a2 United States Patent

US011908109B1

ao) Patent No.: US 11,908,109 B1

Rauen 45) Date of Patent: Feb. 20, 2024
(54) ENHANCED VIDEO PROCESSOR (56) References Cited
(71) Applicant: madVR Holdings, LL.C, Rockville, U.S. PATENT DOCUMENTS
MD (US) 2010/0053376 Al* 3/2010 Fukuda GO6T 5/009
348/235
(72) Inventor: Mathias Rauen, Hamburg (DE) 2010/0272353 Al* 10/2010 Bonnier HO4N 1/6058
382/162
(73) Assignee: madVR Holdings LLC, Rockville, MD (Continued)
(US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Gastal, Eduardo SL, and Manuel M. Oliveira. “Domain transform
U.S.C. 154(b) by 27 days. for edge-aware image and video processing.” ACM SIGGRAPH
2011 papers. 2011. 1-12.*
(21) Appl. No.: 17/089,350 (Continued)
(22) Filed: Nov. 4, 2020 Primary Examiner — Li Liu
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 62/930,183, filed on Nov. Various improvements to video processing are described,
4, 2019. including highlight recovery by dividing an image into
different frequency ranges and compressing the lower range
(51) Imt. ClL before recombining, tone mapping to avoid hue shifts,
GO6T 5/00 (2006.01) dynamic tone mapping based on detected scene changes in
GO6T 5/50 (2006.01) the video, dynamic tone mapping using the shape of a tone
(Continued) mapping curve that is changed based on the histogram of
(52) US.CL each video frame, HDR Luminance Channel Repair of
CPC ..o GO6T 5/009 (2013.01); GO6T 3/0093 @ttifacts, changing the shape of the tone mapping curve
(2013.01); GO6T 3/40 (2013.01); GO6T 5/002 based on a histogram of each video frame, upscaling
(2013.01); GO6T 5/50 (2013.01); GO6T 9/00 Chroma by using Luma channel information motion inter-
(2013.01); GO6T 2207/10016 (2013.01); GO6T polation using Neural Networks, motion compensated noise
2207/20024 (2013.01); GO6T 2207/20192 reduction using Neural Networks to filter random noise and
(2013.01); GOGT 2207/20208 (2013.01) film grain, grain/noise agnostic upscaling using Neural
(58) Field of Classification Search Networks, and hiding video frames by strategically dropping

CPC . GO6T 5/00; GO6T 5/20; HO4N 5/235; HOAN
1/407; HO4AN 1/60; HO4N 1/58; GO6K
9/36

See application file for complete search history.

800 %

or repeating them in unnoticeable places to prevent a visible
video stutter based on scene characteristics to accommodate
clock variations.

18 Claims, 10 Drawing Sheets

L

RECEWVE VIDEQ
SEQUENCE

Vo

SEPARATE IMAGES

s

COMPRESS LOW
FREQUENCY COMPONENTS

- B

RECONSTRUCT
IMAGE FRAMES

.

RENDER
RECONSTRUCTED FRAMES

US 11,908,109 B1
Page 2

(51) Int. CL
GO6T 3/00

Go6T 9/00
GO6T 3/40

(56)

(2006.01)
(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

2013/0034307 Al*

2014/0112595 A1*
2017/0289571 Al*
2019/0068865 Al*
2020/0007712 Al*
2020/0007734 Al*
2020/0013150 Al*
2020/0098098 Al*

2/2013

4/2014

10/2017
2/2019
1/2020
1/2020
1/2020
3/2020

Jerdev ...ococoieinnne GO6T 5/009

382/232
Huang HO4N 19/98

382/264
El Mezeni HO4N 19/14
Guerin HO4N 5/23229
O0gawaccoeveenenne GO6T 5/009
Kagawa GO6T 7/174
Kagawaccccoeeene GO6T 5/008
Zhang GO6K 9/2054

2020/0272374 Al*
2021/0136297 Al*
2022/0245775 Al*

82020 Kawaiccooeunins HO4N 1/6052
5/2021 Park HO4N 23/632
82022 Wangccooeiinnn. GO6T 5/50

OTHER PUBLICATIONS

“Histogram equalization”, [Online]. Retrieved from the Internet:
https: en.wikipedia.org wiki Histogram_equalization, (Accessed
Dec. 11, 2019), 9 pgs.

Farbman, Zeev, “Edge-Preserving Decompositions for Multi-Scale
Tone and Detail Manipulation”, ACM Transactions on Graphics
(TOG), vol. 27, Issue 3, Article No. 67, [Online]. Retrieved from the
Internet: https: www.cse hyji.ac.il ~danix epd epd.pdf, (Aug. 2008),
10 pgs.

Gastal, Eduardo S. L., “Domain Transform for Edge-Aware Image
and Video Processing”, ACM Transactions on Graphics (TOG), vol.
30, Issue 4, Article No. 69, [Online]. Retrieved from the Internet:
http: www.inf.ufrgs.br ~eslgastal DomainTransform , (Jul. 2011), 11

pgs.

* cited by examiner

U.S. Patent Feb. 20, 2024 Sheet 1 of 10 US 11,908,109 B1

—100

FIG. 1

U.S. Patent Feb. 20, 2024 Sheet 2 of 10 US 11,908,109 B1

FIG. 2

US 11,908,109 B1

Sheet 3 of 10

Feb. 20, 2024

U.S. Patent

¥ 300

e

e

R
R s

FIG. 3

U.S. Patent

s

A A A A

=

5

e
e

=

L
i

Feb. 20, 2024

SRR

Sheet 4 of 10

US 11,908,109 B1

2R

AR

‘-\.:-\.‘-\.‘-\.‘-\.:N 2
S

R

R
:

b
S

S

e s

....,,
S
:

e

US 11,908,109 B1

U.S. Patent Feb. 20, 2024 Sheet 5 of 10

S

U.S. Patent Feb. 20, 2024 Sheet 6 of 10 US 11,908,109 B1

FIG. 6

US 11,908,109 B1
~—T700

Sheet 7 of 10

Feb. 20, 2024

U.S. Patent

s,

R

S

R

e

R

=

i

FIG. 7

U.S. Patent

e

5
%

S

e

e

*“'\.

s

R
RSN

Feb. 20

R,

R
S
SRR

S

e

R
=

5

e

,,
S

5.’-;.-;5.’-"

2

-
-

R

S

S

R
RRAaN:

R
R
e

S
e
SRR

S
S

o
S
S

R

=

S

o
S
S
,

e

AR
R,

,2024

5

AR AR

Y
2

Sheet 8 of 10

S

i
i
R

R

i

SRR

US 11,908,109 B1

3
S

s

U.S. Patent

Feb. 20, 2024

900 -~

Sheet 9 of 10

910

RECEIVE VIDEO

SEQUENCE

k

"/’” 920

SEPARAT

£ IMAGES

¥

930

COMPRESS LOW
FREQUENCY COMPONENTS

¥

-0

RECONSTRUCT
IMAGE FRAMES

-850

\
RENDER

RECONSTRUCTED FRAMES

FIG. 9

US 11,908,109 B1

FIG. 10

U.S. Patent Feb. 20, 2024 Sheet 10 of 10 US 11,908,109 B1

1100
1102 1103
1118
PROGRAM
ERTEY
PROCESSING
UNIT VOLATILE
1108
NON-VOLATILE
110 — 1120 1116
REMOVABLE COMMUNICATION
STORAGE INTERFACE
1112 1108 1104
NON-REMOVABLE INPUT OUTPUT
STORAGE INTERFACE INTERFACE

FIG. 11

US 11,908,109 B1

1
ENHANCED VIDEO PROCESSOR

RELATED APPLICATION

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 62/930,183 (entitled Enhanced Video Pro-
cessor, filed Nov. 4, 2019) which is incorporated herein by
reference.

BACKGROUND

Tone mapping in video image processing is done to
modify video frames that may be created with a high
dynamic range (HDR) to an image with a lower dynamic
range corresponding to a display device that is not capable
of reproducing the same dynamic range. Tone mapping is
the process of converting the tonal values of an image from
a high range to a lower one. For instance, an HDR image
with a dynamic range of 10,000 nits may be convened into
an image with tonal values covering a range of 1,000 nits,
100 nits, or even lower. One goal in realistic rendering
applications might be to obtain as close to a perceptual
match between a real scene and a displayed image even
though the display device is not able to reproduce the full
range of luminance values.

SUMMARY

Various improvements to video processing are described.
One aspect involves highlight recovery implemented by a
computer or other hardware that includes receiving a video
sequence having image frames with a high dynamic range,
separating each image frame into low and high frequency
components, compressing the low frequency components,
reconstructing the image frames by combining the high
frequency components with the compressed low frequency
components, and rendering the reconstructed image frames
for display on a device having a lower dynamic range.

Other enhanced video processing functions include one or
more of tone mapping to avoid hue shifts, dynamic tone
mapping based on detected scene changes in the video, HDR
Luminance Channel Repair of artifacts, changing the shape
of the tone mapping curve based on a histogram of each
video frame, HDR Neural Network Tone Mapping to make
intelligent decisions, upscaling Chroma by using Luma
channel information, motion interpolation using Neural Net-
works, motion compensated noise reduction using Neural
Networks to filter random noise and film grain, grain/noise
agnostic upscaling using Neural Networks, and repeating or
dropping video frames based on scene characteristics to
accommodate clock variations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of an original image of a sequence of
video images according to an example embodiment.

FIG. 2 is an illustration of a gaussian low frequency image
of'the image of FIG. 1 according to an example embodiment.

FIG. 3 is an illustration of a gaussian high frequency
image of the image of FIG. 1 according to an example
embodiment.

FIG. 4 is an illustration of a final image derived from the
low frequency image and the high frequency image accord-
ing to an example embodiment.

FIG. 5 is an illustration of a darkened original image
according to an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 is a view of an alternative original image for use
in a WLS image splitting method according to an example
embodiment.

FIG. 7 is an illustration of a high frequency image derived
from the image of FIG. 6 according to an example embodi-
ment.

FIG. 8 is an illustration of a final WLS image according
to an example embodiment.

FIG. 9 is a flowchart illustrating a computer implemented
method of highlight recovery for video images according to
an example embodiment.

FIG. 10 is an illustration of a histogram of a movie frame
illustrating wide brightness ranges according to an example
embodiment.

FIG. 11 is a block schematic diagram of a computer
system to implement devices to perform improvements,
methods, and algorithms according to example embodi-
ments.

DETAILED DESCRIPTION

In the following description, reference is made to the
accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
which may be practiced. These embodiments are described
in sufficient detail to enable those skilled in the art to
practice the invention, and it is to be understood that other
embodiments may be utilized, and that structural, logical
and electrical changes may be made without departing from
the scope of the present invention. The following description
of example embodiments is, therefore, not to be taken in a
limited sense, and the scope of the present invention is
defined by the appended claims.

The functions or algorithms described herein may be
implemented in software in one embodiment. The software
may consist of computer executable instructions stored on
computer readable media or computer readable storage
device such as one or more non-transitory memories or other
type of hardware-based storage devices, either local or
networked. Further, such functions correspond to modules,
which may be software, hardware, firmware or any combi-
nation thereof. Multiple functions may be performed in one
or more modules as desired, and the embodiments described
are merely examples. The software may be executed on a
digital signal processor, ASIC, microprocessor, or other type
of processor operating on a computer system, such as a
personal computer, server or other computer system, turning
such computer system into a specifically programmed
machine.

The functionality can be configured to perform an opera-
tion using, for instance, software, hardware, firmware, or the
like. For example, the phrase “configured to” can refer to a
logic circuit structure of a hardware element that is to
implement the associated functionality. The phrase “config-
ured to” can also refer to a logic circuit structure of a
hardware element that is to implement the coding design of
associated functionality of firmware or software. The term
“module” refers to a structural element that can be imple-
mented using any suitable hardware (e.g., a processor,
among others), software (e.g., an application, among others),
firmware, or any combination of hardware, software, and
firmware. The term, “logic” encompasses any functionality
for performing a task. For instance, each operation illus-
trated in the flowcharts corresponds to logic for performing
that operation. An operation can be performed using, soft-
ware, hardware, firmware, or the like. The terms, “compo-
nent,” “system,” and the like may refer to computer-related

US 11,908,109 B1

3

entities, hardware, and software in execution, firmware, or
combination thereof. A component may be a process running
on a processor, an object, an executable, a program, a
function, a subroutine, a computer, or a combination of
software and hardware. The term, “processor,” may refer to
a hardware component, such as a processing unit of a
computer system.
Furthermore, the claimed subject matter may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and engineering techniques to
produce software, firmware, hardware, or any combination
thereof to control a computing device to implement the
disclosed subject matter. The term, “article of manufacture,”
as used herein is intended to encompass a computer program
accessible from any computer-readable storage device or
media. Computer-readable storage media can include, but
are not limited to, magnetic storage devices, e.g., hard disk,
floppy disk, magnetic strips, optical disk, compact disk
(CD), digital versatile disk (DVD), smart cards, flash
memory devices, among others. In contrast, computer-read-
able media, i.e., not storage media, may additionally include
communication media such as transmission media for wire-
less signals and the like.
Several improvements to video processing are described
herein. A description of tone mapping is first provided
followed by a list of improvements.
Tone Mapping description: Tone mapping is the process
of converting the tonal values of an image from a high range
to a lower one. For instance, an HDR (high dynamic range)
image with a dynamic range of 10,000 nits may be converted
into an image with tonal values covering a range of 1,000
nits, 100 nits, or even lower. One goal in realistic rendering
applications might be to obtain as close to a perceptual
match between a real scene and a displayed image even
though the display device is not able to reproduce the full
range of luminance values.
Various images of a spear are described to show differ-
ences between different tone mapping algorithms. In an
accurate image of a spear with a bright tip, the spear tip
appears extremely bright, with lots of detail. In an earlier
video rendering product, the image of the spear appears all
green (which is correct), with the inside nicely bright, and
containing some details, but not be as much detail as in the
accurate image. Another image of the spear by a different
prior device using a prior fairly expensive tone mapping
algorithm results in an image wherein the tip is all green
(which is correct). However, the inside of the spear is just a
flat surface, with zero detail, and it’s not bright enough by
a long shot. In still a further prior version of tone mapping
the inside of the spear appears nicely detailed, but it has
turned yellow, which is incorrect. The spear image is basi-
cally a test pattern that shows extremely big differences
between several different tone mapping algorithms. These
algorithms are applied on still images, and fare even worse
when attempted to be used on a sequence of video frames.
There are multiple different range devices, such as RGB
TV and PC levels, and also YCbCr TV and PC levels, which
work like this:
Ablack RGB TV pixel is 16, 16, 16. A white pixel is 235,
235, 235.

Ablack RGB PC pixel is 0, 0, 0. A white pixel is 255, 255,
255.

A black YUV TV pixel is 16,128,128. A white pixel is
235, 128, 128.

Ablack YUV PC pixel is 0,128,128. A white pixel is 255,
128, 128.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

A “nit” is another way to describe a brightness of 1
candela per square meter (cd/m2) An average movie theater
screen can probably get as bright as about 50 nits. If your TV
is a few years old, pre-HDR, it can probably reach between
100 and 400 nits. Current best OLED displays can display
about 800 nits. Some LCD type displays can reach up to
2000 nits, but most don’t exceed 1500 nits. Future displays
may reach high levels of nits.

In one example, let’s say a projector has a measured
brightness or luminance of about 50 nits max. The bright-
ness (luminance) of each pixel is calculated by applying a
specific weight to the Green, Red and Blue components of
the pixel like this: Y=0.2126*Red+0.7152*Green+
0.0722*Blue. What this means is that Green has a *much*
bigger effect on the perceived brightness of each pixel than
Red, and even more so than Blue. And this also directly tells
us how much nits a pure Blue screen will be measured at: If
the white screen measures 50 nits, then a BT.709 pure Blue
screen will measure only 0.0722%50 nits=3.61 nits.

In YCbCr you can separately define the luminance of each
pixel and its hue. So let’s say you use an Y value of 235 (in
TV levels), and you set CbCr so that it says “pure blue”.
When you convert this YCbCr pixel to RGB. A'Y value of
235 suggests that this pixel should reach the peak luminance
of your display, which would be about 50 nits. However,
Blue only contributes a tiny amount to the perceived bright-
ness of each pixel. One would have to make the Blue
component of the RGB pixel very large to make this Blue
pixel actually measure as 50 nits. Roughly estimated, the
Blue component of the RGB pixel would probably have to
be something like 235/0.0722=3255. The resulting RGB
pixel might be in the neighborhood of [0, 0, 3255]. Which
of course makes no sense since 8 bit RGB tops out at 235.

A peak white or completely black pixel has absolutely
zero color. Black and white are by definition without color.
Given that an SDR Blu-Ray is encoded with a very bright
sky, near to the peak Y value of 235, the Sky can only hold
very little color. As we’ve seen above, if we tried to make a
Blue pixel with an Y value of 235, the resulting RGB value
would be around [0, 0, 3255], which is completely impos-
sible with 8 bit RGB.

Studios actually work in RGB. The studio monitors are
RGB, the movie itself is RGB. YCbCr is only used as a
transport format, so Y can be encoded in full resolution and
CbCr can be scaled down in resolution, with the only
purpose being to save space. So considering that the movie
is RGB, the brightest pixel has to be white. In 8 bit that
would be [235, 235, 235]. In 10 bit that would be [940, 940,
940]. The studio can’t exceed 235 in 8 bit, or 940 in 10 bit.
So by definition the brightest pixel any consumer format can
encode is white, not colored. Which also means that a pixel
which has an Y value of 235, cannot be colored, because
such pixels don’t convert into valid RGB triplets. And the
studio master is RGB. Such pixels will never exist in any
Blu-Ray etc.

It’s not a black and white issue, either. The nearer we go
to peak white (or total black), the less color each pixel can
hold. The biggest amount of color a pixel can hold is with
Y sitting nicely in the middle.

In one example, a true 10,000 nits video, with pixels
going from O nits (black) up to 10,000 nits is to be rendered
on an old OLED display which can do about 200 nits. There
are two very simple methods of rendering. In a first render-
ing method, all pixels could be linearly darkened by a factor
of 50, so 10,000 nits becomes 200 nits, 50 nits becomes 1
nits etc. This method obviously produces extremely dark
images because the nits range which is most important

US 11,908,109 B1

5

(0-100 nits) now tops out at 2 nits on screen. It doesn’t really
make sense to use just 0-2 nits for all the important pixels
and use 3-200 nits for HDR highlights.

Alternatively, all pixels from 0-200 nits could be rendered
untouched and clip all pixels above 200 nits to 200 nits.
10,000 nits becomes 200 nits, 300 nits becomes 200 nits,
200 nits stays 200 nits. 100 nits stays 100 nits. All pixels
below 200 nits will be rendered absolutely perfectly this
way, but the clipping totally destroys any detail in brighter
regions. Basically, highlight areas will turn into giant
“blobs” of a single brightness. These very simple methods
are not optional.

In a further example, a curve can be smoothed to adjust
the compression factor depending on the pixel brightness.
So extremely bright pixels get compressed a lot, but dark
pixels only get compressed very slightly, with a smooth
curve in between. This method actually works ok, but it’s
not optimal yet, because it still compresses even a 2 nits
pixel slightly.

The curve may be improved by not compressing 0-100
nits pixels at all, but by starting to compress above 100 nits.
One can’t leave a 100 nits pixel untouched, and then
suddenly compress a 101 nits pixel a lot. That would look
strange. A smooth curve may be used to gradually ramp up
the compression factor above 100 nits. To further improve
the curve, pixels from 0-x nits remain untouched, and “x”
depends on the brightness of the projector/display/televi-
sion. Roughly estimated, “x” is about a quarter of your
display’s peak brightness. So if the projector can do 50 nits,
then the method leaves all pixels of 0-12 nits untouched, and
starts compressing pixels above 12 nits.

In one embodiment, a curve is defined to compress a
10,000 nits video into a 200 nits signal for an OLED display.
The curve is applied in two simple ways. Some recommend
that the compression curve be applied on the “Y” channel,
which means the defined brightness/luminance of each pixel
is directly changed. Others apply the compression curve on
the Red, Green and Blue channels separately, after having
converted YUV to RGB. Compressing the Y channel has
problems. A 50 nits projector achieves 50 nits only with a
pure white image and with a pure blue image your projector
only gets like 3-4 nits. In theory a YUV pixel can be defined
saying “10,000 nits pure blue”, but this pixel doesn’t convert
to a valid RGB pixel. “10,000 nits white” would convert
properly to RGB [235,235,235] (when using 8 bit). But
“10,000 nits blue” would convert to something like [0,0,
3250]. Which makes no sense, the blue component will be
clipped to 235 somewhere. And even if it’s not clipped by
processing, the display cannot technically render a blue
subpixel any brighter than 235. It’s technically completely
impossible to render it with the asked-for brightness. The
nearer the Y channel gets to 235 (in 8 bit), the less color/
hue/saturation it can hold. At Y=235, the pixel can only be
white, it cannot have any color at all. At Y=230, it can have
a little bit of color, but only a very tiny little bit.

Let’s say the 10,000 nits video has a 50 nits pure blue
pixel in it. That’s a perfectly valid pixel, because a 10,000
nits display can achieve more than 500 nits for a pure blue
pixel. Tone mapping this video for an old 200 nits OLED,
the tone mapping curve will leave all pixels from (roughly
estimated) 0-50 nits untouched, while mapping 51-10,000
nits into the 51-200 nits range. The tone mapping curve will
not touch the 50 nits blue pixel at all, because the Y channel
at only 50 nits is fairly dark. After tone mapping is done, the
new tone mapped video signal now asks for this blue pixel
to (still) be rendered at 50 nits, although the display now tops
out at 200 nits for a *white* frame. Technically, the 50 nits

10

15

20

25

30

35

40

45

50

55

60

65

6

pure blue YUV pixel will overflow when converting to
RGB, to something like [0,0,980]. Somewhere along the
way, this blue value of 980 will be clipped to 235. Which
means the pixel will keep its color (hue and saturation), but
its luminance will be cut by a factor of about 4x.

This is the reason why some tone mapping algorithms
produce the “blob” in the green spear image: The pixels
inside of the spear have invalid YUV values after tone
mapping, so after YUV—=RGB conversion, the green chan-
nel overflows and will be clipped to 235 for all the pixels
inside of the spear.

Applying the tone mapping compression curve on the Y
channel can produce invalid YUV pixels, which after
YUV—RGB conversion will produce invalid RGB values,
which will be clipped, producing blobs, or sometimes even
hue shifts. Based on this, the green spear scene is so useful
because if a tone mapping algorithm produces the green blob
problem, we can conclude that the tone mapping algorithm
probably compresses the Y channel, as recommended by
Dolby and BT.2390.

Compressing the RGB channels separately instead of
compressing the Y channel may be simpler to implement or
even look better than compressing the Y channel. If one
wants to make an RGB image darker, one can subtract the
same number from each RGB channel or divide each RGB
channel with a fixed factor. In one example, it is desired to
make RGB pixel [20,40,60] darker a lot. Subtracting 20
from each component may be done so the pixel would
become [0,20,40]. Before subtraction, the pixel has a red
component in it, after subtraction it doesn’t, anymore. This
type of making the image brighter shifts hue. The proper
way to adjust the brightness in an RGB image is to multiply
each RGB component with the same factor. E.g. if one wants
to increase brightness a lot, we could multiply [20,40,60]
into [40,80,120]. Or to darken it, divide [20,40,60] into
[2,4,6]. The key to RGB brightness adjustments is that the
ratio of the 3 RGB channels to each other must stay constant.

Tone mapping the RGB channels separately in conjunc-
tion with use of the mapping curve leaves very dark pixels
completely untouched but compresses very bright pixels
very strongly. If for example RGB pixel [10,100,200] is
compressed on each channel separately, the Red component
of 10 will stay untouched. The Green component of 100 will
be compressed slightly. The Blue component of 200 will be
compressed a lot. The ratio of the RGB channel changes:
Red doesn’t get modified at all, but Blue gets reduced a lot.
The pixel loses a lot of Blue hue, and turns more towards
Red. Tone mapping the RGB channels separately causes
heavy hue shifts. This can even already happen with fairly
dark pixels, if they happen to have e.g. a large Blue
component.

An additional problem comes from tone mapping each
RGB channel separately, given the general tendency of
reducing the value of the highest channel while reducing the
value of the lowest channel(s) much less. That practically
means that the pixel moves a little bit towards gray, reducing
saturation. However, depending on the exact RGB channel
values, some pixels might not be affected much or at all. The
behavior of this tone mapping method is a bit unpredictable.
One benefit does result from mapping RGB channels sepa-
rately. Since each channel is tone mapped completely sepa-
rately, there cannot be any overflows (blobs). Each channel
on its own is compressed with a perfectly nice curve. So this
whole tone mapping method produces great highlight detail.

In one embodiment, per-RGB-channel tone mapping is
used to obtain great highlight detail. The luminance infor-
mation is used from that mapping. The hue and saturation

US 11,908,109 B1

7

are completely replaced using different formulas. Several
additional algorithms are used to fix problems arising from
the combination of channel-based tone mapping and hue and
saturation replacement.

In very specific scenes, keeping hue perfectly accurate
actually can appear kind of weird. This is especially true
with fire and explosion scenes. These naturally have lots of
red, orange and yellow in them. If tone mapped without
allowing any hue shifts, the scenes sometimes turn out very
red(ish), because the yellow can sometimes disappear a
little.

Because of this problem, an option called “Color Tweaks
for Fire” is provided, which actually allows very bright
red/orange pixels (and only those pixels) to shift in hue
towards yellow a little bit. This helps make fires and
explosions look slightly more realistic, although it’s less
scientifically accurate.

Improvements:

Improvement 1) High dynamic range (HDR) Highlight
Recovery: Rendering a video sequence of 10,000 nits image
on e.g. a 100 nits projector or even with higher nit displays
requires heavy compression of bright pixels. This heavy
compression causes strong loss of highlight detail. Highlight
Recovery tries to avoid this problem by performing the
following functions on the video images:

a) separating the image into low and high frequency

components.

b) applying the compression only on the low frequencies.

¢) adding the high frequencies back in untouched.

While some similar techniques have been used on still
photographs, the above functions have not been performed
on frames in a video sequence during real time playback for
the purpose of preserving highlight detail.

Highlight Recovery: During some tone mapping methods,
very bright pixels can get compressed a lot, while dark
pixels don’t get touched at all by tone mapping. Due to the
strong compression, the value difference between neighbor-
ing pixels in HDR highlight regions gets reduced. Before
tone mapping an explosion scene, one pixel might have a
luminance of 10,000 nits, and the neighbor pixel might have
a luminance of 8,000 nits. But after tone mapping, the first
pixel might be 200 nits, and the 2nd 199 nits. On a perfect
10,000 nits display one can see a very clear difference
between the mentioned 2 pixels, but on a 200 nits display,
both pixels look virtually identical. Tone mapping compres-
sion causes a strong loss of highlight detail in very bright
HDR image areas, because due to the compression, the
pixels lose most of their luminance differences to each other.

Highlight Recovery is a method to “fix” this problem. One
prior way to fix the problem utilized a type of sharpening
filter which measured the “texture strength” for each HDR
pixel and applied exactly as much sharpening as needed to
recover the same “texture strength” after tone mapping
which existed before tone mapping. Applying sharpening as
a post-processing algorithm, however, is not ideal. Further-
more, sometimes highlight texture detail gets lost com-
pletely, so even extreme amounts of sharpening can’t bring
it back.

A new algorithm tackles this problem completely differ-
ently. In a first step, before any tone mapping is done at all,
each video frame is split into two parts: a) low frequencies
and b) high frequencies. Or in simpler terms: The low
frequency image looks like a blurred version of the original
frame. The high frequency image looks like a “bump map”
(pure texture), The original untouched video frame can be
perfectly restored by simply adding both high and low

10

15

20

25

30

35

40

45

50

55

60

65

8

frequency bitmaps up. Image processing is not really
changed as the image frames are split into separate fre-
quency ranges.

Next, tone mapping is performed as usual, but only on the
low frequency image. After tone mapping is complete, the
original high frequency image is added back on the tone
mapped image. One benefit of this approach is that no
sharpening is done. The high frequencies of the original
image are preserved, allowing one to see exactly the same
amount of highlight “texture” detail after tone mapping
which a perfect 10,000 nits display would show.

A simple approach for splitting into two separate fre-
quency ranges would be to simply blur the original video
frame a lot, then subtract the blurred image from the original
image to get the high frequency part. This can work ok, but
can result in ringing/halo artifacts, because strong image
edges will be blurred a lot, as well, producing very strong
artifacts.

A nearly artifact free frequency splitter would be a little
slow for image frames of a video sequence given current
computing resource speeds in home and theater equipment,
without spending a lot on higher speed computing resources.

Some types of recording media, such as ultra-high defi-
nition (UHD) high dynamic range (HDR) whether streamed
or from other sources such as media files or Blu-Ray discs
are capable of recording to a max of 10,000 nits. However,
the big majority of pixels goes typically no higher than 200
nits. Usually 200 nits is considered to be “diffuse white”,
which means it’s the brightest white for “normal” (non-
HDR) pixels. All pixels above 200 nits are usually consid-
ered HDR pixels, for specular highlights, explosions, the sun
etc.

Now let’s say we’re rendering a movie scene which
mostly has pixels below 200 nits (as most scenes do), but
there’s one very bright explosion which has pixels from
1,000 nits up to 10,000 nits. If such a scene is displayed by
a true 10,000 nits display, we don’t need to apply any
brightness compression, but can watch the scene in full
quality. Meaning, pixels with 10,000 nits will be much
brighter than pixels with 1,000 nits, so it’s easy for our eyes
to see full detail in the explosion.

Unfortunately, there’s no consumer display available
today which can achieve 10,000 nits. The image needs to be
processed to make it look good on the given display. The
problem is especially big for front projection where typical
consumer projectors often are only capable of producing no
more than 50-100 nits.

There are several approaches used to process such a
10,000 nits explosion scenes for a 100 nits projector. In a
first approach, all pixels up to 100 nits can be rendered
exactly as the movie is encoded. All pixels above 100 nits
may be clipped to exactly 100 nits, the maximum of the
projector. Using this approach, the whole explosion will be
clipped at exactly 100 nits, so it will be a flat blob with zero
detail/structure in it. This looks extremely bad, so it’s
unusable.

In a second approach, each pixel’s brightness may simply
be divided by a factor of 100, so 10,000 nits becomes 100
nits, 100 nits becomes 1 nits, and 1 nits becomes 0.01 nits.
This might work ok for the brightest pixels in the explosion,
but everything else becomes so extremely dark that it’s
unwatchable, so this approach is unusable, as well.

A third approach is to use a non-linear brightness com-
pression curve (so called tone mapping curve), which com-
presses bright pixels much more than dark pixels. For
example, pixels from 0-10 nits might not be changed in
brightness at all, pixels from 10-20 nits might be darkened

US 11,908,109 B1

9

moderately, pixels from 20-200 nits might be compressed
quite noticeably, and the brighter pixels become, the more
their brightness is compressed. This would result in the
majority of pixels (those below 200 nits) to be only mod-
erately compressed in brightness, which results in the over-
all image staying acceptably bright. The over bright explo-
sion pixels are compressed extremely strongly, though. For
example, let’s say we compress all pixels from 0-200 nits
into the projector’s range of 0-70 nits, and compress all
pixels above 200 nits into the projector’s range of 70-100
nits using a tone mapping curve.

The third approach is commonly used today. However,
compressing all pixels that are encoded between 200-10,000
nits into e.g. just 70-100 nits on the projector, results in the
over bright HDR pixels being condensed so much that a lot
of detail is lost. Explosions encoded using the third approach
lose most of their “texture detail”.

In order to avoid the heavy loss of texture detail in over
bright HDR areas of a video frame, a “Highlight Recovery”
method described above and described in further detail
below may be used.

In the first step, the original HDR image is split into low
frequency and high frequency detail. High frequency detail
may be thought of as being “texture detail”, and the low
frequency information is just the flat (texture-less) image.

In a next step a brightness compression curve is applied
only on the low frequency image. Finally, the original high
frequency information is merged back into the tone mapped
(brightness compressed) image. This method avoids the loss
of texture detail.

Splitting the image into low versus high frequency com-
ponents may be done several different ways. A simple
implementation involves using a simple gaussian blur.

First, a heavy gaussian blur is applied on the image. This
blur removes all high frequencies (=texture detail). The
blurred image only contains low frequencies. Formula:
“LowFreq=GaussianBlur(Originallmage)”.

Second, the blurred image is subtracted from the original
image to get the Thigh frequencies. Formula:
“HighFreq=Originallmage-LowFreq”.

The original image may be restored simply by adding low
and high frequences back together:
“Originallmage=l.owFreq+HighFreq” if desired.

Several images are shown as examples in this order
below: FIG. 1 is an illustration of an original image 100 of
a sequence of video images. FIG. 2 is an illustration of a
gaussian low frequency image 200 of the image of FIG. 1.
FIG. 3 is an illustration of a gaussian high frequency image
300 of the image of FIG. 1.

The high frequency image 300 is gray when there’s no
texture detail, black when the texture detail is darker than the
neighborhood and white when the texture detail is brighter
than the neighborhood. The high frequency image 300 is
shown to be centered at gray, so one can properly see where
the texture detail is darker than the neighborhood. The true
high frequency parts are centered around 0, though, so they
go negative for dark parts and positive for bright parts. But
this is impossible to show in an image because an image
cannot have negative components. That’s why middle gray
was added for illustration purposes only. This is an approach
usually used to visualize such a high frequency difference
image.

In order to demonstrate how the Highlight Recovery
algorithm works, take the Originallmage, split it into low
frequency image 200 parts and high frequency image 300
parts and then simply make the low frequency image 300 a
lot darker. This is somewhat similar to what tone mapping

10

15

20

25

30

35

40

45

50

55

60

65

10

does. Although for the purpose of this demonstration, a
simple linear darkening of the low frequency image 200 is
used, while tone mapping uses a non-linear brightness
compression curve. But for the sake of demonstration, this
simplified approach should suffice. After the low frequency
image 200 has been darkened, the high frequency image 300
detail is added back to get the final image as shown in FIG.
4 at 400.

The final image 400 becomes a strongly darkened version
of the original image 100, but still has the same high
frequency image 300 texture detail.

For comparison purposes, FIG. 5 is a darkened original
image 500 without splitting it into low frequency and high
frequency parts. Image 500 is shown to compare how texture
detail is lost through the darkening:

Comparing the FIG. 1 original image 100 versus the FIG.
5 dark original image 500, versus the FIG. 4 gaussian final
image 400, it can be observed that the gaussian final image
400 has roughly the same amount of texture detail as the
original image 100, although it is significantly darker. The
edges are strongly sharpened this way, which looks quite
ugly and is not the intended result. The purpose was not to
enhance edges. Instead, it is desired to preserve the texture
detail.

It’s a well-known problem that using a simple Gaussian
Blur to split an image into low frequency versus high
frequency parts has problems with edges. The scientific
world has suggested many alternative algorithms, like Bilat-
eral Blurring (edge-aware Gaussian blur).

Most recently, a WLS algorithm used for photographs has
been found to produce the best image quality splitting into
a FIG. 6 low frequency image 600 versus a FIG. 7 high
frequency image 700 which results in a FIG. 8 WLS final
image 800.

However, WLS is a very slow algorithm, so it can’t be
used for real time processing.

Compared to Gaussian images, the WLS final image 800
manages to preserve the full texture detail without introduc-
ing any edge (or other) artifacts.

The Highlight Recovery algorithm is fused into an overall
tone mapping pipeline in one embodiment. The pipeline in
one embodiment includes the following steps:

a. Separate image into LowFreq and HighFreq parts, in

the original PQ encoding.

b. Apply brightness compression on the LowFreq image.

c. Reduce brightness and saturation for pixels which are

outside of the valid target gamut.

d. Repair whatever damage step c. did to the luminance

channel.

e. Reduce saturation once more where needed to fit the

pixels into the target gamut.

f. Add the HighFreq parts back into the image, in PQ

encoding.

FIG. 9 is a flowchart illustrating a method 900 of per-
forming highlight recovery according to an example
embodiment. Method 900 begins with an operation 910 to
receive a video sequence having image frames with a high
dynamic range. In one embodiment, the received video
sequence comprises pixels with a luminance range of 0 to up
to 10,000 nits and the lower dynamic range comprises 0 to
a selected number of nits, such as anywhere between 20 and
500 nits. In one example the lower dynamic range comprises
0 to 100 nits. Each image frame is separated at operation 920
into low and high frequency components.

Separating each image into low and high frequency
components may be performed by blurring each video frame
image and subtracting the blurred video frame images from

US 11,908,109 B1

11

the received video frame images to obtain the high fre-
quency components. Blurring may be performed using a
Gaussian blur or an edge preserving blur that preserves the
geodesic distance between points on the curves, adaptively
warping an input signal perform 1D edge-preserving filter-
ing in linear time.

Operation 930 compresses the low frequency compo-
nents. Compressing the low frequency components may be
performed by tone mapping the low frequency components.
Operation 940 reconstructs the image frames of the video
sequence by combining the high frequency components with
the compressed low frequency components. Reconstructing
the image frames of the video sequence may done by adding
the high frequency components to the compressed low
frequency components. The reconstructed image frames of
the video sequence are rendered at operation 950 for display
on a device having a lower dynamic range.

Improvement 2) HDR Hue Tweak for Fire & Explosions:
A desired property of a good tone mapping algorithm is to
avoid hue shifts. However, if fire and explosion scenes are
rendered without any hue shift, they tend to look a bit
unnatural, because there’s mainly only red hues, but barely
anything orange or yellow. Humans expect such scenes to
also have lots of orange and yellow hues, for whatever
reason. In various embodiments, tone mapping algorithm
intentionally shifts hues a bit, which is normally not a
desired property. The hue shifts are limited to bright and
highly saturated red/orange hues, so that other hues are not
negatively affected.

Improvement 3) HDR Scene Detection: For dynamic tone
mapping, the exact compression curve ideally needs to be
changed for each video frame. But doing such changes too
quickly can result in visible flickering artifacts. So the
changes need to be done slowly and smoothly. However,
doing that results in visible brightness pumping artifacts
when there’s a scene change from a very dark to a very
bright scene (or vice versa). As a result, an algorithm is used
to detect scene changes in the video. If a scene change is
detected, the tone mapping compression curve is adjusted
immediately, without any smoothing.

Improvement 4) HDR Luminance Channel Repair: Tone
mapping requires a compromise between losing saturation
vs brightness for different pixels. These saturation vs bright-
ness adjustments can damage the integrity of the luminance
channel. An algorithm is used which repairs such artifacts.

Improvement 5) HDR HSTM (Histogram Shaped Tone
Mapping): The shape of the tone mapping curve is changed
based on the histogram of each video frame using a unique
approach.

Histogram Shaped Tone Mapping (HSTM) may also be
referred to as contrast recovery. Usually, when compressing
an HDR image (e.g. with up to 10,000 nits brightness) into
a range that a typical display can handle (e.g. a front
projector with 100 nits or a TV with 1,000 nits), a non-linear
tone mapping compression curve is used, which compresses
bright pixels much more than dark pixels.

However, it’s rare that the full brightness range of an
HDR image is actually used by any movie frame. If you look
at the histogram of a movie frame as shown in FIG. 10, there
are big gaps, which means there are wide brightness ranges
which aren’t used in the image at all.

This led the inventor to question: “Why not compress the
HDR image more intelligently, by using a lower compres-
sion factor for brightness levels which are commonly used
in the image, and using a much higher compression factor
for brightness levels which are not used at all (or only rarely
used)?”

20

25

40

45

65

12

In some way this idea is related to histogram equalization.
However, histogram equalization often totally changes the
look of an image, increasing contrast very strongly. That can
actually look pleasing, from a subjective point of view, but
when talking about movie playback, the movie is usually
encoded based on artistic decisions made by the movie
creators, referred to as the director’s intent. One consider-
ation is to not change the director’s intent or to minimize
such changes to the director’s intent. This means that
histogram equalization cannot be used as it is.

In one embodiment, a contrast recovery algorithm, or in
a more technical form Histogram Shaped Tone Mapping
(HSTM) algorithm is used. The algorithm uses an intelli-
gently shaped tone mapping curve, to optimize the detail and
contrast of the resulting tone mapped images. Such tone
mapped images may be consistent, or at least not substan-
tially deviate from a video director’s intent. In other words,
the resulting video being displayed has similar detail and
contrast to what the creator of the video intended for display.

In one embodiment, HSTM utilizes the following work
flow:

1) In a first step, HSTM measures the properties of the
current video frame (peak, average picture level (APL)
and histogram).

2) HSTM creates a conventional tone mapping compres-
sion curve, taking peak and APL into account, but
ignoring the shape of the histogram.

3) HSTM creates an LUT (lookup table) for each possible
brightness level encoded in the video stream. The LUT
is filled with the tone mapping curve created in step 2).
Afterwards LUTI[O] (the first element in the look up
table) contains the tone mapped brightness value for a
black pixel and LUT[max] contains the tone mapped
brightness value for the brightest pixel in the video
frame.

4) The LUT tone mapping curve is converted to a “dif-
ference” curve by subtracting the previous LUT ele-
ment. So LUT[0] stays the same. LUT[1] calculates as
“LUT[1]=LUT[1]-LUT[0]”, or more generally: “LUT
[n]=LUT[n]-LUT[n-1]". This way each LUT entry
contains the brightness difference (addition) compared
to the previous (darker) LUT entry.

5) In order to maintain director’s intent, no entry in the
“difference” LUT should exceed a threshold value of
1.0, because a value of 1.0 is exactly the brightness
difference obtained when rendering the movie without
any tone mapping on a true 10,000 nits display. Note
that in some embodiments, the threshold value may be
set greater than 1.0 if desired, resulting in deviation
from the director’s intent. The director’s intent is
assumed to be what would appear when playing the
video on a display that has a peak luminance ability
matching that of a director created master version of the
video. The director’s actual intent sometimes is a grey
area, especially when it comes to HDR, and without
specifically asking a director to describe what the exact
lighting/coloring of all parts of a scene are supposed to
look like, which typically doesn’t or can’t happen; so a
director’s actual intent is somewhat subject to interpre-
tation. The user’s interpretation may be used to set the
threshold value to something other than 1.0. Different
values may be tried by the user and selected based on
the user’s preference derived from watching the result-
ing videos on a selected display device.

6) Next, the LUT is adjusted, based on the histogram. The
histogram contains exactly one column for each LUT
element. The LUT is iterated through and each LUT

US 11,908,109 B1

13

entry is compressed of expanded, depending on the
height of each histogram column. The exact compres-
sion or expansion factor is derived from a pre-defined
curve (optionally user adjustable). The higher a histo-
gram column is, the more the difference value of the
matching LUT entry is expanded. Through this process
the LUT is re-shaped to adjust to the shape of the
histogram.

7) Next, the LUT is normalized so that the output matches
an intended brightness target. The target is peak lumi-
nance of the user’s display, which the user may provide.

8) Next, the normalized LUT is looped through to make
sure that no LUT value exceeds the threshold value of
1.0, because doing so would violate director’s intent
(the difference between two encoded brightness steps
would be expanded beyond what a true 10,000 nits
display would show). If any LUT entries exceed the
threshold value of 1.0, they’re clipped to 1.0. If any
LUT values had to be clipped to 1.0, step 7) is returned
to, because clipping LUT values to 1.0 means that the
LUT is no longer normalized. Steps 7 and 8 may be
repeated. However, in further embodiments, the thresh-
old value of 1.0 may be modified to deviate from the
director’s intent as desired. While not complying per-
fectly with the director’s intent, using a higher thresh-
old value may be more efficient.

9) Finally, the LUT is converted back from the “differ-
ence” format to the normal format. The “normal for-
mat” simply performs the tone mapping compression.
So each LUT entry contains the final luminance for
pixels that have the brightness which matches the LUT
entry. To converted back, the LUT values are added
back up like “LUT[n]=LUT[n]+LUT[n-1]". This LUT
now contains the Histogram Shaped Tone Mapping
curve, which optimizes detail and contrast, but without
deviating from director’s intent unless a threshold value
higher than 1.0 is used. Such higher or lower threshold
values may be selected by a user to modify the appear-
ance of the video to deviate from the director’s intent
as desired by the user.

Improvement 6) HDR Neural Network Tone Mapping:
Tone Mapping needs to make decisions about how much
saturation vs luminance to sacrifice for each pixel. This
decision making is usually hard coded. In a new approach,
a neural network is trained to make intelligent decisions,
based on various factors, including the neighbor pixels, to
maximize overall image quality.

Improvement 7) Upscaling Chroma by using Luma chan-
nel information: Usually Chroma information is upscaled
using a simple linear interpolation method. In a new
approach, a neural network is trained and used to upscale
Chroma by making use of the higher resolution Luma
channel.

Improvement 8) Motion Interpolation using Neural Net-
works: A new Motion Interpolation technique uses one or
more trained Neural Networks to produce superior results.

Improvement 9) Motion Compensated Noise Reduction
using Neural Networks: Random noise and film grain are
filtered out using motion compensated noise reduction via
trained neural networks.

Improvement 10) Grain/noise agnostic upscaling using
Neural Networks: Video is upscaled by performing the
following operations:

a) Motion Compensated Noise Reduction using neural

networks.

b) Upscaling the video using neural networks.

10

15

20

25

30

35

40

45

50

55

60

65

14

¢) Put high quality grain back in, in the same strength as
which a) removed.

Improvement 11) Frame catchup. One challenge with
video processing exists where two “system clocks” do not
run at the exact same frequency. For instance, a video source
may use 23.979 Hz while a display (or output) may operate
at 23.975 Hz. This small discrepancy requires that a video
frame be “repeated” (aka duplicates) once every X minutes,
depending on the output rate. This is typically once every
4-5 minutes for 24 Hz material and once every 8-12 minutes
for 60 Hz. To the astute video enthusiast, this repeated/
duplicated signal frame every x minutes stands out like a
sore thumb and is a great annoyance, because it appears as
if the video freezes (glitches) for a split second when the
repeat happens. The repeated frame cannot be eliminated
due to the clock mismatch.

In one embodiment, the repeat is made to occur at
moments when it cannot be seen. Examples include a fade
to black scene or a scene with little or no motion. Once that
frame is purposely duplicated, the x minute clock starts over
before the next repeated frame would occur. By proactively
looking for places to hide the repeated frame, the frame may
be repeated in manner to occur in unnoticeable situations.

Further details:

An enhanced frame catchup method avoids visible motion
artifacts when input/output frame rate doesn’t match per-
fectly:

1) All devices usually have a hardware clock circuit which
can be programmed to provide signals/impulses in a
defined interval. For example, an UHD HDR Blu-Ray
Player will setup a clock circuit to send out 24.000/
1.001=23.976 video frames per second, so the clock
circuit will provide a signal each 1000/
24.000%1.001=41.708333 milliseconds. An Audio/
Video Receiver (AVR) or a video processor will have
another clock circuit to do the same.

2) Unfortunately, clock circuits in different devices (or
even 2 clock circuits in the same device) never auto-
matically match with 1000% accuracy. Which means
one clock will usually run ever so slightly faster or
slower than the other clock. For example, in an AVR or
video processor device, the incoming video signal
might have a frame rate of 23.9765 fps (frames per
second), while the outgoing signal might have a frame
rate of 23.9755 fps. In this situation the outgoing signal
is slower than the incoming signal, which means after
a while the incoming frames will pile up because they
can’t be sent out quickly enough. No device can store
frames endlessly, so at some point some of the piled-up
frames will have to be dropped, which usually results
in a visible stutter on screen. Sometimes the outgoing
signal can also be faster than the incoming signal. In
that case not enough frames are coming in to satisfy the
outgoing signal. Which means some of the incoming
frames need to be repeated (sent out twice). This also
usually results in a visible stutter on screen.

3) There are multiple solutions to avoid the visible stutter,
for example:

a. A device could try to lock its internal clock to the exact
speed of the incoming signal. This is usually called
“genlock”.

b. A device could use motion interpolation or frame
blending to account for the frame rate difference.

4) The enhanced catchup frame method utilizes a different
approach. It works like this:

Dropping or repeating a frame usually results in a visible

stutter. While the enhanced catch frame method does that, it

US 11,908,109 B1

15

actively searches for frames that can be dropped or repeated
to minimize the cumulative difference in frames due to the
different frame rates in such a way that no visible artifact
becomes noticeable by a viewer. This is done as follows:

If a frame needs to be dropped:

a. Incoming frames are analyzed to find completely black
frames. This is not a rare thing to happen in a movie,
e.g. when there’s a fade-to-black at the end of a scene.
If there are multiple black frames in a row, one (or even
multiple) can be dropped without producing any visible
problems.

b. Incoming frames are also analyzed to find completely
identical frames. This can happen e.g. in static scenery
footage. In such a case one of the frames can be
dropped without producing any visible problems. Due
to lossy compression, frames might not be mathemati-
cally identical, but can still be visually identical, so a
frame is to be considered “identical”, if the per-pixel
difference in below a reasonable threshold.

c. Incoming frames are analyzed to find scene cuts (an
algorithm to detect such scene cuts will be described in
detail separately). If one scene ends and a new scene
starts, there’s a very visible discontinuity in the video
stream, which viewers don’t see as a motion artifact. In
such a situation we can drop the last frame(s) of the
ending scene and/or the first frame(s) of the new scene
without introducing any visible problems.

If a frame needs to be repeated:

a. Incoming frames are analyzed to find completely black
frames. If there are multiple black frames in a row, one
(or even multiple) additional black frames can be added
without producing any visible problems.

b. Incoming frames are analyzed to find for completely
identical frames. In such a case one of the frames can
be repeated without any visible problems.

c. Incoming frames are analyzed to find scene cuts. In
such a situation a blended frame which consists of 50%
of the last frame of the ending scene and 50% of the
first frame of the new scene can be inserted. The blend
formula in one embodiment is simply: “Inserted-
Frame=(LastFrameOfEndingScene+
FirstFrameOfNewScene)/2”, where the blending is
done pixel by pixel. For best image quality, blending
can optionally be performed in linear light.

There may be longer passages in a movie where none of
the above described situations occur, so no frame can be
dropped or repeated safely. Because this can happen, more
frames than actually needed may be dropped or repeated in
advance, to provide headroom. If the incoming signal is too
fast, a couple of frames may be buffered, if need be, to wait
for a situation where the needed number of frames can by
unobtrusively dropped. However, buffering too many frames
may result in audio/video sync, resulting in a noticeable
mismatch between the audio and video signal.

Some of the above improvements involve the use of Al to
perform various functions. For example, improvement 6,
HDR Neural Network Tone Mapping involves a trained
neural network model to make decisions about saturation
versus luminance for each pixel in video frames. The model
may be obtained by using labeled pixel information. The
labels may be used to identify each pixel and the image
quality associated with that pixel based on neighboring
pixels. Improvements 7, 8, 9, and 10 may be similarly
trained.

Artificial intelligence (Al is a field concerned with devel-
oping decision-making systems to perform cognitive tasks
that have traditionally required a living actor, such as a

5

10

15

20

25

30

35

40

45

50

55

60

65

16

person. Neural networks (NN), such as convolutional neural
networks, are computational structures that are loosely mod-
eled on biological neurons. Generally, NNs encode infor-
mation (e.g., data or decision making) via weighted connec-
tions (e.g., synapses) between nodes (e.g., neurons). Modern
NNs are foundational to many Al applications, such as
automated perception (e.g., computer vision, speech recog-
nition, contextual awareness, etc.), automated cognition
(e.g., decision-making, logistics, routing, supply chain opti-
mization, etc.), automated control (e.g., autonomous cars,
drones, robots, etc.), among others.

FIG. 11 is a block schematic diagram of a computer
system 1100 to implement devices to perform improve-
ments, methods, and algorithms according to example
embodiments. All components need not be used in various
embodiments.

One example computing device in the form of a computer
1100 may include a processing unit 1102, memory 1103,
removable storage 1110 such as a UHD HDR Blu-Ray
Player, and non-removable storage 1112, each of which may
store high resolution video. Although the example comput-
ing device is illustrated and described as computer 1100, the
computing device may be in different forms in different
embodiments. For example, the computing device may
instead be a smartphone, a tablet, smartwatch, smart storage
device (SSD), or other computing device including the same
or similar elements as illustrated and described with regard
to FIG. 11. Devices, such as smartphones, tablets, and
smartwatches, are generally collectively referred to as
mobile devices or user equipment.

Although the various data storage elements are illustrated
as part of the computer 1100, the storage may also or
alternatively include cloud-based storage accessible via a
network, such as the Internet or server-based storage. Note
also that an SSD may include a processor on which the
parser may be run, allowing transfer of parsed, filtered data
through I/O channels between the SSD and main memory.

Memory 1103 may include volatile memory 1114 and
non-volatile memory 1108. Computer 1100 may include—or
have access to a computing environment that includes—a
variety of computer-readable media, such as volatile
memory 1114 and non-volatile memory 1108, removable
storage 1110 and non-removable storage 1112. Computer
storage includes random access memory (RAM), read only
memory (ROM), erasable programmable read-only memory
(EPROM) or electrically erasable programmable read-only
memory (EEPROM), flash memory or other memory tech-
nologies, compact disc read-only memory (CD ROM), Digi-
tal Versatile Disks (DVD) or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium
capable of storing computer-readable instructions.

Computer 1100 may include or have access to a comput-
ing environment that includes input interface 1106, output
interface 1104, and a communication interface 1116. Output
interface 1104 may include a display device, such as a
touchscreen, that also may serve as an input device. The
display device may be a device such as a projector or other
display that usually has a capability that is not sufficient to
display the full dynamic range of stored video. The input
interface 1106 may include one or more of a touchscreen,
touchpad, mouse, keyboard, camera, one or more device-
specific buttons, one or more sensors integrated within or
coupled via wired or wireless data connections to the
computer 1100, and other input devices. The computer may
operate in a networked environment using a communication
connection to connect to one or more remote computers,

US 11,908,109 B1

17

such as database servers. The remote computer may include
a personal computer (PC), server, router, network PC, a peer
device or other common data flow network switch, or the
like. The communication connection may include a Local
Area Network (LAN), a Wide Area Network (WAN), cel-
Iular, Wi-Fi, Bluetooth, or other networks. According to one
embodiment, the various components of computer 1100 are
connected with a system bus 1120.

Computer-readable instructions stored on a computer-
readable medium are executable by the processing unit 1102
of the computer 1100, such as a program 1118. The program
1118 in some embodiments comprises software to imple-
ment one or more improvements described herein. A hard
drive, CD-ROM, and RAM are some examples of articles
including a non-transitory computer-readable medium such
as a storage device. The terms computer-readable medium
and storage device do not include carrier waves to the extent
carrier waves are deemed too transitory. Storage can also
include networked storage, such as a storage area network
(SAN). Computer program 1118 along with the workspace
manager 1122 may be used to cause processing unit 1102 to
perform one or more methods or algorithms described
herein.

Sets of examples are now provided. It should be noted that
the sets of example may be combined in further embodi-
ments, with features and functions of different examples
operating together.

Highlight Recovery Examples:

1. A computer implemented method includes receiving a
video sequence having image frames with a high dynamic
range, separating each image frame into low and high
frequency components, compressing the low frequency
components, reconstructing the image frames of the video
sequence by combining the high frequency components with
the compressed low frequency components, and rendering
the reconstructed image frames of the video sequence for
display on a device having a lower dynamic range.

2. The method of method 1 wherein the received video
sequence comprises pixels with a luminance range of 0 to up
to 10,000 its.

3. The method of any of examples 1-2 wherein the lower
dynamic range comprises 0 to 200 nits.

4. The method of any of examples 1-3 wherein recon-
structing the image frames of the video sequence comprises
adding the high frequency components to the compressed
low frequency components.

5. The method of any of examples 1-4 wherein compress-
ing the low frequency components comprises tone mapping
the low frequency components.

6. The method of any of examples 1-5 wherein separating
each image into low and high frequency components com-
prises blurring each video frame image and subtracting the
blurred video frame images from the received video frame
images to obtain the high frequency components.

7. The method of example 6 wherein the blurring is
performed using a Gaussian blur.

8. The method of example 6 wherein the blurring is
performed using an edge preserving blur that preserves the
geodesic distance between points on the curves, adaptively
warping an input signal perform 1D edge-preserving filter-
ing in linear time.

9. A machine-readable storage device has instructions for
execution by a processor of a machine to cause the processor
to perform operations to perform a method. The operations
include receiving a video sequence having image frames
with a high dynamic range, separating each image frame into
low and high frequency components, compressing the low

10

20

25

30

35

40

45

50

55

60

65

18

frequency components, and reconstructing the image frames
of the video sequence by combining the high frequency
components with the compressed low frequency compo-
nents, and rendering the reconstructed image frames of the
video sequence for display on a device having a lower
dynamic range.

10. The device of example 8 wherein the received video
sequence comprises pixels with a luminance range of 0 to up
to 10,000 its.

11. The device of any of examples 9-10 wherein the lower
dynamic range comprises 0 to 200 nits.

12. The device of any of examples 9-11 wherein recon-
structing the image frames of the video sequence comprises
adding the high frequency components to the compressed
low frequency components.

13. The device of any of examples 9-12 wherein com-
pressing the low frequency components comprises tone
mapping the low frequency components.

14. The device of any of examples 9-13 wherein separat-
ing each image into low and high frequency components
comprises blurring each video frame image and subtracting
the blurred video frame images from the received video
frame images to obtain the high frequency components.

15. The device of example 14 wherein the blurring is
performed using a Gaussian blur.

16. The device of example 14 wherein the blurring is
performed using an edge preserving blur that preserves the
geodesic distance between points on the curves, adaptively
warping an input signal perform 1D edge-preserving filter-
ing in linear time.

17. A device includes a processor and a memory device
coupled to the processor and having a program stored
thereon for execution by the processor to perform opera-
tions. The operations include receiving a video sequence
having image frames with a high dynamic range, separating
each image frame into low and high frequency components,
compressing the low frequency components, reconstructing
the image frames of the video sequence by combining the
high frequency components with the compressed low fre-
quency components, and rendering the reconstructed image
frames of the video sequence for display on a device having
a lower dynamic range.

18. The device of example 17 wherein the received video
sequence comprises pixels with a luminance range of 0 to up
to 10,000 nits.

19. The device of any of examples 17-18 wherein the
lower dynamic range comprises 0 to 200 nits.

20. The device of any of examples 17-19 wherein recon-
structing the image frames of the video sequence comprises
adding the high frequency components to the compressed
low frequency components.

21. The device of any of examples 17-20 wherein com-
pressing the low frequency components comprises tone
mapping the low frequency components.

22. The device of any of examples 16-21 wherein sepa-
rating each image into low and high frequency components
comprises blurring each video frame image and subtracting
the blurred video frame images from the received video
frame images to obtain the high frequency components.

23. The device of example 22 wherein the blurring is
performed using a Gaussian blur.

24. The device of example 22 wherein the blurring is
performed using an edge preserving blur that preserves the
geodesic distance between points on the curves, adaptively
warping an input signal perform 1D edge-preserving filter-
ing in linear time.

US 11,908,109 B1

19

25. A computer implemented method includes receiving a
video sequence having image frames with a first dynamic
range including both low frequency components and high
frequency components, separating each image frame into the
low frequency components and the high frequency compo-
nents, compressing the low frequency components, recon-
structing the image frames of the video sequence by com-
bining the high frequency components with the compressed
low frequency components, and rendering the reconstructed
image frames of the video sequence for display on a device
having a second dynamic range, the second dynamic range
being less than the first dynamic range.

Frame Catchup:

1. A computer implemented method includes receiving
image frames of an input video sequence having a first frame
rate, processing the image frames of the input video
sequence to provide an output video sequence having a
second frame rate different that the first frame rate, detecting
image frames of the output video sequence to identify
candidate frames for dropping or inserting frames without
causing a visible discontinuity while viewing a display of
the output video sequence, and adding or dropping a frame
as a function of the first and second frame rates at a selected
candidate frame being displayed.

2. The method of example 1 wherein a need to add or drop
a frame occurs every four to five minutes for a 24 Hz video
sequence.

3. The method of any of examples 1-2 wherein add or
drop a frame occurs every 8-12 minutes for a 60 Hz video
sequence.

4. The method of any of examples 1-3 wherein add or
drop a frame occurs as a function of the difference between
the first frame rate and the second frame rate times time.

5. The method of any of examples 1-4 wherein detecting
candidate frames comprises finding completely back frames.

6. The method of any of examples 1-5 wherein detecting
candidate frames comprises finding consecutive visually
identical frames.

7. The method of any of examples 1-6 wherein detecting
candidate frames comprises finding scene cuts exhibiting a
visible discontinuity.

8. The method of example 7 wherein a blended frame is
inserted between scene cut candidate frames.

9. The method of example 8 wherein the blended frame
comprises an average of two consecutive scene cute candi-
date frames.

10. The method of any of examples 1-9 and further
including buffering a couple of frames and delaying adding
or dropping a frame until candidate frames have been
identified.

11. The method of any of examples 1-10 and further
including buffering a couple of frames and adding or drop-
ping a frame before a need to add or drop a frame occurs as
a function of the difference in frame rates.

12. A machine-readable storage device has instructions
for execution by a processor of a machine to cause the
processor to perform operations to perform a method. The
operations include receiving image frames of an input video
sequence having a first frame rate, processing the image
frames of the input video sequence to provide an output
video sequence having a second frame rate different that the
first frame rate, detecting image frames of the output video
sequence to identify candidate frames for dropping or insert-
ing frames without causing a visible discontinuity while
viewing a display of the output video sequence, and adding
or dropping a frame as a function of the first and second
frame rates at a selected candidate frame being displayed.

20

25

30

40

45

50

20

13. The device of example 12 wherein a need to add or
drop a frame occurs every four to five minutes for a 24 Hz
video sequence.

14. The device of any of examples 12-13 wherein add or
drop a frame occurs every 8-12 minutes for a 60 Hz video
sequence.

15. The device of any of examples 12-14 wherein add or
drop a frame occurs as a function of the difference between
the first frame rate and the second frame rate times time.

16. The device of any of examples 12-15 wherein detect-
ing candidate frames comprises finding completely back
frames.

17. The device of any of examples 12-16 wherein detect-
ing candidate frames comprises finding consecutive visually
identical frames.

18. The device of any of examples 12-17 wherein detect-
ing candidate frames comprises finding scene cuts exhibiting
a visible discontinuity.

19. The device of example 18 wherein a blended frame is
inserted between scene cut candidate frames.

20. The device of example 19 wherein the blended frame
comprises an average of two consecutive scene cute candi-
date frames.

21. The device of any of examples 12-20 and further
including buffering a couple of frames, and delaying adding
or dropping a frame until candidate frames have been
identified.

22. The device of any of examples 12-21 and further
including buffering a couple of frames and adding or drop-
ping a frame before a need to add or drop a frame occurs as
a function of the difference in frame rates.

23. A device includes a processor and a memory device
coupled to the processor and having a program stored
thereon for execution by the processor to perform opera-
tions. The operations include receiving image frames of an
input video sequence having a first frame rate, processing
the image frames of the input video sequence to provide an
output video sequence having a second frame rate different
that the first frame rate, detecting image frames of the output
video sequence to identify candidate frames for dropping or
inserting frames without causing a visible discontinuity
while viewing a display of the output video sequence, and
adding or dropping a frame as a function of the first and
second frame rates at a selected candidate frame being
displayed.

24. The device of example 23 wherein a need to add or
drop a frame occurs every four to five minutes for a 24 Hz
video sequence.

25. The device of any of examples 23-24 wherein add or
drop a frame occurs every 8-12 minutes for a 60 Hz video
sequence.

26. The device of any of examples 23-25 wherein add or
drop a frame occurs as a function of the difference between
the first frame rate and the second frame rate times time.

27. The device of any of examples 23-26 wherein detect-
ing candidate frames comprises finding completely back
frames.

28. The device of any of examples 23-27 wherein detect-
ing candidate frames comprises finding consecutive visually
identical frames.

29. The device of any of examples 23-28 wherein detect-
ing candidate frames comprises finding scene cuts exhibiting
a visible discontinuity.

30. The device of example 29 wherein a blended frame is
inserted between scene cut candidate frames.

US 11,908,109 B1

21

31. The device of example 30 wherein the blended frame
comprises an average of two consecutive scene cute candi-
date frames.

32. The device of any of examples 23-31 and further
including buffering a couple of frames and delaying adding
or dropping a frame until candidate frames have been
identified.

33. The device of any of examples 23-32 and further
including buffering a couple of frames and adding or drop-
ping a frame before a need to add or drop a frame occurs as
a function of the difference in frame rates.

Contrast Recovery Examples:

1. A computer implemented method includes receiving
image frames of an input video stream, creating a tone
mapping compression curve for each image frame as a
function of peak and average picture level, creating a normal
format lookup table for each brightness level, the lookup
table having elements filled with the created tone mapping
compression curve, converting the look up table tone map-
ping curve to a difference curve, adjusting the lookup table
values based on a histogram containing one column for each
lookup table element, normalizing the lookup table values to
match an intended brightness target, and converting the
normalized lookup table values back to the normal format.

2. The method of example 1 wherein creating a tone
mapping compression curve is performed independent of the
histogram.

3. The method of any of examples 1-2 wherein a first
element in the lookup table contains a tone mapped bright-
ness value of a black pixel and a last element in the lookup
table contains a tone mapped brightness value for the
brightest pixel in the image frame.

4. The method of any of examples 1-3 wherein converting
the lookup table mapping curve to a difference curve com-
prises for each successive element, subtracting the previous
element value such that each lookup table value corresponds
to a brightness difference compared to previous element.

5. The method of example 4 wherein adjusting the lookup
table values comprises compressing or expanding each value
depending on a height of each corresponding histogram
column to re-shape the lookup table values to adjust to the
shape of the histogram.

6. The method of example 5 and further including clip-
ping values exceeding a threshold value and repeating
normalizing and clipping until no values exceed the thresh-
old value.

7. The method of example 6 wherein the threshold value
comprises 1.0.

8. The method of example 6 wherein the threshold value
is greater than 1.0.

9. The method of example any of examples 1-8 wherein
converting the lookup table values back to the normal format
comprises adding the sequential values in accordance with
LUT[n]=LUT[n]+LUT[n-1], wherein LUT is the lookup
table and n is a sequential value in the lookup table.

10. A machine-readable storage device has instructions
for execution by a processor of a machine to cause the
processor to perform operations to perform a method. The
operations include receiving image frames of an input video
stream, creating a tone mapping compression curve for each
image frame as a function of peak and average picture level,
creating a normal format lookup table for each brightness
level, the lookup table having elements filled with the
created tone mapping compression curve, converting the
look up table tone mapping curve to a difference curve,
adjusting the lookup table values based on a histogram
containing one column for each lookup table element, nor-

10

15

20

25

30

35

40

45

50

55

60

65

22

malizing the lookup table values to match an intended
brightness target, and converting the normalized lookup
table values back to the normal format.

11. The device of example 10 wherein creating a tone
mapping compression curve is performed independent of the
histogram.

12. The device of any of examples 10-11 wherein a first
element in the lookup table contains a tone mapped bright-
ness value of a black pixel and a last element in the lookup
table contains a tone mapped brightness value for the
brightest pixel in the image frame.

13. The device of any of examples 11-12 wherein con-
verting the lookup table mapping curve to a difference curve
comprises for each successive element, subtracting the pre-
vious element value such that each lookup table value
corresponds to a brightness difference compared to previous
element.

14. The device of example 13 wherein adjusting the
lookup table values comprises compressing or expanding
each value depending on a height of each corresponding
histogram column to re-shape the lookup table values to
adjust to the shape of the histogram.

15. The device of example 14 and further including
clipping values exceeding a threshold value and repeating
normalizing and clipping until no values exceed the thresh-
old value.

16. The device of example 15 wherein the threshold value
comprises 1.0.

17. The device of example 15 wherein the threshold value
is greater than 1.0.

18. The device of example any of examples 11-17 wherein
converting the lookup table values back to the normal format
comprises adding the sequential values in accordance with
LUT[n]=LUT[n]+LUT[n-1], wherein LUT is the lookup
table and n is a sequential value in the lookup table.

19. A device includes a processor and a memory device
coupled to the processor and having a program stored
thereon for execution by the processor to perform opera-
tions. The operations include receiving image frames of an
input video stream, creating a tone mapping compression
curve for each image frame as a function of peak and
average picture level, creating a normal format lookup table
for each brightness level, the lookup table having elements
filled with the created tone mapping compression curve,
converting the look up table tone mapping curve to a
difference curve, adjusting the lookup table values based on
a histogram containing one column for each lookup table
element, normalizing the lookup table values to match an
intended brightness target, and converting the normalized
lookup table values back to the normal format.

20. The device of example 19 wherein creating a tone
mapping compression curve is performed independent of the
histogram.

21. The device of any of examples 19-20 wherein a first
element in the lookup table contains a tone mapped bright-
ness value of a black pixel and a last element in the lookup
table contains a tone mapped brightness value for the
brightest pixel in the image frame.

22. The device of any of examples 19-21 wherein con-
verting the lookup table mapping curve to a difference curve
comprises for each successive element, subtracting the pre-
vious element value such that each lookup table value
corresponds to a brightness difference compared to previous
element.

23. The device of example 22 wherein adjusting the
lookup table values comprises compressing or expanding
each value depending on a height of each corresponding

US 11,908,109 B1

23

histogram column to re-shape the lookup table values to
adjust to the shape of the histogram.

24. The device of example 23 and further including
clipping values exceeding a threshold value and repeating
normalizing and clipping until no values exceed the thresh-
old value.

25. The device of example 24 wherein the threshold value
comprises 1.0.

26. The device of example 24 wherein the threshold value
is greater than 1.0.

27. The device of example any of examples 19-26
wherein converting the lookup table values back to the
normal format comprises adding the sequential values in
accordance with LUT[n]=LUT[n]+LUT[n-1], wherein LUT
is the lookup table and n is a sequential value in the lookup
table.

Although a few embodiments have been described in
detail above, other modifications are possible. For example,
the logic flows depicted in the figures do not require the
particular order shown, or sequential order, to achieve
desirable results. Other steps may be provided, or steps may
be eliminated, from the described flows, and other compo-
nents may be added to, or removed from, the described
systems. Other embodiments may be within the scope of the
following claims.

The following statements are potential claims that may be
converted to claims in a future application. No modification
of the following statements should be allowed to affect the
interpretation of claims which may be drafted when this
provisional application is converted into a regular utility
application.

The invention claimed is:

1. A computer implemented method comprising:

receiving a video sequence having image frames contain-

ing pixels with a high dynamic range;

separating each image frame into low and high frequency

components;

compressing the low frequency components using a non-

linear brightness compression curve including tone
mapping the low frequency components;

reducing brightness and saturation for pixels of the low

frequency components which are outside a target
gamut;
reconstructing the image frames of the video sequence by
combining the high frequency components with the
compressed and reduced brightness and saturation for
pixels of the low frequency components; and

rendering the reconstructed image frames of the video
sequence during real time playback for display on a
device having a lower dynamic range, while preserving
highlight detail, wherein tone mapping the low fre-
quency components comprises:

determining a tone mapping for each successive image

frame;

smoothing the tone mapping to reduce visible flickering

artifacts;

detecting a scene change; and

discontinuing smoothing the tone mapping for a first

image frame of the detected scene change.

2. The method of claim 1 wherein the image frame pixels
have a luminance range of 0 to up to 10,000 nits, and further
comprising:

repairing damage to a luminance channel of each image

frame caused by reducing brightness and saturation for
pixels of the components; and

reducing saturation following repairing damage such that

the pixels fit withing the target gamut.

10

15

20

30

35

40

45

50

55

60

65

24

3. The method of claim 1 wherein the lower dynamic
range comprises 0 to 200 nits.

4. The method of claim 1 wherein reconstructing the
image frames of the video sequence comprises adding the
high frequency components to the compressed low fre-
quency components.

5. The method of claim 1 wherein separating each image
into low and high frequency components comprises blurring
each video frame image and subtracting the blurred video
frame images from the received video frame images to
obtain the high frequency components.

6. The method of claim 5 wherein the blurring is per-
formed using a Gaussian blur.

7. The method of claim 5 wherein the blurring is per-
formed using an edge preserving blur that preserves a
geodesic distance between points on curves, adaptively
warping an input signal to perform 1D edge-preserving
filtering in linear time.

8. A machine-readable storage device having instructions
for execution by a processor of a machine to cause the
processor to perform operations to perform a method, the
operations comprising:

receiving a video sequence having image frames with a

high dynamic range;

separating each image frame into low and high frequency

components;

compressing the low frequency components using a non-

linear brightness compression curve including tone
mapping the low frequency components;

reducing brightness and saturation for pixels of the low

frequency components which are outside a target
gamut;
reconstructing the image frames of the video sequence by
combining the high frequency components with the
compressed and reduced brightness and saturation for
pixels of the low frequency components; and

rendering the reconstructed image frames of the video
sequence during real time playback for display on a
device having a lower dynamic range, while preserving
highlight detail, wherein tone mapping the low fre-
quency components comprises:

determining a tone mapping for each successive image

frame;

smoothing the tone mapping to reduce visible flickering

artifacts;

detecting a scene change; and
discontinuing smoothing the tone mapping for a first image
frame of the detected scene change.

9. The device of claim 8 wherein the image frame pixels
have a luminance range of 0 to up to 10,000 nits.

10. The device of claim 8 wherein the lower dynamic
range comprises 0 to 200 nits.

11. The device of claim 8 wherein reconstructing the
image frames of the video sequence comprises adding the
high frequency components to the compressed low fre-
quency components.

12. The device of claim 8 wherein separating each image
into low and high frequency components comprises blurring
each video frame image and subtracting the blurred video
frame images from the received video frame images to
obtain the high frequency components.

13. The device of claim 12 wherein the blurring is
performed using a Gaussian blur.

14. The device of claim 12 wherein the blurring is
performed using an edge preserving blur that preserves a

US 11,908,109 B1

25

geodesic distance between points on curves, adaptively
warping an input signal to perform 1D edge-preserving
filtering in linear time.
15. A device comprising:
a processor; and
a memory device coupled to the processor and having a
program stored thereon for execution by the processor
to perform operations comprising:
receiving a video sequence having image frames with a
high dynamic range;
separating each image frame into low and high frequency
components;
compressing the low frequency components using a non-
linear brightness compression curve including tone
mapping the low frequency components;
reducing brightness and saturation for pixels of the low
frequency components which are outside a target
gamut;
reconstructing the image frames of the video sequence by
combining the high frequency components with the
compressed and reduced brightness and saturation for
pixels of the low frequency components; and
rendering the reconstructed image frames of the video
sequence during real time playback for display on a
device having a lower dynamic range, while preserving

5

10

15

20

26

highlight detail, wherein tone mapping the low fre-
quency components comprises:

determining a tone mapping for each successive image

frame;

smoothing the tone mapping to reduce visible flickering

artifacts;

detecting a scene change; and
discontinuing smoothing the tone mapping for a first image
frame of the detected scene change.

16. The device of claim 15 wherein the image frame
pixels have a luminance range of 0 to up to 10,000 its.

17. The device of claim 15 wherein reconstructing the
image frames of the video sequence comprises adding the
high frequency components to the compressed low fre-
quency components and wherein separating each image into
low and high frequency components comprises blurring
each video frame image and subtracting the blurred video
frame images from the received video frame images to
obtain the high frequency components.

18. The device of claim 17 wherein the blurring is
performed using an edge preserving blur that preserves a
geodesic distance between points on curves, adaptively
warping an input signal to perform 1D edge-preserving
filtering in linear time.

#* #* #* #* #*

