a2 United States Patent

US011977549B2

ao) Patent No.: US 11,977,549 B2

Park et al. 45) Date of Patent: May 7, 2024
(54) CLUSTERING EVENT PROCESSING (56) References Cited
ENGINES
U.S. PATENT DOCUMENTS
(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US) 5875320 A * 2/1999 Shan GOGF 9/741%51
(72) Inventors: Hoyong Park, San Jose, CA (US); 6,501,852 Bl 12/2002 Clark et al.
Sandeep Bishnoi, Mill Valley, CA (Continued)
(US); Prabhu Thukkaram, San
Ramon, CA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: ORACLE INTERNATIONAL N 1451497 A 1072003
CORPORATION, Redwood Shores, CN 1689208 1072005
CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 638 days. Cluster Mode Overview—Spark 2.0.0 Documentation, Retrieved
from Internet: http://spark.apache.org:80/docs/2.0.0/cluster-overview.
(21) Appl. No.: 15/700,914 html https://web.archive.org/web/20160903162009, Sep. 3, 2016.
. (Continued)
(22) Filed: Sep. 11, 2017
(65) Prior Publication Data Primary Examiner — Marc S Somers
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
US 2018/0075163 Al Mar. 15, 2018 Stockton LLP
Related U.S. Application Data
(60) Provisional application No. 62/395,216, filed on Sep. (57 ABSTRACT
15, 2016. An event processing system for processing events in an
event stream is disclosed. The system can launch a first CQL
(31) Int. Cl. engine in a cluster of CQL engines using a CQL engine
GOGF 16/2455 (2019.01) tracking engine. The system can schedule, using the CQL
GOGF 8/35 (2018.01) engine tracking engine, the first CQL engine to process a
(Continued) batch of a continuous stream of input events related to an
(52) US.CL application. The system can track, using the CQL engine
CPC ... GO6F 16/24568 (2019.01); GO6F 8/35 tracking engine, the first CQL engine to be scheduled for
(2013.01); GO6F 9/542 (2013.01); execution. The system can then execute, using the CQL
(Continued) engine tracking engine, the first CQL engine to process the
(58) Field of Classification Search batch of the continuous stream of input events to generate a

CPC ... GOGF 8/35; GOGF 9/542; GOGF 16/24568;
GOGF 16/21; GO6F 16/90335;

(Continued)

Driver 2206

CQL Engine Tracker 2202

Task Scheduler 2204

set of output events related to the application.
11 Claims, 31 Drawing Sheets

~ 2200

Execufor A 2208

RPC Endpoint

CQL Engine A CQLROD A
2212 2218

Executor B 2210

CQL Engine B CQLRDD
82220

Executor C 2212

CQL Engine C
2215

US 11,977,549 B2

Page 2
(51) Int. CL 2009/0125916 Al 5/2009 Lu et al.
2009/0216728 Al 8/2009 Brainerd et al.
Go6k 9/54 (2006'01) 2009/0292759 Al 11/2009 Piper et al.
GO6r 1621 (2019.01) 2010/0022627 Al 1/2010 Scherer
GO6F 16/2453 (2019.01) 2010/0030896 Al 2/2010 Chandramouli et al.
GO6F 167248 (2019.01) 2010;0125572 Al 5;2010 P(})lblete et1 al.
2010/0250572 Al 9/2010 Chen et al.
GOGF 16/27 (2019'01) 2011/0035253 Al 2/2011 Mason et al.
GO6F 16/901 (2019.01) 2011/0084967 Al 4/2011 De Pauw et al.
GO6F 16/903 (2019.01) 2011/0126201 Al 5/2011 Iyer et al.
GOG6F 16/242 (2019.01) 2011/0196891 Al 8/2011 De Castro et al.
2011/0213802 Al 9/2011 Singh et al.
(52) US. CL 2011/0302151 Al 12/2011 Abadi et al.
CPC GOG6F 16/21 (2019.01); GO6F 16/24532 2011/0302164 A1 12/2011 Krishnamurthy et al.
(2019.01); GO6F 16/248 (2019.01); GO6F 2012/0054173 Al 3/2012 Andrade GOGF 16/24568
. . 707/714
16/278 (2019.01); GO6F 16/9024 (2019.01); 2012/0059839 Al 32012 Andrade ef al.
GOG6F 16/90335 (2019.01); GO6F 16/2433 2012/0078951 Al 3/2012 Hsu et al.
(2019.01) 2012/0131139 Al 5/2012 Siripurapu et al.
(58) Field of Classification Search 201200198783 a1 02012 Nice etal
CPC GO6F 16/278; GO6F 16/24532; GO6F 5012/0259910 Al* 10/2012 Andrade ... GO6F 16/24568
16/248; GO6F 16/9024; GOGF 16/2433 709/201
See application file for complete search history. 2012/0310916 Al 12/2012 Abadi et al.
2012/0331333 Al 12/2012 Imaki
(56) References Cited 2013/0073586 Al 3/2013 Aubry et al.
2013/0080413 Al 3/2013 Chen et al.
U.S. PATENT DOCUMENTS 2013/0262502 Al 10/2013 Majeed et al.
2013/0347005 Al* 122013 Lamccccvvvvvenrne, GOGF 9/542
6,633,867 Bl 10/2003 Kraft et al. _ 719/318
6,829,764 B1* 12/2004 Cohen GO6F 9/5066 2014/0006474 Al 1/2014 White et al.
TISIOT 40095423 Al 42014 Siogd
; ipple
S %017 b1 2008 Lacomis 2014/0095444 Al* 42014 Deshmukh GOGF 16/24542
7,284,041 B2 10/2007 Nakatani et al. 707/661
7,546,284 Bl 6/2009 Martinez et al. 2014/0095445 Al 4/2014 Deshmukh et al.
8,190,738 B2 5/2012 Ruechle 2014/0095446 Al 4/2014 Deshmukh et al.
8,195,648 B2 6/2012 Zabback et al. 2014/0095471 Al 4/2014 Deshmukh et al.
8,260,803 B2 9/2012 Hsu et al. 2014/0095535 Al 4/2014 Deshmukh et al.
8,713,038 B2 4/2014 Cohen et al. 2014/0156683 Al 6/2014 De Castro
8,918,371 Bl 12/2014 Prikhodko et al. 2014/0172506 Al 6/2014 Parsell et al.
9,286,352 B2 3/2016 Park et al. 2014/0195559 Al 7/2014 Ko et al.
9,298,788 Bl 3/2016 Kekre et al. 2014/0324530 Al 10/2014 Thompson et al.
9,405,854 B2 8/2016 Jerzak et al. 2014/0372550 A1 12/2014 Said et al.
9,424,150 B2 8/2016 Jerzak et al. 2015/0094958 Al 4/2015 Al-Dossary et al.
9,535,761 B2 1/2017 Park et al. 2015/0103837 Al 4/2015 Duttaooooovvnne. HO041L 47/125
9,672,082 B2 6/2017 Thukkaram et al.] 370/401
9,697,262 B2 7/2017 Chandramouli et al. 2015/0121175 Al 42015 Schoning
9,712,645 B2 7/2017 De Castro et al. 2015/0169786 Al 6/2015 Jerzak et al.
9,894,147 Bl 2/2018 Zalpuri et al. 2015/0193295 Al 7/2015 Boger
9,900,360 B1* 2/2018 Aranya GOG6F 16/285 2015/0222696 Al 82015 Park et al.
9,934,263 Bl 4/2018 Black et al. 2015/0256435 Al 9/2015 Sum et al.
9,972,103 B2 5/2018 De Castro et al. 2015/0363464 Al 12/2015 Alves et al.
10,095,547 B1* 10/2018 Kulkarni GO6F 9/455 2015/0381712 Al 12/2015 De Castro et al.
10,217,256 B2 2/2019 de Castro Alves et al. 2016/0004751 Al 1/2016 Lafuente Alvarez et al.
10,552,161 B2 2/2020 Bao et al. 2016/0006779 Al 1/2016 Zhou et al.
10,789,250 B2 9/2020 Park et al. 2016/0034361 Al 2/2016 Block et al.
10,795,935 B2 10/2020 Bequet et al. 2016/0063080 Al 3/2016 Nano et al.
2002/0056004 Al 5/2002 Smith et al. 2016/0085772 Al 3/2016 Vermeulen et al.
2005/0027698 Al 2/2005 Collet et al. 2016/0085809 Al 3/2016 de Castro Alves et al.
2005/0119988 Al 6/2005 Buch et al. 2016/0085810 Al 3/2016 De Castro et al.
2005/0192921 Al 9/2005 Chaudhuri et al. 2016/0162787 Al 6/2016 Kumaran et al.
2006/0167869 Al 7/2006 Jones 2016/0171067 Al 6/2016 Acker
2006/0218123 Al 9/2006 Chowdhuri et al. 2016/0232230 Al 82016 Radivojevic
2007/0168154 Al 7/2007 Ericson 2016/0239272 A1~ 82016 Petri
2007/0250487 Al 10/2007 Reuther 2016/0283610 Al 9/2016 Simitsis et al.
2008/0016095 Al 1/2008 Bhatnagar et al. 2016/0306827 Al 10/2016 Dos Santos et al.
2008/0021914 Al 1/2008 Davies 2016/0328432 Al 112016 Raghunathan
2008/0072221 Al 3/2008 Chkodrov et al. 2017/0006135 Al 1/2017 Siebet et al.
2008/0098370 Al 4/2008 Fontoura et al. 2017/0024912 Al 1/2017 de Castro Alves et al.
2008/0133209 Al 6/2008 Bar-Or et al. 2017/0039245 Al 2/2017 Wholey, III et al.
2008/0133594 Al 6/2008 Fotinatos et al. 2017/0075693 Al 3/2017 Bishop et al.
2008/0165127 Al 7/2008 Eom 2017/0116050 A1l 4/2017 Thukkaram et al.
2008/0301135 Al 12/2008 Alves et al. 2017/0116210 Al 42017 Park et al.
2009/0070786 Al 3/2009 De Castro Alves et al. 2017/0116289 Al 4/2017 Deshmukh et al.
2009/0089078 Al 4/2009 Bursey 2017/0228253 Al 82017 Layman GO6F 11/30
2009/0106190 Al 4/2009 Srinivasan et al. 2017/0322838 Al 11/2017 Winters et al.
2009/0106214 Al 4/2009 Jain et al. 2017/0339203 Al 11/2017 Kekre et al.
2009/0125536 Al 5/2009 Lu et al. 2018/0074870 Al 3/2018 Park et al.

US 11,977,549 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0075046 Al
2018/0075099 Al
2018/0075100 Al
2018/0075107 Al
2018/0075125 Al
2018/0075163 Al
2018/0189389 Al
2018/0270164 Al

3/2018 Park et al.

3/2018 Park et al.

3/2018 Park et al.

3/2018 Park et al.

3/2018 Stiel et al.

3/2018 Park et al.

7/2018 Baldini Soares et al.
9/2018 Ahmed et al.

FOREIGN PATENT DOCUMENTS

CN 1739093 A 2/2006
CN 1739107 A 2/2006
CN 1997995 A 7/2007
CN 101957832 1/2011
CN 102687124 A 9/2012
CN 104471572 A 3/2015
CN 105308592 A 2/2016
CN 105723335 A 6/2016
JP 2003208323 7/2003
JP 2006338432 12/2006
JP 2006338432 A 12/2006
JP 2007513426 5/2007
JP 2008504601 A 2/2008
JP 2011039820 2/2011
JP 2011059967 3/2011
JP 2012063826 3/2012
JP 2013058221 3/2013
JP 2013058221 A 3/2013
JP 2016500168 1/2016
JP 2016504679 2/2016
WO 2014089190 6/2014
WO 2015191120 12/2015
WO 2017070354 4/2017
WO 2018052907 3/2018
WO 2018052908 3/2018
WO 2018053338 3/2018
WO 2018053343 3/2018
WO 2018169429 9/2018
WO 2018169430 9/2018

OTHER PUBLICATIONS

Distributed Systems—Event ordering in multi-stage processing,
Retrieved from the Internet: URL:http://cepdiot.blogspot.nl/2015/
09/dis tributed-systems-event-ordering-in.html, Sep. 30, 2015, 2
pages.

Map Reduce, Wikipedia, The Free Encyclopedia, 2016, 11 pages.
Pig (programming tool), Wikipedia, The Free Encyclopedia, 2016,
4 pages.

Spark SQL, Data Frames and Datasets Guide—Spark 2.0.0 Docu-
mentation, Retrieved from Internet:http://spark.apache.org:SO/docs/
2.0.0/sql-programming-guide.html https://web.archive.org/web/
20160902190135, Sep. 2, 2016, 29 pages.

U.S. Appl. No. 14/079,538, Final Office Action dated Nov. 16,2017,
26 pages.

U.S. Appl. No. 14/079,538, Final Office Action dated Jul. 27, 2016,
28 pages.

U.S. Appl. No. 14/079,538, Non-Final Office Action dated Mar. 31,
2017, 24 pages.

U.S. Appl. No. 14/079,538, Non-Final Office Action dated Oct. 22,
2015, 34 pages.

U.S. Appl. No. 14/302,03 1, Final Office Action dated Apr. 22,2015,
23 pages.

U.S. Appl. No. 14/302,031, Non-Final Office Action dated Aug. 27,
2014, 19 pages.

U.S. Appl. No. 14/302,031, Notice of Allowance dated Nov. 3,
2015, 19 pages.

U.S. Appl. No. 14/610,971, Non-Final Office Action dated Dec. 19,
2016, 10 pages.

U.S. Appl. No. 14/610,971, Notice of Allowance dated Apr. 12,
2017, 11 pages.

U.S. Appl. No. 14/861,687, Non-Final Office Action dated Oct. 11,
2017, 10 pages.

U.S. Appl. No. 14/866,512, Final Office Action dated Sep. 13, 2017,
25 pages.

U.S. Appl. No. 14/866,512, Non-Final Office Action dated Apr. 10,
2017, 24 pages.

U.S. Appl. No. 14/866,512, Notice of Allowance dated Feb. 15,
2018, 5 pages.

U.S. Appl. No. 15/095,766, First Action Interview Pilot Program
Pre-Interview Communication dated Feb. 28, 2017, 4 pages.
Alves et al., Getting Started with Oracle Complex Event Processing
11g, (chapters 1, 2, 4, S, 6), Packet Publishing, Mar. 26, 2013.
Anonymous, Spark Streaming Programming Guide—Spark 2.0.0
Documentation, Retrieved from Internet: http://spark.apache.org:80/
docs/2.0.0/streaming-programming-guide.html, https://web.archive.
org/web/20160901055439/, Sep. 1, 2016, 34 pages.

Arasu et al., CQL: A language for Continuous Queries over Streams
and Relations, Lecture Notes in Computer Science, vol. 2921, 2004,
pp. 1-19.

Arasu et al., The CQL Continuous Query Language: Semantic
Foundations and Query Execution, The VLDB Journal, vol. 15,
Issue 2, Jun. 2006, pp. 121-142.

Balkesen et al., Scalable Data Partitioning Techniques for Parallel
Sliding Window Processing over Data Streams, 8th International
Workshop on Data Management for Sensor Networks, Aug. 29,
2011, pp. 1-6.

Barga et al., Coping with Variable Latency and Disorder in Dis-
tributed Event Streams, 26th IEEE International Conference on,
Distributed Computing Systems Workshops, Jul. 4, 2006, 6 pages.
Bestehorn et al., Fault-tolerant Query Processing in Structured
P2P-systems, Distributed and Parallel Databases, vol. 28, Issue. 1,
Aug. 2010, pp. 33-66.

Brito et al,, Speculative Out-Of-Order Event Processing With
Software Transaction Memory, Proceedings of the Second Interna-
tional Conference on Distributed Event-Based Systems, Jul. 1,
2008, pp. 265-275.

Bulmofe et al., An analysis of dag-consistent distributed shared-
memory algorithms, SPAA 96 Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architectures, Jun. 24,
1996, pp. 297-308.

Chintapalli et al., Benchmarking Streaming Computation Engines:
Storm, Flink and Spark Streaming, IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 23,
2016, pp. 1789-1792.

Chinese Application No. 201380063379.4, Office Action dated Feb.
2, 2018, 13 pages.

Li et al., Event Stream Processing with Out-of-Order Data Arrival,
IEEE, Distributed Computing Systems Workshops, Jan. 1, 2007, 9
pages.

Mager et al., Distback: A Low-overhead Distributed Back-up Archi-
tecture With Snapshot Support, IEEE, Local & Metropolitan Area
Networks (LANMAN), Apr. 10, 2013, pp. 1-6.

Olston et al., Pig Latin: A Not-So-Foreign Language for Data
Processing, SIGMOD, ACM 978-1-60558-102, Jun. 9-12, 2008, 12
pages.

Or, Understanding Your Apache Spark Application Through Visu-
alization—The Databricks Blog, available at URL:https://databricks.
com/blog/2015/06/22/understanding-your-sparkapplication-through-
visualization html, Jun. 22, 2015, 6 pages.

Oracle Corporation, Oracle Fusion Middleware Developer’s guide
for Oracle Event Processing, 11g Release 2 (11.1.2.1.0), Retrieved
from Internet: https://docs.oracle.com/cd/E37115_01/dev.1112/
e27150.pdf, Feb. 1, 2015, pp. 1-79.

International Application No. PCT/RU2017/000135, International
Search Report and Written Opinion dated Sep. 6, 2017, 11 pages.
International Application No. PCT/RU2017/000136, International
Search Report and Written Opinion dated Sep. 6, 2017, 10 pages.
International Application No. PCT/US2013/073086, International
Preliminary Report on Patentability dated Jun. 18, 2015, 6 pages.
International Application No. PCT/US2013/073086, International
Search Report and Written Opinion dated Mar. 14, 2014, 9 pages.

US 11,977,549 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

International Application No. PCT/US2015/016346, International
Preliminary Report on Patentability dated Sep. 30, 2016, 6 pages.
International Application No. PCT/US2015/016346, International
Search Report and Written Opinion dated May 4, 2015, 10 pages.
International Application No. PCT/US2015/016346, Written Opin-
ion dated May 24, 2016, S pages.

International Application No. PCT/US2016/057924, International
Preliminary Report on Patentability dated Jan. 16, 2018, 11 pages.
International Application No. PCT/US2016/057924, International
Search Report and Written Opinion dated Jan. 17, 2017, 15 pages.
International Application No. PCT/US2016/057924, Written Opin-
ion dated Oct. 26, 2017, 7 pages.

International Application No. PCT/US2016/057924, Written Opin-
ion dated Sep. 27, 2017, 7 pages.

International Application No. PCT/US2017/051195, International
Search Report and Written Opinion dated Nov. 8, 2017, 14 pages.
International Application No. PCT/US2017/051196, International
Search Report and Written Opinion dated Nov. 7, 2017, 13 pages.
International Application No. PCT/US2017/051887, International
Search Report And Written Opinion dated Dec. 15, 2017, 12 pages.
International Application No. PCT/US2017/051897, International
Search Report and Written Opinion dated Dec. 15, 2017, 17 pages.
Sadana, Interactive Scatterplot for Tablets, AVI, Retrieved from
Internet: https://vimeo.com/97798460, 2014, 2 pages.

Salmon et al., Design Principles of a Stream-Based Framework for
Mobility Analysis, Geoinformatica, vol. 21, No. 2, Apr. 25, 2016,
pp. 237-261.

Yang et al., Map-Reduce-Merge, Simplified Relational Data Pro-
cessing on Large Clusters, 2007, 12 pages.

U.S. Appl. No. 15/700,862, Notice of Allowance dated Jan. 30,
2020, 16 pages.

U.S. Appl. No. 15/700,862, Notice of Allowance dated Mar. 17,
2020, 10 pages.

U.S. Appl. No. 15/706,329, Notice of Allowance dated Mar. 11,
2020, 10 pages.

U.S. Appl. No. 15/700,784, Non-Final Office Action dated Apr. 7,
2020, 14 pages.

Debbabi et al., Controlling Self-Organising Software Applications
with Archetypes, IEEE, Available online at: https://iecexplore.icee.
org/stamp/stamp.jsp?arnumber=6394112, Sep. 2012, 10 pages.
Herrmannsdoerfer et al., Model-Level Simulation for COLA, IEEE,
Available online at: https://dl.acm.org/doi/pdf/10.1109/MISE.2009.
5069895?download=true, May 2009, pp. 38-43.

Kodase et al., Transforming Structural Model to Runtime Model of
Embedded Software with Real-Time Constraints, IEEE, Available
online at: https://ieeexplore.icee.org/stamp/stamp.jsp? arnumber=
1186690, 2003, pp. 6.

Wang et al., Early-Stage Performance Modeling and Its Application
for Integrated Embedded Control Software Design, Available online
at: https://dl.acm.org/doi/pdf/10.1145/974043.97406 1 ?download=
true, Jan. 2004, pp. 110-114.

U.S. Appl. No. 14/079,538, Final Office Action dated Feb. 27,2019,
10 pages.

U.S. Appl. No. 14/079,538, Non-Final Office Action dated Jun. 20,
2018, 22 pages.

U.S. Appl. No. 15/700,862, Non-Final Office Action dated Nov. 9,
2018, 15 pages.

U.S. Appl. No. 15/700,862, Non-Final Office Action dated Jun. 10,
2019, 22 pages.

Chinese Application No. 201380063379 4, Office Action dated May
7, 2019, 10 pages (4 pages of Original Document and 6 pages of
English Translation).

Chinese Application No. 201380063379 .4, Office Action dated Oct.
9, 2018, 7 pages (3 pages of Original Document and 4 pages of
English Translation).

Chinese Application No. 201580001992.2, Office Action dated Mar.
5, 2019, 21 pages (11 pages of Original Document and 10 pages of
English Translation).

Chinese Application No. 201680053838 .4, Office Action dated May
29, 2019, 10 pages (4 pages of Original Document and 6 pages of
English Translation).

Chinese Application No. 201680053838.4, Office Action dated Jan.
16, 2019, 15 pages (7 pages of Original Document and 8 pages of
English Translation).

European Patent Application No. 13815232.7, Office Action dated
May 10, 2019, 5 pages.

European Patent Application No. 15708969.9, Office Action dated
May 16, 2019, 5 pages.

Japanese Application No. 2016-521684, Office Action dated Jan. 22,
2019, 6 pages (3 pages of Original Document and 3 pages of English
Translation).

Masud et al., A Multi-Partition Multi-Chunk Ensemble Technique to
Classify Concept-Drifting Data Streams, Advances in Knowledge
Discovery and Data Mining: 13th Pacific-Asia Conference, Avail-
able online at: https://www.utdallas.edu/~bhavani.thuraisingham/
Publications/Conference-Papers/DM/C184 A Multi-paititionMulti-
chunk Ensemble.pdf, Jul. 23, 2009, pp. 363-375.

U.S. Appl. No. 15/706,329, Non-Final Office Action dated Nov. 13,
2019, 15 pages.

U.S. Appl. No. 15/706,407, Non-Final Office Action dated Nov. 8,
2019, 11 pages.

European Application No. 19190843.3, Extended European Search
Report dated Nov. 20, 2019, 9 pages.

European Application No. 13815232.7, Summons to Attend Oral
Proceedings mailed on Aug. 8, 2019, 6 pages.

European Application No. 16794796.9, Office Action dated Nov. 14,
2019, 6 pages.

U.S. Appl. No. 14/079,538, Non-Final Office Action dated Apr. 7,
2020, 13 pages.

U.S. Appl. No. 15/701,019, Non-Final Office Action dated Jun. 15,
2020, 9 pages.

U.S. Appl. No. 15/706,226, Non-Final Office Action dated May 1,
2020, 48 pages.

U.S. Appl. No. 15/706,407, Final Office Action dated Apr. 2, 2020,
9 pages.

U.S. Appl. No. 15/706,407, Notice of Allowance dated Jun. 17,
2020, 8 pages.

U.S. Appl. No. 16/559,913, Non-Final Office Action dated Jun. 15,
2020, 8 pages.

U.S. Appl. No. 16/559,907, Non-Final Office Action dated Jul. 10,
2020, 27 pages.

U.S. Appl. No. 16/950,127, Notice of Allowance dated Aug. 26,
2022, 7 pages.

U.S. Appl. No. 15/701,019, Notice of Allowance dated Oct. 26,
2022, 12 pages.

China Patent Application CN201780057260.4 , Office Action dated
Sep. 28, 2022, 15 pages.

China Patent Application CN201780054700.0, Office Action dated
Oct. 9, 2022, 30 pages with translation.

Japan Patent Application No. JP2019-514315, Notice of Decision to
Grant, dated Dec. 14, 2021, 3 pages.

Japan Patent Application No. Application No. JP2019-511926,
Office Action, dated Oct. 5, 2021, 8 pages.

U.S. Appl. No. 15/700,784, Final Office Action dated Oct. 27, 2020,
14 pages.

U.S. Appl. No. 16/559,913, Notice of Allowance dated Oct. 27,
2020, 7 pages.

U.S. Appl. No. 17/173,044, Notice of Allowance dated Mar. 25,
2022, 10 pages.

Indian Patent IN201947004831, First Examination Report dated
Mar. 16, 2022, 8 pages.

U.S. Appl. No. 16/950,127, Non-Final Office Action dated Mar. 17,
2022, 29 pages.

U.S. Appl. No. 15/706,226 Final Office Action dated Apr. 27, 2022,
70 pages.

Japanese Patent Application JP2019-512634 Office Action, dated
May 18, 2021, 3 pages.

“Configuration—Spark 2.0.0 Documentation”, Anonymous, Avail-
able Online at https://web.archive.org/web/20160913085756/https://
spark.apache.org/docs/latest/configuration. html#compression-and-
serialization, Sep. 13, 2016, 14 pages.

US 11,977,549 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

European Patent Application No. EP17771969.7 Office Action
dated Jun. 19, 2020, 8 pages.

European Patent Application No. EP17771969.7 Summons to Attend
Oral Proceedings Mailed on Feb. 11, 2021, 9 pages.

European Patent Application No. 17771970.50ffice Action dated
Aug. 7, 2020, 9 pages.

Oracle Fusion Middleware Developer’s Guide for Oracle Event
Processing 11g, Release 1 (11.1.1.9), Oracle Corporation, 79 pages,
Feb. 2015.

“Overview of Creating Oracle Event Processing Applications”,
Oracle Fusion Middleware, Developer’s Guide for Oracle Event
Processing, Available online at: https://docs.oracle.com/cd/E68505_
01/eventprocessing/develop/introduction.htm, 2015, 23 pages.
European Patent Application EP17771970.5, Summons to Attend
Oral Proceedings, mailed on Apr. 28, 2021, 9 pages.

India Patent Application IN201947003017, First Examination Report,
dated Sep. 10, 2021, 6 pages.

India Patent Application IN201947003550, First Examination Report,
dated Dec. 20, 2021, 7 pages.

India Patent Application IN201947004748 First Examination Report,
dated Aug. 17, 2021, 8 pages.

International Application No. PCT/RU2017/000135, International
Preliminary Report on Patentability dated Sep. 26, 2019, 7 pages.
International Application No. PCT/RU2017/000136, International
Preliminary Report on Patentability dated Sep. 26, 2019, 7 pages.
International Application No. PCT/US2017/051887, International
Preliminary Report on Patentability dated Mar. 28, 2019, 8 pages.

International Application No. PCT/US2017/051897, International
Preliminary Report on Patentability dated Mar. 28, 2019, 9 pages.
U.S. Appl. No. 15/706,226, Non-Final Office Action dated Nov. 17,
2021, 73 pages.

U.S. Appl. No. 17/173,044, Non-Final Office Action dated Sep. 29,
2021, 35 pages.

U.S. Appl. No. 15/701,019, Final Office Action, dated Feb. 22,
2021, 9 pages.

U.S. Appl. No. 16/559,907, Notice of Allowance, dated Jan. 27,
2021, 18 pages.

“Developer’s Guide for Oracle Event Processing 11g Release 1
(11.1.1.9)”, Oracle Fusion Middleware, Oracle Corporation, Feb. 1,
2015, 914 pages.

“Spark Configuration”, 3.3.0 Documentation, Sep. 13, 2016, 16
pages.

U.S. Appl. No. 15/700,784, Non-Final Office Action, dated Oct. 19,
2022,13 pages.

CN201780056813 4, Office Action, dated Oct. 21, 2022, 13 pages.
U.S. Appl. No. 15/706,226 Notice of Allowance dated Nov. 21,
2022, 12 pages.

China Patent Application CN201780054700.0, Notice of Decision
to Grant dated Apr. 28, 2023, 4 pages.

Japan Patent Application JP2022-002960, Office Action dated Apr.
18, 2023, 4 pages.

U.S. Appl. No. 15/700,784, Notice of Allowance, dated Feb. 23,
2023, 5 pages.

U.S. Appl. No. 18/301,127, Non-Final Office Action dated Oct. 25,
2023, 13 pages.

* cited by examiner

US 11,977,549 B2

Sheet 1 of 31

May 7, 2024

U.S. Patent

a -~
{SINOILYOI ddY
DNISSIDONd
INIAT 1FOUV L

J

-
-
5L -

L Ol

BiT
{S)INIONT DNISSIOON
NVIRLS INAAT L3DUV]

907 30VIIUN]

9T
HOLVHINES OY(Q 1399]

4
v 441
HAZINLAO HOLVYHINID
TAA0ON REG e
FNLINNY FNLINNY
NOILYO ddy NOLLYOIddY
{ NOWROD J 4 NOWWNOD

01
INIDNT DONISSTOOY 4 NOLLYOddY

30 NOIs3Q
NOLLYOIday

yot
NOILYOfddY INIIND

A

Z01 {s)aoaaqg ¥asn

US 11,977,549 B2

Sheet 2 of 31

May 7, 2024

U.S. Patent

DUISUOEIBYIOWEANS

¢ Old

cleuueyy

J088920:d4 700

Zisuueyn

J8)depyzeainoguoNReMIOWEaNS

US 11,977,549 B2

Sheet 3 of 31

May 7, 2024

U.S. Patent

€ Old

0ge
ANIONT ONISSIOOUd
WYZRILS INSAZ 139UV}

8zt

ANIDNZ ONISS300Md
WYIHLS INIAT L2308V]

9z¢

INIONT ONISSE00Hd
WVYIHLS INTING 1OV]

$1€ INIONT ONISSIOOUd NOLLYOIddY

(743
NOILVOIddyY

40 NOWVINISIHLIY

1394}

43
SININODINOD

40 ©Y(Q INLINNY

7€ JOLvHEINID OY(Q 1398VL

208 301A3@Q ¥3sN

90¢
JOVAYILN] ¥3ISA NDISIQ NOLLYOddY

i

gie
HIZINLAO

T3COW FWLINNY
NOL YO IddY NOWNOD

9i¢
HOLVHINTD)
JIAOWN INILNNY
NOLLYDINddY NOWKOD

¥0¢
NOWLVIddY
ONISSI00 INIAS

0f¢
T4 NOLLYHNDIENOD AMIND

80¢

7ie
S34 ¥IHLO

ERE!
NOLLYHENOIINOD Nd3

US 11,977,549 B2

Sheet 4 of 31

May 7, 2024

U.S. Patent

v "9Old
GNNOGLAQ 13N00S |t—ro Z-TANNYHD | HOSSIO0Hd 10O 1t L-TANNVHD €1 ONNOEN] 13400S
oL¥y 80¥ —~ 90¥ —~ YOy —~ z0p —
ooy —¥

US 11,977,549 B2

Sheet 5 of 31

May 7, 2024

U.S. Patent

G 'Olid

109

-

Ad
NOILILYYd

- dvIA

806G \

90—

dviy

X3y
134008

P08

US 11,977,549 B2

Sheet 6 of 31

May 7, 2024

U.S. Patent

9 '9Old

700 301A43S ONISSIOOH INFAT

M 718 %NIS IN3AT T
229 WY3¥LS 1NdinQ

€9 ¥0SS3204d JOOW

\.

719 ddV ONISSIOONd IN3AT

m 010 INIS IN3AT T
079 WYFYLS LNdINO

009 —7

\.

810 ddy INIAT Q H 910 ddy INIAT

- 800 30dnos Ew>mw
819 WydLS 1naNp

= 008 308n0S Ew\m@
010 Wy3dlS 1ndN]

-t 00 304N0S Ew>mw
P19 WYY InaNp N

US 11,977,549 B2

Sheet 7 of 31

May 7, 2024

U.S. Patent

. "9Oi4

T7 WILSAS ONISSIOONd INIAT 431naLsiqg

301

S3AON ONILNGIWOD 40 ¥31SMTD

6N {| 8N

IN

9N 11 GN

PN

-
¢/ SLINS3Y 338800

ot

EN

L

1

_I»

¢N

IN

v0L
¥IAETY

901
SIN3AZ 40 S3HOLYE

ot

207 Wy3HLS IN3AT
L10dN] SNONNILNOD

U.S. Patent

May 7, 2024 Sheet 8 of 31

RECEIVE INFORMATION IDENTIFYING
AN APPLICATION

—~ 802

|

GENERATE A COMMON APPLICATION
RUNTIME MODEL OF THE APPLICATION
BASED ON THE INFORMATION

L~ 804

'

CONVERT THE COMMON
APPLICATION RUNTIME MODEL INTO
A FIRST GENERIC
REPRESENTATION OF THE
APPLICATION

BLOCKS REPRESENTED IN THE
COMMON APPLICATION RUNTIME
MODEL INTO A RUNTIME DAG
OF COMPONENTS OF THE
APPLICATION

-~ 806

CONVERT CONFIGURATION 1~ 808

'

TRANSMIT THE FIRST GENERIC
REPRESENTATION OF THE APPLICATION
TO A FIRST TARGET EVENT
PROCESSING APPLICATION FOR
EXECUTION BY THE FIRST TARGET
EVENT PROCESSING APPLICATION

—~— 810

FIG. 8

US 11,977,549 B2

800

U.S. Patent

May 7, 2024

Sheet 9 of 31

RECEIVE INFORMATION IDENTIFYING

AN APPLICATION

'

(GENERATE A COMMON APPLICATION
RUNTIME MODEL OF THE APPLICATION
BASED ON THE INFORMATION

'

CONVERT THE COMMON
APPLICATION RUNTIME MODEL INTO
A SECOND GENERIC
REPRESENTATION OF THE
APPLICATION

BLOCKS REPRESENTED IN THE
COMMON APPLICATION RUNTIME
MODEL INTO A TARGET
REPRESENTATION OF THE
APPLICATION

CONVERT CONFIGURATION {7}

'

TRANSMIT THE SECOND GENERIC
REPRESENTATION OF THE APPLICATION
TO A SECOND TARGET EVENT
PROCESSING APPLICATION FOR
EXECUTION BY THE SECOND TARGET
EVENT PROCESSING APPLICATION

FIG. 9

US 11,977,549 B2

P 900

-~ 902

L~ 904

-~ 906

- 908

—~— 910

US 11,977,549 B2

Sheet 10 of 31

May 7, 2024

U.S. Patent

0l Ol4

FO1 STAON ONILNGWOD 40 ¥3ismY

2001

WILSAS DNISS3008d IN3AZ d3LINERILSIF

A0d3(

800}
FNAOW
INIWAOT43Q ddy

Aw::
020t S3GON
(shysvy [HINHOM)
SHOLNOIXT
Pi0l
JAON ONILNGINO?) H3LSYIA
8¢0}
O4N| 1X3LNOD) ddy
9¢0}
YFINOIHOS NSV
9101
HIOUNY) | 701
F0UNOSTY | o3y ¥IINAIHIS OVQ
304N0S3Y
or

HOLYHINID) Ov(Q

OTGt
SIN3AT 40 HOLYY

5007
¥3AIZOTY

Y00} WY3¥ig INIAT
LNdN} SNONNILNOD

US 11,977,549 B2

Sheet 11 of 31

May 7, 2024

U.S. Patent

L "9l
P
ANIONT D0
SIdNL ST1dN}
10dino 10 HOLVE
S —— 2
8l
HIZIWIYES HOLYg Wmm_wo_wwm
%0019
gIzZIvIas
0Zit 4
HIZIVIYEG-3(Q HOLvg YIZIVINAG HOLYY
S31dNL
NdLno SFdNL
40 HOLvg
[§ U
ndno [+ = N o0 0

vott

cott
RENEGEN!

- e
S103r80 HOLVMENIO OY(d | 103rgQ
aad aay
40 HOLYY

U.S. Patent May 7, 2024 Sheet 12 of 31 US 11,977,549 B2

P 1200

START 1202

RECEIVE A BATCH OF EVENTS {1204

IDENTIFY AN ATTRIBUTE OF
THE EVENTS IN THE EVENT
BATCH

Y

IDENTIFY A DATA TYPE OF AN |~_1208
ATTRIBUTE

1206

DETERMINE A SECOND TYPE
OF DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES }~-1220

REPRESENTED BY THE
ATTRIBUTE

DETERMINE A FIRST TYPE OF
DATA COMPRESSION TO BE 1212
PERFORMED ON DATA VALUES
REPRESENTED BY THE
ATTRIBUTE

!

GENERATE A SET OF
SERIALIZED DATA VALUES FOR 1214
THE ATTRIBUTE

'

STORE THE FIRST SET OF

SERIALIZED DATA VALUES }~_1216

REPRESENTED BY THE FIRST
ATTRIBUTE

YES

ADDITIONAL ATTRIBUTES?

222

FIG. 12

U.S. Patent

May 7, 2024

STORE THE CURRENT BUFFER
OFFSET TO THE CURRENT
COLUMN NUMBER OF THE

COLUMN (ATTRIBUTE) WHOSE
DATA VALUES ARE BEING

PROCESSED

!

OBTAIN DATA TYPE OF THE
ATTRIBUTE{COLUMN)

Y

SCAN SET OF INPUT TUPLES

!

COMPUTE REQUIRED NUMBER
OF BITS TO STORE THE DATA
VALUES REPRESENTED BY THE
ATTRIBUTE

REQ NUMBER OF BITS >
HALF THE NUMBER OF BITS?

REQUIRED NUMBER OF BITS
DATA TYPE OF COLUMN?

o~ 1312
SIZE OF THE SET OF
UNIQUE VALUES S< (#INPUT TUPLES/
2)?

F/HM

STORE THE FIRST TYPE OF
DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES
REPRESENTED BY THE
ATTRIBUTE

l 1316

STORE THE MINIMUM DATA
VALUE OF THE ATTRIBUTE

‘ 1318
STORE THE NUMBER OF BITS

Sheet 13 of 31

L~ 1302

1304

-~ 1306

—~-1308

US 11,977,549 B2

o 1300

®
7

PERFORM THE PROCESSES AT
622 AND 624 FOR EACH DATA
YALUE OF THE COLUMN
WHOSE DATA VALUES ARE
BEING PROCESSED

—~-1320

!

OBTAIN THE INDEX FROM THE }~_1322

SET OF UNIQUE DATA VALUES

'

STORING THE INDEX TO THE
BUFFER

~-1324

Y

STORE THE (UNIQUE VALUE-
MINIMUM VALUE) FOR EACH
UNIQUE VALUE IN THE SET OF
TUPLES

!

RETURN THE SERIALIZED
BLOCK OF DATA

i~ 1326

—~-1328

l YES

PERFORM PRECISION
REDUCTION INDEX VALUE
COMPRESSION TECHNIQUE

L~ 1350

No

No

PERFORM STEPS 642-646 OF
THE PROCESS DESCRIBED IN
FIG. 6C

— 1340

FOR EACH MINIMUM VALUE

-®

'

PERFORM STEPS 632-638
OF THE PROCESS
DESCRIBED IN FIG. 6B

1330

FIG. 13A

U.S. Patent May 7, 2024 Sheet 14 of 31 US 11,977,549 B2

o 1350

STORE THE TYPE OF DATA
COMPRESSION TO BE
PERFORMED ON DATA VALUES 1332
REPRESENTED BY THE
ATTRIBUTE AS A PRECISION
REDUCTION COMPRESSION

'

STORE THE MINIMUM DATA | ~_1334
VALUE OF THE ATTRIBUTE

y

STORE THE NUMBER OF BITS 1336
PER DATAVALUE OF THE [
ATTRIBUTE

!

FOR EACH DATA VALUE OF
THE COLUMN, PERFORM A BIT }~-1338
COPY (VALUE-MINIMUM) ONLY

FOR THE REQUIRED BITS

FIG. 13B

Sheet 15 of 31 US 11,977,549 B2

U.S. Patent May 7, 2024

o 1360

STORE THE FIRST TYPE OF
DATA COMPRESSION TO BE
PERFORMED ON DATA VALUES 1342
REPRESENTED BY THE
ATTRIBUTE AS A GENERAL
COMPRESSION TYPE

'

COMPRESS THE ARRAY OF 1344
COLUMN VALUES USING A
STANDARD COMPRESSION

TECHNIQUE

'

STORE THE COMPRESSED 1346
BYTES OF THE DATA VALUES
REPRESENTED BY THE
ATTRIBUTE

FIG. 13C

U.S. Patent May 7, 2024 Sheet 16 of 31 US 11,977,549 B2

P 1370

STORE THE TYPE OF DATA
COMPRESSION TO BE
PERFORMED ON DATA VALUES | ~_ 1372
REPRESENTED 8Y THE
ATTRIBUTE AS A PRECISION
REDUCTION INDEX VALUE
COMPRESSION

!

COMPUTE DIFFERENCE VALUE 1374
SET {E.G VALUE — MINIMUM)

SCAN ALL THE VALUES N THE

DIFFERENCE VALUE SETT0 p—~1376
OBTAIN A SET OF

ENUMERATED VALUES

!

COMPUTE THE SET OF

INDICES FOR EACH DATA 1378
VALUE REPRESENTED BY THE

DIFFERENCE VALUE SET

'

COMPUTE THE MINIMUM AND —~-1380
MAXIMUM VALUE FROM THE
SET OF INDICES

Y

STORE THE MINIMUM DATA 1382
VALUE OF THE ATTRIBUTE

'

STORE THE NUMBER OF BITS |~_1384
PER DATA VALUE OF THE
INDEX VALUES

!

FOR EACH DATA VALUE OF 1386
THE COLUMN, PERFORM A BIT
COPY ONLY FOR THE
REQUIRED BITS

!

STORE THE SET OF
ENUMERATED DIFFERENCE 1388
VALUES

FIG. 13D

U.S. Patent

May 7, 2024 Sheet 17 of 31

STORE THE CURRENT BUFFER
OFFSET TO THE CURRENT
COLUMN NUMBER OF THE

COLUMN WHOSE DATA VALUES

ARE BEING PROCESSED

~-1402

!

OBTAIN THE DATA TYPE OF THE
COLUMN{ATTRIBUTE)

l

STORE THE TYPE OF DATA
COMPRESSION TO BE

~-1404

PERFORMED ON DATA VALUES | 1406

REPRESENTED BY THE
ATTRIBUTE AS A VALUE INDEX

COMPRESSION

|

SCAN ALL THE INPUT TUPLES TO
OBTAIN A SET OF ENUMERATED
VALUES FOR THE COLUMN

L~ 1408

:

COMPUTE THE SET OF INDICES
FOR EACH DATA VALUE
REPRESENTED BY THE COLUMN

~-1410

'

PERFORM THE PROCESSES AT
714 AND 718 FOR EACH DATA
VALUE STORED IN THE
COLUMN

~-1412

!

OBTAIN THE INDEX FROM THE
SET OF ENUMERATED DATA
VALUES

~—1414

!

STORE THE INDEX TO THE
BUFFER

L —~-1416

!

STORE THE SET OF
ENUMERATED VALUES

Y

BLOCK OF DATA

FIG. 14

~-1418

RETURN THE SERIALIZED ~-1420

US 11,977,549 B2

P 1400

US 11,977,549 B2

Sheet 18 of 31

May 7, 2024

U.S. Patent

Gl Old

006v 0 4¥X0 ‘0LX0 ‘2 ‘001

Xapul anjeA pue UoioNpPas Uoisinald — JUNoWY Japio : € uwnjo)

pasoj‘paddiys‘Buissascid‘uado GZ'/1'82'G'21'G'0°0 |

U0ISSaIdWIOD Xapul 8njeA — SNJBIG J9pJo © Z UNjo)

(@rx0)L‘L'0O‘L‘00°LO Z'0l |-

uonoNpPa. UoISINald — pj J8pPIo : | UWN|OD

00S¥ ‘0001 ‘0

X8pu| Jopeay

U.S. Patent

May 7, 2024 Sheet 19 of 31 US 11,977,549 B2

RECEIVE A SET OF SERIALIZED DATA
VALUES CORRESPONDING TO ONE OR
MORE ATTRIBUTES OF EVENTS IN A
BATCH OF EVENTS

-~ 1602

'

PROCESS THE SET OF
SERIALIZED DATA VALUES

-~ 1604

GENERATE A SET OF DE-
SERIALIZED DATA VALUES

-~ 1606

'

PROCESSING THE SET OF DE-

+—-1608

SERIALIZED DATA VALUES

l

TRANSMIT A SET OF QUTPUT EVENTS

L ~_1610

FIG. 16

U.S. Patent

May 7, 2024

Sheet 20 of 31

START) —~—1702

IDENTITY A COLUMN
{ATTRIBUTE) OF THE EVENTS

-~ 1704

v

OBTAIN THE BUFFER OFFSET
FROM THE BUFFER[COLUMN]

—~1706

v

READ THE COMPRESSION
TYPE

1708

VALUE INDEX
COMPRESSION?

PRECISION
REDUCTION
COMPRESSION?

PRECISION
REDUCTION VALUE INDEX
COMPRESSION?

US 11,977,549 B2

o 1700

1724

/_/

PERFORM THE PROCESS
DESCRIBED IN FIG. 11

1726

/./

PERFORM THE PROCESS
DESCRIBED IN OF FIG. 12

1728

PERFORM THE PROCESS
DESCRIBED IN OF FIG. 13

PERFORM THE PROCESSES
DESCRIBED IN OF FIG. 14

L1716

‘,No

YES i ~ 1718

RETURN THE ARRAY OF
TUPLES

-~ 1720

1722

END

FIG. 17

U.S. Patent

May 7, 2024

Sheet 21 of 31

READ THE INDEX VALUES TO
INDEX_VALUES

—~~1802

'

READ THE VALUE ARRAYS TO
VALUE_ARRAY

'

—~1804

FOR (VALUE_INDEX<-0 TO
NUMBER OF VALUES), PERFORM
THE OPERATIONS IN (1808-
1812)

~~1806

'

GET THE INDEX FROM
INDEX_VALUES[VALUE_INDEX]

—~—1808

.

GET THE VALUE FROM
VALUE_ARRAY[INDEX]

L ~_-1810

!

SET THE VALUE TO THE TUPLE
COLUMN OF
TUPLES[VALUE_INDEX]

~1812

FIG. 18

US 11,977,549 B2

a— 1800

U.S. Patent

May 7, 2024

Sheet 22 of 31

READ THE MINIMUM VALUE TO | 1902
BASE_VALUE
READ THE NUMBER OF BITS 1904
FOR (VALUE_INDEX<-0 TO
NUMBER OF VALUES), PERFORM |~ 1906
THE OPERATIONS IN (1908-
1910)
READ THE VALUEBITSTO | ~_ 1908
VALUE_BITS
SET THE
BASE_VALUE+VALUE BITS TO |~ 1910

THE TUPLE COLUMN OF
TUPLES|[VALUE_INDEX]

FIG. 19

US 11,977,549 B2

U.S. Patent May 7, 2024 Sheet 23 of 31 US 11,977,549 B2

o 2000

READ THE MINIMUM VALUE TO | 2002
BASE_VALUE

'

READ THE NUMBER OF BITS 2004

'

READ INDEX VALUES 70O 2006
INDEX_VALUES

'

READ VALUE ARRAYS TO L ~—2008
VALUE_ARRAY

FOR {4 «— 0 TO
VALUE_ARRAY.LENGTH), sE7 |—~-2010

THE VALUE_ARRAY[J] TO
VALUE_ARRAY[J] + BASE_VALUE

GET THE INDEX FROM ~2012
INDEX_VALUES[VALUE_INDEX]

'

GET THE VALUE FROM
VALUE_ARRAY[INDEX] 2014

'

SET THE VALUE TO THE TUPLE
COLUMN OF —~-2016
TUPLES[VALUE _INDEX]

FIG. 20

U.S. Patent May 7, 2024 Sheet 24 of 31 US 11,977,549 B2

FOR (=0 TO VALUES SIZE)
UNCOMPRESS THE BLOCK INTO ~-2102
AN ARRAY OF VALUES

l

SET THE VALUE IN THE ARRAY OF
VALUES TO THE TUPLE COLUMN
OF TUPLES FOR EACH DATA
VALUE CORRESPONDING TO THE
ATTRIBUTE IN THE SET OF INPUT
TUPLES

—~-2104

FIG. 21

US 11,977,549 B2

Sheet 25 of 31

,2024

May 7

U.S. Patent

Zlge O Jonasxy

0zced
aay 1o

012¢ g H0indexy

¥4
Y aay 100

80¢¢ V J0ndexy

o0zz —7

[c]244

2 subug 100

[aN44
g eubug 100

AXA4
v 8uibug 100

¢¢ 9Ol

juiodpuz Ddy

uedpu3 Ddy

wiodpuz Ody

odpug Ody

90¢¢ 48AIQ

0¢¢ J9INPaLdg Ase

0cc

Joyoes] subuz 100

U.S. Patent May 7, 2024 Sheet 26 of 31 US 11,977,549 B2

4 2300

L~ 2302
LAUNCH A FIRST CQL ENGINE
IN A CLUSTER OF CQL
ENGINES

!

SCHEDULE THE FIRST CQL
ENGINE TO PROCESS BATCH
OF CONTINUOUS STREAM OF
INPUT EVENTS RELATED TO 1~ 2304

APPLICATION

!

TRACK THE FIRST CQL 5
ENGINE TO BE ScHEDULED -~ 2306
FOR EXECUTION

'

Execute THE FIRST CQL

ENGINE TO PROCESS THE 4~ 2308

BATCH TO GENERATE A SET

OF OQUTPUT EVENTS RELATED
TO THE APPLICATION

FIG. 23

US 11,977,549 B2

Sheet 27 of 31

May 7, 2024

U.S. Patent

AR 74
@i 109[g0 yIm
sbeyg pauoniped

90VZ eueID
uonied inoyiim
abelg pauoniyed

OlLbc eusiuDd
uoniyed yim
obeig pauoniued

80v¢ sbeis
pauoiilie4~UuonN

sadi) sbes

v¢ "Old

afien swadidg

Y0P¢ uoieoyisse|D
abeig

cOve
1ezAjeuy auljedidg

Aend 10D
JO uoneoWISSE|D

suibug 100

SUCHBULIGISURT

ey
10 suladid nduy

e 9JN1091YIIY

U.S. Patent May 7, 2024 Sheet 28 of 31 US 11,977,549 B2

L~ 2502
DETERMINE A STAGE FOR A
CQL QuUERY BEING

PROCESSED BY EPS ~ 2500

'

DETERMINE STAGE TYPE | ~__ 2504
ASSOCIATED WITH STAGE

l

DETERMINE
TRANSFORMATION TO BE |~ 2506
COMPUTED FOR STAGED

'

DETERMINE CLASSIFICATION 2508
FOR CQL QUERY BASEDON | ™
RULES

:

MARK STAGE AS PARTITIONED
STAGE OR NON-PARTITIONED L~_ 2510
STAGE BY APPLYING
PARTITION CRITERIA

'

GENERATE TRANSFORMATION
N DAG OF PIPELINE BASED
ON CRITERIA

;

DETERMINE PARTITIONING
FOR STAGE BASED ON
TRANSFORMATION

-~ 25612

I~ 2514

FIG. 25

U.S. Patent May 7, 2024 Sheet 29 of 31 US 11,977,549 B2

P 2600

DATABASE
2616

DATABASE
2614

COMPONENT
2618

COMPONENT
2622

SERVER 2612

| SO

COMPONENT
2620

NETWORK(S)
2610

FIG. 26

US 11,977,549 B2

Sheet 30 of 31

May 7, 2024

U.S. Patent

L¢ Ol

Z8 L7 SAVNNYIS GIAVHS TWNHTFIN

0% /¢ SI0BNOSTY FANLONULSYHAN

¥vic
I0IAYIS

mwoSom&/

80Z¢

8¢/ INFWIOVYNYIN ALILNIG]

301A3Q

9712 ONIHOLINOI ONY
INSNFDOVYNYIN 8300

J

9vld \i%i

N ¥eLT |

183N03Y I0AMIS

01z
{SIHHOMLIN

il
JOIANES

Q30IAOYd /

IN3ND

90.¢

30IA3g

4474 7AK4
{ NOILYYLSIHONO ¥3QI0 w ONINCISIAOHA ¥3AH0
’ iz ’
0rLe \»
0c2]]k)
L INIWIDYNYIN H3TE0] w ISYEVIV(] H3AHD
88.2 ’
9812 \/»
9112 Y2 F4r4
N ano1p N ancty 1N anoin

N PE/7 1S3NOIY \

A0IAM3S

v.C
30iAY3S

A3AIA0Hd

NGO

v0IZ

!

30IA3QJ

7072 W3LSAS TUNLONYLSYHANI ANOTD

‘ T
“~ pe/z 1S3N03Y 303G

N3

US 11,977,549 B2

Sheet 31 of 31

May 7, 2024

U.S. Patent

AA

0082

8¢ 9Oid
818 W3LSASENG 39VHOLS
2¢9¢ VIaaw
918¢ JOVHOLS T1aVavaY
W3LSAS ONILY¥3O MALNANOS)
0€8¢ 8¢8¢ 9c8c V187
sawvadn | Jewvauig| | soaag 190 WYo0Ng
nang | inang vivQ
e « « X4 0c8e
SWYHOO0M NOLLYOITddY Qv VIGI
— — JOVHOLS 31BYavVIY
$¢8¢ 018¢ ABONIN W3LSAS HILNGHOD
WILSASENS SNOLLYOINNINNOD)

2082 — — —
S 908¢ LINN $£82 LINA ¢£8¢ LN
808¢ NOLLYYTTI00Y ONISSIV0Yd SNS ONISSIN0Nd 8BNS

WALSASENS O/ ONISSI0N
3novo | | 3Hovo IHOVD)
3407 307 3507
Y082
1IN ONISSTOON

US 11,977,549 B2

1
CLUSTERING EVENT PROCESSING
ENGINES

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a non-provisional application of
and claims the benefit and priority under 35 U.S.C. 119(e) of
U.S. Provisional Application No. 62/395,216, filed Sep. 15,
2016 entitled “FAST SERIALIZATION OF TUPLE
BATCHES,” the entire contents of which are incorporated
herein by reference for all purposes.

This application is also related to U.S. application Ser.
No. 15/700,784, filed on Sep. 11, 2017, entitled “DATA
SERIALIZATION IN A DISTRIBUTED EVENT PRO-
CESSING SYSTEM™; U.S. application Ser. No. 15/700,
862, filed on Sep. 11, 2017, entitled “GRAPH GENERA-
TION FOR A DISTRIBUTED EVENT PROCESSING
SYSTEM?”; and U.S. application Ser. No. 15/701,019, filed
on Sep. 17, 2017, entitled “DATA PARTITIONING AND
PARALLELISM IN A DISTRIBUTED EVENT PROCESS-
ING SYSTEM.” The entire contents of each application is
hereby incorporated by reference as if fully set forth herein,
under 35 U.S.C. § 120.

BACKGROUND

In traditional database systems, data is stored in one or
more databases usually in the form of tables. The stored data
is then queried and manipulated using a data management
language such as a structured query language (SQL). For
example, a SQL query may be defined and executed to
identify relevant data from the data stored in the database. A
SQL query is thus executed on a finite set of data stored in
the database. Further, when a SQL query is executed, it is
executed once on the finite data set and produces a finite
static result. Databases are thus best equipped to run queries
over finite stored data sets.

A number of modern applications and systems however
generate data in the form of continuous data or event streams
instead of a finite data set. Examples of such applications
include but are not limited to sensor data applications,
financial tickers, network performance measuring tools (e.g.
network monitoring and traffic management applications),
clickstream analysis tools, automobile traffic monitoring,
and the like. Such applications have given rise to a need for
a new breed of applications that can process the data
streams. For example, a temperature sensor may be config-
ured to send out temperature readings.

Managing and processing data for these types of event
stream-based applications involves building data manage-
ment and querying capabilities with a strong temporal focus.
A different kind of querying mechanism is needed that
comprises long-running queries over continuous unbounded
sets of data. While some vendors now offer product suites
geared towards event streams processing, these product
offerings still lack the processing flexibility required for
handling today’s event processing needs.

SUMMARY

Techniques are provided (e.g., a method, a system, non-
transitory computer-readable medium storing code or
instructions executable by one or more processors) for
managing a Continuous Query Language (CQL) engine. In
an embodiment, CQL engine tracking engine is disclosed.
The system is configured to launch, using the CQL engine

10

15

20

25

30

35

40

45

50

55

60

65

2

tracking engine, a first CQL engine in a cluster of CQL
engines. The system is also configured to schedule, using the
CQL engine tracking engine, the first CQL engine to process
a batch of a continuous stream of input events related to an
application. The system can also track, using the CQL
engine tracking engine, the first CQL engine to be scheduled
for execution and/or execute, using the CQL engine tracking
engine, the first CQL engine to process the batch of the
continuous stream of input events to generate a set of output
events related to the application.

In certain embodiments, a state of the first CQL engine
comprises at least one of an inactive state, a scheduled state,
or an active state. In some examples, the system also
determines a total number of CQL engines to launch in the
cluster and the first CQL engine may be one of the CQL
engines in the cluster. Additionally, the system may provide
a long running task, for each CQL engine of the CQL
engines in the cluster, to a task scheduler and/or instruct the
task scheduler to execute each of the long running tasks to
executors, wherein each executor of the executors imple-
ments each of the CQL engines in the cluster. In some cases,
the CQL engine tracking engine is implemented by a driver
and the first CQL engine is implemented by an executor.

The techniques described above and below may be imple-
mented in a number of ways and in a number of contexts.
Several example implementations and contexts are provided
with reference to the following figures, as described below
in more detail. However, the following implementations and
contexts are but a few of many.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts aspects of an example event processing
system architecture that provides an environment by which
an event processing application can be processed for differ-
ent execution environments, in accordance with an embodi-
ment of the present disclosure.

FIG. 2 is a graphical representation of an Event Process-
ing Network (EPN) for an event processing application in
accordance with an embodiment of the present disclosure.

FIG. 3 is a simplified block diagram illustrating the
components of an application processing engine, in accor-
dance with an embodiment of the present disclosure.

FIG. 4 is an example of a representation of a ‘common
application runtime model’ generated by the common appli-
cation model generator, in accordance with an embodiment
of the present disclosure.

FIG. 5 is an example of a runtime Directed Acyclic Graph
(DAG) of components generated by a DAG generator, in
accordance with an embodiment of the present disclosure.

FIG. 6 is a simplified high level diagram of an event
processing system that may incorporate an embodiment of
the present disclosure.

FIG. 7 is a block diagram illustrating the components of
a distributed event processing system, in accordance with an
embodiment of the present disclosure.

FIG. 8 is an example flow diagram of a process that
describes a set of operations for processing an event pro-
cessing application to generate a common application run-
time model of the application, in accordance with one
embodiment of the present disclosure.

FIG. 9 is an example flow diagram of a process that
describes a set of operations for processing an event pro-
cessing application to generate a common application run-
time model of the application, in accordance with another
embodiment of the present disclosure.

US 11,977,549 B2

3

FIG. 10 is a simplified block diagram illustrating the
components of a distributed event processing system, in
accordance with an embodiment of the present disclosure.

FIG. 11 is a high level data flow of a process for
performing the serialization and de-serialization of data in a
Resilient Distributed Dataset (RDD)object, in accordance
with an embodiment of the present disclosure.

FIG. 12 is an example flow diagram of a process that
describes a set of operations by which data comprised in a
batch of events can be serialized, in accordance with an
embodiment of the present disclosure.

FIG. 13A is an example flow diagram of a process that
describes a set of operations for generating a set of serialized
data values for a numeric attribute of an event, in accordance
with an embodiment of the present disclosure.

FIG. 13B is an example flow diagram of a process that
describes a set of operations for generating a set of serialized
data values for a numeric attribute of an event using the
precision reduction compression technique, in accordance
with an embodiment of the present disclosure.

FIG. 13C is an example flow diagram of a process that
describes a set of operations for generating a set of serialized
data values for a numeric attribute of an event using the
regular compression technique, in accordance with an
embodiment of the present disclosure.

FIG. 13D is an example flow diagram of a process that
describes a set of operations for generating a set of serialized
data values for a numeric attribute of an event using the
precision reduction value index compression technique, in
accordance with an embodiment of the present disclosure.

FIG. 14 is an example flow diagram of a process that
describes a set of operations to generate a set of serialized
data values for a non-numeric attribute of an event, in
accordance with an embodiment of the present disclosure.

FIG. 15 is an example of the manner in which event
stream data can be serialized based on determining the data
type of the attributes of the events in the event stream, in
accordance with an embodiment of the present disclosure.

FIG. 16 is an example flow diagram of a process that
describes a set of operations by which data comprised in a
batch of events can be de-serialized, in accordance with an
embodiment of the present disclosure.

FIG. 17 is an example flow diagram of a process that
describes a set of operations to generate a set of de-serialized
data values for one or more attributes of events in a batch of
events, in accordance with an embodiment of the present
disclosure.

FIG. 18 is an example flow diagram of a process describ-
ing a set of operations for generating a set of de-serialized
data values corresponding to a numeric attribute or a non-
numeric attribute of events in a batch of events using the
value index compression, in accordance with an embodi-
ment of the present disclosure.

FIG. 19 is an example flow diagram of a process describ-
ing a set of operations for generating a set of de-serialized
data values corresponding to a numeric attribute of events in
a batch of events using the precision reduction compression
technique, in accordance with an embodiment of the present
disclosure.

FIG. 20 is an example flow diagram of a process describ-
ing a set of operations for generating a set of de-serialized
data values corresponding to a numeric attribute of events in
a batch of events, in accordance with an embodiment of the
present disclosure.

FIG. 21 is an example flow diagram of a process describ-
ing a set of operations for generating a set of de-serialized

10

15

20

25

30

35

40

45

50

55

60

65

4

data values corresponding to a numeric attribute of events in
a batch of events, in accordance with an embodiment of the
present disclosure.

FIG. 22 is a simplified block diagram illustrating the
components of a distributed event processing system con-
figured for scheduling and managing multiple CEP engines,
in accordance with an embodiment of the present disclosure.

FIG. 23 is an example flow diagram of a process describ-
ing a set of operations for scheduling and managing multiple
CEP engines, in accordance with an embodiment of the
present disclosure.

FIG. 24 is a simplified block diagram illustrating the
components of a distributed event processing system con-
figured for data partitioning and parallelism, in accordance
with an embodiment of the present disclosure.

FIG. 25 is an example flow diagram of a process describ-
ing a set of operations for automatically partitioning and
parallelizing data using query clauses and object IDs, in
accordance with an embodiment of the present disclosure.

FIG. 26 depicts a simplified diagram of a distributed
system for implementing an embodiment of the present
disclosure.

FIG. 27 is a simplified block diagram of one or more
components of a system environment by which services
provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with
an embodiment of the present disclosure.

FIG. 28 illustrates an example computer system that may
be used to implement an embodiment of the present disclo-
sure.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Overview of Complex Event Processing (CEP)

Complex Event Processing (CEP) provides a modular
platform for building applications based on an event-driven
architecture. At the heart of the CEP platform is the Con-
tinuous Query Language (CQL), which allows applications
to filter, query, and perform pattern-matching operations on
streams of data using a declarative, SQL-like language.
Developers may use CQL in conjunction with a lightweight
Java programming model to write applications. Other plat-
form modules include a feature-rich IDE, management con-
sole, clustering, distributed caching, event repository, and
monitoring, to name a few.

As event-driven architecture and complex event process-
ing have become prominent features of the enterprise com-
puting landscape, more and more enterprises have begun to
build mission-critical applications using CEP technology.
Today, mission-critical CEP applications can be found in
many different industries. For example, CEP technology is
being used in the power industry to make utilities more
efficient by allowing them to react instantaneously to
changes in demand for electricity. CEP technology is being
used in the credit card industry to detect potentially fraudu-
lent transactions as they occur in real time. The list of
mission-critical CEP applications continues to grow. The use

US 11,977,549 B2

5

of CEP technology to build mission-critical applications has
led to a need for CEP applications to be made highly
available and fault-tolerant.

Today’s Information Technology (IT) environments gen-
erate continuous streams of data for everything from moni-
toring financial markets and network performance, to busi-
ness process execution and tracking RFID tagged assets.
CEP provides a rich, declarative environment for developing
event processing applications to improve the effectiveness of
business operations. CEP can process multiple event streams
to detect patterns and trends in real time and provide
enterprises the necessary visibility to capitalize on emerging
opportunities or mitigate developing risks.

A continuous stream of data (also referred to as an event
stream) may include a stream of data or events that may be
continuous or unbounded in nature with no explicit end.
Logically, an event or data stream may be a sequence of data
elements (also referred to as events), each data element
having an associated timestamp. A continuous event stream
may be logically represented as a bag or set of elements (s,
T), where “s” represents the data portion, and “T” is in the
time domain. The “s” portion is generally referred to as a
tuple or event. An event stream may thus be a sequence of
time-stamped tuples or events.

In some aspects, the timestamps associated with events in
a stream may equate to a clock time. In other examples,
however, the time associated with events in an event stream
may be defined by the application domain and may not
correspond to clock time but may, for example, be repre-
sented by sequence numbers instead. Accordingly, the time
information associated with an event in an event stream may
be represented by a number, a timestamp, or any other
information that represents a notion of time. For a system
receiving an input event stream, the events arrive at the
system in the order of increasing timestamps. There could be
more than one event with the same timestamp.

In some examples, an event in an event stream may
represent an occurrence of some worldly event (e.g., when
atemperature sensor changed value to a new value, when the
price of a stock symbol changed) and the time information
associated with the event may indicate when the worldly
event represented by the data stream event occurred.

For events received via an event stream, the time infor-
mation associated with an event may be used to ensure that
the events in the event stream arrive in the order of increas-
ing timestamp values. This may enable events received in
the event stream to be ordered based upon their associated
time information. In order to enable this ordering, time-
stamps may be associated with events in an event stream in
a non-decreasing manner such that a later-generated event
has a later timestamp than an earlier-generated event. As
another example, if sequence numbers are being used as
time information, then the sequence number associated with
a later-generated event may be greater than the sequence
number associated with an earlier-generated event. In some
examples, multiple events may be associated with the same
timestamp or sequence number, for example, when the
worldly events represented by the data stream events occur
at the same time. Events belonging to the same event stream
may generally be processed in the order imposed on the
events by the associated time information, with earlier
events being processed prior to later events.

The time information (e.g., timestamps) associated with
an event in an event stream may be set by the source of the
stream or alternatively may be set by the system receiving
the stream. For example, in certain embodiments, a heart-
beat may be maintained on a system receiving an event

10

15

20

25

30

35

40

45

50

55

60

65

6

stream, and the time associated with an event may be based
upon a time of arrival of the event at the system as measured
by the heartbeat. It is possible for two events in an event
stream to have the same time information. It is to be noted
that while timestamp ordering requirement is specific to one
event stream, events of different streams could be arbitrarily
interleaved.

An event stream has an associated schema “S,” the
schema comprising time information and a set of one or
more named attributes. All events that belong to a particular
event stream conform to the schema associated with that
particular event stream. Accordingly, for an event stream (s,
T), the event stream may have a schema S’ as
(<time_stamp>, <attribute(s)>), where <attributes> repre-
sents the data portion of the schema and can comprise one
or more attributes. For example, the schema for a stock
ticker event stream may comprise attributes <stock sym-
bol>, and <stock price>. Each event received via such a
stream will have a time stamp and the two attributes. For
example, the stock ticker event stream may receive the
following events and associated timestamps:

(<timestamp_N>, <NVDA 4>)

(<timestamp_N+1>, <ORCL,62>)

(<timestamp_N+2>, <PCAR,38>)

(<timestamp_N+3>, <SPOT, 53>)

(<timestamp_N+4>, <PDCO,44>)

(<timestamp_N+5>, <PTEN,50>)

In the above stream, for stream element (<timestamp_N+
1>, <ORCL,62>), the event is <ORCL,62> with attributes
“stock symbol” and “stock value.” The timestamp associ-
ated with the stream element is “timestamp_N+1.” A con-
tinuous event stream is thus a flow of events, each event
having the same series of attributes.

As noted, a stream may be the principle source of data that
CQL queries may act on. A stream S may be a bag (also
referred to as a “multi-set”) of elements (s, T), where “s” is
in the schema of S and “T” is in the time domain. Addi-
tionally, stream elements may be tuple-timestamp pairs,
which can be represented as a sequence of timestamped
tuple insertions. In other words, a stream may be a sequence
of timestamped tuples. In some cases, there may be more
than one tuple with the same timestamp. In addition, the
tuples of an input stream may be requested to arrive at the
system in order of increasing timestamps. Alternatively, a
relation (also referred to as a “time varying relation,” and not
to be confused with “relational data,” which may include
data from a relational database) may be a mapping from the
time domain to an unbounded bag of tuples of the schema R.
In some examples, a relation may be an unordered, time-
varying bag of tuples (i.e., an instantaneous relation). In
some cases, at each instance of time, a relation may be a
bounded set. It can also be represented as a sequence of
timestamped tuples that may include insertions, deletes,
and/or updates to capture the changing state of the relation.
Similar to streams, a relation may have a fixed schema to
which each tuple of the relation may conform. Further, as
used herein, a continuous query may generally be capable of
processing data of (i.e., queried against) a stream and/or a
relation. Additionally, the relation may reference data of the
stream.

Event Processing Applications

The quantity and speed of both raw infrastructure and
business events is exponentially growing in IT environ-
ments. Whether it is streaming stock data for financial
services, streaming satellite data for the military or real-time
vehicle-location data for transportation and logistics busi-
nesses, companies in multiple industries must handle large

US 11,977,549 B2

7

volumes of complex data in real-time. In addition, the
explosion of mobile devices and the ubiquity of high-speed
connectivity adds to the explosion of mobile data. At the
same time, demand for business process agility and execu-
tion has also grown. These two trends have put pressure on
organizations to increase their capability to support event-
driven architecture patterns of implementation. Real-time
event processing requires both the infrastructure and the
application development environment to execute on event
processing requirements. These requirements often include
the need to scale from everyday use cases to extremely high
velocities of data and event throughput, potentially with
latencies measured in microseconds rather than seconds of
response time. In addition, event processing applications
must often detect complex patterns in the flow of these
events.

The Oracle Stream Analytics platform targets a wealth of
industries and functional areas. The following are some use
cases:

Telecommunications: Ability to perform real-time call
detail (CDR) record monitoring and distributed denial of
service attack detection.

Financial Services: Ability to capitalize on arbitrage
opportunities that exist in millisecond or microsecond win-
dows. Ability to perform real-time risk analysis, monitoring
and reporting of financial securities trading and calculate
foreign exchange prices.

Transportation: Ability to create passenger alerts and
detect baggage location in case of flight discrepancies due to
local or destination-city weather, ground crew operations,
airport security, etc.

Public Sector/Military: Ability to detect dispersed geo-
graphical enemy information, abstract it, and decipher high
probability of enemy attack. Ability to alert the most appro-
priate resources to respond to an emergency.

Insurance: Ability to learn and to detect potentially
fraudulent claims.

IT Systems: Ability to detect failed applications or servers
in real-time and trigger corrective measures.

Supply Chain and Logistics: Ability to track shipments in
real-time and detect and report on potential delays in arrival.
Real Time Streaming & Event Processing Analytics

With exploding data from increased number of connected
devices, there is an increase in large volumes of dynamically
changing data; not only the data moving within organiza-
tions, but also outside the firewall. High-velocity data brings
high value, especially to volatile business processes. How-
ever, some of this data loses its operational value in a short
time frame. Big Data allows the luxury of time in processing
for actionable insight. Fast Data, on the other hand, requires
extracting the maximum value from highly dynamic and
strategic data. It requires processing much faster and facili-
tates taking timely action as close to the generated data as
possible. The Oracle Stream Analytics platform delivers on
Fast Data with responsiveness. Oracle Edge Analytics
pushes processing to the network edge, correlating, filtering
and analyzing data for actionable insight in real-time.

The Oracle Stream Analytics platform provides ability to
join the incoming streaming events with persisted data,
thereby delivering contextually aware filtering, correlation,
aggregation and pattern matching. It delivers lightweight,
out of the box adapters for common event sources. It also
provides an easy-to-use adapter framework for custom
adapter development. With this platform, organizations can
identify and anticipate opportunities, and threats represented
by seemingly unrelated events. Its incremental processing
paradigm can process events using a minimum amount of

30

35

40

45

55

8

resources providing extreme low latency processing. It also
allows it to create extremely timely alerts, and detect miss-
ing or delayed events immediately, such as the following:

Correlated events: If event A happens, event B almost
always follows within 2 seconds of it.

Missing or Out-of-Sequence events: Events A, B, C
should occur in order. C is seen immediately after A, without
B.

Causal events: Weight of manufactured items is slowly
trending lower or the reading falls outside acceptable norms.
This signals a potential problem or future maintenance need.

In addition to real-time event sourcing, the Oracle Stream
Analytics platform design environment and runtime execu-
tion supports standards-based, continuous query execution
across both event streams and persisted data stores like
databases and high performance data grids. This enables the
platform to act as the heart of intelligence for systems
needing answers in microseconds or minutes to discern
patterns and trends that would otherwise go unnoticed.
Event Processing use cases require the speed of in-memory
processing with the mathematical accuracy and reliability of
standard database SQL. This platform queries listen to
incoming event streams and execute registered queries con-
tinuously, in-memory on each event, utilizing advanced,
automated algorithms for query optimization. While based
on an in-memory execution model, however, this platform
leverages standard ANSI SQL syntax for query develop-
ment, thus ensuring accuracy and extensibility of query
construction. This platform is fully compliant with the ANSI
SQL ’99 standard and was one of the first products available
in the industry to support ANSI SQL reviewed extensions to
standard SQL for real-time, continuous query pattern match-
ing. The CQL engine optimizes the execution of queries
within a processor leaving the developer to focus more on
business logic rather than optimization.

The Oracle Stream Analytics platform allows for both
SQL and Java code to be combined to deliver robust event
processing applications. Leveraging standard industry ter-
minology to describe event sources, processors, and event
output or sinks, this platform provides a meta-data driven
approach to defining and manipulating events within an
application. Its developers use a visual, directed-graph can-
vas and palette for application design to quickly outline the
flow of events and processing across both event and data
sources. Developing the flow through drag and drop mod-
eling and configuration wizards, the developer can then
enter the appropriate metadata definitions to connect design
to implementation. When necessary or preferred, with one
click, developers are then able to drop into custom Java code
development or use the Spring® framework directly to code
advanced concepts into their application.

Event driven applications are frequently characterized by
the need to provide low and deterministic latencies while
handling extremely high rates of streaming input data. The
underpinning of the Oracle Stream Analytics platform is a
lightweight Java container based on an OSGi® backplane. It
contains mature components from the WebLogic JEE appli-
cation server, such as security, logging and work manage-
ment algorithms, but leverages those services in a real-time
event-processing environment. An integrated real-time ker-
nel provides unique services to optimize thread and memory
management supported by a JMX framework enabling the
interaction with the container for performance and configu-
ration. Web 2.0 rich internet applications can communicate
with the platform using the HTTP publish and subscribe
services, which enables them to subscribe to an application
channel and have the events pushed to the client. With a

US 11,977,549 B2

9

small footprint this platform is a lightweight, Java-based
container, that delivers faster time-to-production and lower
total cost of ownership.

The Oracle Stream Analytics platform has the ability to
handle millions of events per second with microseconds of
processing latencies on standard, commodity hardware or
optimally with Oracle Exalogic and its portfolio of other
Engineered Systems. This is achieved through a complete
“top-down” layered solution, not only with a design focus on
high performance event processing use cases, but also a tight
integration with enterprise-class real-time processing infra-
structure components. The platform architecture of perfor-
mance-oriented server clusters focuses on reliability, fault
tolerance and extreme flexibility with tight integration into
the Oracle Coherence technology and enables the enterprise
to predictably scale mission-critical applications across a
data grid, ensuring continuous data availability and trans-
actional integrity.

In addition, this platform allows for deterministic pro-
cessing, meaning the same events can be fed into multiple
servers or the same server at different rates achieving the
same results each time. This enables incredible advantages
over systems that only rely on the system clock of the
running server.

The techniques described above and below may be imple-
mented in a number of ways and in a number of contexts.
Several example implementations and contexts are provided
with reference to the following figures, as described below
in more detail. However, the following implementations and
contexts are but a few of many.

Distributed Event Processing

In certain situations, users of an enterprise may wish to
identify and respond to significant events that occur within
the enterprise quickly so that they can take immediate action
upon the identification of such events. For example, a user
may wish to identify significant events that relate to sales
orders that have crossed a threshold within the enterprise. In
such a scenario, a user may submit one or more queries to
a data store/data warehouse and wish to view the results of
a query in less than a few seconds rather than in minutes or
hours so that the user can take immediate action if an
anomaly is detected. Real-time data processing and data
analytics may be used by enterprises to process event
streams in real-time for more reactive decision making and
to take immediate action for those times when acting within
seconds or minutes is significant.

In accordance with an embodiment of the present disclo-
sure, a distributed event processing system is disclosed that
can process or query very large quantities of data relatively
quickly and in real-time using a combination of CEP and
distributed event stream processing. The distributed event
processing system can perform real-time processing of data
streams by executing queries (e.g., CQL queries) against the
data streams (e.g., live feeds) that are received continuously.
The distributed event processing system can receive one or
more continuous data streams, register a continuous query
against the data streams, and continuously execute the query
as new data appears in the streams. Since this type of
continuous query is long-running, the distributed event
processing system can provide a continuous stream of
results to a user.

In certain embodiments, the disclosed distributed event
processing system may be configured to deploy and execute
applications (e.g., event processing applications) by distrib-
uting the execution of an application on a cluster of
machines within the system. An event processing applica-
tion described herein may include a set of rules that may be

10

15

20

25

30

35

40

45

50

55

60

10

expressed in the form of continuous queries that are used to
process input streams. A continuous query may comprise
instructions (e.g., logic) that identify the processing to be
performed for received events including what events are to
be selected as notable events and output as results of the
query processing. Continuous queries may typically perform
filtering and aggregation functions to discover and extract
notable events from the input event streams. An application
can be configured to listen to one or more input event
streams, execute logic (e.g., a query) for selecting one or
more notable events from the one or more input event
streams, and output the selected notable events via one or
more output event streams.

For instance, an event processing application may com-
prise a word counting application that counts a quantity of
references to a particular word within a set of input texts.
Such an application can include, for example, continuous
queries that read a set of texts and count the number of times
that each word appears in each text. The input text may
contain, for example, short messages received in the stream
from an on-line application, such as Facebook® or Twit-
ter®. As noted above, continuous queries may be configured
using the CQL language. For instance, to specify a word-
counting task/operation to be performed in the word count-
ing streaming application, a user can write a CQL query that
can take a form such as: FROM location GROUP BY word
SELECT count. Such a query can gather all of the sentences
from the specified location, group the unique words from
those sentences into distinct groups, and then count the
quantity of words in each group.

By distributing the execution of the application on a
cluster of machines, the disclosed distributed event process-
ing system may be configured to provide results pertaining
to the execution of the application quickly and in real-time
to a user. The distributed event processing system may be
configured to partition the data pertaining to the application
into separate computing nodes, and each computing node
can be maintained as a separate file on a separate computing
machine. Each such machine can be configured to execute a
query in the application in parallel with the other machines
relative to the data maintained on that machine.

Efficient DAG Generation for a Distributed Event Process-
ing System

In certain embodiments of the present disclosure, an
application processing engine for processing information
related to an application (e.g., an event processing applica-
tion) is disclosed. The application processing engine is
configured to receive information identifying the event
processing application. In certain examples, the event pro-
cessing application is expressed as an Event Processing
Network (EPN) of components and the information identi-
fying the event processing application information includes
information related to the various components (e.g., adapter,
processor, stream, or event beans) of the event processing
application. For instance, the information identifying the
event processing application may include configuration
information, query information, and other types of informa-
tion related to the application.

In certain embodiments, the application processing engine
may be configured to process the information identifying the
application and generate a ‘common application runtime
model’ of the application. As described herein, a ‘common
application runtime model” of the application is a represen-
tation of the application as a set of one or more configuration
blocks, where each configuration block represents a pro-
cessing stage with associated metadata describing the appli-
cation. The application processing engine may be configured

US 11,977,549 B2

11

to convert the ‘common application runtime model’ of the
application into one or more generic representations of the
application. The application processing engine may then be
configured to cause the execution of the one or more generic
representations of the application in different execution
(runtime) environments supported by different target event
processing systems.

The generation of the ‘common application runtime
model’ in accordance with embodiments of the present
disclosure enables the execution of a generic representation
of the application in different physical execution (runtime)
environments without the developer (e.g., a user) of the
application having to re-write the application code to suit a
particular physical execution (runtime) environment of the
target engine prior to its execution in the target engine.

The techniques described above may be implemented in
a number of ways and in a number of contexts. Several
example implementations and contexts are provided with
reference to FIGS. 1-9 below which describe additional
details of the manner in which the disclosed distributed
event processing system may perform operations related to
the deployment, processing, and execution of event process-
ing applications.

FIG. 1 depicts aspects of an example event processing
system architecture 100 that provides an environment by
which an event processing application can be processed for
different execution environments, in accordance with an
embodiment of the present disclosure. In an embodiment,
the architecture (event processing system) 100 includes an
application processing engine 110 communicatively con-
nected to one or more user devices 102 via a network 108.

Network 108 may facilitate communications and
exchange of data between user devices 102 and the appli-
cation processing engine. Network 108 may be any type of
network familiar to those skilled in the art that can support
data communications using any of a variety of commer-
cially-available protocols, including without limitation TCP/
1P, SNA, IPX, AppleTalk, and the like. Merely by way of
example, network 108 can be a local area network (LAN)
such as an Ethernet network, a Token-Ring network and/or
the like, a wide-area network, a virtual network, including
without limitation a virtual private network (VPN), the
Internet, an intranet, an extranet, a public switched telephone
network (PSTN), an infra-red network, a wireless network
(e.g., a network operating under any of the IEEE 802.1X
suite of protocols, the Bluetooth protocol known in the art,
and/or any other wireless protocol), and/or any combination
of these and/or other networks.

The user devices 102 may be general purpose personal
computers (including, by way of example, personal com-
puters and/or laptop computers running various versions of
Microsoft Windows and/or Apple Macintosh operating sys-
tems), cell phones or PDAs (running software such as
Microsoft Windows Mobile and being Internet, e-mail,
SMS, Blackberry, or other communication protocol
enabled), workstation computers running any of a variety of
commercially-available UNIX or UNIX-like operating sys-
tems (including without limitation the variety of GNU/
Linux operating systems), or any other computing device.
For example, the user devices 102 may be any other elec-
tronic device, such as a thin-client computer, Internet-
enabled gaming system, and/or personal messaging device,
capable of communicating over a network (e.g., network
108). Although example system environment 100 is shown
with one user device, any number of user and/or client
computing devices may be supported, in other embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

12

In certain embodiments, the application processing engine
110 may be configured to process an event processing
application for execution in different runtime environments.
In certain examples, an event processing application may be
generated by a user of a user device 102. For instance, a user
102 may build an application (e.g., an event processing
application) using a client application 104 (e.g., a browser)
in the user device using an application design user interface
106 provided by the client application 104. As noted above,
an event processing application may include a set of rules
(e.g., expressed in the form of continuous queries) that are
used to process input streams of data coming from an event
source. The event source may include a variety of data
sources such as a monitoring device, a financial services
company, or a motor vehicle. Using the data, the event
processing application might identify and respond to pat-
terns, look for extraordinary events and alert other applica-
tions, or do some other work that requires immediate action
based on quickly changing data.

The application processing engine 110 may comprise one
or more computers and/or servers which may be general
purpose computers, specialized server computers (including,
by way of example, PC servers, UNIX servers, mid-range
servers, mainframe computers, rack-mounted servers, etc.),
server farms, server clusters, or any other appropriate
arrangement and/or combination. The computing devices
that make up the application processing engine 110 may run
any of operating systems or a variety of additional server
applications and/or mid-tier applications, including HTTP
servers, FTP servers, CGI servers, Java servers, database
servers, and the like. Example database servers include
without limitation those commercially available from
Oracle, Microsoft, Sybase, IBM and the like.

In certain embodiments, the application processing engine
110 may be configured to receive an application (e.g., an
event processing application) as described above from the
user device 102 and process the information in the applica-
tion to generate a ‘common application runtime model” of
the application. As noted above, a ‘common application
runtime model” of the application is a representation of the
application as a set of one or more configuration blocks,
wherein each configuration block represents an event bean
with associated metadata describing the application. The
application processing engine 110 may be configured to
convert the ‘common application runtime model’ of the
application into one or more generic representations of the
application. In certain embodiments, the application pro-
cessing engine 110 may then be configured to cause the
execution of the more generic representations of the appli-
cation in different execution (runtime) environments sup-
ported by different target event processing systems.

In certain embodiments, the application processing engine
110 may include a common application runtime model
generator 112, a common application runtime model opti-
mizer 114, and a target DAG generator 116. These compo-
nents may be implemented in hardware, firmware, software,
or combinations thereof. The common application runtime
model generator 112 may be configured to generate the
‘common application runtime model’ for the application
based on the information associated with the application.
The common application runtime model optimizer 114 may
be configured to optimize the ‘common application runtime
model’ to generate an optimized common application run-
time model for the application. The target DAG generator
116 may be configured to convert the optimized common
application runtime model into one or more generic repre-
sentations of the application that can be executed by one of

US 11,977,549 B2

13

the target event stream processing engines (systems). The
operations performed by components 112, 114, and 116 of
the application processing engine 110 are discussed in detail
in relation to FIG. 2 below.

In certain embodiments, the target event processing
engines 118 may be configured to receive the common
application runtime model from the application processing
engine 110 and convert the information in the common
application runtime model into a platform-specific imple-
mentation of the application (i.e., a target event processing
application 120) that can be executed in the runtime (execu-
tion) environment provided by the target event stream pro-
cessing engines 118. The target event stream processing
engines 118 may then be configured to continuously execute
the target event processing applications 120 as new data
appears in the streams and provide a continuous stream of
results to a user. The target event stream processing engines
118 may perform the real-time processing of data streams by
executing one or more operations (e.g., CQL queries)
defined in the target event processing applications 120
against the data streams (e.g., live feeds) that are received
continuously. For example, the target event stream process-
ing engines 118 can receive one or more continuous data
streams, register the target event processing applications 120
against the data streams, and continuously execute one or
more queries defined in the target event processing appli-
cations 120 as new data appears in the streams. Since this
type of continuous query is long-running, the target event
stream processing engines can provide a continuous stream
of results to a user. Additional operations performed by the
target event stream processing engines 118 is discussed in
detail in relation to FIG. 3.

In certain embodiments, each target event stream process-
ing engine 118 may represent a particular physical execution
environment for executing a target event processing appli-
cation. For instance, a first target event stream processing
engine may include a first event streaming platform that is
configured to execute the target event processing application
in a first physical execution(runtime) environment, a second
target event stream processing engine may include a second
event streaming platform that is configured to execute the
application in a second physical execution(runtime) envi-
ronment, a third target event stream processing engine may
include a third event streaming platform that is configured to
execute the application in a third physical execution(run-
time) environment, and so on. The first, second, and third
event streaming platforms may be different from each other.
For instance, the first event streaming platform may repre-
sent an Oracle Event Processor (OEP) system managed by
Oracle®. The second event streaming platform may repre-
sent a first type of distributed event processing platform,
such as the Spark® framework, managed by the Spark®
system, and the third event streaming platform may repre-
sent a third type of distributed event processing platform,
such as the Flink® framework managed by the Flink®
system.

FIG. 2 is a graphical representation of an Event Process-
ing Network (EPN) 200 for an event processing application
in accordance with an embodiment of the present disclosure.
An event processing application may be expressed, in cer-
tain examples, as a network of components. Such a network
of components is commonly referred to as the event pro-
cessing network (EPN) 200. The EPN 200 is a conceptual
model for expressing event-based interactions and event
processing specifications among the components of an event
processing application. The components of an event pro-
cessing application may include adapters, streams, proces-

10

15

20

25

30

35

40

45

50

55

60

65

14

sors, business logic Plain Old Java Objects (POJOs), and
beans. Each component in the EPN 200 has a role in
processing the data received via an event stream. As noted
above, the event processing network (EPN) 200 may include
information that describes these various components, how
the components are connected together, event types pro-
cessed by the application, continuous query or logic for the
selection of events used by the application, business rules
defined in the application, and so on.

In certain embodiments, a user of a user device 102 may
generate the EPN 200 for an event processing application
using the application design user interface (e.g., 106) pro-
vided by a client application (e.g., 104) in the user device.
In other embodiments, the user may provide information
that identifies the application via the application design user
interface. Such information may include, for instance, one or
more continuous queries defined in the application, appli-
cation parameters that specify a type of deployment of the
application, runtime configuration of application (e.g., the
number of executors to use, parallelism parameters, the size
of memory, the high availability parameters) and so on, and
the a client application may build and/or generate the EPN
200 for an event processing application based on this
information.

In certain embodiments, and as shown in FIG. 2, the EPN
200 for an event processing application may be composed of
the following component types:

(1) One or more adapters (202, 204) that interface directly
to the input and output stream and relation sources and
sinks. Adapters are configured to understand the input
and output stream protocol, and are responsible for
converting the event data into a normalized form that
can be queried by an application processor. Adapters
may forward the normalized event data into channels or
output streams and relation sinks. Event adapters may
be defined for a variety of data sources and sinks. In the
embodiment shown in FIG. 2, the adapters include a
StreamOrRelationSourcel Adapter 202 and a
StreamOrRelationSource2 Adapter 204.

(2) One or more channels (206, 208, 210) that act as event
processing endpoints. Among other things, channels
are responsible for queuing event data until the event
processing agent can act upon it.

(2) One or more application processors (or event process-
ing agents) 212 are configured to consume normalized
event data from a channel, process it using queries to
select notable events, and forward (or copy) the
selected notable events to an output channel 210.

(4) One or more beans 214, 216, and 218 are configured
to listen to the output channel 220, and are triggered by
the insertion of a new event into the output channel
220. In some embodiments, this user code is a plain-
old-Java-object (POJO). The user application can make
use of a set of external services, such as JMS, Web
services, and file writers, to forward the generated
events to external event sinks.

(5) Event beans 214, 216, and 218 may be registered to
listen to the output channel 220, and are triggered by
the insertion of a new event into the output channel. In
some embodiments, this user code may use the Oracle
CEP event bean API so that the bean can be managed
by Oracle CEP.

In one embodiment, an event adapter (202, 204) provides
event data to an input channel (206, 208). The input channel
(206, 208) is connected to a CQL processor (212) associated
with one or more CQL queries that operate on the events

US 11,977,549 B2

15
offered by the input channel (206, 208). The CQL processor
(212) is connected to an output channel (220) to which query
results are written.

In some embodiments, an assembly file may be provided
for an event processing application describing the various
components of the event processing application, how the
components are connected together, and event types pro-
cessed by the application. Separate configuration files may
be provided for specifying the continuous query or logic for
selection of events. In certain embodiments, the information
in an event processing application may be assembled using
the Spring® XML framework. As will be described in
greater detail below, this approach enables applications to be
easily integrated with existing Spring® beans, and other
light-weight programming frameworks that are based upon
a dependency injection mechanism. For example, the assem-
bly file can be a custom extension of a Spring® framework
context XML configuration file so that the event server can
leverage Spring’s® Inversion of Control (IoC) container in
its entirely, thus allowing a user to seamlessly use Spring®
beans in the assembly of an EPN.

FIG. 3 is a simplified block diagram 300 illustrating the
components of an application processing engine, in accor-
dance with an embodiment of the present disclosure. In
certain embodiments, the application processing engine 314
may be configured to receive information that identifies an
event processing application (e.g., 304) from a user of user
device 302 and generate a common runtime application
model based on this information. As noted above, an event
processing application 304 can be generated by a user of the
user device 302 using an application design user interface
306 provided by a client application (e.g., 104) in the user
device.

In some examples, information identifying an application
may include information that describes the various compo-
nents (e.g., adapter, processor, stream, or event bean) of the
application. This information may include, for instance,
configuration information, query information, and other
types of information. Configuration information may
include, for instance, information that describes the various
components of the event processing application, how the
components are connected together, and event types pro-
cessed by the application. For example, configuration infor-
mation may include information that describes the event
processing application as a network of components (i.e., the
EPN 200). Query information may include information
specifying the continuous query or logic for selection of
events by the application. Other types of information may
include Plain Old Java Objects (POJO) and business rules
defined in the application.

In certain examples, the information identifying an appli-
cation can be specified in configuration files. For example,
each component in the EPN 200 of an event processing
application 304 can have an associated configuration file. In
other examples, the information in the application 304 can
be represented in a single configuration file that includes the
information for all the components in the application. In one
implementation, the configuration files can be expressed as
regular XML documents whose structure is defined using
standard XML, schema based on a configuration schema
defined by the common runtime model.

In certain examples, the information identifying an appli-
cation can be specified using various configuration files such
as an EPN configuration file, a query configuration file, and
other files. An example of an EPN configuration file and a
query configuration file for an event processing application
is illustrated below. In the illustrated example, the event

20

25

30

35

40

45

50

55

16

processing application is an order event processing applica-
tion 304 configured to receive and process a continuous
stream of events, wherein each event represents an order for
an item sold by a company. Each order in the order event
stream may comprise attributes such as an order identifier,
an order status, and an order amount related to an item. An
example of an EPN configuration file 308 for the event
processing application 304 is illustrated below. The EPN
configuration file 308 comprises a sequence of sub-ele-
ments, where each sub-element comprises the configuration
information for an event processing component in the event
processing application.

EPN Configuration File

<wlevs:event-type-repository>

<wlevs:event-type type-name="OrderEvent">

<wlevs:properties>

<wlevs:property name="orderld"” type=“int" />

<wlevs:property name="status” type=“char" />

<wlevs:property name="“amount” type="“int" />

</wlevs:properties™>

</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="socketAdapter” provider="socket” />
<wlevs:channel id="orders” event-type="OrderEvent" >

<wlevs:listener ref="orderProcessor"/>

<wlevs:source ref=" socketAdapter />

</wlevs:channel>

<wlevs:processor id=" orderProcessor " />

<wlevs:channel id=“otutputChannel” event-type=" OrderEvent “>

<wlevs:listener ref="outputAdapter’/>

<wlevs:source ref=" orderProcessor />

</wlevs:channel>

<wlevs:adapter id="outputAdapter” provider="stdout” />

An example of a query configuration file 310 for the event
processing application 304 is illustrated below. The query
configuration file 310 specifies one or more continuous
queries or logic for the selection of events in the event
processing application.

Query Configuration File

<processor>

<name>orderProcessor</name>

<rules>

<query id="helloworldRule”> <!{[CDATA[

select status, count(*) from orders group by status
1>

</query>

<frules>

</processor>

In certain embodiments, the application processing engine
314 may be configured to generate a ‘common application
runtime model” for the application (e.g., 304) based on the
configuration information, the query information, and the
other information specified in the EPN configuration file
308, the query configuration file 310, and the other files 312.
The ‘common application runtime model’ may then be
converted into one or more generic representations of the
application by the target DAG generator 320 for execution
in different physical execution (runtime) environments sup-
ported by different target event stream processing engines
226, 228, and 230. The generation of the ‘common appli-
cation runtime model’ enables the execution of a generic
representation of the application in different physical execu-
tion (runtime) environments without the developer (e.g., a
user) of the application having to re-write the application

US 11,977,549 B2

17

code to suit a particular physical execution (runtime) envi-
ronment of the target engine prior to its execution in the
target engine. The common application runtime model is
independent to the physical execution environment. The
platform independent abstraction allows the system to gen-
erate the DAG and codes for the physical execution envi-
ronment easily.

In certain embodiments, the generation of the ‘common
application runtime model’ by the application processing
engine 314 may include representing the application as a set
of one or more event beans with associated configuration
information. Additional details of the manner in which the
application processing engine 314 may represent the ‘com-
mon application runtime model” as a set of event beans is
described in detail below.

In certain embodiments, the application processing engine
314 includes a common application runtime model generator
316, a common application runtime model optimizer 318,
and a target DAG generator 320. The common application
runtime model generator 316 is configured to generate a
‘common application runtime model’ for the application,
based on the information identitying the application speci-
fied in the EPN configuration file 308, the query configu-
ration file 310, and the other files 312. In certain embodi-
ments, the generation of the ‘common application runtime
model’ by the common application runtime model generator
316 involves loading the EPN configuration file 308, the
query configuration file 310, and the other files 312 into
memory using an EPN loader implemented using the
Spring® application framework. The result is a set of
Spring® beans connected by Spring’s® inversion of control
injection. The common application runtime model generator
316 is then configured to parse the EPN configuration file
308 using an XML parser such as JAXB (Java Architecture
for XML Binding) and set the parsed configuration file to
each associated bean in the EPN network. In certain
examples, each parsed configuration block or file will have
an identifier so that the block or file can find the event bean
and set the configuration block or file to the event bean.
Thus, in an embodiment, generating the ‘common applica-
tion runtime model’ for the application comprises represent-
ing the application as a set of one or more configuration
blocks, wherein each configuration block represents a
Spring® event bean with associated metadata. An example
of the representation of the ‘common application runtime
model’ is shown in FIG. 4. In certain examples, the ‘com-
mon application runtime model” maintains metadata about
the components of an event processing application without
any processing logic in it.

FIG. 4 depicts an example of a representation of a
‘common application runtime model” 400 generated by the
common application model generator 316, in accordance
with an embodiment of the present disclosure. In an embodi-
ment, the ‘common application runtime model’ 400 may be
generated based on information identifying the application
(e.g., from the EPN configuration file 308, the query con-
figuration file 310, and other files 312) and may be repre-
sented as a set of one or more configuration blocks, wherein
each configuration block represents a Spring® event bean
with associated metadata. In an embodiment, the configu-
ration blocks 402, 404, 406, 408, and 410 in the common
runtime application model 400 may include the following
information:

10

15

20

25

30

35

45

50

55

60

65

18

SocketInbound 402

host = “localhost”

port = 9999
Channel-1 404

tableName = “orders”

eventType = “OrderEvent”

relation = false
CQLProcessor 406

rule= “select status, count(*) from orders group by status”
Channel-2 408

eventType = “OrderEvent”
StdoutOutbound 410

<no additional info>

For instance, in the configuration block 402, socket
inbound represents the “socketAdapter” adapter in the EPN,
in the configuration block 404, channel-1 represents the
“orders” channel in the EPN;, in the configuration block 406,
CQL processor represents the “orderProcessor” processor in
the EPN, in the configuration block 408, channel-2 repre-
sents the “otutputChannel” channel in the EPN, and in the
configuration block 410, socket outbound 410 represents the
“outputAdapter” adapter in the EPN.

As noted above, the representation of the event processing
application as a ‘common application runtime model” 400
enables the application to be executed in different target
event stream processing engines (e.g., 326, 328, or 330)
without the user having to re-write the code of the applica-
tion to suit the particular physical execution (runtime)
environment of the target engine, prior to its execution in the
target engine.

Returning to the discussion of FIG. 3, in certain embodi-
ments, the common application runtime model generated by
the common application runtime model generator 316 may
further be optimized by the common application runtime
model optimizer 318. The optimization of the common
application runtime model (e.g., 400) may include, for
instance, combining multiple stages within a configuration
block into a single stage (e.g. combining multiple continu-
ous queries into a single optimized continuous query) or
breaking a single stage into multiple stages for parallel
processing (e.g. breaking a continuous query into multiple
continuous queries that can perform map and reduce opera-
tions). For instance, the consecutive queries without repar-
titioning can be combined into a single CQL stage with a
single CQL Process. For example, two stages “select * from
orders where orderStatus=‘open’” and “select count(*) from
orders group by orderld” can be combined into a single CQL
stage with “select count(*) from orders group by orderld
where orderStatus="open”. The optimizer can also break a
single stage into multiple stages in order to maximize the
scalability. For example, the fully-stateful query stage,
“select count(*) from orders” can be broken into two stages
with partitioning, “select count(*) from order group by
orderld” and “select sum(*) from counts”. This enables the
global count of events to be processed with partial counts
with partitioning and then the partial counts can be summed
into the global counts.

In certain embodiments, the target DAG generator 320
may be configured to convert the optimized common appli-
cation runtime model into one or more generic representa-
tions of the application that can be executed by one of the
target event stream processing engines (326, 328, or 330).
For instance, the target DAG generator 320 may be config-
ured to convert the optimized common application runtime
model into a runtime DAG 322 or a target representation of
the application 324 depending on the target event stream

US 11,977,549 B2

19

processing engine that the application will execute in. For
instance, if the target event stream processing engine (e.g.,
326) is an Oracle Event Processor (OEP) managed by
Oracle®, then the target DAG generator 320 may be con-
figured to convert the configuration blocks in the common
application runtime model (or the optimized common appli-
cation runtime model) into a target representation of the
application 324 that will be executed by the target event
stream processing engine 326. The conversion may include,
in certain embodiments, the replication of the objects in the
common application runtime model with appropriate beans
with the actual processing logic by the target DAG generator
320. For example, the metadata of the CQL Processor bean
in the common application runtime model may be copied to
the new instance of the event processing component (e.g.,
CQL Processor) which runs the CQL Engine to process the
input events using the given query (e.g. copied from the
CQLProcessor in the common runtime application model).

If, for example, the target event stream processing engine
(e.g., 328) is a distributed event processing platform man-
aged by the Spark® distributed system, then the target DAG
generator 320 may be configured to convert the objects
(configuration blocks) in the common application runtime
model (or the optimized common application runtime
model) into a runtime DAG of components 322 representing
the application. An example of a runtime DAG of compo-
nents 322 generated by the target DAG generator is shown
in FIG. 5. The runtime DAG of components 322 is then
converted into a target application (Spark® CQL applica-
tion) by the target event stream processing engine 328. An
example of a target application generated by the target event
stream processing engine 328 for calculating the number of
orders grouped by order status for the order event processing
application is shown below:

EXAMPLE OF A TARGET APPLICATION

Setup
1. val sparkConf=new SparkConf
2. val sc=new SparkContext(sparkConf)
3. val cc=new CQLContext(sc, Seconds(1))
Event Type, Stream Registration
4. val orderEvent=EventType(“orders”, Attribute(“orde-
rld”,INT), Attribute(“status”,CHAR), Attribute
(“amount™, INT))
5. cc.registerEventType(orderEvent)
6. cc.registerStream(orderEvent)
Load Data
7. val lines=cc.socketTextStream(“localhost”, 9999)
8. val rows=lines.map(_.split(“,”))
9. val kv_orders=rows.map(r=>(r(1), EventUtil.createTu-
pleValue(orderEvent, r(0).tolnt, r(1), r(2).tolnt))
Partition Data
10. wval orders=rorders.transform(rdd=>rdd.partitionBy
(new OrderPartitioner(numPartitions)).map
{case(k,v)=>v})
CQL Processing
11. val result=cc.cql(orders, “select status, count(*) from
orders group by status™)
Output
12. val sresult=result.map(x=>x.mkString(“,”))
13. sresult.print
FIG. 5 is an example of a runtime Directed Acyclic Graph
(DAG) of components 500 generated by the target DAG
generator, in accordance with an embodiment of the present
disclosure. In certain embodiments, and as noted above, the
target DAG generator 320 may be configured to convert the

10

15

20

25

30

35

40

45

50

55

60

65

20
objects (402, 404, 406, 408, and 410) in the common
application runtime model (e.g., 400) into a runtime DAG of
components 500 representing the application when the
execution (runtime) environment of the target application is
a distributed event processing system (e.g., the Spark®
distributed event processing system).

In an embodiment, the runtime DAG of components
includes the following components, SocketText 502, Map-1
504, Map-2 506, PartitionBy 508, CQL 510, Map-3 512, and
Print 514. The Socketlnbout 402 (shown in FIG. 4) is
converted to the SocketText 502, the Map-1 504, and the
Map 506. The SocketText 502 component comprises line 7
in the example of the target application shown above, which
loads strings from socket. The Map-1 504 component com-
prises line 8 in the example of the target application which
converts strings into comma separated values. The Map-2
506 component comprises line 9 in the example of the target
application which converts the comma separated values to
Tuples. The CQLProcessor 406 and Channel-1 404 is con-
verted to the PartitionBy 508 and the CQL 510. The Parti-
tionBy 508 component comprises line 10 in the example of
the target application which creates a partitioning based on
the group by criteria in the CQL. The CQL 510 component
comprises line 11 in the example of the target application
which is the main CQL processing stage. The Channel-2 408
and the StdoutOutbound 410 is converted to the Map-3 512
and Print 51. The Map-3 512 component comprises line 12
in the example of the target application which converts the
Tuple to comma separated string and the Print 514 compo-
nent comprises line 13 from the example of the target
application which prints the output strings to stdout console.

FIG. 6 depicts a simplified high level diagram of an event
processing system 600 that may incorporate an embodiment
of the present disclosure. In an embodiment, the event
processing system 600 may represent an Oracle Event
Processor (OEP) system managed by Oracle®. Event pro-
cessing system 600 may comprise one or more event sources
(604, 606, 608), an event processing service (EPS) 602 (also
referred to as CQ Service 602) that is configured to provide
an environment for processing event streams, and one or
more event sinks (610, 612). The event sources generate
event streams that are received by EPS 602. EPS 602 may
receive one or more event streams from one or more event
sources.

For example, as shown in FIG. 6, EPS 602 receives a first
input event stream 614 from event source 604, a second
input event stream 616 from event source 606, and a third
event stream 618 from event source 608. One or more event
processing applications (614, 616, and 618) may be
deployed on and be executed by EPS 602. An event pro-
cessing application executed by EPS 602 may be configured
to listen to one or more input event streams, process the
events received via the one or more event streams based
upon processing logic that selects one or more events from
the input event streams as notable events. The notable events
may then be sent to one or more event sinks (610, 612) in
the form of one or more output event streams. For example,
in FIG. 6, EPS 602 outputs a first output event stream 620
to event sink 610, and a second output event stream 622 to
event sink 612. In certain embodiments, event sources, event
processing applications, and event sinks are decoupled from
each other such that one can add or remove any of these
components without causing changes to the other compo-
nents.

In one embodiment, EPS 602 may be implemented as a
Java server comprising a lightweight Java application con-
tainer, such as one based upon Equinox OSGi, with shared

US 11,977,549 B2

21

services. In some embodiments, EPS 602 may support
ultra-high throughput and microsecond latency for process-
ing events, for example, by using JRockit Real Time. EPS
602 may also provide a development platform (e.g., a
complete real time end-to-end Java Event-Driven Architec-
ture (EDA) development platform) including tools (e.g.,
Oracle CEP Visualizer and Oracle CEP IDE) for developing
event processing applications.

An event processing application is configured to listen to
one or more input event streams, execute logic (e.g., a query)
for selecting one or more notable events from the one or
more input event streams, and output the selected notable
events to one or more event sources via one or more output
event streams. FIG. 6 provides a drilldown for one such
event processing application 614. As shown in FIG. 6, event
processing application 614 is configured to listen to input
event stream 618, execute a continuous query 630 compris-
ing logic for selecting one or more notable events from input
event 618, and output the selected notable events via output
event stream 622 to event sink 612. Examples of event
sources include, without limitation, an adapter (e.g., JMS,
HTTP, and file), a channel, a processor, a table, a cache, and
the like. Examples of event sinks include, without limitation,
an adapter (e.g., JMS, HTTP, and file), a channel, a proces-
sor, a cache, and the like.

Although event processing application 614 in FIG. 6 is
shown as listening to one input stream and outputting
selected events via one output stream, this is not intended to
be limiting. In alternative embodiments, an event processing
application may be configured to listen to multiple input
streams received from one or more event sources, select
events from the monitored streams, and output the selected
events via one or more output event streams to one or more
event sinks. The same query can be associated with more
than one event sink and with different types of event sinks.

Due to its unbounded nature, the amount of data that is
received via an event stream is generally very large. Con-
sequently, it is generally impractical and undesirable to store
or archive all the data for querying purposes. The processing
of event streams requires processing of the events in real-
time as the events are received by EPS 602 without having
to store all the received events data. Accordingly, EPS 602
provides a special querying mechanism that enables pro-
cessing of events to be performed as the events are received
by EPS 602 without having to store all the received events.

Event-driven applications are rule-driven and these rules
may be expressed in the form of continuous queries that are
used to process input streams. A continuous query may
comprise instructions (e.g., logic) that identify the process-
ing to be performed for received events including what
events are to be selected as notable events and output as
results of the query processing. Continuous queries may be
persisted to a data store and used for processing input
streams of events and generating output streams of events.
Continuous queries typically perform filtering and aggrega-
tion functions to discover and extract notable events from
the input event streams. As a result, the number of outbound
events in an output event stream is generally much lower
than the number of events in the input event stream from
which the events are selected.

Unlike a SQL query that is run once on a finite data set,
a continuous query that has been registered by an application
with EPS 602 for a particular event stream may be executed
each time that an event is received in that event stream. As
part of the continuous query execution, EPS 602 evaluates
the received event based upon instructions specified by the
continuous query to determine whether one or more events

10

15

20

25

30

35

40

45

50

55

60

65

22

are to be selected as notable events, and output as a result of
the continuous query execution.

The continuous query may be programmed using different
languages. In certain embodiments, continuous queries may
be configured using the CQL provided by Oracle Corpora-
tion and used by Oracle’s Complex Events Processing
(CEP) product offerings. Oracle’s CQL is a declarative
language that can be used to program queries (referred to as
CQL queries) that can be executed against event streams. In
certain embodiments, CQL is based upon SQL with added
constructs that support processing of streaming events data.

It should be appreciated that system 600 depicted in FIG.
6 may have other components than those depicted in FIG. 6.
Further, the embodiment shown in FIG. 6 is only one
example of a system that may incorporate an embodiment of
the present disclosure. In some other embodiments, system
600 may have more or fewer components than shown in
FIG. 6, may combine two or more components, or may have
a different configuration or arrangement of components.
System 600 can be of various types including a service
provider computer, a personal computer, a portable device
(e.g., a mobile telephone or device), a workstation, a net-
work computer, a mainframe, a kiosk, a server, or any other
data processing system.

FIG. 7 is a simplified block diagram 700 illustrating the
components of a distributed event processing system 710, in
accordance with an embodiment of the present disclosure.
The embodiment shown in FIG. 7 is one example of a
distributed event processing system that may incorporate an
embodiment of the present disclosure. In some other
embodiments, system 710 may have more or fewer compo-
nents than shown in FIG. 7, may combine two or more
components, or may have a different configuration or
arrangement of components. System 710 can be any type of
computing device, such as, but not limited to, a mobile,
desktop, thin-client, and/or cloud computing device, a
server, or any other data processing system.

In some examples, the distributed event processing sys-
tem 710 may be made up of pre-integrated and optimized
combinations of software resources, hardware resources,
networking resources, and other resources. Hardware
resources may include, without limitation, servers, data
storage devices, servers, printers, or the like. Software
resources may include, without limitation, a computing
program, an application (e.g., cloud-based applications,
enterprise applications, or any other applications), a com-
puter-program product (e.g., software), a service (e.g.,
cloud-based services), or the like. Data resources may
include, without limitation, any accessible data objects such
as a file (e.g., a networked file or directory information), a
database, and the like.

In certain embodiments, the distributed event processing
system 710 may comprise a receiver 704 and a cluster of
computing nodes 708. The receiver 704 may be configured
to receive a continuous input event stream 702 and discretize
(divide) the event stream into one or more batches of events
706 of a particular duration (e.g., X seconds) for subsequent
processing by the cluster of computing nodes 708 in the
distributed event processing system 710. Each batch of
events is referred to herein as a Dstream. In some examples,
each Dstream is internally represented by the receiver 704 as
a Resilient Distributed Dataset (RDD), which is a snapshot
of all the input stream of data (events) ingested during a
specified time period (i.e., in an event batch). Thus, in some
embodiments, the input data stream 702 is represented as a
sequence of Dstreams where each Dstream is internally
represented as an RDD, and each RDD comprises the events

US 11,977,549 B2

23

(tuples) received during a particular batch interval. In certain
examples, each RDD represents an immutable, partitioned
collection of elements that can be stored in cache memory
and executed in parallel in the distributed event processing
system.

In certain embodiments, the cluster of computing nodes
704 may be configured to partition the data contained in each
RDD across the cluster of computing nodes and perform
operations on the data in parallel against a set of queries
defined in an application and provide the results of the
processing to a user of the distributed event processing
system. Thus, the cluster of computing nodes 708 may be
configured to distribute the processing of the event data in an
RDD across the cluster of computing nodes 708 and provide
results pertaining to the execution of the application against
the event data quickly and in real-time to a user. In an
embodiment, the distributed event processing system 710
may be configured using the Apache® Spark Streaming
framework to perform the distributed and real-time process-
ing of continuous streams of data and the deployment of
event processing applications.

FIG. 8 is an example flow diagram of a process 800 that
describes a set of operations for processing an event pro-
cessing application to generate a common application run-
time model of the application, in accordance with one
embodiment of the present disclosure. In certain embodi-
ments, the process 800 can be performed by one or more
components (e.g., 316, 318, and 320) in the application
processing engine (314) described in FIG. 3. The process
800 starts at 802 by receiving information identifying an
application. This information may include, for instance,
information that describes the various components (e.g.,
adapter, processor, stream, or event bean) of the application
such as configuration information, query information, and
other types of information. As noted above, this information
may be expressed in configuration files (308, 310, and 312)
as described in FIG. 3.

At 804, the process includes generating a ‘common appli-
cation runtime model’ of the application based on the
information identifying the application. In an embodiment,
generating the ‘common application runtime model” for the
application may include representing the application as a set
of one or more configuration blocks, wherein each configu-
ration block represents an event bean with associated meta-
data. The configuration blocks may include an inbound
socket event bean, an outbound socket event bean, a con-
tinuous query language (CQL) processor event bean, or one
or more channel event beans as described in relation to FIG.
4.

At 806, the process includes converting the ‘common
application runtime model’ of the application into a first
generic representation of the application. The first generic
representation of the application may be configured to be
executed in a first target event processing system of a
plurality of target event processing systems. In one example,
converting the ‘common application runtime model’ of the
application into a first generic representation of the appli-
cation may include converting the configuration blocks in
the common application runtime model into a runtime DAG
of components of the application. An example of the runtime
DAG of components generated for an application is shown
in FIG. 5.

In some embodiments, at 808, the process includes trans-
mitting the first generic representation of the application to
the first target event processing system for execution by the

10

15

20

25

30

35

40

45

50

55

60

65

24

first target event processing system. In one example, the first
target event processing system is a distributed event pro-
cessing system.

FIG. 9 is an example flow diagram of a process 900 that
describes a set of operations for processing an event pro-
cessing application to generate a common application run-
time model of the application, in accordance with another
embodiment of the present disclosure. In certain embodi-
ments, the process 900 can be performed by one or more
components (e.g., 316, 318, and 320) in the application
processing engine (314) described in FIG. 3. The process
900 starts at 902 by receiving information identifying an
application. As noted above, this information may include
configuration information, query information, and other
types of information that describe the various components of
the application.

At 904, the process includes generating a ‘common appli-
cation runtime model’ of the application based on the
information identifying the application. In an embodiment,
generating the ‘common application runtime model” for the
application may include representing the application as a set
of one or more configuration blocks, wherein each configu-
ration block represents an event bean with associated meta-
data. The configuration blocks may include an inbound
socket event bean, an outbound socket event bean, a con-
tinuous query language (CQL) processor event bean, or one
or more channel event beans as described in relation to FIG.
4.

At 906, the process includes converting the ‘common
application runtime model’ of the application into a second
generic representation of the application. The second
generic representation of the application may be configured
to be executed in a second target event processing system of
a plurality of target event processing systems. In some
examples, the second target event processing system may be
different from the first target event processing system. In one
example, converting the ‘common application runtime
model’ of the application into a second generic representa-
tion of the application may include converting the configu-
ration blocks in the common application runtime model into
a target representation of the application.

In some embodiments, at 908, the process includes trans-
mitting the second generic representation of the application
to the second target event processing system for execution
by the second target event processing system. In one
example, the second target event processing system is an
Oracle® Event Processor (OEP) system.

Serialization and Deserialization of Event Data

In certain embodiments, the disclosed distributed event
processing system may be configured to perform the seri-
alization and de-serialization of event data received via a
continuous event stream. The serialization and de-serializa-
tion of event data enables the conversion of complex data
objects in memory into sequences of bits that can be
transferred to the computing nodes in the distributed event
processing system. The serialization and de-serialization of
the event data enables the efficient storage and representa-
tion of the data by the processing nodes in the distributed
event processing system prior to the processing of the event
data by the distributed event processing system. In addition,
the serialization and de-serialization of the event data
reduces latencies in exchanging input and output events
between the processing nodes in the distributed event pro-
cessing system and improves the overall performance of the
distributed event processing system.

The techniques described above may be implemented in
a number of ways and in a number of contexts. Several

US 11,977,549 B2

25
example implementations and contexts are provided with
reference to FIGS. 1-10 below which describe additional
details of the manner in which the disclosed distributed
event processing system may perform operations related to
the deployment, processing, and execution of event process-
ing applications.

FIG. 10 is a simplified block diagram 1000 illustrating the
components of a distributed event processing system, in
accordance with an embodiment of the present disclosure.
The distributed event processing system 1000 may be the
same as or similar to the distributed event processing system
110 described in FIG. 1. The embodiment shown in FIG. 10
is one example of a distributed event processing system that
may incorporate an embodiment of the disclosure. In other
embodiments, the distributed event processing engine may
have more or fewer components than shown in FIG. 10, may
combine two or more components, or may have a different
configuration or arrangement of components. These com-
ponents may be implemented in hardware, firmware, soft-
ware, or combinations thereof. In some embodiments, the
software may be stored in memory (e.g., a non-transitory
computer-readable medium), on a memory device, or some
other physical memory and may be executed by one or more
processing units (e.g., one or more processors, one or more
processor cores, one or more GPUs, etc.). The embodiment
shown in FIG. 10 is thus one example of a distributed event
processing engine for implementing an embodiment system
and is not intended to be limiting.

In certain embodiments, the distributed event processing
system 1002 may include a receiver 1004, an application
deployment module 1008, and a cluster of computing nodes
1012. The receiver 1006 may be capable of receiving a
continuous input stream of data 1004 (e.g., from an event
source 204, 206, or 208) as described in FIG. 2 and divide
the input data stream into one or more batches of events
1010, referred to herein an Dstreams. As noted above, each
Dstream (i.e., event batch) comprises all of the input stream
of data (events) ingested during a specified time period and
can internally be represented by the receiver 1006 as an
RDD object, which is an immutable, partitioned collection
of elements that can be executed on in parallel in the cluster
of computing nodes 1012 in the distributed event processing
system 1002.

The application deployment module 1006 may be con-
figured to deploy an application (e.g., an event processing
application) for processing and execution by the computing
nodes in the cluster of computing nodes 1012. An applica-
tion as described herein may refer to a computer program
(e.g., built by a user) of the distributed event processing
system. For instance, an application may comprise a word
counting application that counts a quantity of references to
a particular word within a set of input texts. Such an
application may be built using, for example, one or more
continuous queries that read a set of texts and count the
number of times that each word appears in each text. The
input text may contain, for example, short messages
received in the stream from an on-line application, such as
Facebook® or Twitter®. As noted above, continuous queries
may be configured using the CQL language. For instance, to
specify a word-counting task/operation to be performed in
the word counting streaming application, a user can write a
CQL query that can take a form such as: SELECT count
FROM location GROUP BY word. Such a query can gather
all of the sentences from the specified location, group the
unique words from those sentences into distinct groups, and
then count the quantity of words in each group.

10

15

20

25

30

35

40

45

50

55

60

65

26

In certain embodiments, the application deployment mod-
ule 1008 may be configured to receive information that
identifies an application from a user of the distributed event
processing system. For example, the application deployment
module 1008 may be configured to receive information that
identifies an application via an application design user
interface in the application deployment module 1008. Infor-
mation that identifies an application may include a set of one
or more continuous queries defined in the application. Infor-
mation that identifies an application may also include appli-
cation parameters associated with the application. Applica-
tion parameters may include, for instance, a deployment
type parameter that specifies a type of deployment (e.g.,
‘cluster mode’) of the application on the cluster of nodes
1012. Additional application parameters may include param-
eters related to runtime configuration of application (e.g., the
number of executors to use, parallelism parameters, the size
of memory, the high availability parameters, and so on).

Upon receiving the information related to the application,
in certain embodiments, the application deployment module
1008 may then be configured to transmit an instruction to the
cluster of computing nodes 1012 to deploy the application
on a computing node in the cluster. In certain examples, the
cluster of computing nodes 1012 may be configured to
deploy the application to a master computing node 1014 on
the cluster of computing nodes 1012. The master computing
node 1014 may be configured to store the ‘application
context’ of the application. The ‘application context’ may
include, for instance, the application’s content such as the
application’s topology, scheduling information, application
parameters, and the like.

In certain embodiments, the master computing node 1014
may be referred to as the ‘driver program,’ or the application
master that runs/executes the application. The driver pro-
gram may be defined as a process that runs the main()
function of the application and creates the ‘application
context’ for the application. The driver program may be
responsible for both driving the application and requesting
resources from the resource manager 1016. The resource
manager 1016 may be a service that acquires resources for
the computing nodes on the cluster of computing nodes 1012
to execute the application. To run/execute the application on
the cluster, the master computing node 1014 connects to the
resource manager 1016 which then allocates resources for
the application. Once connected, the master computing node
1014 acquires one or more executors on one Or more
computing nodes (also known as worker nodes 1018) in the
cluster. The executors are processes that run computations
and store data for the application. The master computing
node 1014 sends application code (for example, defined by
a JAR file) to the executors. Based on the transformations
and actions defined in the application, the master computing
node 1014 may send tasks 1020 to the executors.

In certain embodiments, the master computing node 1014
may include a DAG generator 1022, a DAG scheduler 1024,
a task scheduler 1026, and application context information
1028. As noted above, application context information 1028
may comprise information about an application such as the
application’s topology, scheduling information, application
parameters, and the like. The DAG generator 1022 may be
configured to define and/or create a Directed Acyclic Graph
(DAG) of RDD objects based on the RDD objects that it
receives from the receiver. In some examples, the DAG
generator 1022 may represent the DAG of RDD objects as
a RDD lineage graph of all the RDDs that it has received
during a certain interval of time. Each RDD object in the
RDD lineage graph maintains a pointer to one or more

US 11,977,549 B2

27

parents along with the metadata about what type of rela-
tionship it has with its parent. The RDD lineage graph also
identifies the DAG of transformations to be executed for
each RDD object. When the master computing node 1014 is
requested to run a job in the application, the DAG generator
1022 executes the DAG of transformations. The transfor-
mations may identify one or more operations to be per-
formed on the RDD objects to transform the data in the RDD
object from one form to another. These operations may be
defined, for example, as part of the application generation
process by the application deployment module 1008. When
an operation is applied on an RDD object, a new RDD object
with transformed data is obtained. Examples of operations
performed on an RDD object may include, for instance,
map, filter, flatMap, reduce, union, groupByKey, distinct,
join, collect, count, and the like. The DAG of transforma-
tions that involve the CQL language may be referred to
herein as CQL transformations.

The DAG scheduler 1024 is configured to generate a
physical execution plan based on the RDD lineage graph
generated by the DAG generator. In one embodiment, the
DAG scheduler 1024 generates the physical execution plan
by splitting the RDD lineage graph into multiple stages,
wherein each stage is identified based on the transformations
that need to be executed against the data in each RDD object.
For example, if the transformations to be executed on an
RDD object include map transformations and reduce trans-
formations, the map transformations may be grouped
together into a single stage and the reduce transformations
may be grouped together into another stage. The DAG
scheduler 1024 then submits the stages to the task scheduler
1026.

The task scheduler 1026 divides the application (job) into
stages. Each stage is comprised of one or more tasks. In one
embodiment, the number of tasks for a particular stage is
determined based on the number of partitions of the input
data in an RDD object. For example, and as noted above, the
DAG scheduler 1024 may schedule all the map operations
into a single stage. The stages are then passed to the task
scheduler 1026 and the task scheduler 1026 launches the
tasks via the resource manager. The tasks are then executed
by the executor nodes 1018. The task scheduler 1026
identifies the nodes in the cluster of computing nodes 1012
that will execute the operations defined in application (job)
against each RDD object (i.e., each batch of events being
processed).

In certain embodiments, when an executor node 1018
receives an RDD object, it performs the serialization and
de-serialization of data in the RDD object if the RDD object
needs to be sent to other executor (worker) nodes in the
cluster of computing nodes. As noted above, the processing
of the data in the RDD object may involve the execution of
one or more continuous queries defined in the application. In
an embodiment, the executor node (e.g., 1018) that is
identified by the task scheduler 1026 may invoke a CQL
Engine (such as the CQL processor 230) to perform the
processing of data in the RDD object and return the results
of the processing to the master computing node 1014. The
manner in which the executor node 1018 may perform the
serialization and deserialization of data in an RDD object
prior to its processing is discussed in detail in relation to
FIG. 11 below.

FIG. 11 depicts a high level data flow of a process for
performing the serialization and de-serialization of data in
an RDD object, in accordance with an embodiment of the
present disclosure. In certain examples, one or more of the
operations in FIG. 10 may be performed by a node (e.g., a

20

30

40

45

55

28

master node or an executor node) in the cluster of computing
nodes when it receives an RDD object from the receiver for
processing. In one set of operations, a receiver 1102 receives
an input data stream and divides the input data stream into
one or more batches of events (tuples) of a particular
duration (e.g., X seconds). In one embodiment, and as
described in relation to FIG. 10, each batch of events (tuples)
may internally be represented by the receiver as an RDD
object. The DAG generator 1104 receives the RDD objects
and creates a DAG of RDD objects 1106. As noted above in
FIG. 10, in certain examples, the DAG of RDD objects 1106
comprises a CQL transformations 1108 to be executed
against each RDD object. When the master computing node
(e.g., 1014 as shown in FIG. 10) is requested to run a job in
the application, the DAG generator 1104 executes the CQL
transformations 1108 to process a set of input tuples repre-
sented by the RDD object. The set of input tuples to be
processed may, in some examples, be obtained from the
parent transformation of the CQL transformations 1108. The
child transformation of the CQL transformations 1108 then
invokes the specific operation to be performed against the
set of input tuples as represented in the CQL transformations
1108.

In certain examples, the CQL transformations 1108
invokes a batch serializer process 1112 against the set of
input tuples in the RDD object to perform the serialization
of data in the RDD object. In an embodiment, the batch
serializer process 1112 may be executed by the node (e.g.,
executor node) in the cluster of computing nodes that is
processing the RDD object. As noted above, the data in the
RDD object represents a batch of input tuples (events)
received via the event stream. The batch serializer process
1112 serializes the data in the RDD object and the serialized
block of the result from the batch serializer process is sent
to a CQL Engine 1116 through a network to process the set
of input tuples. In certain embodiments, the node that is
processing the RDD object may invoke the CQL Engine
1116 to process the set of input tuples in the RDD object.
The CQL Engine 1116 may, for instance, be an event
processing engine (e.g., 630 described in FIG. 6) deployed
on the executor node. The CQL Engine 1116 may be
configured to receive the set of input tuples, process the set
of input tuples based upon processing logic (operations/
transformations) defined in the application, and generate a
set of output tuples as a result of the processing.

In certain embodiments, the CQL Engine 1116 may
invoke a batch de-serializer process 1114 against the seri-
alized block of data that it receives from the batch serializer
process 1112 prior to processing the data in the RDD object.
This is because the serialized block is a binary format or
wire format that is suitable for transferring through the
network and it needs to be de-serialized as a JAVA object in
order for the CQL Engine 1116 to be able to process. The
result of the de-serialization process is thus a set of input
tuples that is in a form that can be processed by the CQL
Engine 1116. The CQL Engine 1116 processes the set of
input tuples and generates a set of output tuples based on the
processing. In certain examples, the CQL Engine 1116
invokes another batch serializer process 1118 to serialize set
of output tuples and the result of the serialization is a
serialized block of output tuples. When the serialized set of
output tuples are received by the DAG generator, the CQL
transformations 1108 invokes another batch de-serializer
process 1120 against the received serialized block of output
tuples. The result of the batch de-serializer process 1120 is
a set of de-serialized output tuples. The CQL transforma-
tions 1108 returns the set of output tuples to the child

US 11,977,549 B2

29

transformation in the CQL transformations to perform the
next set of processing operations on the data in the RDD
object. In some embodiments, the set of output tuples 1110
are then transmitted to a user of the distributed event
processing system.

In certain embodiments, the batch serializer process and
the batch de-serializer process described above can be
performed by software modules or instructions executed by
the node (e.g., the executor node) in the cluster of nodes in
the distributed event processing system that is processing the
RDD object. Additional details of the operations performed
by the batch serializer process and the batch de-serializer
process are discussed in detail in relation to FIGS. 12-15
below.

FIG. 12 is an example flow diagram of a process 1200 that
describes a set of operations by which data comprised in a
batch of events can be serialized, in accordance with an
embodiment of the present disclosure. In certain embodi-
ments, the process 1200 can be performed by a batch
serializer process (1112) in the distributed event processing
system. As noted above, the batch serializer process may, in
certain embodiments, be invoked by the master computing
node when the master computing node (e.g., 1014 as shown
in FIG. 10) is requested to run a job/operation defined in the
application. As described above, the master computing node
identifies a node (e.g., an executor node 1018) in the cluster
of computing nodes 1012 in the distributed computing
system 1002 to process a batch of events against the job/
operation defined in the application and generate a set of
output events as a result of the processing. In certain
embodiments, processing the batch of events may include
the serialization of the data in the batch of events. The
process of FIG. 12 describes one technique by which data in
a batch of events can be serialized. The particular series of
processing steps depicted in FIG. 12 is not intended to be
limiting. Alternative embodiments may have more or less
steps than those shown in FIG. 12 in various arrangements
and combinations.

In certain embodiments, the processing depicted in FIG.
12 may be performed by a node in the cluster of computing
nodes 1012 in the distributed computing system 1002 each
time a batch of events is received via a task 1020 (shown in
FIG. 10). The process starts at 1202 when it receives a batch
of events from the CQL transformations 1108 at 1204. In
certain examples, each event in a batch of events may be
referred to as a tuple, and the batch of events may be referred
to as a batch of input tuples or a set of input tuples. As noted
above, each event received via the event stream conforms to
a schema associated with the event stream and the schema
identifies one or more attributes for each event received via
the event stream.

For instance, a continuous event stream may represent
product related information related to products sold by a
company, where each event in the event stream may repre-
sent an order for an item. Such a continuous event stream
may comprise attributes such as an order identifier, an order
status, and an order amount related to an item. The schema
for such an input stream can be represented as S(timestamp,
<orderld>, <orderStatus>, <orderAmount>). Each event
received via such a stream will thus be identified by a time
stamp and three attributes. In certain embodiments, the one
or more attributes of the events may be represented as one
or more columns in the set of input tuples (batch of events)
and hence, an attribute, in some examples, may refer to a
column that stores data values for a tuple(event) in the set of
input tuples.

15

30

40

45

55

30

At 1206, the process includes identifying an attribute
(e.g., a first attribute) of the events in the batch of events. At
1208, the process includes identifying a data type of the
attribute. For instance, per the example of the order pro-
cessing stream described above, the processes at 1206 and
1208 may identify that the attribute corresponds to an
‘orderld’ attribute of the events and that the data type of the
attribute is a numeric data type. At 1210, the process
includes determining if the data type of the attribute is a
numeric data type. If the identified data type of the attribute
is a numeric data type, then, in certain embodiments, the
process proceeds to 1212 to determine a first type of data
compression to be performed on data values represented by
the attribute. For instance, at 1212, the process may include
determining that a numeric value compression technique
(for e.g., a base value compression, a precision reduction
compression, or a precision reduction value index) is to be
applied on the data values represented by the attribute. At
1214, the process includes generating a set of serialized data
values for the attribute as a result of the application of the
numeric value compression technique on the data values
stored by the attribute. The process of generating a set of
serialized data values for a numeric attribute of an event is
discussed in FIG. 13A, FIG. 13B, FIG. 13C, and FIG. 13D.
At 1216, the process includes storing the set of serialized
data values represented by the attribute.

In certain embodiments, at 1218, the process includes
determining if there are additional attributes of the events
that need to be processed. If there are additional attributes to
be processed, the process loops back to 1206 to identify the
next attribute (e.g., a second attribute) of the events in the
event batch and the processes at 1208-516 are performed for
the next attribute.

In certain embodiments, at 1210, if the identified data type
of the attribute is not determined to be a numeric data type,
then, in certain embodiments, the process proceeds to 1220
to determine a second type of data compression to be
performed on data values represented by the attribute. For
instance, continuing with the example of the order process-
ing stream described above, the processes at 1206 and 1208
may identify that a second attribute of the events corre-
sponds to the ‘orderStatus’ attribute and that the data type for
this attribute is a non-numeric data type. In this case, the
process continues to 1220 to determine a second type of data
compression to be performed on data values stored by the
attribute. In an embodiment, the second type of data com-
pression may be different from the first type of data com-
pression. For instance, the process at 1220 may determine
that a non-numeric value compression technique (e.g., a
value index compression) is to be applied on the data values
stored by the attribute. At 1214, the process includes gen-
erating a set of serialized data values represented by the
attribute as a result of the application of the non-numeric
value compression technique on the data values stored by
the attribute. The process by which a set of serialized data
values may be generated for a non-numeric attribute of an
event is discussed in in FIG. 14. At 1216, the process
includes storing the set of serialized data values represented
by the attribute.

In certain embodiments, the process may again continue
to 1218 to determine if there are any additional attributes of
the event that are to be identified and processed. If there are
more attributes, then the process loops back to 1206 to
identify a third attribute of the events in the batch of events.
The process at 1208 may then include identifying a data type
for the third attribute and the process at 1210 may include
determining a third type of data compression to be per-

US 11,977,549 B2

31

formed on data values stored by the third attribute based on
the data type of the third attribute. For instance, continuing
with the example of the order processing event stream
described above, a third type of data compression may be
performed on data values stored by the ‘orderAmount’
attribute based on the data type of the attribute. In certain
examples, when all the attributes for the events have been
identified and processed, the process ends at 1222.

FIG. 13A is an example flow diagram of a process 1300
that describes a set of operations for generating a set of
serialized data values for a numeric attribute of an event, in
accordance with an embodiment of the present disclosure. In
an embodiment, the process 1300 describes additional
details of the operations performed by the process in 1214 of
FIG. 12. In certain examples, the process 1300 begins at
1302 by storing the current buffer offset to the current
column number of the column (for e.g., the first attribute)
whose data values are being processed. At 1304, the process
includes obtaining the data type (column type) of the attri-
bute. For example, the data type of the attribute, in this case,
may be determined to be a numeric attribute. At 1306, the
process includes scanning the set of input tuples to obtain the
minimum value, the maximum value, and the set of unique
values represented by the attribute. At 1308, the process
includes computing the required number of bits to store the
data values represented by the attribute from the range
(maximum-minimum). At 1309, the process includes deter-
mining if the required number of bits is larger than half of
the number of bits of the data type of the attribute and the
size of the set of unique value is smaller than the number of
input tuples/value_index_threshold where the value_index-
_threshold is configurable. In an example, the value_index-
_threshold can be configured to a value of 11 as the default
value. If so, the process continues to 1350 to perform the
precision reduction index value compression technique. At
1310, the process includes determining if the required num-
ber of bits is smaller than the number of bits of the original
data type of the column. The checking at 1310 is performed
to ensure that the size of serialized block does not increase
from the original block. This is because if the bits required
to cover the range of values is greater than the bits required
for the original data, the result block created using the value
indexed technique could be larger than the original block
size.

If the required number of bits is smaller than the number
of bits of the original data type of the column, the process
continues to 1312 to determine if the size of the set of unique
values is smaller than the number of input tuples/2. This
determination is performed to ensure that the compression
rate is large enough. If there are too many unique values, in
certain examples, the value itself is used instead of the value
and the index to the value. If it is determined that the
required number of bits is smaller than the original data type
of the column and the size of the set of unique values is
smaller than the number of input tuples/2 then the processes
described in 1314-626 are performed.

For example, at 1314, the process includes storing the first
type of data compression to be performed on the data values
represented by the attribute as a precision reduction value
index type of data compression. The precision reduction
technique reduces the bits representing values from the used
values by finding the range of values. The required bits will
depend on the range of values. At 1316, the process includes
storing the minimum data value of the attribute. At 1318, the
process includes storing the number of bits for each mini-
mum value. At 1320, the process includes performing the
operations at 1322 and 1324 for each data value of the

10

15

20

25

30

35

40

45

50

55

60

65

32

column (e.g., the attribute) whose data values are currently
being processed. For instance, at 1322, the process includes
obtaining the index from the set of unique data values. At
1324, the process includes storing the index to the buffer.
After all the data values of the column have been processed,
at 1326, the process includes storing the (unique value-
minimum value) for each unique value in the set of tuples.
These values represents the actual value indexed from the
index stored at the step 1324.

In certain embodiments, if the process at 1312 determines
that the size of set of unique values is not smaller than the
number of input tuples/2, then, in some embodiments, the
processes 1332-638 described in FIG. 13B below are per-
formed. In certain embodiments, if the process at 1310
determines that the required number of bits is not smaller
than the original data type of the column, then, in one
embodiment, the processes in 1342-646 described in FIG.
13C are performed. In certain embodiments, the process
ends at 1328 by returning a set of serialized data values (i.e.,
a serialized block of data) for the attribute to the CQL
Engine for processing the set of tuples (i.e., the batch of
events) received via the event stream.

FIG. 13B is an example flow diagram of a process 1350
that describes a set of operations for generating a set of
serialized data values for a numeric attribute of an event
using the precision reduction compression technique, in
accordance with an embodiment of the present disclosure. In
an embodiment, the process 1350 describes additional
details of the operations performed by the process in 1330 of
FIG. 13A. In certain examples, the process 1350 begins at
1332 by storing the type of data compression to be per-
formed on data values represented by the attribute as a
precision reduction compression. At 1334, the process
includes storing the minimum data value of the attribute. At
1336, the process includes storing the number of bits per
data value of the attribute. At 1338, the process includes for
each data value of the column, performing a bit copy
(value-minimum) only for the required bits. For example,
the set of input values (10, 11, 12) will be stored with the bits
00 for the value O which is the result of (10-10 (the
minimum value)), 01 for the value 1 which is the result of
(11-10), and 02 for the value 2 which is the result of
(12-10). The sequence of bit values 00, 01, and 02 can be
stored into a byte(8 bits) 00010200 and stored as 154 in hex
value.

FIG. 13C is an example flow diagram of a process 1360
that describes a set of operations for generating a set of
serialized data values for a numeric attribute of an event
using the regular compression technique, in accordance with
an embodiment of the present disclosure. In an embodiment,
the process 1360 describes additional details of the opera-
tions performed by the process in 1340 of FIG. 13A. In
certain examples, the process 1360 begins at 1342 by storing
the first type of data compression to be performed on data
values represented by the attribute as a general compression
type. At 1344, the process includes compressing the array of
column values using a standard compression technique such
as, zip or gzip. At 1346, the process includes storing the
compressed bytes of the data values represented by the
attribute.

FIG. 13D is an example flow diagram of a process 1370
that describes a set of operations for generating a set of
serialized data values for a numeric attribute of an event
using the precision reduction value index compression tech-
nique, in accordance with an embodiment of the present
disclosure. In an embodiment, the process 1370 describes
additional details of the operations performed by the process

US 11,977,549 B2

33

in 1350 of FIG. 13A. In certain examples, the process 1370
begins at 1372 by storing the type of data compression to be
performed on data values represented by the attribute as a
precision reduction index value compression. At 1374, the
difference value set (e.g value-minimum) is computed. At
1376, the process includes scanning all the values in the
difference value set to obtain a set of enumerated values. At
1378, the process includes computing the set of indices for
each data value represented by the difference value set. At
1380, the process includes computing the minimum and
maximum value from the set of indices. At 1382, the process
includes storing the minimum data value of the attribute. At
1384, the process includes storing the number of bits per
data value of the index values. At 1386, the process includes
for each data value of the column, performing a bit copy
only for the required bits. At 1388, the process includes
storing the set of enumerated difference values.

FIG. 14 is an example flow diagram of a process 1400 that
describes a set of operations to generate a set of serialized
data values for a non-numeric attribute of an event, in
accordance with an embodiment of the present disclosure. In
an embodiment, the process 1400 describes additional
details of the operations performed by the process 1214 of
FIG. 12 when it is determined that a second type of data
compression is to be performed on the data values repre-
sented by an attribute (e.g., a non-numeric attribute). The
process 1400 begins at 1402 by storing the current buffer
offset to the current column number of the column (for e.g.,
the attribute) whose data values are being processed. At
1404, the data type (column type) of the attribute is obtained.
For instance, in this case, the data type of the attribute is
determined to be a non-numeric attribute. At 1406, the
process includes storing the type of data compression to be
performed on data values represented by the attribute as a
value index compression. In this case, all the possible values
within the batch of inputs are enumerated and the index of
the location is used instead of copying values multiple times.

At 1408, the process includes scanning all the input tuples
to obtain a set of enumerated values for the column. At 1410,
the process includes computing the set of indices for each
data value represented by the column. At 1412, the process
includes performing the operations described in 1414-716
below for each data value stored in the column. At 1414, the
process includes obtaining the index from the set of enu-
merated values. At 1416, the process includes storing the
index to the buffer. At 1418, the process includes storing the
set of enumerated values. At 1420, the process ends by
returning a set of serialized data values (i.e., a serialized
block of data) for the attribute to the CQL Engine for
processing the set of tuples (i.e., the batch of events)
received via the event stream.

FIG. 15 is an example of the manner in which event
stream data can be serialized based on determining the data
type of the attributes of the events in the event stream, in
accordance with an embodiment of the present disclosure. In
the example illustrated below, the event stream represents
product related information related to products sold by a
company. Hach event in the event stream may represent an
order for an item and comprise attributes such as an order
identifier, an order status, and an order amount related to the
item. The schema for such an order event stream can be
represented as S(timestamp, <orderld>, <orderStatus>,
<orderAmount>). Each event received via such a stream can
thus be identified by a time stamp and three attributes. As an
example, a batch of events received via an order event
stream may include the following events and associated
timestamps:

10

15

20

25

30

35

40

45

50

55

60

65

34
(timestamp_N, 10, “open”,100)
(timestamp_N+1, 11, “open”,5000)
(timestamp_N+2, 10,“processing”,100)
(timestamp_N+3, 10,“shipped”,100)
(timestamp_N+4, 11, “processing”,5000)
(timestamp_N+5, 10,“closed”,100)
(timestamp_N+6, 11,“shipped”,5000)
(timestamp_N+7, 11,“closed”,5000)

As noted above, in certain embodiments, the one or more
attributes of the events may be represented as one or more
columns in a set of input tuples that represent a batch of
events. Hence, an attribute, in some examples, may refer to
a column that stores data values for a tuple(event) in the set
of input tuples. An example of a set of input tuples corre-
sponding to a batch of events received via the order event
stream may be as shown in Table-1 below:

TABLE 1
Attribute 1 Attribute 2 Attribute 3
Tuple (column 1) (column 2) (column 3)
(event) Order Id Order Status Order Amount
el 10 Open 100
e2 11 Open 5000
e3 10 Processing 100
ed 10 Shipped 100
es 11 Processing 5000
e6 10 Closed 100
e7 11 Shipped 5000
e8 11 Closed 5000

In certain embodiments, the events in the event batch are
serialized by identifying the data type of each attribute of the
events and determining a particular type of compression
technique to be applied to the data values represented by
each attribute based on the data type of the attribute. For
instance, a first compression technique may be applied to a
first attribute (e.g., the order id attribute) of the event based
on determining that the first attribute is a numeric attribute,
a second compression technique may be applied to a second
attribute (e.g., the order status attribute) of the event based
on determining that the second attribute is a non-numeric
attribute, and a third compression technique may be applied
to a third attribute (e.g., the order amount attribute) of the
event based on determining that the third attribute is a
numeric attribute. In certain examples, the first type of
compression technique, the second type of compression
technique, and the third type of compression technique may
be different from each other.

In an embodiment, columnar storage can be used to store
the attributes (columns) that have the same datatype so that
the values in the columns are the same data type. In certain
embodiments, the values stored in columns of numeric types
may be compressed using a base value compression tech-
nique or a precision reduction compression technique. The
precision reduction reduces the bits representing values from
the used values by finding the range of values. The required
bits will depend on the range of values. The base value
compression uses the minimum value as the base value and
stores the differences from the base value for other values.
For example, the set of input values that represent the ‘order
id’ of each event in the event batch (10, 11, 10, 10, 11, 10,
11, 11) can be compressed to (10, 1), 01001011 in binary or
0x4B in hexadecimal which represents the values of (0, 1, 0,
0,1, 0, 1, 1) using reduced bits to 2 bits from 32 bits since
the minimum value is 10 and the range is 2. For another
example, the set of input values that represent the ‘order
amount’ can be compressed using a precision reduction and

US 11,977,549 B2

35

value index technique. In this case, the set of input values
that represent the order amount (100, 5000, 100, 100, 5000,
100, 5000, 5000) can be compressed to (100, 2, 0x10, 0x4F)
and (0,4900) by using both the precision reduction and value
index techniques. The input set can be represented as (0,
4900, 0, 0, 4900, 0, 4900, 4900) with the base value of 100.
The result set has a value of 00010000, 01001111 in binary
and 10 and 4F in hexadecimal which represents (0, 1, 0, O,
1, 0, 1, 1) having indexes to the base value table (0, 4900)
(e.g., 0 is pointing to 0 and in turn 100 with the base value
100 and 1 is pointing to 4900 and in turn 5000 with the base
value 100).

In certain embodiments, a ‘value index compression’
technique may be used to process the values for columns that
store non-numeric values such as string values. In this case,
we enumerate all the possible values within the batch of
inputs and use the index of the location instead of copying
values multiple times. For example, if the values of the
‘order status’ attribute (column) are (open, open, processing,
shipped, processing, closed, shipped, closed), the corre-
sponding enumerated unique values will be (open, process-
ing, shipped, closed). When the values of the columns are
stored in a linear buffer sequentially, the index of each value
will be (0, 5, 17, 25) because the buffer will have open/
Oprocessing/Oshipped/Oclosed/0 where /0 indicates the end
of string marker. The final compressed result is (0, 0, 5, 17,
5, 25, 17, 25) with the linear buffer of the values

FIG. 16 is an example flow diagram of a process 1600 that
describes a set of operations by which data comprised in a
batch of events can be de-serialized, in accordance with an
embodiment of the present disclosure. In certain embodi-
ments, the process 1600 can be performed by a batch
de-serializer process (420) in the distributed event process-
ing system. As noted above, the batch de-serializer process
may, in certain embodiments, be invoked by the master
computing node when the master computing node (e.g., 314
as shown in FIG. 3) is requested to run a job/operation
defined in the application. As described above, the master
computing node identifies a node (e.g., an executor node
318) in the cluster of computing nodes 312 in the distributed
computing system 302 to process a batch of events against
the job/operation defined in the application and generate a
set of output events as a result of the processing. In certain
embodiments, processing the batch of events may include
the serialization and the subsequent de-serialization of the
data in the batch of events. The process of FIG. 16 describes
one technique by which data in a batch of events can be
de-serialized. The particular series of processing steps
depicted in FIG. 16 is not intended to be limiting. Alternative
embodiments may have more or less steps than those shown
in FIG. 16 in various arrangements and combinations.

In certain embodiments, the process 1600 begins at 1602
by receiving a set of serialized data values corresponding to
one or more attributes of events in a batch of events (set of
input tuples). At 1604, the process includes processing the
set of serialized data values corresponding to the one or
more attributes of the events in the batch of events to
generate a set of output events. In certain examples, the
process at 1604 may include generating a set of de-serialized
data values corresponding to the attributes based on the set
of serialized data values at 1606 and processing the set of
de-serialized data values corresponding to the attributes
against a set of one or more continuous queries to generate
a first set of output events at 1608. At 1610, the process
includes transmitting the set of output events to a user of the
distributed event processing system.

25

30

40

45

36

The process 1604 of generating a set of de-serialized data
values corresponding to attributes of events in a batch of
events is discussed in detail in relation to FIGS. 17-14
below. In particular, FIG. 17 describes a process by which a
set of de-serialized data values corresponding to one or more
attributes of events in a batch of events can be generated.
FIG. 18 describes a process by which set of de-serialized
data values corresponding to a non-numeric attribute of an
event can be generated. FIGS. 19-14 describe a process by
which set of de-serialized data values corresponding to a
numeric attribute of an event can be generated.

FIG. 17 is an example flow diagram of a process 1700 that
describes a set of operations to generate a set of de-serialized
data values for one or more attributes of events in a batch of
events, in accordance with an embodiment of the present
disclosure. In an embodiment, the process 1700 describes
additional details of the operations of the process in 1604 of
FIG. 16. In certain examples, the process 1700 begins at
1702 by creating an array of tuples. At 1704, the process
includes identifying a first column (first attribute) of the
events. At 1706, the process includes obtaining the buffer
offset of the current column number of the column (for e.g.,
the first attribute) whose data values are being processed. At
1708, the process includes reading the compression type of
the attribute. This involves, for example, reading the type of
data compression that was performed by the batch serializer
process to serialize the data values of the attribute. At 1710,
the process includes determining if the type of data com-
pression applied to the attribute is a value index compres-
sion. If the compression type applied to the attribute is a
value index compression, then the then the process contin-
ues to 1724 to perform the process described in FIG. 18.

At 1712, the process includes determining if the type of
data compression applied to the attribute is a precision
reduction compression. If the compression type applied to
the attribute is a precision reduction compression, then the
process continues to 1726 to perform the process described
in FIG. 19.

In certain embodiments, at 1714, the process includes
determining if the type of data compression type applied to
the attribute is a precision reduction value index compres-
sion. If the compression type applied to the attribute is a
precision reduction value index compression, then the pro-
cess continues to 1728 to perform the process described in
FIG. 20.

In certain embodiments, if the process determines that the
compression type applied to the attribute is neither a value
index compression, or a precision reduction compression, or
a precision reduction value index compression, then the
process continues to 1716 to determine that the compression
type applied to the attribute is a general compression. At
1716, the process includes performing the process described
in FIG. 21.

At 1718, the process includes determining if there are
additional attributes to be processed. If there are additional
attributes to be processed, the process loops back to 1704 to
identify and process the next attribute of the events. If there
are no attributes to be processed, then, in some embodi-
ments, the process returns an array of tuples to the CQL
Engine for further processing at 1720. In certain embodi-
ments, the process ends at 1722.

FIG. 18 is an example flow diagram of a process 1800
describing a set of operations for generating a set of de-
serialized data values corresponding to a numeric attribute
or a non-numeric attribute of events in a batch of events
using the value index compression, in accordance with an
embodiment of the present disclosure. In an embodiment,

US 11,977,549 B2

37

the process 1810 describes additional details of the process
1724 in FIG. 17 and is performed when the type of data
compression applied to the attribute is determined to be a
‘value index’ compression (e.g., at 1710 in FIG. 17). As an
example, the process 1800 can be performed for the ‘order
status’ attribute (non-numeric attribute) in the order event
stream.

An example of using the value index compression tech-
nique is shown in FIG. 8, Column 2. The compressed value
has two sets of data (0, 0, 5, 17, 5, 25, 17, 25), and
(‘open’,‘processing’,‘shipped’,‘closed’). The second set is
referred to value_arrays since the set includes the actual
values. The first set is referred to index_values since the set
includes the index values to the actual values stored in the
value_arrays. The value_index refers to each of the indi-
vidual index values in the index_values.

In certain embodiments, the process 1800 begins at 1802
by reading the index values to index_values. At 1804, the
process includes reading value arrays to value_array. At
1806, the process includes performing the operations in
1808, 1810, and 1812 for each data value corresponding to
the attribute in the set of input tuples. For example, at 1808,
the process includes getting the index from index_values
[value_index]. At 1810, the process includes getting the
value from value_array[index]. At 1812, the process
includes setting the value to the tuple column of tuples
[value_index].

FIG. 19 is an example flow diagram of a process 1900
describing a set of operations for generating a set of de-
serialized data values corresponding to a numeric attribute
of events in a batch of events using the precision reduction
compression technique, in accordance with an embodiment
of the present disclosure. In an embodiment, the process
1900 describes additional details of the process 1726 in FIG.
17 and is performed when the type of data compression
applied to the attribute is determined to be a ‘precision
reduction’ compression (e.g., at 1712 in FIG. 17). As an
example, the process 1900 can be performed for the ‘order
id’ or the ‘order amount’ attribute (numeric attribute) in the
order event stream and the compressed result is shown at
FIG. 8, Column 1 is (10, 2, 0x4B). In the set of operations
described below, in one example, the term ‘minimum val-
ues” has a value 17 which is the minimum value of the value
range and the term ‘the number of bits” has the value 2 which
is the number of bits representing the value range

In certain embodiments, the process 1900 begins at 1902
by reading the minimum value to the base_value. At 1904,
the process includes reading the number of bits. At 1906, the
process includes performing the processes in 1908 and 1910
for each data value corresponding to the attribute in the set
of input tuples. For example, at 1908, the process includes
reading the value bits to value_bits. At 1910, the process
includes setting the base_value+value_bits to the tuple col-
umn of tuples[value_index].

FIG. 20 is an example flow diagram of a process 2000
describing a set of operations for generating a set of de-
serialized data values corresponding to a numeric attribute
of events in a batch of events using the precision reduction
value index, in accordance with an embodiment of the
present disclosure. In an embodiment, the process 2000
describes additional details of the process 1728 in FIG. 17
and is performed when the type of data compression applied
to the attribute is determined to be a ‘precision reduction
value index’ compression (e.g., at 1712 in FIG. 17). As an
example, the process 2000 can be performed for the ‘order
id’ or the ‘order amount’ attribute (numeric attribute) in the

10

15

20

25

30

35

40

45

50

55

60

65

38

order event stream. FIG. 8, in column 3 shows an example
result for the ‘order amount attribute’ with the result, (100,
2, 0x10, 0x4F) and (0,4900).

In the set of operations described below, the term, ‘base
value’ refers to value 170 for the base value of the column
values, the term ‘number of bits’ refers to value 2 for the
number of bits for the index values, the term ‘index_values’
refers to value (0x10, 0x4F) for the index values, and the
term ‘value_array’ refers to (0,4900) which represents the
set of difference values.

In certain embodiments, the process 2000 begins at 2002
by reading the minimum value to the base_value. At 2004,
the process includes reading the number of bits. At 2006, the
process includes reading the index values to index_values.
At 2008, the process includes reading the value arrays to
value_array. At 2010, the process includes setting the val-
ue_array[j] to value_array[j]+base_value for each value of
j<0 to value array.length. At 2012, the process includes
performing the processes in 2014, 2016, and 2018 for each
data value corresponding to the attribute in the set of input
tuples. For example, at 2014, the process includes getting the
index from index_values[value_index]. At 2016, the process
includes getting the value from value_array[index]. At 2018,
the process includes setting the value to the tuple column of
tuples[value_index].

FIG. 21 is an example flow diagram of a process 2100
describing a set of operations for generating a set of de-
serialized data values corresponding to a numeric attribute
or non-numeric attribute of events in a batch of events, in
accordance with an embodiment of the present disclosure. In
an embodiment, the process 2100 describes additional
details of the process 1716 in FI1G. 17 and is performed when
the type of data compression applied to the attribute is
determined to be a ‘general compression’ technique (e.g., at
1716 in FIG. 17). As an example, the process 2100 can be
performed for the ‘order id” or the ‘order amount” attribute
(numeric attribute) in the order event stream. In the set of
operations described below, the term ‘values’ refers to the
uncompressed values.

In certain embodiments, the process 2100 begins at 2102
by uncompressing the block into array of values. At 2104,
the process includes setting the value in values array into the
tuple column of tuples for each data value corresponding to
the attribute in the set of input tuples.

Scheduling and Managing Multiple CEP Engines within a
Micro-Batch Based Event Processing System

In recent years, data stream management systems (DSMs)
have been developed that can execute queries in a continu-
ous manner over potentially unbounded, real-time data
streams. Among new DSMs, these systems employ micro-
batching based stream processing in order to provide a
combination of batch processing and stream processing from
a single framework. An example of such a system is a
Spark® Streaming application running on the Spark® plat-
form.

Micro-batching stream processing has some shortcomings
due to the nature of the system design where stateful
processing is generally complex. One such shortcoming is
not being able to perform a ‘pattern matching’ operation.
Pattern matching is an important feature that is desirable that
a Stream Processing system should support and Pattern
Matching requires highly stateful processing in order to run
state machines to detect patterns from an unbound stream of
events.

In order to support fully stateful query processing, the
disclosed technique adds the CQL Query Engine into micro-
batching stream processing. Since there are more than one

US 11,977,549 B2

39

CQL Engines in a cluster, issues related to scheduling,
tracking, and maintaining locality have to be addressed.

FIG. 22 is an example system or architecture in which a
scheduling process in the CQL Engine Tracker can be
implemented. In one embodiment, and as shown in FIG. 22
below, a CQL Engine Tracker 2202 component is disclosed
in the driver (master) 2206 that can remotely communicate
between the CQL engine 2212 and the CQL Resilient
Distributed Dataset (RDD) 2218. For launching and sched-
uling, the CQLEngineTracker 2202 uses a two-step sched-
uling policy to differentiate different system environments.
In order to maximize the locality, in one embodiment, the
CQLEngineTracker 2202 uses the following affinity algo-
rithm.

1. All CQLEngines 2212, 2214, 2216 are launched by the
CQLEngineTracker 2202 from a driver 2206. No asso-
ciation of a CQLEngine to a preferred location is set.

2. The first CQLRDD 2218 does not have preferred
location information.

3. A Scheduler 2204 will try to co-locate to the host where
the parent RDD is located using the parent RDD’s
preferred location.

4. The first run of CQLRDD 2218 associates the
CQLEngine 2212 to the same host 2208.

5. The next CQLRDD 2220 will set the preferred location
information from the association information set from
step 4.

6. The Scheduler 2204 will try to run CQLRDD to the
preferred location it is set to.

The disclosed technique enables having fully stateful
CQLEngines 2212, 2214, 2216 within micro-batching
stream processing, maintaining locality = between
CQLEngine and CQLRDD, and Multi-step scheduling algo-
rithm for launching and re-launching CQLEngines. In addi-
tion, the disclosed local affinity algorithm provides maxi-
mum performance compared to other event-by-event based
stream processing systems.

In certain embodiments, the disclosed CQL engine tracker
2202 is responsible for scheduling, tracking, and restarting
CQLEngines in a cluster. The CQL Engine runs as a
long-running task in the cluster and can be launched as a
regular Streaming Job. The CQL engine tracker 2202 does
not return except when it encounters the fault situation.

In some embodiments, the following tracking information
by the CQL Engine Tracker 2202 can be maintained.

state: CQLEngineState-INACTIVE, SCHEDULED,
ACTIVE

This changes from INACTIVE—SCHEDULED—AC-
TIVE—INACTIVE throughout the lifecycle of
CQLEngine 2212, 2214, 2216

scheduleLocation: TaskLocation

The initial scheduled location

runningExecutor: ExecutorCacheTaskLocation

The executor 2208 location where the CQLEngine actu-
ally runs

name: String

The name of CQLEngine 2212, 2214, 2216

endpoint: RpcEndpointRef

The Remote Process Call (RPC) endpoint of CQLEngine
2212, 2214, 2216 to access it remotely

errorlnfo: CQLEngineErrorinfo

The last known error information

In an embodiment, the launch flow of the CQL Engine
2212, 2214, 2216 may be described as follows:

Decide number of CQLEngines 2212, 2214, 2216 to
launch

Get the list of executors 2208, 2210, 2212

5

10

15

20

25

30

35

40

45

50

55

60

65

40

Run Round-robin scheduler to schedule CQLEngine
2212, 2214, 2216 to the list of executors 2208, 2210, 2212

TaskScheduler 2204 launches actual long-running tasks

The newly launched CQLEngine invokes ‘register’ RPC
call to CQLEngineTracker (e.g., CQL Engine Tracker 2202)

In certain embodiments, the CQLEngine Locality Affinity
Algorithm may be described by the following process:

1. All CQLEngines are launched by CQLEngineTracker
from a driver. No association of CQLEngine to a
preferred location is set.

2. The first CQLRDD does not have preferred location
information.

3. The Scheduler will try to co-locate to the host where the
parent RDD is located using the parent RDD’s pre-
ferred location.

4. The first run of CQLRDD associates the CQLEngine to
the same host.

5. The next CQLRDD will set the preferred location
information from the association information set from
step 4.

6. The Scheduler will try to run CQLRDD to the preferred
location it’s set.

In an embodiment, the CQLEngine Restart Scheduling

process may be described as follows:

Handle two cases (Rejected, Crashed)

Rejected-If the schedule location and actual location is

different (failed to start from the schedule)

get scheduled executor either using the old scheduled

executor (minus the ones that are not active) or the new
scheduled executor with schedulePolicy.rescheduleCQ-
LEngine

choose the executors that are still alive in the list of
scheduled locations

start CQLEngine with the scheduled executor

The following flow shows the data flow of the above

architecture:

1. CQLEngineTracker 2202 in Driver 2206 launches long
running tasks for each CQLEngine. The CQLEngin-
eTracker 2202 exposes RPCEndpoint of it to the long
running tasks.

2. TaskScheduler 2204 executes the long running tasks to
executors 2208, 2210, 2212 in the cluster

3. As part of the long running task, CQLEngine runs from
executors 2208, 2210, 2212.

4. CQLEngines register themselves to CQLEngin-
eTracker 2202 in Driver 2206 with the RPCEndpoint of
CQLEngines.

5. As part of streaming DAG, there will be CQLRDD
responsible for CEP Processing. The CQLRDD gets
processed by either local CQLEngine or remote
CQLEngine by consulting CQLEngineTRacker. The
remote CQLEngine is invoked through RPC

Starting the CQLEngines

The CQLEngine runs as a long-running tasks in the
cluster. A CQLEngine gets started by the CQLEngin-
eTracker as a regular Job but it never returns and keeps
running except the fault or crash. The CQLEngineTracker
launches CQLEngines in the cluster following the algorithm
described below:

1. Decide number of CQLEngines to launch

2. Get the list of executors

3. Run Round-robin scheduler to schedule CQLEngine to
the list of executors

4. TaskScheduler launches actual long-running tasks

5. The newly launched CQLEngine invokes ‘register’
RPC call to CQLEngineTracker

US 11,977,549 B2

41

6. The long-running tasks returns the control only when

the CQLEngine crashes or other faults.

At step #1, the number of CQLEngine in the cluster to
launch is decided. The default number of CQLEngine in the
cluster is same as the number of executors in the cluster. As
the result, one CQLEngine runs from each executor. This
maximum number CQLEngine can be configured.

At step #2, the list of executor information (executor host
and executor id) is retrieved from the cluster.

At step #3, the round-robin scheduler to assign executors
to CQLEngines.

At step #4, launch long-running tasks for each
CQLEngine. The TaskScheduler uses the scheduled execu-
tor information (executor host and id) to start the
CQLEngine in the scheduled executor.

At step #5, the newly launched CQLEngine invokes
‘register’ RPC call to the CQLEngineTracker. This step
initiates the tracking process from CQLEngineTracker
shown below.

At step #6, the fault or crash of CQLEngines triggers the
recovery process from CQLEngineTracker shown below
Tracking CQLEngines

In some embodiments, the following tracking information
by the CQL Engine Tracker can be maintained for each
CQLEngine

state: CQLEngineState

scheduleLocation: TaskLocation

runningExecutor: ExecutorCacheTaskLocation

name: String

endpoint: RpcEndpointRef

errorlnfo: CQLEngineErrorInfo

The ‘state’ keeps the state of CQLEngine. It changes from
INACTIVE—-SCHEDULED—ACTIVE—INACTIVE
throughout the lifecycle of CQLEngine. INACTIVE is the
initial state before the CQLEngine gets tracked by the
CQLEngineTracker. SCHEDULED is the state when the
CQLEngine is scheduled to be executed in an executor.
ACTIVE is the state when the CQLEngine is actually
running from the executor.

The ‘scheduledLocation’ keeps the scheduled location to
execute the CQLEngine.

The ‘runningExecutor’ keeps the executor location where
CQLEngine actually runs.

The ‘name’ is the name of the CQLEngine as the identi-
fier.

The ‘endpoint’ is the RPCEndpoint to communicate with.

The ‘errorInfo’ is the last known error information of
CQLEngine.

Recovery of CQLEngines

The long-running tasks returns the control to CQLEngi-
neTracker only when the CQLEngine crashes or other faults.
The CQLEngineTracker uses the following CQLEngine
Restart Scheduling process in order to re-start the
CQLEngine. The Restart Scheduling process gets invoked
from two cases: Rejected and Crashed.

Crashed is the case when the running CQLEngine is
crashed or the long-running task returned with any faults.
Rejected is the case when the scheduled location and the
actual location is different (e.g. Failed to start from the
scheduled executor and started from different executor by
the TaskScheduler). This may happen due to the resources
issue from the cluster.

In an embodiment, the CQLEngine Restart Scheduling
process may be described as follows:

1. Get the list of candidate executors using the old

scheduled executor (minus the ones that are not active)
and the new executors in the cluster

10

—_
w

20

25

30

35

40

45

50

55

60

42

2. Choose an executor that are still alive in the list of
candidate executors

3. Launch a long running-task that start CQLEngine with
the scheduled executor

Locality Affinity Algorithm

In order to support horizontal scalability, the input data-
sets are partitioned and get processed with parallelize dis-
tributed data processing. A CQLEngine may process mul-
tiple partitions using the affinity or association of (queryld,
partitionld) to CQLEngine. To optimize transformation with
minimal network traffic for sending data between executors,
this affinity needs to be created with maximizing locality. In
order to maximize the locality, in one embodiment, the
CQLEngineTracker uses the following affinity algorithm.

1. All CQLEngines are launched by the CQLEngin-
eTracker from a driver. No association of a CQLEngine
to a preferred location is set.

2. The first CQLRDD does not have preferred location
information.

3. Spark® Scheduler will try to co-locate to the executor
where the parent RDD is located using the parent
RDD’s preferred location.

4. CQLRDD invokes ‘getCQLEngine’ RPC to CQLEngi-
neTracker.

5. The first computation of a partition of CQLRDD
associates the (partitionld, queryld) to the CQLEngine
to the same executor of CQLRDD.

6. The preferred location mapping of (partitionld, que-
ryld) to CQLEngine is maintained in the CQLEngin-
eTracker.

7. The CQLEngine from the association returns to
CQLRDD and the RDD gets processed by the
CQLEngine.

8. The next CQLRDD will set the preferred location
information from the association information set from
step 5.

9. Spark® Scheduler will try to run CQLRDD to the
preferred location it is set to.

10. CQLRDD invokes ‘getCQLEngine’ RPC to
CQLEngineTracker and the (partitionld,queryld)
should be already the same executor.

FIG. 23 is an example flow diagram of a process 2300 that
describes a set of operations for scheduling and managing
multiple CEP engines within a micro-batch based event
processing system, in accordance with an embodiment of the
present disclosure. In an embodiment, the process 2300
describes additional details of the operations described in
FIG. 22. In certain examples, the process 2300 begins at
2302 by launching a first CQL engine in a cluster of CQL
engines. The first CQL engine, and additional CQL engines,
can be launched using a CQL engine tracking engine. At
2304, the CQL engine tracking engine can also schedule the
first CQL engine to process a batch of a continuous stream
of input events related to an application. At 2306, the CQL
engine tracking engine can also track the first CQL engine
to be scheduled for execution. At 2308, the CQL engine
tracking engine can also execute the first CQL engine to
process the batch of the continuous stream of input events to
generate a set of output events related to the application.
Automatic Data Partitioning and Parallelism Using Group
by and Object ID Fields

In recent years, data stream management systems (DSMs)
have been developed that can execute queries in a continu-
ous manner over potentially unbounded, real-time data
streams. For example, a typical DSMS can receive one or
more data streams, register a query against the data streams,
and continuously execute the query as new data appears in

US 11,977,549 B2

43

the streams. Since this type of continuous query is long-
running, the DSMS can provide a continuous stream of
updated results to a client.

Typical applications in DSMS are designed as a “topol-
ogy” in the shape of a Directly Acyclic Graph (DAG) of
operations or transformations. The topology acts as a data
transformation pipeline.

Most stream processing systems including Apache Storm,
Spark Streaming, and Flink provide an Application pro-
graming Interface (API) for an application developer to
build the topology using different programming languages
such as Java, Scala, or Clojure.

APIs are good for programmers to build stream process-
ing applications, but it is relatively complex for a code
generation system such as Stream Analytics which generates
a stream processing application for users, due to the com-
plexity of the code generation layer.

FIG. 24 is an example architecture 2400 in which an input
pipeline of data transformations can be input into a pipeline
analyzer 2402 and classified by a stage classification module
2404. In some examples, the code generation layer of
Stream Analytics is responsible for determining the paral-
lelism in the data transformation pipeline automatically by
analyzing the pipeline stages. A data transformation pipeline
is composed of various stages where each stage performs a
specific transformation according to the stage definition. An
aggregator stage computes the real time aggregates on the
incoming stream data. A data transformation pipeline pro-
cessing can be optimized if the stages of the pipeline can be
processed on a cluster of nodes.

To compute a stage on a cluster of nodes, it is desirable to
automatically determine the parallelism characteristics of
stage operation and then create the DAG of transformations
where computation of transformations can be completed on
a set of cluster nodes by maximizing parallelism.

In one embodiment, a Data Stream Management System
(DSMS) is built which analyzes the data transformation
pipeline designed by the user, derives the partitioning cri-
teria for various stages, and generates an optimized DAG of
transformation where every stage can run on a set of cluster
nodes.

In certain embodiments, the following stages can be
included in the pipeline designed by the Stream Analytics
platform.

1) Query
2) Business Rules
3) Spatial
4) Pattern

The pipeline can be composed of one or more stages of
the above types.

An example of a sample pipeline is shown below:

Input—Query—Query—Spatial=Output

In some examples, the user creates the pipeline to achieve
desired business logic. While designing the pipeline, the
user may select every stage for the pipeline and configure the
stage attributes for the pipeline. In some examples, the

configuration attribute of a stage becomes the stage meta-
data.

The disclosed technique determines automatic data par-
titioning of a stage if the stage type is Query. To transform
the user created pipeline into a DAG of native runtime
transformations, the Stream analytics platform may perform
the following steps:

20

30

40

45

55

65

44

1) Traverse the pipeline from source to sink.

2) For each stage

i) Determine the stage type

ii) If the stage type is ‘Query’, then the platform marks
whether the transformation for this stage can be com-
puted in a distributed manner

a) Determine the CQL query associated with the Query
Stage.

b) Parse the CQL Query into tokens.

¢) Perform the semantic analysis of the CQL Query of the
parsed query.

d) Determine the Query Classification using various rules

These rules classify a continuous query into the following
categories:

Stateless, SemiStateful, Fully Stateful

e) If the query is stateless, mark the stage to be partitioned
without any partitioning attribute (criteria) 2406. In this
way, the stage will depend on the partitioning criteria of
the parent stage.

f) If the query is stateful, mark the stage to be non-
partitioned 2408. In this way, the stage can be executed
only on a single cluster of nodes.

g) If the query is semi-stateful, mark the stage to be
partitioned with a partitioning attribute 2410. The par-
titioning attribute will be obtained from the result of
step 2.i.d. In this way, stage computation can be
partitioned on the automatically determined partition-
ing attribute.

3) For each stage, generate the transformation in the DAG
of data transformation pipeline.

i) If the stage is marked as partitioned without any
partitioning attribute 2406, then generate the transfor-
mation for this stage in DAG without any repartitioning
transformation. Number of partitions of the stage will
be determined by number of partitions from the previ-
ous stage.

ii) If the stage is marked as partitioned with a partitioning
attribute 2410, then generate the transformation for this
stage in DAG with re-partitioning transformation. Input
to the re-partitioning transformation will be the parti-
tioning attribute and number of partitions. Re-partition-
ing transformation will re-partition the incoming
stream of events with new partitioning criteria.

iii) If the stage is marked as non-partitioned 2408, then
generate the transformation for the stage in DAG with
a repartitioning transformation followed by stage trans-
formation. Input to the repartitioning transformation
will be partitioning attribute and number of partitions
which will be 1. Re-partitioning transformation will
re-partition the already partitioned/non-partitioned
stream into single partition.

In certain pipelines, if the system doesn’t have enough
metadata or if partitioning can’t be determined from the
query analysis, then the system marks the object id as the
partitioning attribute 2412.

If the stage type is spatial and DSMS is processing a
stream of geo-location events of moving objects where each
object has a unique identity, the Stream Analytics platform
marks the object id as the partitioning attribute for the stage
and generates the transformations for this stage in DAG with
a partitioning transformation followed by a stage transfor-
mation.

Embodiments of the disclosed technique provide the
following features:

To perform metadata scan of a pipeline stage and classify

the stage on the basis of CQL query classification.

To automatically determine a partitioning attribute by
performing semantic analysis of a query based on
continuous query language.

US 11,977,549 B2

45

To generate a DAG of transformations by using the

partitioning.

Prior techniques involved the use of a pipeline data
transformation system for a user to explicitly define the
parallelism characteristics of the pipeline stages. If not
specified, the system could process the pipleline stages
without fully utilizing the computing resources.

The disclosed technique automatically determines data
partitioning criteria by analyzing the stages of a pipelined
stream processing system. This significantly reduces the
complexity of designing a data processing pipeline for the
Stream Analytics Platform.

FIG. 25 is an example flow diagram of a process 2500 that
describes a set of operations for data partitioning and
parallelism in a distributed event processing system. In an
embodiment, the process 2500 describes additional details
of the operations described in FIG. 24. In certain examples,
the process 2500 begins at 2502 by determining a stage for
a continuous query language (CQL) query being processed
by an event processing system. At 2504, the system may be
configured to determine a stage type associated with the
stage. In some examples, the process 2500 may continue at
2506 by determining a transformation to be computed for
the stage based at least in part on the stage type. The process
2500 may also determine a classification for the CQL query
based at least in part on a plurality of rules at 2508. In some
examples, the process 2500 may include marking the stage
as a partitioned stage or a non-partitioned stage by applying
partitioning criteria to the stage at 2510. Additionally, in
some examples, the process 2500 may generate a transfor-
mation in a Directly Acyclic Graph (DAG) of a data trans-
formation pipeline for the stage based at least in part on the
partitioning criteria for the stage at 2512. At 2514, the
process 2500 may determine a partitioning of the stage
based at least in part on the transformation. The process
2500 may also process the CQL query based at least in part
on the determined partitioning.

Tustrative Systems

FIGS. 26-12 illustrate aspects of example environments
for implementing aspects of the present disclosure in accor-
dance with various embodiments. FIG. 26 depicts a simpli-
fied diagram of a distributed system 2600 for implementing
an embodiment of the present disclosure. In the illustrated
embodiment, the distributed system 2600 includes one or
more client computing devices 2602, 2604, 2606, and 2608,
which are configured to execute and operate a client appli-
cation such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 2610. The
server 2612 may be communicatively coupled with the
remote client computing devices 2602, 2604, 2606, and
2608 via network 2610.

In various embodiments, the server 2612 may be adapted
to run one or more services or software applications such as
services and applications that provide event processing
services. In certain embodiments, the server 2612 may also
provide other services or software applications can include
non-virtual and virtual environments. In some embodiments,
these services may be offered as web-based or cloud services
or under a Software as a Service (SaaS) model to the users
of the client computing devices 2602, 2604, 2606, and/or
2608. Users operating the client computing devices 2602,
2604, 2606, and/or 2608 may in turn utilize one or more
client applications to interact with the server 2612 to utilize
the services provided by these components.

In the configuration depicted in FIG. 26, the software
components 2618, 2620 and 2622 of system 2600 are shown
as being implemented on the server 2612. In other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

46

ments, one or more of the components of the system 2600
and/or the services provided by these components may also
be implemented by one or more of the client computing
devices 2602, 2604, 2606, and/or 2608. Users operating the
client computing devices may then utilize one or more client
applications to use the services provided by these compo-
nents. These components may be implemented in hardware,
firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are
possible, which may be different from distributed system
2600. The embodiment shown in FIG. 26 is thus one
example of a distributed system for implementing an
embodiment system and is not intended to be limiting.

The client computing devices 2602, 2604, 2606, and/or
2608 may include various types of computing systems. For
example, client device may include portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®,
computing tablet, a personal digital assistant (PDA)) or
wearable devices (e.g., a Google Glass® head mounted
display), running software such as Microsoft Windows
Mobile®, and/or a variety of mobile operating systems such
as 10S, Windows Phone, Android, BlackBerry 26, Palm OS,
and the like. The devices may support various applications
such as various Internet-related apps, e-mail, short message
service (SMS) applications, and may use various other
communication protocols. The client computing devices
may also include general purpose personal computers
including, by way of example, personal computers and/or
laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating
systems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Client
computing devices may also include electronic devices such
as a thin-client computer, an Internet-enabled gaming sys-
tem (e.g., a Microsoft Xbox gaming console with or without
a Kinect® gesture input device), and/or a personal messag-
ing device, capable of communicating over the network(s)
2610.

Although distributed system 2600 in FIG. 26 is shown
with four client computing devices, any number of client
computing devices may be supported. Other devices, such as
devices with sensors, etc., may interact with the server 2612.

The network(s) 2610 in the distributed system 2600 may
be any type of network familiar to those skilled in the art that
can support data communications using any of a variety of
available protocols, including without limitation TCP/IP
(transmission control protocol/Internet protocol), SNA (sys-
tems network architecture), IPX (Internet packet exchange),
AppleTalk, and the like. Merely by way of example, the
network(s) 2610 can be a local area network (LAN), net-
works based on Ethernet, Token-Ring, a wide-area network,
the Internet, a virtual network, a virtual private network
(VPN), an intranet, an extranet, a public switched telephone
network (PSTN), an infra-red network, a wireless network
(e.g., a network operating under any of the Institute of
Electrical and Electronics (IEEE) 2602.11 suite of protocols,
Bluetooth®, and/or any other wireless protocol), and/or any
combination of these and/or other networks.

The server 2612 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers,
rack-mounted servers, etc.), server farms, server clusters, or
any other appropriate arrangement and/or combination. The

US 11,977,549 B2

47

server 2612 can include one or more virtual machines
running virtual operating systems, or other computing archi-
tectures involving virtualization. One or more flexible pools
of logical storage devices can be virtualized to maintain
virtual storage devices for the server. Virtual networks can
be controlled by the server 2612 using software defined
networking. In various embodiments, the server 2612 may
be adapted to run one or more services or software appli-
cations described in the foregoing disclosure. For example,
the server 2612 may correspond to a server for performing
processing as described above according to an embodiment
of the present disclosure.

The server 2612 may run an operating system including
any of those discussed above, as well as any commercially
available server operating system. Server 2612 may also run
any of a variety of additional server applications and/or
mid-tier applications, including HTTP (hypertext transport
protocol) servers, FTP (file transfer protocol) servers, CGI
(common gateway interface) servers, JAVA® servers, data-
base servers, and the like. Example database servers include
without limitation those commercially available from
Oracle, Microsoft, Sybase, IBM (International Business
Machines), and the like.

In some implementations, the server 2612 may include
one or more applications to analyze and consolidate data
feeds and/or event updates received from users of the client
computing devices 2602, 2604, 2606, and 2608. As an
example, data feeds and/or event updates may include, but
are not limited to, Twitter® feeds, Facebook® updates or
real-time updates received from one or more third party
information sources and continuous data streams, which
may include real-time events related to sensor data applica-
tions, financial tickers, network performance measuring
tools (e.g., network monitoring and traffic management
applications), clickstream analysis tools, automobile traffic
monitoring, and the like. The server 2612 may also include
one or more applications to display the data feeds and/or
real-time events via one or more display devices of the client
computing devices 2602, 2604, 2606, and 2608.

The distributed system 2600 may also include one or
more databases 2614 and 2616. These databases may pro-
vide a mechanism for storing information such as event
information, and other information used by embodiments of
the present disclosure. Databases 2614 and 2616 may reside
in a variety of locations. By way of example, one or more of
databases 2614 and 2616 may reside on a non-transitory
storage medium local to (and/or resident in) the server 2612.
Alternatively, the databases 2614 and 2616 may be remote
from the server 2612 and in communication with the server
2612 via a network-based or dedicated connection. In one
set of embodiments, the databases 2614 and 2616 may reside
in a storage-area network (SAN). Similarly, any necessary
files for performing the functions attributed to the server
2612 may be stored locally on the server 2612 and/or
remotely, as appropriate. In one set of embodiments, the
databases 2614 and 2616 may include relational databases,
such as databases provided by Oracle, that are adapted to
store, update, and retrieve data in response to SQL-format-
ted commands.

Systems depicted in some of the figures may be provided
in various configurations. In some embodiments, the sys-
tems may be configured as a distributed system where one
or more components of the system are distributed across one
or more networks in one or more cloud infrastructure
systems.

A cloud infrastructure system is a collection of one or
more server computing devices, network devices, and/or

10

15

20

25

30

35

40

45

50

55

60

65

48

storage devices. These resources may be divided by cloud
services providers and allotted to its customers in some
manner. For example, a cloud services provider, such as
Oracle Corporation of Redwood Shores, California, may
offer various types of cloud services including but not
limited to one or more services provided under Software as
a Service (SaaS) category, services provided under Platform
as a Service (PaaS) category, services provided under Infra-
structure as a Service (laaS) category, or other categories of
services including hybrid services. Examples of SaaS ser-
vices include, without limitation, capabilities to build and
deliver a suite of on-demand applications such as Oracle
Fusion applications. SaaS services enable customers to
utilize applications executing on the cloud infrastructure
system without the need for customers to purchase software
for the applications. Examples of PaaS services include
without limitation services that enable organizations (such
as Oracle) to consolidate existing applications on a shared,
common architecture, as well as the ability to build new
applications that leverage the shared services provided by
the platform such as Oracle Java Cloud Service (ICS),
Oracle Database Cloud Service (DBCS), and others. laaS
services typically facilitate the management and control of
the underlying computing resources, such as storage, net-
works, and other fundamental computing resources for cus-
tomers utilizing services provided by the SaaS platform and
the PaaS platform.

FIG. 27 is a simplified block diagram of one or more
components of a system environment 2700 by which ser-
vices provided by one or more components of an embodi-
ment system may be offered as cloud services, in accordance
with an embodiment of the present disclosure. In the illus-
trated embodiment, system environment 2700 includes one
or more client computing devices 2704, 2706, and 2708 that
may be used by users to interact with a cloud infrastructure
system 2702 that provides cloud services. The client com-
puting devices may be configured to operate a client appli-
cation such as a web browser, a proprietary client application
(e.g., Oracle Forms), or some other application, which may
be used by a user of the client computing device to interact
with cloud infrastructure system 2702 to use services pro-
vided by cloud infrastructure system 2702.

It should be appreciated that cloud infrastructure system
2702 depicted in the figure may have other components than
those depicted. Further, the embodiment shown in the figure
is only one example of a cloud infrastructure system that
may incorporate an embodiment of the disclosure. In some
other embodiments, cloud infrastructure system 2702 may
have more or fewer components than shown in the figure,
may combine two or more components, or may have a
different configuration or arrangement of components.

Client computing devices 2704, 2706, and 2708 may be
devices similar to those described above for 502, 504, 506,
and 508.

Although example system environment 2700 is shown
with three client computing devices, any number of client
computing devices may be supported. Other devices such as
devices with sensors, etc. may interact with cloud infrastruc-
ture system 2702.

Network(s) 2710 may facilitate communications and
exchange of data between clients 2704, 2706, and 2708 and
cloud infrastructure system 2702. Each network may be any
type of network familiar to those skilled in the art that can
support data communications using any of a variety of
commercially-available protocols, including those described
above for network(s) 2710.

US 11,977,549 B2

49

Cloud infrastructure system 2702 may comprise one or
more computers and/or servers that may include those
described above for server 2712.

In certain embodiments, services provided by the cloud
infrastructure system may include a host of services that are
made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions,
Web-based e-mail services, hosted office suites and docu-
ment collaboration services, database processing, managed
technical support services, and the like. Services provided
by the cloud infrastructure system can dynamically scale to
meet the needs of its users. A specific instantiation of a
service provided by cloud infrastructure system is referred to
herein as a “service instance.” In general, any service made
available to a user via a communication network, such as the
Internet, from a cloud service provider’s system is referred
to as a “cloud service.” Typically, in a public cloud envi-
ronment, servers and systems that make up the cloud service
provider’s system are different from the customer’s own
on-premises servers and systems. For example, a cloud
service provider’s system may host an application, and a
user may, via a communication network such as the Internet,
on demand, order and use the application.

In some examples, a service in a computer network cloud
infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can include a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another
example, a service can include access to an email software
application hosted on a cloud vendor’s web site.

In certain embodiments, cloud infrastructure system 2702
may include a suite of applications, middleware, and data-
base service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such a cloud infrastructure system is the Oracle Public
Cloud provided by the present assignee.

In various embodiments, cloud infrastructure system 2702
may be adapted to automatically provision, manage and
track a customer’s subscription to services offered by cloud
infrastructure system 2702. Cloud infrastructure system
2702 may provide the cloud services via different deploy-
ment models. For example, services may be provided under
a public cloud model in which cloud infrastructure system
2702 is owned by an organization selling cloud services
(e.g., owned by Oracle) and the services are made available
to the general public or different industry enterprises. As
another example, services may be provided under a private
cloud model in which cloud infrastructure system 2702 is
operated solely for a single organization and may provide
services for one or more entities within the organization. The
cloud services may also be provided under a community
cloud model in which cloud infrastructure system 2702 and
the services provided by cloud infrastructure system 2702
are shared by several organizations in a related community.
The cloud services may also be provided under a hybrid
cloud model, which is a combination of two or more
different models.

In some embodiments, the services provided by cloud
infrastructure system 2702 may include one or more services
provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a

10

15

20

25

30

35

40

45

50

55

60

65

50

Service (laaS) category, or other categories of services
including hybrid services. A customer, via a subscription
order, may order one or more services provided by cloud
infrastructure system 2702. Cloud infrastructure system
2702 then performs processing to provide the services in the
customer’s subscription order.

In some embodiments, the services provided by cloud
infrastructure system 2702 may include, without limitation,
application services, platform services and infrastructure
services. In some examples, application services may be
provided by the cloud infrastructure system via a SaaS
platform. The SaaS platform may be configured to provide
cloud services that fall under the SaaS category. For
example, the SaaS platform may provide capabilities to
build and deliver a suite of on-demand applications on an
integrated development and deployment platform. The SaaS
platform may manage and control the underlying software
and infrastructure for providing the SaaS services. By uti-
lizing the services provided by the SaaS platform, customers
can utilize applications executing on the cloud infrastructure
system. Customers can acquire the application services
without the need for customers to purchase separate licenses
and support. Various different SaaS services may be pro-
vided. Examples include, without limitation, services that
provide solutions for sales performance management, enter-
prise integration, and business flexibility for large organi-
zations.

In some embodiments, platform services may be provided
by the cloud infrastructure system via a PaaS platform. The
PaaS platform may be configured to provide cloud services
that fall under the PaaS category. Examples of platform
services may include without limitation services that enable
organizations (such as Oracle) to consolidate existing appli-
cations on a shared, common architecture, as well as the
ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may
manage and control the underlying software and infrastruc-
ture for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure
system without the need for customers to purchase separate
licenses and support. Examples of platform services include,
without limitation, Oracle Java Cloud Service (JCS), Oracle
Database Cloud Service (DBCS), and others.

By utilizing the services provided by the PaaS platform,
customers can employ programming languages and tools
supported by the cloud infrastructure system and also con-
trol the deployed services. In some embodiments, platform
services provided by the cloud infrastructure system may
include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud
services. In one embodiment, database cloud services may
support shared service deployment models that enable orga-
nizations to pool database resources and offer customers a
Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for
customers to develop and deploy various business applica-
tions, and Java cloud services may provide a platform for
customers to deploy Java applications, in the cloud infra-
structure system.

Various different infrastructure services may be provided
by an laaS platform in the cloud infrastructure system. The
infrastructure services facilitate the management and control
of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for
customers utilizing services provided by the SaaS platform
and the PaaS platform.

US 11,977,549 B2

51

In certain embodiments, cloud infrastructure system 2702
may also include infrastructure resources 2730 for providing
the resources used to provide various services to customers
of the cloud infrastructure system. In one embodiment,
infrastructure resources 2730 may include pre-integrated
and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services
provided by the PaaS platform and the SaaS platform.

In some embodiments, resources in cloud infrastructure
system 2702 may be shared by multiple users and dynami-
cally re-allocated per demand. Additionally, resources may
be allocated to users in different time zones. For example,
cloud infrastructure system 2730 may enable a first set of
users in a first time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and
then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby
maximizing the utilization of resources.

In certain embodiments, a number of internal shared
services 2732 may be provided that are shared by different
components or modules of cloud infrastructure system 2702
and by the services provided by cloud infrastructure system
2702. These internal shared services may include, without
limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise man-
ager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for
enabling cloud support, an email service, a notification
service, a file transfer service, and the like.

In certain embodiments, cloud infrastructure system 2702
may provide comprehensive management of cloud services
(e.g., SaaS, PaaS, and IaaS services) in the cloud infrastruc-
ture system. In one embodiment, cloud management func-
tionality may include capabilities for provisioning, manag-
ing and tracking a customer’s subscription received by cloud
infrastructure system 2702, and the like.

In one embodiment, as depicted in the figure, cloud
management functionality may be provided by one or more
modules, such as an order management module 2720, an
order orchestration module 2722, an order provisioning
module 2724, an order management and monitoring module
2726, and an identity management module 2728. These
modules may include or be provided using one or more
computers and/or servers, which may be general purpose
computers, specialized server computers, server farms,
server clusters, or any other appropriate arrangement and/or
combination.

In example operation 2734, a customer using a client
device, such as client device 2704, 2706 or 2708, may
interact with cloud infrastructure system 2702 by requesting
one or more services provided by cloud infrastructure sys-
tem 2702 and placing an order for a subscription for one or
more services offered by cloud infrastructure system 2702.
In certain embodiments, the customer may access a cloud
User Interface (UI), cloud UI 2712, cloud UI 2714 and/or
cloud UI 2716 and place a subscription order via these Uls.
The order information received by cloud infrastructure sys-
tem 2702 in response to the customer placing an order may
include information identifying the customer and one or
more services offered by the cloud infrastructure system
2702 that the customer intends to subscribe to.

After an order has been placed by the customer, the order
information is received via the cloud Uls, 2712, 2714 and/or
2716.

At operation 2736, the order is stored in order database
2718. Order database 2718 can be one of several databases

10

15

20

25

30

35

40

45

50

55

60

65

52

operated by cloud infrastructure system 2718 and operated
in conjunction with other system elements.

At operation 2738, the order information is forwarded to
an order management module 2720. In some instances, order
management module 2720 may be configured to perform
billing and accounting functions related to the order, such as
verifying the order, and upon verification, booking the order.

At operation 2740, information regarding the order is
communicated to an order orchestration module 2722. Order
orchestration module 2722 may utilize the order information
to orchestrate the provisioning of services and resources for
the order placed by the customer. In some instances, order
orchestration module 2722 may orchestrate the provisioning
of resources to support the subscribed services using the
services of order provisioning module 2724.

In certain embodiments, order orchestration module 2722
enables the management of business processes associated
with each order and applies business logic to determine
whether an order should proceed to provisioning. At opera-
tion 2742, upon receiving an order for a new subscription,
order orchestration module 2722 sends a request to order
provisioning module 2724 to allocate resources and config-
ure those resources needed to fulfill the subscription order.
Order provisioning module 2724 enables the allocation of
resources for the services ordered by the customer. Order
provisioning module 2724 provides a level of abstraction
between the cloud services provided by cloud infrastructure
system 2700 and the physical implementation layer that is
used to provision the resources for providing the requested
services. Order orchestration module 2722 may thus be
isolated from implementation details, such as whether or not
services and resources are actually provisioned on the fly or
pre-provisioned and only allocated/assigned upon request.

At operation 2744, once the services and resources are
provisioned, a notification of the provided service may be
sent to customers on client devices 2704, 2706 and/or 2708
by order provisioning module 2724 of cloud infrastructure
system 2702. At operation 2746, the customer’s subscription
order may be managed and tracked by an order management
and monitoring module 2726. In some instances, order
management and monitoring module 2726 may be config-
ured to collect usage statistics for the services in the sub-
scription order, such as the amount of storage used, the
amount data transferred, the number of users, and the
amount of system up time and system down time.

In certain embodiments, cloud infrastructure system 2700
may include an identity management module 2728. Identity
management module 2728 may be configured to provide
identity services, such as access management and authori-
zation services in cloud infrastructure system 2700. In some
embodiments, identity management module 2728 may con-
trol information about customers who wish to utilize the
services provided by cloud infrastructure system 2702. Such
information can include information that authenticates the
identities of such customers and information that describes
which actions those customers are authorized to perform
relative to various system resources (e.g., files, directories,
applications, communication ports, memory segments, etc.).
Identity management module 2728 may also include the
management of descriptive information about each customer
and about how and by whom that descriptive information
can be accessed and modified.

FIG. 28 illustrates an example computer system 2800 that
may be used to implement an embodiment of the present
disclosure. In some embodiments, computer system 2800
may be used to implement any of the various servers and
computer systems described above. As shown in FIG. 28,

US 11,977,549 B2

53

computer system 2800 includes various subsystems includ-
ing a processing subsystem 2804 that communicates with a
number of peripheral subsystems via a bus subsystem 2802.
These peripheral subsystems may include a processing
acceleration unit 2806, an /O subsystem 2808, a storage
subsystem 2818 and a communications subsystem 2824.
Storage subsystem 2818 may include tangible computer-
readable storage media 2822 and a system memory 2810.

Bus subsystem 2802 provides a mechanism for letting the
various components and subsystems of computer system
2800 communicate with each other as intended. Although
bus subsystem 2802 is shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 2802 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures
may include an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard, and the like.

Processing subsystem 2804 controls the operation of
computer system 2800 and may comprise one or more
processing units 2832, 2834, etc. A processing unit may
include be one or more processors, including single core or
multicore processors, one or more cores of processors, or
combinations thereof. In some embodiments, processing
subsystem 2804 can include one or more special purpose
co-processors such as graphics processors, digital signal
processors (DSPs), or the like. In some embodiments, some
or all of the processing units of processing subsystem 2804
can be implemented using customized circuits, such as
application specific integrated circuits (ASICs), or field
programmable gate arrays (FPGAs).

In some embodiments, the processing units in processing
subsystem 2804 can execute instructions stored in system
memory 2810 or on computer readable storage media 2822.
In various embodiments, the processing units can execute a
variety of programs or code instructions and can maintain
multiple concurrently executing programs or processes. At
any given time, some or all of the program code to be
executed can be resident in system memory 2810 and/or on
computer-readable storage media 2810 including potentially
on one or more storage devices. Through suitable program-
ming, processing subsystem 2804 can provide various func-
tionalities described above for dynamically modifying docu-
ments (e.g., webpages) responsive to usage patterns.

In certain embodiments, a processing acceleration unit
2806 may be provided for performing customized process-
ing or for off-loading some of the processing performed by
processing subsystem 2804 so as to accelerate the overall
processing performed by computer system 2800.

1/O subsystem 2808 may include devices and mechanisms
for inputting information to computer system 2800 and/or
for outputting information from or via computer system
2800. In general, use of the term “input device” is intended
to include all possible types of devices and mechanisms for
inputting information to computer system 2800. User inter-
face input devices may include, for example, a keyboard,
pointing devices such as a mouse or trackball, a touchpad or
touch screen incorporated into a display, a scroll wheel, a
click wheel, a dial, a button, a switch, a keypad, audio input
devices with voice command recognition systems, micro-
phones, and other types of input devices. User interface
input devices may also include motion sensing and/or ges-

10

15

20

25

30

35

40

45

50

55

60

65

54

ture recognition devices such as the Microsoft Kinect®
motion sensor that enables users to control and interact with
an input device, the Microsoft Xbox® 360 game controller,
devices that provide an interface for receiving input using
gestures and spoken commands. User interface input devices
may also include eye gesture recognition devices such as the
Google Glass® blink detector that detects eye activity (e.g.,
“blinking” while taking pictures and/or making a menu
selection) from users and transforms the eye gestures as
input into an input device (e.g., Google Glass®). Addition-
ally, user interface input devices may include voice recog-
nition sensing devices that enable users to interact with
voice recognition systems (e.g., Siri® navigator), through
voice commands.

Other examples of user interface input devices include,
without limitation, three dimensional (3D) mice, joysticks or
pointing sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital
camcorders, portable media players, webcams, image scan-
ners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices.
Additionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter-
face input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical
instruments and the like.

User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting
information from computer system 2800 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Storage subsystem 2818 provides a repository or data
store for storing information that is used by computer system
2800. Storage subsystem 2818 provides a tangible non-
transitory computer-readable storage medium for storing the
basic programming and data constructs that provide the
functionality of some embodiments. Software (programs,
code modules, instructions) that when executed by process-
ing subsystem 2804 provide the functionality described
above may be stored in storage subsystem 2818. The soft-
ware may be executed by one or more processing units of
processing subsystem 2804. Storage subsystem 2818 may
also provide a repository for storing data used in accordance
with the present disclosure.

Storage subsystem 2818 may include one or more non-
transitory memory devices, including volatile and non-
volatile memory devices. As shown in FIG. 28, storage
subsystem 2818 includes a system memory 2810 and a
computer-readable storage media 2822. System memory
2810 may include a number of memories including a volatile
main random access memory (RAM) for storage of instruc-
tions and data during program execution and a non-volatile
read only memory (ROM) or flash memory in which fixed
instructions are stored. In some implementations, a basic
input/output system (BIOS), containing the basic routines

US 11,977,549 B2

55

that help to transfer information between elements within
computer system 2800, such as during start-up, may typi-
cally be stored in the ROM. The RAM typically contains
data and/or program modules that are presently being oper-
ated and executed by processing subsystem 2804. In some
implementations, system memory 2810 may include mul-
tiple different types of memory, such as static random access
memory (SRAM) or dynamic random access memory
(DRAM).

By way of example, and not limitation, as depicted in
FIG. 28, system memory 2810 may store application pro-
grams 2812, which may include client applications, Web
browsers, mid-tier applications, relational database manage-
ment systems (RDBMS), etc., program data 2814, and an
operating system 2816. By way of example, operating
system 2816 may include various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating
systems, a variety of commercially-available UNIX® or
UNIX-like operating systems (including without limitation
the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems
such as i0S, Windows® Phone, Android® OS, Black-
Berry® 26 OS, and Palm® OS operating systems.

Computer-readable storage media 2822 may store pro-
gramming and data constructs that provide the functionality
of some embodiments. Software (programs, code modules,
instructions) that when executed by processing subsystem
2804 a processor provide the functionality described above
may be stored in storage subsystem 2818. By way of
example, computer-readable storage media 2822 may
include non-volatile memory such as a hard disk drive, a
magnetic disk drive, an optical disk drive such as a CD
ROM, DVD, a Blu-Ray® disk, or other optical media.
Computer-readable storage media 2822 may include, but is
not limited to, Zip® drives, flash memory cards, universal
serial bus (USB) flash drives, secure digital (SD) cards,
DVD disks, digital video tape, and the like. Computer-
readable storage media 2822 may also include, solid-state
drives (SSD) based on non-volatile memory such as flash-
memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid
SSDs that use a combination of DRAM and flash memory
based SSDs. Computer-readable media 2822 may provide
storage of computer-readable instructions, data structures,
program modules, and other data for computer system 2800.

In certain embodiments, storage subsystem 2800 may also
include a computer-readable storage media reader 2820 that
can further be connected to computer-readable storage
media 2822. Together and, optionally, in combination with
system memory 2810, computer-readable storage media
2822 may comprehensively represent remote, local, fixed,
and/or removable storage devices plus storage media for
storing computer-readable information.

In certain embodiments, computer system 2800 may
provide support for executing one or more virtual machines.
Computer system 2800 may execute a program such as a
hypervisor for facilitating the configuring and managing of
the virtual machines. Each virtual machine may be allocated
memory, compute (e.g., processors, cores), /O, and net-
working resources. Each virtual machine typically runs its
own operating system, which may be the same as or different
from the operating systems executed by other virtual
machines executed by computer system 2800. Accordingly,
multiple operating systems may potentially be run concur-

10

15

20

25

30

35

40

45

50

55

60

65

56

rently by computer system 2800. Each virtual machine
generally runs independently of the other virtual machines.

Communications subsystem 2824 provides an interface to
other computer systems and networks. Communications
subsystem 2824 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 2800. For example, communications subsystem
2824 may enable computer system 2800 to establish a
communication channel to one or more client devices via the
Internet for receiving and sending information from and to
the client devices. Additionally, communication subsystem
2824 may be used to communicate notifications of success-
ful logins or notifications to re-enter a password from the
privileged account manager to the requesting users.

Communication subsystem 2824 may support both wired
and/or wireless communication protocols. For example, in
certain embodiments, communications subsystem 2824 may
include radio frequency (RF) transceiver components for
accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network tech-
nology, such as 3G, 4G or EDGE (enhanced data rates for
global evolution), WiFi (IEEE 802.11 family standards, or
other mobile communication technologies, or any combina-
tion thereof), global positioning system (GPS) receiver
components, and/or other components. In some embodi-
ments communications subsystem 2824 can provide wired
network connectivity (e.g., Ethernet) in addition to or
instead of a wireless interface.

Communication subsystem 2824 can receive and transmit
data in various forms. For example, in some embodiments,
communications subsystem 2824 may receive input com-
munication in the form of structured and/or unstructured
data feeds 2826, event streams 28217, event updates 2830,
and the like. For example, communications subsystem 2824
may be configured to receive (or send) data feeds 2826 in
real-time from users of social media networks and/or other
communication services such as Twitter® feeds, Facebook®
updates, web feeds such as Rich Site Summary (RSS) feeds,
and/or real-time updates from one or more third party
information sources.

In certain embodiments, communications subsystem 2824
may be configured to receive data in the form of continuous
data streams, which may include event streams 2828 of
real-time events and/or event updates 2830, that may be
continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may
include, for example, sensor data applications, financial
tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like.

Communications subsystem 2824 may also be configured
to output the structured and/or unstructured data feeds 2826,
event streams 2828, event updates 2830, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 2800.

Computer system 2800 can be one of various types,
including a handheld portable device (e.g., an iPhone®
cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a personal computer, a workstation, a mainframe,
a kiosk, a server rack, or any other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 2800 depicted in
FIG. 28 is intended only as a specific example. Many other
configurations having more or fewer components than the

US 11,977,549 B2

57

system depicted in FIG. 28 are possible. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

Although specific embodiments of the disclosure have
been described, various modifications, alterations, alterna-
tive constructions, and equivalents are also encompassed
within the scope of the disclosure. Embodiments of the
present disclosure are not restricted to operation within
certain specific data processing environments, but are free to
operate within a plurality of data processing environments.
Additionally, although embodiments of the present disclo-
sure have been described using a particular series of trans-
actions and steps, it should be apparent to those skilled in the
art that the scope of the present disclosure is not limited to
the described series of transactions and steps. Various fea-
tures and aspects of the above-described embodiments may
be used individually or jointly.

Further, while embodiments of the present disclosure
have been described using a particular combination of
hardware and software, it should be recognized that other
combinations of hardware and software are also within the
scope of the present disclosure. Embodiments of the present
disclosure may be implemented only in hardware, or only in
software, or using combinations thereof. The various pro-
cesses described herein can be implemented on the same
processor or different processors in any combination.
Accordingly, where components or modules are described as
being configured to perform certain operations, such con-
figuration can be accomplished, e.g., by designing electronic
circuits to perform the operation, by programming program-
mable electronic circuits (such as microprocessors) to per-
form the operation, or any combination thereof. Processes
can communicate using a variety of techniques including but
not limited to conventional techniques for inter process
communication, and different pairs of processes may use
different techniques, or the same pair of processes may use
different techniques at different times.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope as set forth in the claims. Thus, although specific
disclosure embodiments have been described, these are not
intended to be limiting. Various modifications and equiva-
lents are within the scope of the following claims.

What is claimed is:
1. A method for managing Continuous Query Language
(CQL) engines, comprising:

determining, using a CQL engine tracking engine, a total
number of CQL engines to launch in a cluster;

receiving, using the CQL engine tracking engine, a list of
executors for executing the cluster;

scheduling, using a first scheduler associated with the
CQL engine tracking engine, each CQL engine with
one of the list of executors, the scheduling comprising
assigning, by the first scheduler, an executor from the
list of executors to execute a first CQL engine in the
cluster based at least in part on executor information
comprising an executor host and an executor identifier
associated with the executor;

launching, using a second scheduler associated with the
CQL engine tracking engine, the first CQL engine as a
long running task for execution by the executor, the

25

30

35

40

45

50

58

long running task comprising a task that returns only
upon a crash or fault of executing the first CQL engine
in the cluster;
scheduling, using the first scheduler of the CQL engine
tracking engine, the first CQL engine to process a
partition of a CQL Resilient Distributed Dataset (RDD)
associated with a batch of a continuous stream of input
events related to an application;
determining, by the first scheduler of the CQL engine
tracking engine, location information associated with
the CQL Resilient Distributed Dataset (RDD) the loca-
tion information comprising a partition identifier and a
query identifier associated with the partition of the
CQL RDD;

mapping, by the first scheduler of the CQL engine track-
ing engine, the location information to the executor
assigned to execute the first CQL engine;
tracking, using the CQL engine tracking engine, the first
CQL engine to be scheduled for execution; and

executing, using the CQL engine tracking engine, the first
CQL engine to process the partition of the CQL RDD
associated with the batch of the continuous stream of
input events to generate a set of output events related to
the application.

2. The method of claim 1, wherein a state of the first CQL
engine comprises at least one of an inactive state, a sched-
uled state, or an active state.

3. The method of claim 1, wherein the first CQL engine
is one of the CQL engines in the cluster.

4. The method of claim 1, wherein the CQL engine
tracking engine is implemented by a driver and the first CQL
engine is implemented by an executor in the list of execu-
tors.

5. A system, comprising:

a memory configured to store computer-executable

instructions; and

a processor configured to access the memory and execute

the computer-executable instructions to:

determine, using a Continuous Query Language (CQL)
engine tracking engine, a total number of CQL
engines to launch in a cluster;

receive, using the CQL engine tracking engine, a list of
executors for executing the cluster;

schedule, using a first scheduler associated with the
CQL engine tracking engine, each CQL engine with
one of the list of executors, the instructions to
schedule comprising instructions to assign, by the
first scheduler, an executor from the list of executors
to execute a first CQL engine in the cluster based at
least in part on executor information comprising an
executor host and an executor identifier associated
with the executor;

launch, using a second scheduler associated with the
CQL engine tracking engine, the first CQL engine as
a long running task for execution by the executor, the
long running task comprising a task that returns only
upon a crash or fault of executing the first CQL
engine in the cluster;

schedule, using the first scheduler of the CQL engine
tracking engine, the first CQL engine to process a
partition of a CQL Resilient Distributed Dataset
(RDD associated with a batch of a continuous stream
of input events related to an application;

determine, by the first scheduler of the CQL engine
tracking engine, location information associated
with the CQL Resilient Distributed Dataset (RDD),

US 11,977,549 B2

59

the location information comprising a partition iden-
tifier and a query identifier associated with the par-
tition of the CQL RDD;

map, by the first scheduler of the CQL engine tracking
engine, the location information to the executor
assigned to execute the first CQL engine;

track, using the CQL engine tracking engine, the first
CQL engine to be scheduled for execution; and

execute, using the CQL engine tracking engine, the first
CQL engine to process the partition of the CQL RDD
associated with the batch of the continuous stream of
input events to generate a set of output events related
to the application.

6. The system of claim 5, wherein a state of the first CQL
engine comprises at least one of an inactive state, a sched-
uled state, or an active state.

7. The system of claim 5, wherein the first CQL engine is
one of the CQL engines in the cluster.

8. The system of claim 5, wherein the CQL engine
tracking engine is implemented by a driver and the first CQL
engine is implemented by an executor in the list of execu-
tors.

9. A non-transitory computer-readable medium storing
computer-executable code that, when executed by a proces-
sor, cause the processor to perform operations comprising:

determining, using a Continuous Query Language (CQL)

engine tracking engine, a total number of CQL engines
to launch in a cluster;

receiving, using the CQL engine tracking engine, a list of

executors for executing the cluster;

scheduling, using a first scheduler associated with the

CQL engine tracking engine, each CQL engine with
one of the list of executors, the scheduling comprising
assigning, by the first scheduler, an executor from the
list of executors to execute a first CQL engine in the
cluster based at least in part on executor information
comprising an executor host and an executor identifier
associated with the executor;

10

15

20

25

30

35

60

launching, using a second scheduler associated with the
CQL engine tracking engine, the first CQL engine as a
long running task for execution by the executor, the
long running task comprising a task that returns only
upon a crash or fault of executing the first CQL engine
in the cluster;
scheduling, using the first scheduler of the CQL engine
tracking engine, the first CQL engine to process a
partition of a CQL Resilient Distributed Dataset (RDD
associated with a batch of a continuous stream of input
events related to an application;
determining, by the first scheduler of the CQL engine
tracking engine, location information associated with
the CQL Resilient Distributed Dataset (RDD) the loca-
tion information comprising a partition identifier and a
query identifier associated with the partition of the
CQL RDD;

mapping, by the first scheduler of the CQL engine track-
ing engine, the location information to the executor
assigned to execute the first CQL engine;
tracking, using the CQL engine tracking engine, the first
CQL engine to be scheduled for execution; and

executing, using the CQL engine tracking engine, the first
CQL engine to process the partition of the CQL RDD
associated with the batch of the continuous stream of
input events to generate a set of output events related to
the application.

10. The non-transitory computer-readable medium of
claim 9, wherein a state of the first CQL engine comprises
at least one of an inactive state, a scheduled state, or an
active state.

11. The non-transitory computer-readable medium of
claim 9, wherein the CQL engine tracking engine is imple-
mented by a driver and the first CQL engine is implemented
by an executor in the list of executors.

#* #* #* #* #*

