the i treatment plan may
be expressed as (X,, Y,)=X,;, X,z X3 X Y,), where
X, =prostate volume; X,,=rectum volume; X,;=bladder vol-
ume; X,,=femoral head volume; and Y,=mean radiation
dose on prostate. It should be understood that any additional
and/or alternative parameter(s) may be used in practice.

[0044] Automatic Segmentation

[0045] At 340 in FIG. 3 (related to 230 in FIG. 2), outlier
detection is performed to identify outlier treatment plans 345
(“first treatment plans™ in FIG. 2) from training data 325 that
includes N treatment plans. At 350 in FIG. 3, other treatment
plans may be classified as “non-outlier” treatment plans 355
(“second treatment plans” in FIG. 2). The detection at blocks
340-350 may be based on model configuration data 310,
structure data (X,), dose data (Y,), or any combination
thereof. Any suitable criteria for outlier detection may be
used. For example, outlier treatment plan 345 may be a
geometric outlier, dosimetric outlier, etc.

[0046] In relation to geometric outlier detection, outlier
treatment plan 345 may be detected based on model con-
figuration data 310 and structure data (X,). For example, the
i’ treatment plan may be a geometric outlier based on a
sub-optimal characteristic, such as missing, invalid or unre-
liable data in structure data (X,). The missing data may be
detected by comparing the structure parameters required by
the dose estimation model (as specified by model configu-
ration data 310), and structure data X,=(X;;, . . ., X;x)
extracted from the i” treatment plan. In the example FIG. 3,
X,,~femoral head volume may be missing (or set to an
invalid value) because it is not contoured. In practice, the
missing data may be detected by programmatically checking
the IDs of segmented structures in each treatment plan. It
should be understood that it is not necessary for each and
every treatment plan to have all the structures included in the
dose estimation model.
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[0047] In practice, it is useful to detect geometric outliers
(e.g., unreliable treatment plans) because they might tilt the
resulting dose estimation model more strongly towards a
less accurate estimation compared to non-outliers. For
example, geometric outlier detection 340 may involve
assessing the reliability of structure data (X,) using a com-
puter system, such as by comparing the size (or shape) of an
organ with a distribution of organ sizes (or shapes) already
present in the model. In general, the geometric outliers may
be at odds with the statistics of the non-outliers. Some
example ways to assess the reliability of structure data (X))
are as follows. For example, a bladder volume may be
unreliable when it is significantly larger than the ninth
percentile of the distribution of known bladder volumes. In
other examples, a dice score between (manually drawn)
organ and its auto-segmented counterpart may be exception-
ally low, or volumes of the left and right lungs may differ
more than expected. For parameters related to a structure’s
location, geometric outlier detection 340 may involve esti-
mating how much the organ is in-field, or overlapping with
a target. Any alternative and/or additional approaches may
be used.

[0048] In relation to dosimetric outlier detection, outlier
treatment plan 345 may be detected based on dose data (Y,).
For example, the i” treatment plan may be a dosimetric
outlier based on a sub-optimal characteristic, such as its dose
data not satisfying certain thresholds, following a dose
distribution, etc. In practice, the sub-optimal characteristic
in dose data (Y,) may be caused by missing, invalid or
unreliable data in structure data (X,). For example, a treat-
ment plan for a head and neck patient may have abnormally
low dose for the right parotid due to missing contours for the
left parotid. Here, the term “abnormal” may be based on a
regression model built using data from other patients with
missing data for the left parotid. The low dose for the right
parotid may be caused by the left parotid being sacrificed as
a planning trade-off (which also could be the reason why it
is not contoured).

[0049] At 360 in FIG. 3 (related to 240 in FIG. 2), in
response to detecting outlier treatment plan 345, automatic
segmentation is performed to generate improved treatment
plan 365 with updated structure data (X,). In the example in
FIG. 3, automatic segmentation may be performed to seg-
ment or contour anatomical structure(s) that are missing
from structure data (X,), or re-segment existing anatomical
structure(s) that appear invalid or unreliable. Updated struc-
ture data (X,) may be stored with the original treatment plan
345 in database 315 or saved as part of the model binary of
dose estimation model 375.

[0050] An automatic segmentation engine may be config-
ured to perform segmentation at block 360 for a single
structure, or multiple structures. For example, if outlier
treatment plan 345 only has bladder, rectum and prostate
contoured, the automatic segmentation engine that provides
femoral head contours may be used. This might be a separate
model just for that one structure or the femoral heads might
be one of the outputs of a multi-organ model. Any suitable
automatic segmentation approach may be implemented,
such as deep learning engines (e.g., deep neural networks),
machine learning algorithms, and non-learning algorithms.
In the following, some examples will be discussed using
FIG. 4A and FIG. 4B.
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[0051] (a) Deep Learning Engine

[0052] FIG. 4A is a schematic diagram illustrating first
example automatic segmentation engine 410 for radio-
therapy treatment planning. Throughout the present disclo-
sure, the term “deep learning” may refer generally to a class
of approaches that utilizes many layers or stages of nonlin-
ear data processing for feature learning as well as pattern
analysis and/or classification. Accordingly, the term “deep
learning model” may refer to a hierarchy of “layers” of
nonlinear data processing that include an input layer, an
output layer, and multiple (i.e., two or more) “hidden” layers
between the input and output layers. These layers may be
trained from end-to-end (e.g., from the input layer to the
output layer) to extract feature(s) from an input and classify
the feature(s) to produce an output (e.g., classification label
or class). The term “deep learning engine” may refer to any
suitable hardware and/or software component(s) of a com-
puter system that are capable of executing algorithms
according to any suitable deep learning model(s).

[0053] Depending on the desired implementation, any
suitable deep learning model(s) may be used, such as
convolutional neural network, recurrent neural network,
deep belief network, or any combination thereof, etc. In
practice, a neural network is generally formed using a
network of processing elements (called “neurons,” “nodes,”
etc.) that are interconnected via connections (called “syn-
apses,” “weights,” etc.). For example, convolutional neural
networks may be implemented using any suitable architec-
ture(s), such as U-net, LeNet, AlexNet, ResNet, V-net,
DenseNet, etc. In this case, a “layer” of a convolutional
neural network may be a convolutional layer, pooling layer,
rectified linear units (Rel.U) layer, fully connected layer,
loss layer, etc. In practice, the U-net architecture includes a
contracting path (left side) and an expansive path (right
side). The contracting path includes repeated application of
convolutions, followed by a RelLU layer and max pooling
layer. Each step in the expansive path may include upsam-
pling of the feature map followed by convolutions, etc.
[0054] During training phase 401, deep learning engine
410 may be trained using any suitable training data 421-422
relating to automatic segmentation. In practice, training data
421-422 may include example input data=unsegmented
image data 421, and example output data=structure data 422
(also known as segmentation data). Structure data 422 may
identify any suitable contour, shape, size and/or location of
structure(s) or segment(s) of a patient’s anatomy, such as
target(s), OAR(s), etc. Image data 421 may include 2D or 3D
images of the patient’s anatomy, and captured using any
suitable imaging modality or modalities.

[0055] The aim of training phase 401 is to train deep
learning engine 410 to perform automatic segmentation by
mapping input data=image data 421 to example output
data=structure data 422. Training phase 401 may involve
finding weights that minimize the training error between
training structure data 422, and estimated structure data 423
generated by deep learning engine 410. For example, in
relation to prostate cancer, image data 421 may include
image data of a patient’s prostate region. In this case,
structure data 422 may identify anatomical structures in the
prostate region, such as the patient’s prostate, rectum, blad-
der and femoral heads. In practice, deep learning engine 410
may be trained identify a particular structure (i.e., single-
structure model), or multiple structures (i.e., multi-structure
model to identify targets and OARs of any suitable shapes
and sizes).
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[0056] Once trained, deep learning engine 410 may be
used to perform automatic segmentation at block 360 in FI1G.
3 during inference phase 402. In particular, based on image
data 431 associated with outlier treatment plan 345, auto-
matic segmentation may be performed to generate improved
structure data 432. In the case of missing data, improved
structure data 432 may identify additional anatomical struc-
ture(s), such as X,,=femoral head volume missing from
outlier treatment plan 345. In the case of invalid or unreli-
able data, improved structure data 432 associated with
existing anatomical structure(s) may be generated, such as
by re-contouring the structures, etc. A size check may be
performed to determine whether the volume of a contoured
structure (e.g., OARs) falls within the distribution of sizes
already in the model. This may involve comparing the size
of the contoured structure with the mean size in the model,
such as whether it is within two to three standard deviations.
[0057] Depending on the desired implementation, deep
learning engine 410 may include multiple processing path-
ways 411-413 described in related U.S. patent application
Ser. No. 16/145,461 (Attorney Docket No. 2018-012US01).
In the example in FIG. 4A, three processing pathways
411-413 (k=1, 2, 3) to process image data at different
resolution levels (R,=R,, R,, R;). First processing pathway
411 (k=1) is configured to process input=first image data (I,)
at a first resolution level R; (e.g., 1x). Second processing
pathway 412 (k=2) is configured to process input=second
image data (I,,) at a second resolution level R,<R to enlarge
the receptive field. Third processing pathway 413 (k=3) is
configured to process input=third image data (I,) at a third
resolution level R;<R,<R, to further enlarge the receptive
field.

[0058] The outputs of processing pathway 411-413 are
first feature data (F,), second feature data (F,) and third
feature data (F;), respectively. Third feature data (F;) may
be upsampled using an upsampling block (e.g., by a factor
of 4x) before being combined with second feature data (F,)
using a convolutional block, thereby generating first com-
bined set (C,). Further, first combined set (C,) may be
upsampled using upsampling blocks (e.g., by a factor of 2x)
before being combined with first feature data (F,) using
convolutional blocks, thereby generating second combined
set (C,). Mixing block(s) may be configured to massage
(e.g., using 1x1x1 convolutions) the final set of features into
the final result.

[0059] By processing image data 421/431 at multiple
resolution levels, processing pathways 411-413 provide dif-
ferent views into image data 421/431 to achieve a larger
receptive field. In practice, medical image data generally
includes both local and global feature data of a patient’s
anatomy, where the terms “local” and “global” are relative
in nature. For example, the local feature data may provide a
microscopic view of the patient’s anatomy, such as tissue
texture, whether a structure has a limiting border, etc. In
contrast, the global feature data may provide a relatively
macroscopic view of the patient’s anatomy, such as which
region the anatomy is located (e.g., prostate, etc.), orienta-
tion (e.g., to the left, to the right, front, back), etc. Any
alternative and/or additional model(s) may be used by deep
learning engine 410.

[0060] (b) Machine Learning and Other Algorithms
[0061] FIG. 4B is a schematic diagram illustrating second
example automatic segmentation engine 440 for radio-
therapy treatment planning. Similar to the example in FIG.

Jun. 25, 2020

4A, automatic segmentation engine 440 is configured to
perform automatic segmentation on image data 451 associ-
ated with outlier treatment plan 345 to generate improved
structure data 452. In one example, automatic segmentation
engine 440 may implement a machine learning algorithm,
such as support vector machine, k-nearest neighbors, etc. In
another example, automatic segmentation engine 440 may
implement a non-learning algorithm, such as a threshold-
based algorithm that performs thresholding to certain
Hounsfield number (HU) values, atlas-based algorithm, etc.
The atlas-based algorithm maps current patient geometry to
some pre-contoured patient geometry and then defines the
structures into the current patient geometry using a defor-
mation field between the two patient geometries.

[0062] Dose Estimation Model Generation

[0063] Referring now to 370 in FIG. 3 (related to 250 in
FIG. 2), dose estimation model 375 is trained using
improved training data that includes improved treatment
plans 365 (generated from outlier treatment plans 345), and
non-outlier treatment plans 355. Dose estimation model 375
is trained to estimate a relationship that transforms indepen-
dent structure data (X) to dependent dose data (Y). For
example, the relationship or interdependency may be
expressed using any suitable function f( ) for Y=f(X).
[0064] Any suitable algorithm may be used to estimate
function f( ) such as regression algorithm (e.g., stepwise
multiple regression, linear regression, polynomial regres-
sion, etc.) to estimate a set of coeflicients that transform X
to Y. It should be understood that any additional and/or
alternative algorithm may be used to train the dose estima-
tion model, such as principal component analysis (PCA)
algorithm, classification algorithm, clustering algorithm,
machine learning algorithm, etc. Function f( ) may be
presented as a multiplication of X with a matrix of coeffi-
cients. For example, assuming f( ) is linear, linear regression
may be used to estimate the following dose estimation
model:

Y=oet B X1 +BoX o +BaXia+Baiate .

[0065] In the above equation, 3, B, B; and f, are known
as the coefficients associated with respective independent
features X, , X;5, X3, X;4 and Y,; and o is also known as the
intercept. In general, the coeflicients may be dimensionless.
To estimate f( ) values of the coefficients that best fit training
data 320 are calculated, such as by minimizing the least-
squared errors e2=(F(X)-Y).

[0066] Asshown at 380 in FIG. 3, an iterative process may
be performed to generate dose estimation model 375. For
example, once dose estimation model 375 is generated,
further improvements may be made by performing auto-
matic segmentation to further improve the training data, and
so on. In practice, a few iterations may be required. In the
first iteration, for example, there is no dose estimation model
375 available, in which case it may be difficult to use
dosimetric information to determine outliers. Since the
model changes at each iteration, more than two iterations
may be performed. The stopping criterion for the iterative
process may be the detection of two consecutive iterations
that lead to the same result in the outlier analysis at block
340. Alternatively and/or additionally, it would be practical
to limit the number of iterations by setting a maximum
iteration count to be the stopping criterion.

[0067] Depending on the desired implementation, the
iterative process at 380 may involve iterating over different
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treatment plans, such as when new treatment plans (i.e.,
training data) are available in database 315. In this case,
automatic segmentation that is performed on new treatment
plans (or outliers among them) may result in the changes of
volumetric parameters. This way, treatment plans may be
used to improve dose estimation model 375 over time.
[0068] In practice, automatic segmentation may be imple-
mented to reduce or ameliorate the above issues to achieve
a more consistent segmentation result across the training
dataset. This way, all treatment plans associated with dose
estimation model 375 would have all the anatomical struc-
tures used in the model. Conventionally, this is not the case,
and some structures might be modeled in a sub-optimal
manner. In this case, the resulting dose estimation model
may not be meaningful because there is insufficient data for
a proper regression model.

[0069] Additionally, when a new treatment plan is added
to dose estimation model 375, automatic segmentation may
be performed on the image data associated with the new
treatment plan to contour all the anatomical structures
required by dose estimation model 375 automatically. By
checking the difference between original and automatically
segmented organs, one could even identify potentially incor-
rectly contoured original structures or wrongly matched
structures. Some measures of difference from automatically
contoured structure could even be an independent parameter
in the model (used either in the prediction or when the
accuracy of the prediction is estimated). For example, in the
DVH estimation of dose estimation model 375, the regres-
sion model may utilize the OAR absolute volume. In a more
general case, a deep neural network solution of dose esti-
mation may be affected by any shape change in the organ. As
such, any measure of difference may contribute to the dose
estimation.

[0070] Dose Estimation and Treatment Delivery

[0071] FIG. 5 is a flowchart of example process 500 for a
computer system to generate dose data using dose estimation
model 375. The various blocks may be combined into fewer
blocks, divided into additional blocks, and/or eliminated
based upon the desired implementation. Similar to the
example in FIG. 2, example process 500 may be imple-
mented using any suitable computer system, an example of
which will be discussed using FIG. 7.

[0072] At 510 in FIG. 5, a dose estimation model is
selected for the radiotherapy treatment planning of a par-
ticular current patient. In practice, example process 300 in
FIG. 3 may be repeated to determine multiple dose estima-
tion models from a single set of training data, or multiple
sets. The dose estimation model may be selected based on
any suitable factor(s), such as a treatment region of the
patient, etc.

[0073] At 520 and 530 in FIG. 5, image data associated
with the current patient is obtained, and automatic segmen-
tation performed to generate input structure data (X,,,) based
on the image data. The image data may be “obtained” using
any suitable approach, such as received via a GUI provided
by the computer system, retrieved from storage, etc. At 540
in FIG. 5, based on structure data (X,,,), output dose data
(Y,,) may be estimated using dose estimation model 375 in
FIG. 3.

[0074] Using the prostate cancer example in FIG. 3 again,
input structure data (X,,) generated using automatic seg-
mentation may include X,=prostate volume; X,=rectum
volume; X,=bladder volume and X ,=femoral head volume.
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In this case, output dose data (Y,,,) estimated using dose
estimation model 375 may include Y,=mean radiation dose
on prostate. In practice, estimates produced by dose estima-
tion model 375 may be optimized according to other objec-
tives set by the clinician to produce complete treatment plan.
[0075] A treatment plan is generated based on output dose
data (Y,,,) for treatment delivery. FIG. 6 is a schematic
diagram illustrating example radiotherapy treatment system
600 for treatment delivery according to dose data generated
according to the example in FIG. 5. Although an example is
shown in FIG. 6, it will be appreciated any alternative and/or
additional configuration may be used depending on the
desired implementation. Radiotherapy treatment system 600
includes radiation source 610 to project radiation beam 620
onto a treatment volume representing the patient’s anatomy
at various beam angles 630.

[0076] In practice, radiation source 610 may include a
linear accelerator to accelerate radiation beam 620 and a
collimator (e.g., MLC) to modify or modulate radiation
beam 620. In another example, radiation beam 620 may be
modulated by scanning it across a target patient in a specific
pattern with various energies and dwell times (e.g., as in
proton therapy). A controller (e.g., computer system) may be
used to control the operation of radiation source 620 accord-
ing to treatment plan 156.

[0077] During treatment delivery, radiation source 610
may be rotatable using a gantry around a patient, or the
patient may be rotated (as in some proton radiotherapy
solutions) to emit radiation beam 620 at various beam
orientations or angles relative to the patient. For example,
five equally-spaced beam angles 630A-E (also labelled “A,”
“B,” “C,” “D” and “E”) may be seclected using a deep
learning engine configured to perform treatment delivery
data estimation. In practice, any suitable number of beam
and/or table or chair angles 630 (e.g., five, seven, etc.) may
be selected. At each beam angle, radiation beam 620 is
associated with fluence plane 640 (also known as an inter-
section plane) situated outside the patient envelope along a
beam axis extending from radiation source 610 to treatment
volume 660. As shown in FIG. 6, fluence plane 640 is
generally at a known distance from the isocenter.

[0078] Computer System

[0079] The above examples can be implemented by hard-
ware, software or firmware or a combination thereof. FIG. 7
is a schematic diagram of example computer system 700 for
radiotherapy treatment planning. In this example, computer
system 705 (also known as a treatment planning system)
may include processor 710, computer-readable storage
medium 720, interface 740 to interface with radiotherapy
treatment delivery system 160, and bus 730 that facilitates
communication among these illustrated components and
other components.

[0080] Processor 710 is to perform processes described
herein with reference to FIG. 1 to FIG. 6. Computer-
readable storage medium 720 may store any suitable infor-
mation 722, such as information relating to training data,
dose estimation models, deep learning engines, input data,
output data, etc. Computer-readable storage medium 720
may further store computer-readable instructions 724 which,
in response to execution by processor 710, cause processor
710 to perform processes described herein. Treatment may
be delivered according to treatment plan 156 using treatment
planning system 160 explained using FIG. 1, the description
of which will not be repeated here for brevity.
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[0081] The foregoing detailed description has set forth
various embodiments of the devices and/or processes via the
use of block diagrams, flowcharts, and/or examples. Insofar
as such block diagrams, flowcharts, and/or examples contain
one or more functions and/or operations, it will be under-
stood by those within the art that each function and/or
operation within such block diagrams, flowcharts, or
examples can be implemented, individually and/or collec-
tively, by a wide range of hardware, software, firmware, or
virtually any combination thereof. Throughout the present
disclosure, the terms “first,” “second,” “third,” etc. do not
denote any order of importance, but are rather used to
distinguish one element from another.

[0082] Those skilled in the art will recognize that some
aspects of the embodiments disclosed herein, in whole or in
part, can be equivalently implemented in integrated circuits,
as one or more computer programs running on one or more
computers (e.g., as one or more programs running on one or
more computer systems), as one or more programs running
on one or more processors (e.g., as one or more programs
running on one or more microprocessors), as firmware, or as
virtually any combination thereof, and that designing the
circuitry and/or writing the code for the software and or
firmware would be well within the skill of one of skill in the
art in light of this disclosure.

[0083] Although the present disclosure has been described
with reference to specific exemplary embodiments, it will be
recognized that the disclosure is not limited to the embodi-
ments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense.

We claim:

1. A method for a computer system to generate a dose
estimation model for radiotherapy treatment planning,
wherein the method comprises:

obtaining model configuration data associated with the

dose estimation model, wherein the model configura-
tion data specifies multiple anatomical structures based
on which dose estimation is performed by the dose
estimation model;

obtaining training data that includes a first treatment plan

associated with a first past patient and multiple second
treatment plans associated with respective multiple
second past patients;

determining that automatic segmentation is required for

the first treatment plan, and in response to said deter-

mining,

performing automatic segmentation on image data
associated with the first past patient to generate an
improved first treatment plan that includes structure
data identifying at least one of the multiple anatomi-
cal structures; and

generating the dose estimation model based on the
improved first treatment plan and the multiple sec-
ond treatment plans.

2. The method of claim 1, wherein determining that
automatic segmentation is required comprises:
processing the first treatment plan to extract first structure
data and first dose data associated with the first past
patient; and
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determining whether the first treatment plan is an outlier
based on at least one of the following: the model
configuration data, the first structure data and the first
dose data.

3. The method of claim 2, wherein determining that
automatic segmentation is required comprises:

determining the first treatment plan to be a geometric

outlier based on a sub-optimal characteristic associated
with the first structure data.

4. The method of claim 3, wherein determining that
automatic segmentation is required comprises:

comparing the first structure data with the model configu-

ration data to identify the sub-optimal characteristic in
the form of missing data in the first structure data.

5. The method of claim 2, wherein determining that
automatic segmentation is required comprises:

determining the first treatment plan to be a dosimetric

outlier based on a sub-optimal characteristic associated
with the first dose data.

6. The method of claim 1, wherein generating the
improved first treatment plan comprises:

performing automatic segmentation on the image data to

generate the improved structure data using a deep
learning engine.

7. The method of claim 1, wherein generating the
improved first treatment plan comprises:

performing automatic segmentation on the image data to

generate the improved structure data using one of the
following: a machine learning algorithm, a threshold-
based algorithm, and an atlas-based algorithm.

8. A non-transitory computer-readable storage medium
that includes a set of instructions which, in response to
execution by a processor of a computer system, cause the
processor to perform a method of generating a dose estima-
tion model for radiotherapy treatment planning, wherein the
method comprises:

obtaining model configuration data associated with the

dose estimation model, wherein the model configura-
tion data specifies multiple anatomical structures based
on which dose estimation is performed by the dose
estimation model;

obtaining training data that includes a first treatment plan

associated with a first past patient and multiple second
treatment plans associated with respective multiple
second past patients;

determining that automatic segmentation is required for

the first treatment plan, and in response to said deter-

mining,

performing automatic segmentation on image data
associated with the first past patient to generate an
improved first treatment plan that includes structure
data identifying at least one of the multiple anatomi-
cal structures; and

generating the dose estimation model based on the
improved first treatment plan and the multiple sec-
ond treatment plans.

9. The non-transitory computer-readable storage medium
of claim 8, wherein determining that automatic segmenta-
tion is required comprises:

processing the first treatment plan to extract first structure

data and first dose data associated with the first past
patient; and
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determining whether the first treatment plan is an outlier
based on at least one of the following: the model
configuration data, the first structure data and the first
dose data.

10. The non-transitory computer-readable storage
medium of claim 9, wherein determining that automatic
segmentation is required comprises:

determining the first treatment plan to be a geometric

outlier based on a sub-optimal characteristic associated
with the first structure data.

11. The non-transitory computer-readable storage
medium of claim 10, wherein determining that automatic
segmentation is required comprises:

comparing the first structure data with the model configu-

ration data to identify the sub-optimal characteristic in
the form of missing data in the first structure data.

12. The non-transitory computer-readable storage
medium of claim 9, wherein determining that automatic
segmentation is required comprises:

determining the first treatment plan to be a dosimetric

outlier based on a sub-optimal characteristic associated
with the first dose data.

13. The non-transitory computer-readable storage
medium of claim 8, wherein generating the improved first
treatment plan comprises:

performing automatic segmentation on the image data to

generate the improved structure data using a deep
learning engine.

14. The non-transitory computer-readable storage
medium of claim 8, wherein generating the improved first
treatment plan comprises:

performing automatic segmentation on the image data to

generate the improved structure data using one of the
following: a machine learning algorithm, a threshold-
based algorithm, and an atlas-based algorithm.

15. A computer system configured to generate a dose
estimation model for radiotherapy treatment planning, the
computer system comprising: a processor and a non-transi-
tory computer-readable medium having stored thereon
instructions that, when executed by the processor, cause the
processor to:

obtain model configuration data associated with the dose

estimation model, wherein the model configuration
data specifies multiple anatomical structures based on
which dose estimation is performed by the dose esti-
mation model;

obtain training data that includes a first treatment plan

associated with a first past patient and multiple second
treatment plans associated with respective second past
patients;

determine that automatic segmentation is required for the

first treatment plan, and in response to said determin-
g,
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perform automatic segmentation on image data asso-
ciated with the first past patient to generate an
improved first treatment plan that includes structure
data identifying at least one of the multiple anatomi-
cal structures; and

generate the dose estimation model based on the
improved first treatment plan and the multiple sec-
ond treatment plans.

16. The computer system of claim 15, wherein the instruc-
tions for determining that automatic segmentation is
required cause the processor to:

process the first treatment plan to extract first structure

data and first dose data associated with the first past
patient; and

determine whether the first treatment plan is an outlier

based on at least one of the following: the model
configuration data, the first structure data and the first
dose data.

17. The computer system of claim 16, wherein the instruc-
tions for determining that automatic segmentation is
required cause the processor to:

determine the first treatment plan to be a geometric outlier

based on a sub-optimal characteristic associated with
the first structure data.

18. The computer system of claim 17, wherein the instruc-
tions for determining that automatic segmentation is
required cause the processor to:

compare the first structure data with the model configu-

ration data to identify the sub-optimal characteristic in
the form of missing data in the first structure data.

19. The computer system of claim 16, wherein the instruc-
tions for determining that automatic segmentation is
required cause the processor to:

determine the first treatment plan to be a dosimetric

outlier based on a sub-optimal characteristic associated
with the first dose data.

20. The computer system of claim 15, wherein the instruc-
tions for generating the improved first treatment plan cause
the processor to:

perform automatic segmentation on the image data to

generate the improved structure data using a deep
learning engine.

21. The computer system of claim 15, wherein the instruc-
tions for generating the improved first treatment plan cause
the processor to:

perform automatic segmentation on the image data to

generate the improved structure data using one of the
following: a machine learning algorithm, a threshold-
based algorithm, and an atlas-based algorithm.
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