US 20230259758A1

asy United States

a2 Patent Application Publication o) Pub. No.: US 2023/0259758 A1

ZHANG et al.

43) Pub. Date: Aug. 17, 2023

(54

(71)

(72)

@n
(22)

D

(52)

ADAPTIVE TENSOR COMPUTE KERNEL
FOR SPARSE NEURAL NETWORK

Applicant: MOFFETT INTERNATIONAL CO.,
LIMITED, Hong Kong (HK)

Inventors: XIAOQIAN ZHANG, SAN JOSE, CA
(US); ENXU YAN, LOS ALTOS, CA
(US); ZHIBIN XTAO, LOS ALTOS, CA

US)
Appl. No.: 17/673,490
Filed: Feb. 16, 2022
Publication Classification

Int. CL
GO6N 3/08 (2006.01)
U.S. CL

CPC . GO6N 3/08 (2013.01)

(57) ABSTRACT

Methods, systems, and apparatus, including computer pro-
grams encoded on computer storage media, for improving
efficiency of neural network computations using adaptive
tensor compute kernels. First, the adaptive tensor compute
kernels may adjust shapes according to the different shapes
of input/weight tensors for distributing the weights and
input values to a processing elements (PE) array for parallel
processing. Depending on the shape of the tensor compute
kernels, additional inter-cluster or intra-cluster adders may
be needed to perform convolution computations. Second,
the adaptive tensor compute kernels may support two differ-
ent tensor operation modes, i.e., 1x1 tensor operation mode
and 3x3 tensor operation mode, to cover all types of convo-
lution computations. Third, the underlying PE array may
configure each PE-internal buffer (e.g., a register file) differ-
ently to support different compression ratios and sparsity
granularities of sparse neural networks.

110 Global Weight tensors

\ 4

130 Weight Cache

Weights

Y

120
Global
Input
Feature
Maps
(IFM)

IFM
_| 1401Fm

| 150 Matrix
Cache o

Transform

) 4

Psum
| 170 Acc

Buffer

e e

US 2023/0259758 A1

Aug. 17, 2023 Sheet 1 of 12

Patent Application Publication

I 'Ol

Jayng
NV OLT

(41)
sdejy

2.nlead
1nduj

[e90|D
0cT

_

_

_

_

_

_

_ wojsuel | ayoe)
— > '

eV 3d 091 v_- Xe 06T ALl OPT

wnsd " Bl

_

_

_

_

_

_

_

H SIYSIIM
ayoe)d WYSIvoMm OET -

s1osual Y19 [q0|D OT T

US 2023/0259758 A1

Aug. 17, 2023 Sheet 2 of 12

Patent Application Publication

¢ ‘Ol

TA 8341 Jappy

25,

TA BNjEA w T4 %epu

H
(TA anjea “TA x3pu)
TAWBI9M

§
]
¥
]
i
i
§
i
i
i

134nq 307 0L
A
—
(AE]
7 3941 JBppyY L
WHI 0¥
Z anjep o e
| |
{z onjen ‘g M@@E
[TECS (N
N
T 8841 Joppy
* A1|J
1 %ﬁ?w Nﬂmwmmw (191sn> 3d)
{ i i { moy 0T¢
{1 aniea ‘T xopul) ' i 1 i 1
T439M 1seopeouq sy3iem J
\ M uwn|oj oee

Aeuse 3d 00¢
3d Ot7C

US 2023/0259758 A1

Aug. 17, 2023 Sheet 3 of 12

Patent Application Publication

€ Ol

.

L

o

|

.

.
.

i

o
o
o
.

.

-
.

.

1
.
x

|
o

;«

.

‘g\y

|
A

i
o

i
\

o

.
.

n
o

L
o

N

.

)

0

"

-

. N

-

.
i
.
i

i

- - -

= = =

N

|

"i

L
;a

.

.
|
.

|

o
i

.

L

.
.

o
i
i
.

.

.
|

i

i

.

i

.
b
.

.
.

4

10153 oce 0]43

Patent Application Publication

T

412

410

Aug. 17, 2023 Sheet 4 of 12

L

422
A

o
o

L

420

o

e
i
el

US 2023/0259758 A1

FIG. 4A

Patent Application Publication

> Y1 Psum

Y1 Psum

Aug. 17, 2023 Sheet S of 12

NOC & Adder

US 2023/0259758 A1

FIG. 4B

US 2023/0259758 A1

Aug. 17, 2023 Sheet 6 of 12

Patent Application Publication

e

Vs ‘Old

o

S

US 2023/0259758 A1

2023 Sheet 7 of 12

H

Aug. 17

tion

1ca

Patent Application Publ

s ‘Oi4

18ppY B HoN

s s

wnsd - @@

V9 "Old

US 2023/0259758 A1

Wi

Aug. 17, 2023 Sheet 8 of 12

" " -, - .- " oo W - - "~ .

i
i
i
i
i
i
i
i
!
i
|
i
i
i
i
i
i
i
i
i
i
i
i

B N I N —
B T ——

TA~T =3 TA~T =34 TA~T =% TA~T =) ThaT =Y TA~T =3 TA-T =X TA~T =4 TA~T =)

8 6=0 10} 8 8=0 404 3 L=0 404 8 9=0 104 8 §=0 104 8 =040} B €=0 10} B =240} 8 1=0 10§
(anjea Mapul} (onjea Maput) (Bnea depuwy) (enjea xapul) (snjea seput) (anjea xepul) (onjea xaput) (enjea weput) (anjea Yepul)
WHBM L TA WBPM L TA JUSIBM L TA WBBM L TA WBIOM L TA WBPM L TA WIOM L TA WBIBM L TA WBPIM 4 TA

Patent Application Publication

g9 "Ol4

US 2023/0259758 A1

o e Wt

Aug. 17, 2023 Sheet 9 of 12

i i T T i i !
i i ! I i | 1
i I [1 i i 1
1 i i I i i 1
i i i 1 i | 1
I i { 1 i i 1
I f i I I i |
[I { { i 1 |
i i i I i | |
l I 1 t i i 1
| i I I { i 1
i f i 1 i i |
! i i { i i 1
| i i I i [|
{ i i | i i]
| i i I i [!
{ i i f t i 1
I i i ! i { 1
i i 1 1 i i |
i i i I I I]
i i i I i | |
i f i | i i]

1
I
I
|
!
|
{
I
!
I
1
I
I
1
I
!
I
I
I
I
I
I
!

i i i I i I 1 |

TA~T =) TA-T =) TAT =3 TA~T =3 TAT =) TAT =¥ TA~T =4 TA~T =3 TA~T =¥
8 1=D 0} '8 1=3 10§ g 1=D 10} g 1=0 404 8 1=0 404 8 1=0 40§ B 1=0 404 B 1= 104 8 1=0 10}
(anjen opur} (onjea apul) (onjea wepul) (snjea epul) (anjea ‘xepul] (onjea ‘xopul} (onjea wopui}l (enjea xapul) (enjea ‘xepuil)
o (t'a) (02) t49 (t'n 1) {z'o) (t'o) (o'
[Buiay £XE¢ [BUIDY EXE jauley gxg EUEES X33 [Juaay £x¢ [euIay £XE jouaay exg [BuIay £X¢ [puIay £x¢

WIBM L TA WBBMLTA WBeMLTA WIOMLTA WEBM L TA WIBMLTA WIBM.TA WESM L TA BIOM . TA

Patent Application Publication

Patent Application Publication Aug. 17, 2023 Sheet 10 of 12 US 2023/0259758 Al

Weight 1~Y1

{index, value)
Weight 1~Y1
{index, value)

N e
0 . i i
", o e ¥ i el
N Sl

o . e

ol
—— D
iz

iFM
e

Ao

B
el
L

L e
o -

sty

i
BRI

i

.
L
e

-

IFM
IFM

R

L

Weight 1~Y1
{index, value)

>
=4
1%}
5 2
e
&5
v 2
e
£
[3 I O
o O
|
™~

750 Coarse Sparsity -
Granularity ‘

Patent Application Publication Aug. 17, 2023 Sheet 11 of 12 US 2023/0259758 Al

800

810

receiving a first input feature map (IFM) and one or more first filters at a first layer of a
convolutional neural network (CNN) for convolution using a processing element (PE)
array, wherein each PE in the PE array comprises a number (Y1) of multipliers, and the
PE array is arranged in a number (Y2) of rows and a number (X) of columns

'

determining a native tensor shape based on the first IFM and the one or more first
filters, wherein the native tensor shape comprises a first outer dimension, an inner
dimension, and a second outer dimension, wherein the native tensor shape maps the
first IFM and the one or more first filters into the PE array

l 830

receiving a second IFM and one or more second filters at a second layer of the CNN for
convolution using the PE array

reshaping the native tensor shape based on the second IFM and the one or more
second filters, wherein the reshaping comprises scaling up the inner dimension and
scaling down one of the first outer dimension and the second outer dimension, the
scaling up and scaling down are by a factor of F

'

feeding the one or more second filters and the second IFM into the PE array for 850
convolution according to the reshaped native tensor, wherein: in response to the first
outer dimension being scaled down, the convolution comprises: aggregating an output
from a same row of PE for F rounds to obtain partial sums, and in response to the
second outer dimension being scaled down, the convolution comprises: aggregating
outputs from every F rows of PEs to obtain partial sums

¢ 860
J

820

AU W

840

AU

obtaining an output tensor of the convolution at the second layer of the CNN by
aggregating a plurality of the partial sums

FIG. 8

Patent Application Publication Aug. 17, 2023 Sheet 12 of 12 US 2023/0259758 Al

Internet
R A Y
|
| Processor(s) Network l
: OCSO 4 Interface(s) :
| — 910 |
| |
| |
| |
| I I l
| |
| Bus [
| 902 :
| I I |
| |
| |
| |
: Main Storage :
| Memory Device l
I 907 909 :
|
| |

FIG. 9

US 2023/0259758 Al

ADAPTIVE TENSOR COMPUTE KERNEL
FOR SPARSE NEURAL NETWORK

TECHNICAL FIELD

[0001] The disclosure generally relates to improving
neural network computing efficiency, in particular, to dyna-
mically adjusting native tensor dimension and operation
mode to adapt to different input tensor shapes and opera-
tions for sparse neural networks.

BACKGROUND

[0002] Almost all deep learning PE (processing element)
arrays are fixed in native tensor dimensions and operation
mode, and typically rely on compiler to use different nested
loop mapping approach to cope with different tensor shapes
(e.g., input feature maps or filters) and operations. It is
obviously inefficient to use the PE array to perform compu-
tations for tensor shapes or operations that are not compati-
ble with the native tensor dimensions or operation modes of
the PE array. This incompatibility is worsened for sparse
neural networks with sparsity features as the inflexible
native tensor shapes and modes of the PE array cannot effi-
ciently represent and process tensors with a large number of
ZE108.

SUMMARY

[0003] Various embodiments of the present specification
may include systems, methods, and non-transitory compu-
ter-readable media for using adaptive tensor compute ker-
nels in neural network computations.

[0004] According to one aspect, the method for using
adaptive tensor compute kernels in neural network compu-
tations may include: receiving a first input feature map
(IFM) and one or more first filters at a first layer of a con-
volutional neural network (CNN) for convolution using a
processing element (PE) array, wherein each PE in the PE
array comprises a number (Y1) of multipliers, and the PE
array is arranged in a number (Y2) of rows and a number (X)
of columns; determining a native tensor shape based on the
first [FM and the one or more first filters, wherein the native
tensor shape comprises a first outer dimension, an inner
dimension, and a second outer dimension, wherein the
native tensor shape maps the first [FM and the one or more
first filters into the PE array; receiving a second IFM and
one or more second filters at a second layer of the CNN
for convolution using the PE array; reshaping the native ten-
sor shape based on the second IFM and the one or more
second filters, wherein the reshaping comprises scaling up
the inner dimension and scaling down one of the first outer
dimension and the second outer dimension, the scaling up
and scaling down are by a factor of F; feeding the one or
more second filters and the second IFM into the PE array
for convolution according to the reshaped native tensor,
wherein: in response to the first outer dimension being
scaled down, the convolution comprises: aggregating an
output from a same row of PE for F rounds to obtain partial
sums, and in response to the second outer dimension being
scaled down, the convolution comprises: aggregating out-
puts from every F rows of PEs to obtain partial sums; and
obtaining an output tensor of the convolution at the second
layer of the CNN by aggregating a plurality of the partial

Aug. 17, 2023

sums, wherein Y1, Y2, X, and F are all integers greater
than one.

[0005] In some embodiments, the second layer of the
CNN is after the first layer of the CNN, and the second
[FM comprises more input channels than the first IFM, and
a lower resolution than the first IFM.

[0006] In some embodiments, each of the one or more sec-
ond filters comprises a plurality of channels of 2-dimen-
sional (2D) kernels, each 2D kernel having a dimension of
one by one (1x1) or three by three (3x3).

[0007] In some embodiments, the feeding of the one or
more second filters into the PE array according to the
reshaped native tensor comprises: transforming the one or
more second filters into a matrix according to the first
outer dimension and the inner dimension of the reshaped
native tensor, wherein in response to each 2D kernel in the
one or more second filters having the dimension of one by
one, each row of the matrix comprises weights from differ-
ent input channels of the one or more second filters; and
distributing weights in each row of the matrix to different
columns of PEs so that the plurality of input channels are
processed simultaneously at one time.

[0008] In some embodiments, the feeding of the one or
more second filters into the PE array according to the
reshaped native tensor comprises: transforming the one or
more second filters into a matrix according to the first
outer dimension and the inner dimension of the reshaped
native tensor, wherein in response to each 2D kernel in the
one or more second filters having the dimension of three by
three and comprising nine weights, the nine weights are
placed in a same row of the matrix; and distributing the
nine weights from the same row of the matrix to different
columns of PEs so that the weights from the same channel
are processed simultaneously at one time.

[0009] In some embodiments, the feeding of the IFM into
the PE array according to the reshaped native tensor com-
prises: transforming the IFM into a matrix according to with
the inner dimension and the second outer dimension of the
reshaped native tensor; and feeding input values of the [FM
corresponding to a column of the matrix into buffers of a
row of PEs.

[0010] In some embodiments, the method may further
include dividing channels of the one or more filters into a
plurality of channel groups, each channel group comprising
a fixed number of channels that is an integer greater than
one; and pruning each of the one or more filters so that
only a few channels in each of the plurality of channel
groups comprises non-zero input values and other channels
in the each channel group comprise all zeros. After pruning,
each of the plurality of channel groups contains a same per-
centage of weights as non-zero weights..

[0011] In some embodiments, the method may further
include determining a depth of a buffer associated with
each PE in the PE array; in response to the depth of the
buffer being greater than the fixed number, configuring the
buffer as a private memory for each PE; and in response to
the depth of the buffer being smaller than the fixed number,
combining the buffer of the PE and one or more buffers of
neighboring PEs as a shared memory.

[0012] In some embodiments, the private memory of each
PE stores input values that are retrievable by the number
(Y1) of multipliers within the PE.

US 2023/0259758 Al

[0013] In some embodiments, the shared memory stores
input values that are retrievable by the number (Y1) of mul-
tipliers within the PE and the one or more neighboring PEs.
[0014] In some embodiments, each row of PEs are
coupled with a number (Y1) of adder trees respective corre-
sponding to the number (Y1) of multipliers within each PE,
wherein each multiplier within each PE sends a multiplica-
tion output to a corresponding adder tree for aggregation.
[0015] In some embodiments, each of the one or more sec-
ond filters comprises a plurality of non-zero weights, and the
feeding of the one or more second filters into the PE array
for convolution comprises: feeding each non-zero weight
into a multiplier of a corresponding PE as an index-value
pair comprising the non-zero weight and a corresponding
index; and the convolution comprises: retrieving an input
value from a buffer of the corresponding PE according to
the index; and sending the retrieved value and the non-
zero weight into the multiplier to obtain an output; and send-
ing the output to a corresponding adder tree for aggregation
with outputs generated by other multipliers of other PEs in a
same row as the corresponding PE.

[0016] In some embodiments, the number (Y1) of multi-
pliers within each PE process data in parallel, and PEs in the
PE array process data in parallel.

[0017] According to yet another aspect, a system may
comprise one or more processors and one or more non-tran-
sitory computer-readable memories coupled to the one or
more processors and configured with instructions executa-
ble by the one or more processors to cause the system to
perform any of the methods described herein.

[0018] According to still another aspect, a non-transitory
computer-readable storage medium may be configured with
instructions executable by one or more processors to cause
the one or more processors to perform any of the methods
described herein.

[0019] These and other features of the systems, methods,
and non-transitory computer-readable media disclosed
herein, as well as the methods of operation and functions
of the related elements of structure and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification,
wherein like reference numerals designate corresponding
parts in the various figures. It is to be expressly understood,
however, that the drawings are for purposes of illustration
and description only and are not intended as a definition of
the limits of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 illustrates an exemplary system diagram for
processing neural network computations in a PE array in
accordance with various embodiments.

[0021] FIG. 2 illustrates an exemplary architectural dia-
gram of a PE array in accordance with various
embodiments.

[0022] FIG. 3 illustrates an exemplary neural network
computation in a PE array using native tensor shapes in
accordance with various embodiments.

[0023] FIG. 4A illustrates an exemplary neural network
computation in a PE array using adaptive tensor shapes in
accordance with various embodiments.

Aug. 17, 2023

[0024] FIG. 4B illustrates an exemplary PE array with
inter-cluster adders for neural network computations using
adaptive tensor shapes in accordance with various
embodiments.

[0025] FIG. 5A illustrates another exemplary neural net-
work computation in a PE array using adaptive tensor
shapes in accordance with various embodiments.

[0026] FIG. SB illustrates another exemplary PE array
with intra-cluster adders for neural network computations
using adaptive tensor shapes in accordance with various
embodiments.

[0027] FIG. 6A illustrates an exemplary neural network
computation with a 1x1 tensor operation mode in accor-
dance with various embodiments.

[0028] FIG. 6B illustrates an exemplary neural network
computation with a 3x3 tensor operation mode in accor-
dance with various embodiments.

[0029] FIG. 7 illustrates an example method for neural
network computations using adaptive tensor shapes and a
3x3 tensor operation mode in a PE array in accordance
with various embodiments.

[0030] FIG. 8 illustrates an example method for neural
network computations using adaptive tensor shapes in
accordance with various embodiments.

[0031] FIG. 9 illustrates an example computer system in
which any of the embodiments described herein may be
implemented.

DETAILED DESCRIPTION

[0032] Embodiments described herein provide methods,
systems, apparatus for neural network computations in a
PE array using adaptive tensor shapes and operation
modes. In the following description, adaptive tensor com-
pute kernels are described as having multiple native tensor
dimensions and operation modes to handle different shapes
of input feature maps (IMFs) and weight tensors (e.g., fil-
ters). According to input and output tensor shapes and
operation modes, the dimensions and operation modes of
the adaptive tensor compute kernels (also referred to as
adaptive native tensors) may be adjusted dynamically to
fully utilize the underlying hardware resource of the PE
array for parallel processing.

[0033] These adaptive tensor compute kernels address
technical challenges in neural network computation (identi-
fied in the Background section) by providing three technical
solutions. First, the adaptive tensor compute kernels may
adjust shapes according to the different shapes of input/
weight tensors. The different shapes of input/weight tensors
may not only exist across different neural networks, but also
within the same neural network pipeline. For example, when
processing first few layers in a neural network, the tensors
are usually configured as high resolution (more height and
width) but fewer input & output channels; when processing
last few layers in the neural network, the tensors may be
configured as low resolution (fewer height and width) but
more input & output channels. This may be because the
first few layers of the neural network more focus on feature
extraction from the input feature maps, whereas the last few
layers of the neural network more focus on learning the
underlying correlations among the extracted features.
[0034] Second, the adaptive tensor compute kernels may
support two different tensor operation modes: 1x1 tensor
operation mode and 3x3 tensor operation mode. In these

US 2023/0259758 Al

neural network layers where the matrix multiplication
involves 1x1 kernel convolution (e.g., each kernel in a
weight tensor has a 1x1 shape) may be mapped to the 1x1
tensor operation mode, and any other convolutions (3x3,
5%5, 77, etc.) may be mapped to the 3x3 tensor operation
mode. These different tensor operation modes may be dyna-
mically determined during run-time based on the weight
tensor shapes.

[0035] Third, the underlying PE array may configure each
PE-internal buffer (e.g., a register file) differently to support
different compression ratios and sparsity granularities of
sparse neural networks. If a sparse neural network is pruned
with a finer granularity (e.g., selecting one or more non-zero
input channels from a small number of input channels, the
small number being smaller than a threshold), the register
file inside each PE may be configured as a private memory
(e.g., solely used by the corresponding PE). If the sparse
neural network is pruned with a coarse granularity (e.g.,
selecting one or more non-zero input channels from a large
number of input channels, the large number being greater
than a threshold), multiple register files in neighboring PEs
may be configured as a multi-port memory shared by the
neighboring PEs.

[0036] In the following description, specific, non-limiting
embodiments of the present invention will be described with
reference to the drawings. Particular features and aspects of
any embodiment disclosed herein may be used and/or com-
bined with particular features and aspects of any other
embodiment disclosed herein. It should also be understood
that such embodiments are by way of example and are
merely illustrative of a small number of embodiments
within the scope of the present invention. Various changes
and modifications obvious to one skilled in the art to which
the present invention pertains are deemed to be within the
spirit, scope, and contemplation of the present invention as
further defined in the appended claims.

[0037] FIG. 1 illustrates an exemplary system diagram for
processing neural network computations in a PE array in
accordance with various embodiments. The diagram in
FIG. 1 illustrates a typical neural network computation
workflow executed in a pipeline with a PE array. The embo-
diments described in this disclosure may be implemented as
a part of the neural network computations in FIG. 1 or other
suitable environments.

[0038] At a given (e.g., convolution) layer within a neural
network (e.g., a CNN), one or more input feature maps
(IFMs) 120 may be obtained from an input source (e.g.,
such as an input image) or a previous layer (e.g., such as a
tensor output from the previous layer), and one or more
weight tensors 110 may be used to convolve through the
[FMs to extract various features. The convolution process
may be carried out in parallel in an array of processing ele-
ments (PE), referred to as a PE array 160. Each PE may refer
to a processor with processing capability and storage capa-
city (e.g., buffer or cache). The PEs may be arranged in a
specific way in the PE array with interconnecting wires, and
may not be dynamically re-arranged at runtime. The PE
array may be re-used and involved in computations at dif-
ferent layers of a neural network or across different neural
networks and different use cases. The incompatibility
between the fixed internal PE arrangement in the PE array
and potentially endless varieties of tensor shapes (in the
[FMs and/or weight tensors) usually lead to inefficient
resource utilization and sub-optimal parallel processing.

Aug. 17, 2023

[0039] Referring to FIG. 1, in some embodiments, the
IFMs 120 may be stored in an IFM cache 140 and the weight
tensors 110 may be stored in a weight cache 130 for the
consumption of the PE array 160. The PE array 160 may
include a matrix (e.g., X by Y) of PEs, and each PE may
include a plurality of multipliers for parallel processing. In
some embodiments, each IFM from the IFM cache 140 may
go through a matrix transformation layer 150 to facilitate the
computation in the PE array 160. The matrix transformation
may include a Toeplitz matrix transformation to reshape the
I[FM from an original HWC format (H refers to height, W
refers to weight, and C refers to channel) to an RSC format
(R refers to row, S refers to column, and C refers to channel)
by using im2col tools, where the RSC format is determined
based on the weight tensor shape. Here, the transformation
is to duplicate and arrange the input values in the IFM to
form a transformed IFM, so that the matrix multiplication
between the transformed IFM and the weight tensors may
be executed in the PE array 160 in a parallel manner with
minimum dependency among the PEs in the PE array 160.
In some embodiments, each round of parallel convolution in
the PE array 160 may generate a plurality of partial sums,
which may be aggregated in an accumulation buffer 170 to
generate one or more output values. The output values may
eventually be a part of an output tensor generated by the
current layer.

[0040] FIG. 2 illustrates an exemplary architectural dia-
gram of a PE array in accordance with various embodi-
ments. The arrangement of the PEs in the PE array in FIG.
2 is for illustrative purposes, and may be implemented in
other ways depending on the use case.

[0041] As shown on the left portion of FIG. 2, the PE array
200 may include a matrix of PEs. As shown on the right
portion of FIG. 2, each PE 240 may include a plurality of
multipliers (MUL gates). The multipliers within each PE
240 may work in parallel, and the PEs within the PE array
220 may work in parallel. For ease of reference, the follow-
ing description denotes the number of columns 220 of PEs
in the PE array 200 as X, the number of rows 210 of PEs in
the PE array 200 as Y2, and the number of multipliers within
each PE 240 as Y1. Each row of PEs 210 may be referred to
as a PE cluster, and each PE cluster may be coupled to Y1
Adder Trees 230 for aggregating the partial sums generated
by the multipliers within the PE cluster. That is, the first
multiplier in each PE 240 within the PE cluster are coupled
to the first Adder Tree 230 for aggregation, and the second
multiplier in each PE 240 within the PE cluster are coupled
to the second Adder Tree 230 for aggregation, and so on.
The aggregation results from the Adder Trees 230 across
all PE clusters (total Y1xY2 Adder Trees) may be fed into
an Adder 250 for aggregation. The adder 250 may refer to a
digital circuit performing addition of numbers that is part of
the Network-on-Chip (NoC) subsystem.

[0042] In some embodiments, the PE array 200 may
broadcast the weights to the PEs. For sparse neural net-
works, a large portion of the weights are zeros and thus the
weights being broadcasted to the PEs are all non-zero
weights. Since the non-zero weights may be from any loca-
tion within the weight tensors, each weight being broad-
casted may include not only the weight value but also an
index indicating the location information of the weight
value, ie., in index-value pairs such as (index, weight
value). Based on the index, each PE 240 may retrieve a cor-
responding input value from the IFM to perform multiplica-

US 2023/0259758 Al

tion with the weight value. The multiplication result may be
fed into a corresponding Adder Tree. As shown in FIG. 1,
the first multiplier MUL1 may receive a weight in the form
of (index1, valuel), retrieve an input value IFM1 based on
index1 from an IBUF 260 (storing the IFM), perform the
multiplication based on the input value IFM1 and valuel,
and send the result to Adder Tree 1 (e.g., the first Adder
Tree of the Y1 Adder Trees 230 for the PE cluster in
which the PE is located) for aggregation.

[0043] FIG. 3 illustrates an exemplary neural network
computation in a PE array using native tensor shapes in
accordance with various embodiments. The illustrative
computation in FIG. 3 involves a matrix multiplication
between a transformed weight tensor A 310 and a trans-
formed [FM tensor B 320, which generates an output feature
map (OFM) tensor C 330. The matrix multiplication uses
the native tensor shape corresponding to the PE array 340
with a dimension of X and Y.

[0044] In some embodiments, the transformed weight ten-
sor A 310 may be obtained by aggregating all weight tensors
in an RSC format (three-dimension) into a two-dimensional
matrix denoted as m ' * k ' (e.g., the weights from different
channels are rearranged into the same channel), where m' is
the number of output channels determined by the number of
weight tensors (customarily denoted as K), and k' is a pro-
duct of R, S, and C dimensions of each weight tensor (R and
S refer to the dimension of each kernel in the weigh tensors,
and C refers to the number of input channels).

[0045] In some embodiments, the transformed IFM tensor
B 320 may be obtained by aggregating all [FMs in HWC
format (three-dimension) based on the RSC format into a
two-dimensional matrix denoted as k ' * n ‘, where k ' 18
still the product of R, S, and C dimensions of each weight
tensor, and n' is the product of H and W dimensions of the
IFMs (H refers to the height and W refers to the width of the
IFM). The matrix multiplication of matrix m " * k ' (weight
tensor A 310) and matrix k " * n ' (IFM B 320) may produce
the OFM tensor C 330 as a matrix of m ' *n .

[0046] With the above transformations, the transformed
weight tensor A 310 and the transformed [FM tensor B
320 may be mapped to the PEs in the PE array 340 for par-
allel processing. Assuming the PE array 340 includes a Y2
rows of PEs, X columns of PEs, and each PE includes Y1
multipliers, the tensors A and B may be mapped to the PE
array 340 as following: the inner dimension k ’ of tensor A
310 and tensor B 320 may be mapped to the X (row) dimen-
sion of the PE array 340, i.e, X=k '=R * § * C, and the
multiplication of the outer dimensions m * * n ' of the tensors
A and B may be mapped to the Y (column) dimension of the
PE array 340. Since each column of PE includes Y1 * Y2
multipliers, the above mapping means Y= m"™*n'=K*H*W
multiplications will be processed by the Y1 * Y2 multipliers
in parallel. For example, within each PE, one multiplier han-
dles weights corresponding to the same output channel (e.g.,
weights from the same position across all weight tensors),
ie., YI=K=m’, and each column of PEs handles H*W
weights in parallel, i.e., Y2=H*W=n'".

[0047] In the above description, the native tensor shape m
"*k™*n’' is fixed in order to map workloads (e.g., pairs of
weights and corresponding input values for multiplications)
to the PEs within the PE array 340, where X=k', Y1*Y2=m
"*n'. It means, the native tensor shape is determined based
on the layout of the PEs within the PE array. Once the layout
of the PE array is fixed, the native tensor shape is fixed. All

Aug. 17, 2023

the incoming tensors (e.g., [FM and filters/weight tensors)
have to be transformed according to the fixed native tensor
shape. However, the incoming tensors in practical applica-
tions may vary in shapes, and the optimal parallelism is
achievable when the transformation is based on the shapes
of incoming tensors rather than the PE layout in the PE array
340. In many cases, even though the transformation using
the fixed native tensor shape determined based on the PE
layout may map the workloads to the PEs, it may also
cause some serialized dependency among certain PEs (e.g.,
one PE has to wait for another PE’s output). The following
descriptions describe transformations with adaptive native
tensor shapes that are determined based on the dimensions
of the IFM and filters and at the same time map the work-
loads to the PEs to maximize parallelism.

[0048] FIG. 4A illustrates an exemplary neural network
computation in a PE array using adaptive tensor shapes in
accordance with various embodiments. As described above
(in FIG. 3), if an input tensor (IFM) and a weight tensor can
be transformed into matrix A 410 and matrix B 420 using
the fixed native tensor shape m'*k'*n’ (i.e., covering the
matrices A and B), the transformed tensors may be distrib-
uted to the corresponding PE array. However, in practical
applications, the [FMs and weight tensors for multiplication
(e.g., at different layers of a CNN, tensors that have gone
through different levels of sparsification) may have various
shapes that may not be perfectly mapped to the PE array. A
forced transformation of the tensors using the fixed native
tensor shape may leave some PEs idle or cause sequential
dependencies during the calculation. For instance, within
the same convolution neural network (CNN), the tensors in
the first few CNN layers may have a high resolution (e.g.,
H*W=64) with a fewer number of input channels (C=16),
and the tensors in the last few CNN layers may have a low
resolution (e.g., H¥*W=16) with a greater number of input
channels (C=64). Here, the “fewer” and “greater” is deter-
mined based on a threshold. It means that even the convolu-
tion process within the same CNN may experience tensors
of different shapes.

[0049] In some embodiments, the native tensor shape may
be reshaped dynamically to accommodate the changing
shapes of the input tensors and weight tensors. For example,
if the input tensors change from high resolution (more pix-
els) with fewer input channels (e.g., in the first few CNN
layers) to low-resolution with more input channels (e.g., in
the last few CNN layers), the native tensor shape may be
reshaped accordingly. In some embodiments, the native ten-
sor shape has three dimensions, denoted as first outer_di-
mension, inner_dimension, and second outer dimension.
The first two dimensions (first_outer dimension and inner -
dimension) may be used to transform the weight tensors into
a matrix, and the last two dimensions (inner_dimension and
second_outer dimension) may be used to transform the [FM
into a matrix. The transformed matrices may provide a
guideline on how the weights and input values are mapped
to the PE array (e.g., how to distribute the weights and input
values to reach the optimal parallelism).

[0050] In some embodiments, assuming previous tensors
used a native tensor shape m™*k'*n’ for mapping and trans-
forming, and the incoming tensors have a lower resolution
with more input channels in comparison to the previous ten-
sors, the three dimensions of the native tensor shape may be
reshaped to m"™*(P*k")*(n'/F), where F is an integer greater
than one and represents a scaling factor, and the first two

US 2023/0259758 Al

dimensions (i.e., the first outer dimension m’ and the inner
dimension F*k') represent the weight tensor matrix 420 and
the next two dimensions (i.e., the inner dimension F*k’ and
the second outer dimension n'/F) represent the IFM tensor
matrix 422 for the convolution. That is, the native tensor
shape may scale up its inner dimension by the factor of F,
and scale down the second outer dimension (corresponding
to the [FM tensor matrix) by the factor of F. This way of
reshaping may be referred to as k'&n’ reshaping in the fol-
lowing description. In some embodiments, F may be one of
2.4, 8, etc.

[0051] In some embodiments, the inner dimension F*k’ of
the reshaped tensor shape is shared by the weight tensor
matrix 420 and the I[FM tensor matrix 422 (e.g., they have
the same inner dimension), and corresponds to the number
of columns of PEs in the PE array; the first outer dimension
(e.g., the outer dimension m' of the weight tensor matrix
420) corresponds to the number of multipliers within each
PE; and the second outer dimension (e.g., the outer dimen-
sion n'/F of the [FM tensor matrix 422) corresponds to the
number of rows of PEs in the PE array. Here, the “corre-
sponds” refers to a mapping relationship that directs how
the weights and input values in the transformed tensor
matrices are distributed into the PE array. For example, the
weights in each outer dimension (e.g., each column) of the
weight tensor matrix 420 may be distributed to the multi-
pliers within a single PE for parallel processing; and the
input values in each outer dimension (e.g., each column)
of the [FM tensor matrix 422 may be distributed across the
rows of PEs in the PE array.

[0052] As shown in FIG. 4A, with this reshaped native
tensor shape, the weight tensor matrix 410 may be reshaped
by scaling up its inner dimension by the factor of F and
keeping its outer dimension m' the same, thereby forming
anew weight tensor matrix 420. That is, the inner dimension
of the weight tensor matrix changes from k'=R*S*C (e.g.,
matrix Ain410)to F *k'=R * S* (F * C) (e.g., matrix A in
420), thus the new matrix 420 may support more input chan-
nels (from C to F*C). Similarly, the IFM matrix 412 may
scale down its outer dimension by the factor of F, and scale
up its inner dimension the same way as the scaled inner
dimension of the weight tensor matrix 420, thereby forming
a new IFM tensor matrix 422. That is, the inner dimension
of the IFM tensor matrix changes from k'=R*S*C (e.g.,
matrix B in 412) to F *k'=R * S * (F * C) (e.g., matrix
B in 422), and the outer dimension of the IFM tensor matrix
changes fromn' (e.g., matrix B in 412) ton'/F (e.g., matrix B
in 422), thus the new matrix 422 may support less pixels.
Therefore, the new matrix 420 and 422 are more suitable for
representing the tensors from the last few CNN layers that
have a low resolution with more input channels. In some
embodiments, the “first few CNN layers” and the “last few
CNN layers” may refer to a first number of CNN layers from
the beginning of the CNN structure and a second number of
CNN layers from the end of the CNN structure, respectively.
[0053] As an example, the tensors from the first new CNN
layers may have a high resolution H¥*W=64 with a fewer
number of input channels C=16. Here, the “fewer number”
refers to a number that is smaller than a threshold, and the
threshold may be determined by a compiler configured
according to the underlying PE array. The native tensor
shape for these tensors from the first few CNN layers may
have a shape of m'=K=16, k'=1*1*16, and n'=64, assuming
the convolution is based on 1*1 kernels. When the convolu-

Aug. 17, 2023

tion proceeds to the last few CNN layers, the tensors may
have a low resolution H¥*W=16 but with more input chan-
nels C=064 (e.g., greater than the threshold), the native tensor
shape may be reshaped as m'=K=16, k'=1*1*64, and n'=16.
[0054] After transforming the tensors using the above-
described k'&n’ reshaping, the transformed tensor matrices
420 and 422 may be distributed into the PE array for parallel
processing. FIG. 4B illustrates an exemplary PE array with
inter-cluster adders for neural network computations using k
'&n’ reshaping-based adaptive tensor shapes in accordance
with various embodiments. The parallel processing scheme
using the PE array illustrated in FIG. 4B may correspond to
the k'&n’ reshaping of the native tensor described in FIG.
4A. For consistency, it is still assumed that the PE array has
Y2 rows and X columns of PEs, and each PE has Y1
multipliers.

[0055] With the k'&n' reshaping, the inner dimension of
the weight tensor matrix and the IFM tensor matrix is scaled
up by F times, and the outer dimension of the IFM tensor
matrix is scaled down by F times. The distribution of the
weights and input values into the PE array may have the
weights from the same row of the weight tensor matrix
(i.e., along the scaled up inner dimension/row) and the
input values from the same column of the [FM tensor matrix
(i.e., also along the scaled up inner dimension/column)
assigned to the PEs by rows. It means, these weight and
input value pairs may be distributed across F rows of PEs.
Therefore, the PE array may have inter-cluster (i.e., between
PE clusters or rows) Adders 400 to aggregate the outputs
generated by each row of PEs in order to obtain partial
sums of the convolution process. Each inter-cluster Adder
400 may aggregate the outputs from the Y1 adder trees of F
rows of PEs as Y1 partial sums. These partial sums may then
be aggregated to construct the output tensor as a result of the
convolution. During this process, the total number of partial
sum is Y1 *(Y2/F), which means the output channel number
(e.g., the number of channels of the output tensor of the
convolution process) is Y1 and the output pixel number is
Y2/F=H*W/F.

[0056] FIG. 5A illustrates another exemplary neural net-
work computation in a PE array using adaptive tensor
shapes in accordance with various embodiments. In compar-
ison to the above-described k'&n’ reshaping, the native ten-
sor shape may also be dynamically reshaped based on the
degree of sparsity of the weight tensors. In many practical
applications, the weight tensors in the convolution process
may be pruned or sparsified to improve computation effi-
ciency and reduce the footprint of the neural network. Care-
fully pruned weight tensors may improve the convolution
speed without sacrificing feature extraction accuracy by
introducing zero-valued weights and thus reducing the
total number of computations (e.g., zero weights are
skipped). In some embodiments, pruning a weight tensor
may include dividing channels of the weight tensor (also
called filter) into a plurality of channel groups, with all
channel groups having a same number of channels; and
then only keeping a few channels of each channel group as
non-zero input channels (e.g., with non-zero weights) and
zero-out all other channels within that channel group (e.g.,
with all zero weights). After the pruning process, each of the
channel groups includes the same percentage of non-zero
weights. In some embodiments, the size of the channel
groups (e.g., the number of channels within each channel
group) for pruning may be determined based on the number

US 2023/0259758 Al

of weight tensors (filters), i.e., the number of output chan-
nels. In general, the weight tensor pruning may be categor-
ized into two levels: a high weight sparsity in which the
number of output channels (e.g., the number of weight ten-
sors) is greater than a first threshold and the number of non-
zero input channels is less than a second threshold; and a
low weight sparsity in which the number of output channels
(e.g., the number of weight tensors) is less than the first
threshold and the number of non-zero input channels is
greater than the second threshold. For example, the native
tensor shape for a high weight sparsity (16X) case may be m
'=K=16 (e.g., 16 weight tensors or filters), k'=3*3*4 (e.g.,
each kernel is 3*3, and the number of non-zero channels
within one filter is 4), and n'=64; while the native tensor
shape for a low weight sparsity (4X) may be m'=K=4
(e.g., 4 weight tensors or filters), k'=3*3*16 (e.g., each ker-
nel is 3*3, and the number of non-zero channels within one
filter is 16), and n'=64.

[0057] In some embodiments, when the weight sparsity
changes from high to low, the native tensor shape, denoted
as first outer dimension*inner dimension*second_outer -
dimension, may be reshaped by scaling up its inner dimen-
sion (shared by the weight tensor matrix and the IFM tensor
matrix) by the factor of F, and scaling down the first outer
dimension (corresponding to the weight tensor matrix) by
the factor of F. As shown in FIG. 5A, the original native
tensor shape m*k"*n’ becomes (m'/F)*(F*k)*n’, in which
the weight tensor matrix 510 changes from m'*k’ to the
reshaped tensor matrix 520 with dimensions (m'/F)*(F*k"),
and the [FM tensor matrix 512 changes from k'*n’ to the
reshaped [FM matrix 522 with dimensions (F*k")*n'. This
way of reshaping may be referred to as k'&m’ reshaping in
the following description. The scaled-up inner dimension by
the factor of F indicates a support of more input channels
(from C to F*C), and the scaled-down outer dimension of
the weight tensor matrix indicate a fewer output channels
(from K to K/F).

[0058] After transforming the tensors using the above-
described k'&m’ reshaping, the transformed tensor matrices
520 and 522 may be distributed into the PE array for parallel
processing. FIG. 5B illustrates another exemplary PE array
with inter-cluster adders for neural network computations
using k'&m’ reshaping-based adaptive tensor shapes in
accordance with various embodiments. The parallel proces-
sing scheme using the PE array illustrated in FIG. 5B may
correspond to k'&m’ reshaping of the native tensor
described in FIG. SA.

[0059] For consistency, it is still assumed that the PE array
has Y2 rows and X columns of PEs, and each PE has Y1
multipliers. In addition, the weight and IFM matrices 520
and 522 have a same inner dimension corresponding to the
number (X) of columns of PEs in the PE array, an outer
dimension of the weight matrix 520 corresponds to the num-
ber (Y1) of multipliers within each PE in the PE array, and
an outer dimension of the IFM matrix 522 corresponds to
the number (Y2) of rows of PEs in the PE array.

[0060] Since the reshaped native tensor has first outer
dimension (corresponding to the outer dimension of the
weight matrix 520) as m'/F, the weights in the each column
of the weight tensor matrix may be fed into Y I/F multipliers
within each PE. In order to obtain a partial sum from the PE
array, intra-cluster adders 500 may be implemented to store
and aggregate the outputs from the Y1 adder trees for F
rounds. Here, the “rounds” refers to cycles of performing

Aug. 17, 2023

multiplications using the multipliers in the PEs. During
each round, the output of Y1/F multipliers may be tempora-
rily stored in one intra-cluster adder 500. After F rounds, the
intra-cluster add 500 may have F¥*Y1/F=Y1 partial sums
collected from the Y1 adder trees. These partial sums may
then be aggregated to construct the output tensor as a result
of the convolution. During this process, the total number of
partial sum is *Y1/F)*Y2, which means the output channel
number (e.g., the number of channels of the output tensor of
the convolution process) is Y1/F and the output pixel num-
ber is Y2=H*W.

[0061] In the field of convolutional neural networks, a
weight tensor may be referred to a 3D filter, which includes
a plurality of 2D kernels. The number of the 2D kernels
within each 3D filter may be referred to as the number of
channels in the filter, and each 2D kernel may be a one by
one or three by three matrix. FIG. 6A illustrates an exemp-
lary neural network computation with a 1x1 tensor opera-
tion mode (i.e., using one by one kernels) in accordance
with various embodiments, and FIG. 6B illustrates an
exemplary neural network computation with a 3x3 tensor
operation mode (i.e., using three by three kernels) in accor-
dance with various embodiments.

[0062] In some embodiments, general matrix multiplica-
tions (GEMM) and 1x1 convolution operations may be
mapped to the 1x1 operation mode (e.g., using 1x1 kernels).
As shown in FIG. 6A, the 2D kernels (i.e., the weights) from
different input channels (or channel groups for sparsified
input tensor) may be placed in different columns of PEs so
that the plurality of input channels are processed simulta-
neously at one time, and the 2D kernels from the same
input channel may be distributed among multipliers within
one PE so that the multipliers can simultaneously process
multiple output channels at one time. For example, a num-
ber Y1 of weights from channel 1 (C=1) and 1~Y1 kernels
from filters (i.e., the weights from the same input channel of
the multiple filters) may be fed into the first PE, and a num-
ber Y1 of weights from channel 2 (C=2) and 1~Y1 kernels
from filters may be fed into the second PE. This way, the 2D
kernels from different input channels are distributed among
the columns of PEs.

[0063] In some embodiments involving sparsified input
tensors, each weight may be represented as an index-value
pair. The value of the index-value pair is the value of a non-
zero weight, and the index of the index-value pair is the
index of the non-zero weight, which may be used to identify
the corresponding input value to perform the multiplication
with one multiplier. In some embodiments, if the number of
channels is less than the number of PEs within each PE clus-
ter (each row), the remaining PEs may be used for other
vector operations.

[0064] In some embodiments, convolutions other than 1x1
convolution operations described above may be decom-
posed into one or more 3x3 convolution and mapped to
3x3 native operation mode (e.g., using 3x3 kernels). As
shown in FIG. 6B, each 2D 3*3 kernel has nine weights
from the same input channel, denoted as (0,0), (0,1), (0.2),
(1,0), (1,D), (1,2), (2,0), (2,1), (2,2), which may be distribu-
ted in the same row (different columns) of PEs for simulta-
neous processing. The nine weights from a different input
channel may be distributed in a different row of PEs.
[0065] FIG. 7 illustrates example architectural diagrams
of internal buffers in a PE array in accordance with various
embodiments. In some embodiments, each PE in the PE

US 2023/0259758 Al

array is coupled with a Input Buffer (denoted as IBUF) 722
for storing input values. These input values may be retrieved
by the PE based on a given weight index to find the corre-
sponding input value. The retrieved input value may then be
multiplied with the weight value within a multiplier in the
PE. In practical implementation, the depth of the IBUF is
usually limited, which means one IBUF 722 may only
store the input values from a fixed number of input channels.
This design works well for sparsified input tensors because
the number of non-zero input channels is also limited. How-
ever, it is often seen that the number of non-zero input chan-
nels may go over the depth of the IBUF 722. In these cases,
the IBUF 722 may have to perform cache replacement to
read necessary input values from external memories,
which are expensive and inefficient.

[0066] In some embodiments, depending on the degree of
the sparsification of the weight tensors (filters), the IBUF of
each PE may be configured as a private memory or a shared
memory. For example, sparsifying one or more weight ten-
sors may include: dividing input channels of the one or more
weight tensors into a plurality of channel groups, each chan-
nel group including a fixed number of channels that is an
integer greater than one; and pruning each of the one or
more weight tensors so that only a few channels in each of
the plurality of channel groups includes non-zero input
values and other channels in the each channel group com-
prise all zeros. After the pruning process, each of the chan-
nel groups includes the same percentage of non-zero
weights. The granularity of the sparsification may be cate-
gorized as fine-granular 710 and coarse-granular 750. The
fine-granular sparsification 710 occurs when non-zero input
channel is selected from a number of channels that is smaller
than a fixed number, and the coarse-granular sparsification
750 occurs when non-zero input channel is selected from a
number of channels that is greater than the fixed number.
For example, if weight sparsity is 15/16 (1 non-zero input
channel out of 16 channels), selecting one non-zero input
channel from every 16 input channels (e.g., one channel
group includes 16 input channels) may be determined as
fine-granular sparsification 710, while selecting 4 non-zero
input channels from every 64 input channels (e.g., one chan-
nel group includes 64 input channels) may be determined as
coarse-granular sparsification 750.

[0067] In some embodiments, the IBUF 722 may be con-
figured as a private memory for the sparse weight tensors
with fine-granularity, or a shared memory for the sparse ten-
sors with coarse-granularity. It means, the depth of the IBUF
722 may be compared with the fixed number that is used for
categorizing fine-granular and coarse-granular sparsifica-
tion. If the depth of the IBUF 722 is greater than the fixed
number, it means the IBUF 722 is sufficient to store the
necessary input values. This way, the data retrieving perfor-
mance is optimal due to the dedicated private memory. If the
depth of the IBUF 722 is smaller than the fixed number,
multiple neighboring PEs may share their IBUFs, denoted
as a shared IBUF 780, to store the input values that may be
retrieved by them. This way, the duplicated input values are
reduced and the overall storage efficiency is improved.
[0068] FIG. 8 illustrates an example method 800 for
neural network computations using adaptive tensor shapes
in accordance with various embodiments. The method 800
may be performed by a device, apparatus, or system
described in FIGS. 1-7. The operations of the method 800
presented below are intended to be illustrative. Depending

Aug. 17, 2023

on the implementation, the method 800 may include addi-
tional, fewer, or alternative steps performed in various
orders or in parallel.

[0069] Block 810 includes receiving a first input feature
map (IFM) and one or more first filters at a first layer of a
convolutional neural network (CNN) for convolution using
a processing element (PE) array, wherein each PE in the PE
array comprises a number (Y1) of multipliers, and the PE
array is arranged in a number (Y2) of rows and a number (X)
of columns. In some embodiments, each row of PEs are
coupled with a number (Y1) of adder trees respective corre-
sponding to the number (Y1) of multipliers within each PE,
wherein each multiplier within each PE sends a multiplica-
tion output to a corresponding adder tree for aggregation.
The number (Y1) of multipliers within each PE process
data in parallel, and PEs in the PE array process data in
parallel.

[0070] Block 820 includes determining a native tensor
shape based on the first IFM and the one or more first filters,
wherein the native tensor shape comprises a first outer
dimension, an inner dimension, and a second outer dimen-
sion, wherein the native tensor shape maps the first [FM and
the one or more first filters into the PE array.

[0071] Block 830 includes receiving a second IFM and
one or more second filters at a second layer of the CNN
for convolution using the PE array. In some embodiments,
the second layer of the CNN is after the first layer of the
CNN, and the second IFM comprises more input channels
than the first IFM, and a lower resolution than the first IFM.
In some embodiments, each of the one or more second filters
comprises a plurality of channels of 2-dimensional (2D) ker-
nels, each 2D kernel having a dimension of one by one (1x1)
or three by three (3x3).

[0072] Block 840 includes reshaping the native tensor
shape based on the second IFM and the one or more second
filters, wherein the reshaping comprises scaling up the inner
dimension and scaling down one of the first outer dimension
and the second outer dimension, the scaling up and scaling
down are by a factor of F.

[0073] Block 850 includes feeding the one or more second
filters and the second IFM into the PE array for convolution
according to the reshaped native tensor, wherein: in
response to the first outer dimension being scaled down,
the convolution comprises: aggregating an output from a
same row of PE for F rounds to obtain partial sums, and in
response to the second outer dimension being scaled down,
the convolution comprises: aggregating outputs from every
F rows of PEs to obtain partial sums. In some embodiments,
the feeding of the one or more second filters into the PE
array according to the reshaped native tensor comprises:
transforming the one or more second filters into a matrix
according to the first outer dimension and the inner dimen-
sion of the reshaped native tensor, wherein in response to
each 2D kernel in the one or more second filters having
the dimension of one by one, each row of the matrix com-
prises weights from different input channels of the one or
more second filters; and distributing weights in each row
of the matrix to different columns of PEs so that the plurality
of input channels are processed simultaneously at one time.
In some embodiments, the feeding of the one or more sec-
ond filters into the PE array according to the reshaped native
tensor comprises: transforming the one or more second fil-
ters into a matrix according to the first outer dimension and
the inner dimension of the reshaped native tensor, wherein

US 2023/0259758 Al

in response to each 2D kernel in the one or more second
filters having the dimension of three by three and compris-
ing nine weights, the nine weights are placed in a same row
of the matrix; and distributing the nine weights from the
same row of the matrix to different columns of PEs so that
the weights from the same channel are processed simulta-
neously at one time. In some embodiments, the feeding of
the IFM into the PE array according to the reshaped native
tensor comprises: transforming the IFM into a matrix
according to with the inner dimension and the second
outer dimension of the reshaped native tensor; and feeding
input values of the IFM corresponding to a column of the
matrix into buffers of a row of PEs.

[0074] Block 860 includes obtaining an output tensor of
the convolution at the second layer of the CNN by aggregat-
ing a plurality of the partial sums.

[0075] In the above description, Y1, Y2, X, and F are all
integers greater than one.

[0076] In some embodiments, the method 800 may further
include dividing channels of the one or more filters into a
plurality of channel groups, each channel group comprising
a fixed number of channels that is an integer greater than
one; and pruning each of the one or more filters so that
only one a few channels in each of the plurality of channel
groups comprise non-zero input values and other channels
in the each channel group comprise all zeros. In some embo-
diments, the method 800 may further include: determining a
depth of a buffer associated with each PE in the PE array; in
response to the depth of the buffer being greater than the
fixed number, configuring the buffer as a private memory
for each PE; and in response to the depth of the buffer
being smaller than the fixed number, combining the buffer
of the PE and one or more buffers of neighboring PEs as a
shared memory. In some embodiments, the private memory
of each PE stores input values that are retrievable by the
number (Y1) of multipliers within the PE, and the shared
memory stores input values that are retrievable by the num-
ber (Y1) of multipliers within the PE and the one or more
neighboring PEs.

[0077] In some embodiments, each of the one or more sec-
ond filters comprises a plurality of non-zero weights, and the
feeding of the one or more second filters into the PE array
for convolution comprises: feeding each non-zero weight
into a multiplier of a corresponding PE as an index-value
pair comprising the non-zero weight and a corresponding
index; and the convolution comprises: retrieving an input
value from a buffer of the corresponding PE according to
the index; and sending the retrieved value and the non-
zero weight into the multiplier to obtain an output; and send-
ing the output to a corresponding adder tree for aggregation
with outputs generated by other multipliers of other PEs in a
same row as the corresponding PE.

[0078] FIG. 9 illustrates an example computing device in
which any of the embodiments described herein may be
implemented. The computing device may be used to imple-
ment one or more components of the systems and the meth-
ods shown in FIGS. 1-8. The computing device 900 may
comprise a bus 902 or other communication mechanisms
for communicating information and one or more hardware
processors 904 coupled with bus 902 for processing infor-
mation. Hardware processor(s) 904 may be, for example,
one or more general-purpose mMicroprocessors.

[0079] The computing device 900 may also include a main
memory 907, such as random-access memory (RAM), cache

Aug. 17, 2023

and/or other dynamic storage devices, coupled to bus 902
for storing information and instructions to be executed by
processor(s) 904. Main memory 907 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by pro-
cessor(s) 904. Such instructions, when stored in storage
media accessible to processor(s) 904, may render computing
device 900 into a special-purpose machine that is custo-
mized to perform the operations specified in the instructions.
Main memory 907 may include non-volatile media and/or
volatile media. Non-volatile media may include, for exam-
ple, optical or magnetic disks. Volatile media may include
dynamic memory. Common forms of media may include,
for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data sto-
rage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a DRAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge, or
networked versions of the same.

[0080] The computing device 900 may implement the
techniques described herein using customized hard-wired
logic, one or more ASICs or FPGAs, firmware and/or pro-
gram logic which in combination with the computing device
may cause or program computing device 900 to be a special-
purpose machine. According to one embodiment, the tech-
niques herein are performed by computing device 900 in
response to processor(s) 904 executing one or more
sequences of one or more instructions contained in main
memory 907. Such instructions may be read into main mem-
ory 907 from another storage medium, such as storage
device 909. Execution of the sequences of instructions con-
tained in main memory 907 may cause processor(s) 904 to
perform the process steps described herein. For example, the
processes/methods disclosed herein may be implemented by
computer program instructions stored in main memory 907.
When these instructions are executed by processor(s) 904,
they may perform the steps as shown in corresponding fig-
ures and described above. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0081] The computing device 900 also includes a commu-
nication interface 910 coupled to bus 902. Communication
interface 910 may provide a two-way data communication
coupling to one or more network links that are connected to
one or more networks. As another example, communication
interface 910 may be a local area network (LAN) card to
provide a data communication connection to a compatible
LAN (or WAN component to communicated with a
WAN). Wireless links may also be implemented.

[0082] The performance of certain of the operations may
be distributed among the processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors or
processor-implemented engines may be located in a single
geographic location (e.g., within a home environment, an
office environment, or a server farm). In other example
embodiments, the processors or processor-implemented
engines may be distributed across a number of geographic
locations.

[0083] Each of the processes, methods, and algorithms
described in the preceding sections may be embodied in,
and fully or partially automated by, code modules executed
by one or more computer systems or computer processors

US 2023/0259758 Al

comprising computer hardware. The processes and algo-
rithms may be implemented partially or wholly in applica-
tion-specific circuitry.

[0084] When the functions disclosed herein are imple-
mented in the form of software functional units and sold or
used as independent products, they can be stored in a pro-
cessor executable non-volatile computer-readable storage
medium. Particular technical solutions disclosed herein (in
whole or in part) or aspects that contributes to current tech-
nologies may be embodied in the form of a software pro-
duct. The software product may be stored in a storage med-
ium, comprising a number of instructions to cause a
computing device (which may be a personal computer, a
server, a network device, and the like) to execute all or
some steps of the methods of the embodiments of the pre-
sent application. The storage medium may comprise a flash
drive, a portable hard drive, ROM, RAM, a magnetic disk,
an optical disc, another medium operable to store program
code, or any combination thereof.

[0085] Particular embodiments further provide a system
comprising a processor and a non-transitory computer-read-
able storage medium storing instructions executable by the
processor to cause the system to perform operations corre-
sponding to steps in any method of the embodiments dis-
closed above. Particular embodiments further provide a
non-transitory computer-readable storage medium config-
ured with instructions executable by one or more processors
to cause the one or more processors to perform operations
corresponding to steps in any method of the embodiments
disclosed above.

[0086] Embodiments disclosed herein may be implemen-
ted through a cloud platform, a server or a server group
(hereinafter collectively the “service system™) that interacts
with a client. The client may be a terminal device, or a client
registered by a user at a platform, wherein the terminal
device may be a mobile terminal, a personal computer
(PC), and any device that may be installed with a platform
application program.

[0087] The wvarious features and processes described
above may be used independently of one another or may
be combined in various ways. All possible combinations
and sub-combinations are intended to fall within the scope
of this disclosure. In addition, certain method or process
blocks may be omitted in some implementations. The meth-
ods and processes described herein are also not limited to
any particular sequence, and the blocks or states relating
thereto can be performed in other sequences that are appro-
priate. For example, described blocks or states may be per-
formed in an order other than that specifically disclosed, or
multiple blocks or states may be combined in a single block
or state. The example blocks or states may be performed in
serial, in parallel, or in some other manner. Blocks or states
may be added to or removed from the disclosed example
embodiments. The exemplary systems and components
described herein may be configured differently than
described. For example, elements may be added to, removed
from, or rearranged compared to the disclosed example
embodiments.

[0088] The various operations of exemplary methods
described herein may be performed, at least partially, by
an algorithm. The algorithm may be comprised in program
codes or instructions stored in a memory (e.g., a non-transi-
tory computer-readable storage medium described above).
Such algorithm may comprise a machine learning algo-

Aug. 17, 2023

rithm. In some embodiments, a machine learning algorithm
may not explicitly program computers to perform a function
but can learn from training samples to make a prediction
model that performs the function.

[0089] The various operations of exemplary methods
described herein may be performed, at least partially, by
one or more processors that are temporarily configured
(e.g., by software) or permanently configured to perform
the relevant operations. Whether temporarily or perma-
nently configured, such processors may constitute proces-
sor-implemented engines that operate to perform one or
more operations or functions described herein.

[0090] Similarly, the methods described herein may be at
least partially processor-implemented, with a particular pro-
cessor or processors being an example of hardware. For
example, at least some of the operations of a method may
be performed by one or more processors or processor-imple-
mented engines. Moreover, the one or more processors may
also operate to support performance of the relevant opera-
tions in a “cloud computing” environment or as a “software
as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an Applica-
tion Program Interface (API)).

[0091] The performance of certain of the operations may
be distributed among the processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors or
processor-implemented engines may be located in a single
geographic location (e.g., within a home environment, an
office environment, or a server farm). In other example
embodiments, the processors or processor-implemented
engines may be distributed across a number of geographic
locations.

[0092] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may
be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures
and functionality presented as separate components in
example configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modifi-
cations, additions, and improvements fall within the scope
of the subject matter herein.

[0093] Asused herein, “or” is inclusive and not exclusive,
unless expressly indicated otherwise or indicated otherwise
by context. Therefore, herein, “A, B, or C” means “A, B, A
and B, A and C, B and C, or A, B, and C,” unless expressly
indicated otherwise or indicated otherwise by context.
Moreover, “and” is both joint and several, unless expressly
indicated otherwise or indicated otherwise by context.
Therefore, herein, “A and B” means “A and B, jointly or
severally,” unless expressly indicated otherwise or indicated
otherwise by context. Moreover, plural instances may be
provided for resources, operations, or structures described
herein as a single instance. Additionally, boundaries
between various resources, operations, engines, and data
stores are somewhat arbitrary, and particular operations are

US 2023/0259758 Al

illustrated in a context of specific illustrative configurations.
Other allocations of functionality are envisioned and may
fall within a scope of various embodiments of the present
disclosure. In general, structures and functionality presented
as separate resources in the example configurations may be
implemented as a combined structure or resource. Similarly,
structures and functionality presented as a single resource
may be implemented as separate resources. These and
other variations, modifications, additions, and improve-
ments fall within a scope of embodiments of the present
disclosure as represented by the appended claims. The spe-
cification and drawings are, accordingly, to be regarded in
an illustrative rather than a restrictive sense.
[0094] The term “include” or “comprise” is used to indi-
cate the existence of the subsequently declared features, but
it does not exclude the addition of other features. Condi-
tional language, such as, among others, “can,” “could,”
“might,” or “may,” unless specifically stated otherwise, or
otherwise understood within the context as used, is gener-
ally intended to convey that certain embodiments include,
while other embodiments do not include, certain features,
elements and/or steps. Thus, such conditional language is
not generally intended to imply that features, elements
and/or steps are in any way required for one or more embo-
diments or that one or more embodiments necessarily
include logic for deciding, with or without user input or
prompting, whether these features, elements and/or steps
are included or are to be performed in any particular
embodiment.
[0095] Although an overview of the subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader
scope of embodiments of the present disclosure. Such embo-
diments of the subject matter may be referred to herein, indi-
vidually or collectively, by the term “invention” merely for
convenience and without intending to voluntarily limit the
scope of this application to any single disclosure or concept
if more than one is, in fact, disclosed.
[0096] The embodiments illustrated herein are described
in sufficient detail to enable those skilled in the art to prac-
tice the teachings disclosed. Other embodiments may be
used and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.
1. A computer-implemented method, comprising:
receiving a first input feature map (IFM) and one or more
first filters at a first layer of a convolutional neural net-
work (CNN) for convolution using a processing element
(PE) array, wherein each PE in the PE array comprises a
number (Y 1) of multipliers, and the PE array is arranged
in a number (Y2) of rows and a number (X) of columns;
determining anative tensor shape based on the first IFM and
the one or more first filters, wherein the native tensor
shape comprises a first outer dimension, an inner dimen-
sion, and a second outer dimension, wherein the native
tensor shape maps the first IFM and the one or more first
filters into the PE array;

Aug. 17, 2023

receiving a second [FM and one or more second filters at a
second layer of the CNN for convolution using the PE
array,

reshaping the native tensor shape based on the second [FM
and the one or more second filters, wherein the reshaping
comprises scaling up the inner dimension and scaling
down one of the first outer dimension and the second
outer dimension, the scaling up and scaling down are by
a factor of F;

feeding the one or more second filters and the second [FM
into the PE array for convolution according to the
reshaped native tensor, wherein:
in response to the first outer dimension being scaled

down, the convolution comprises: aggregating an out-
put from a same row of PE for F rounds to obtain partial
sums, and
in response to the second outer dimension being scaled
down, the convolution comprises: aggregating outputs
from every F rows of PEs to obtain partial sums; and
obtaining an output tensor of the convolution at the second
layer of the CNN by aggregating a plurality of the partial
sums,

wherein Y1, Y2, X, and F are all integers greater than one.

2. The method of claim 1, wherein the second layer of the
CNN is after the first layer of the CNN, and the second IFM
comprises more input channels than the first [IFM, and a lower
resolution than the first [FM.

3. The method of claim 1, wherein each of the one or more
second filters comprises a plurality of channels of 2-dimen-
sional (2D)kernels, each 2D kernel having adimension of one
by one (1x1) or three by three (3x3).

4. The method of claim 3, wherein the feeding of the one or
more second filters into the PE array according to the reshaped
native tensor comprises:

transforming the one or more second filters into a matrix
according to the first outer dimension and the inner
dimension of the reshaped native tensor, wherein in
response to each 2D kernel in the one or more second
filters having the dimension of one by one, each row of
the matrix comprises weights from different input chan-
nels of the one or more second filters; and

distributing weights in each row of the matrix to different
columns of PEs so that the plurality of input channels are
processed simultaneously at one time.

5. The method of claim 3, wherein the feeding of the one or
more second filters into the PE array according to the reshaped
native tensor comprises:

transforming the one or more second filters into a matrix
according to the first outer dimension and the inner
dimension of the reshaped native tensor, wherein in
response to each 2D kernel in the one or more second
filters having the dimension of three by three and com-
prising nine weights, the nine weights are placed in a
same row of the matrix; and

distributing the nine weights from the same row of the
matrix to different columns of PEs so that the weights
from the same channel are processed simultaneously at
one time.

6. The method of claim 5, wherein the feeding of the [FM
into the PE array according to the reshaped native tensor
comprises:

transforming the [FM into a matrix according to with the
inner dimension and the second outer dimension of the
reshaped native tensor; and

US 2023/0259758 Al

feeding input values of the [FM corresponding to a column

of the matrix into buffers of arow of PEs.

7. The method of claim 1, further comprising:

dividing channels of the one or more filters into a plurality

of channel groups, each channel group comprising a
fixed number of channels that is an integer greater than
one; and

pruning each of the plurality of channel groups so that a

fixed percentage of weights within the each channel
group are non-zeros.

8. The method of claim 7, further comprising:

determining a depth of a buffer associated with each PE in

the PE array;

in response to the depth of the buffer being greater than the

fixed number, configuring the buffer as a private memory
for each PE; and

in response to the depth of the buffer being smaller than the

fixed number, combining the buffer of the PE and one or
more buffers of neighboring PEs as a shared memory.

9. The method of claim 8, wherein the private memory of
each PE stores input values that are retrievable by the number
(Y1) of multipliers within the PE.

10. The method of claim 8, wherein the shared memory
stores input values that are retrievable by the number (Y1) of
multipliers within the PE and the one or more neighboring
PEs.

11. The method of claim 1, wherein each row of PEs are
coupled with a number (Y1) of adder trees respective corre-
sponding to the number (Y1) of multipliers within each PE,
wherein each multiplier within each PE sends amultiplication
output to a corresponding adder tree for aggregation.

12. The method of claim 1, wherein each of the one or more
second filters comprises a plurality of non-zero weights, and

the feeding of the one or more second filters into the PE

array for convolution comprises:

feeding each non-zero weight into a multiplier of a cor-
responding PE as an index-value pair comprising the
non-zero weight and a corresponding index; and

the convolution comprises:

retrieving an input value from a buffer of the correspond-
ing PE according to the index; and

sending the retrieved value and the non-zero weight into
the multiplier to obtain an output; and

sending the output to a corresponding adder tree for
aggregation with outputs generated by other multi-
pliers of other PEs in a same row as the corresponding
PE.

13. The method of claim 1, wherein the number (Y1) of
multipliers within each PE process data in parallel, and PEs
in the PE array process data in parallel.

14. A system comprising one or more processors and one or
more non-transitory computer-readable memories coupled to
the one or more processors and configured with instructions
executable by the one or more processors to cause the system
to perform operations comprising:

receiving a first input feature map (IFM) and one or more

first filters at a first layer of a convolutional neural net-
work (CNN) for convolution using a processing element
(PE) array, wherein each PE in the PE array comprises a
number (Y1) of multipliers, and the PE array is arranged
in a number (Y2) of rows and a number (X) of columns;
determining anative tensor shape based on the first IFM and
the one or more first filters, wherein the native tensor
shape comprises a first outer dimension, an inner dimen-
sion, and a second outer dimension, wherein the native

Aug. 17, 2023

tensor shape maps the first [FM and the one or more first
filters into the PE array;

receiving a second [FM and one or more second filters at a

second layer of the CNN for convolution using the PE
array,

reshaping the native tensor shape based on the second [FM

and the one or more second filters, wherein the reshaping
comprises scaling up the inner dimension and scaling
down one of the first outer dimension and the second
outer dimension, the scaling up and scaling down are by
a factor of F;
feeding the one or more second filters and the second [FM
into the PE array for convolution according to the
reshaped native tensor, wherein:
in response to the first outer dimension being scaled
down, the convolution comprises: aggregating an out-
put froma same row of PE for F rounds to obtain partial
sums, and
in response to the second outer dimension being scaled
down, the convolution comprises: aggregating outputs
from every F rows of PEs to obtain partial sums; and
obtaining an output tensor of the convolution at the second
layer of the CNN by aggregating a plurality of the partial
sums,

wherein Y1, Y2, X, and F are all integers greater than one.

15. The system of claim 14, wherein the second layer of the
CNN is after the first layer of the CNN, and the second IFM
comprises more input channels than the first IFM, and a lower
resolution than the first [FM.

16. The system of claim 14, wherein the operations further
comprise:

dividing channels of the one or more filters into a plurality

of channel groups, each channel group comprising a
fixed number of channels that is an integer greater than
one; and

pruning each of the one or more filters so that only one chan-

nel in each of the plurality of channel groups comprises
non-zero input values and other channels in the each
channel group comprise all zeros.

17. The system of claim 16, wherein the operations further
comprise:

determining a depth of a buffer associated with each PE in

the PE array;

in response to the depth of the buffer being greater than the

fixed number, configuring the buffer as a private memory
for each PE; and

in response to the depth of the buffer being smaller than the

fixed number, combining the buffer of the PE and one or
more buffers of neighboring PEs as a shared memory.

18. The system of claim 14, wherein each of the one ormore
second filters comprises a plurality of channels of 2-dimen-
sional (2D)kernels, each 2D kernel having a dimension of one
by one (1x1) or three by three (3%3).

19. The system of claim 18, wherein the feeding of the one
or more second filters into the PE array according to the
reshaped native tensor comprises:

transforming the one or more second filters into a matrix

according to the first outer dimension and the inner
dimension of the reshaped native tensor, wherein in
response to each 2D kernel in the one or more second
filters having the dimension of one by one, each row of
the matrix comprises weights from different input chan-
nels of the one or more second filters

US 2023/0259758 Al

distributing weights in each row of the first matrix to differ-
ent columns of PEs so that the plurality of input channels
are processed simultaneously at one time.
20. A non-transitory computer-readable storage medium
configured with instructions executable by one or more pro-
cessors to cause the one or more processors to perform opera-
tions comprising:
receiving a first input feature map (IFM) and one or more
first filters at a first layer of a convolutional neural net-
work (CNN) for convolution using a processing element
(PE) array, wherein each PE in the PE array comprises a
number (Y 1) of multipliers, and the PE array is arranged
in a number (Y2) of rows and a number (X) of columns;

determining anative tensor shape based on the first IFM and
the one or more first filters, wherein the native tensor
shape comprises a first outer dimension, an inner dimen-
sion, and a second outer dimension, wherein the native
tensor shape maps the first IFM and the one or more first
filters into the PE array;

receiving a second IFM and one or more second filters at a

second layer of the CNN for convolution using the PE
array,

Aug. 17, 2023

reshaping the native tensor shape based on the second [FM
and the one or more second filters, wherein the reshaping
comprises scaling up the inner dimension and scaling
down one of the first outer dimension and the second
outer dimension, the scaling up and scaling down are by
a factor of F;
feeding the one or more second filters and the second IFM
into the PE array for convolution according to the
reshaped native tensor, wherein:
in response to the first outer dimension being scaled
down, the convolution comprises: aggregating an out-
put from a same row of PE for F rounds to obtain partial
sums, and
in response to the second outer dimension being scaled
down, the convolution comprises: aggregating outputs
from every F rows of PEs to obtain partial sums; and
obtaining an output tensor of the convolution at the second
layer of the CNN by aggregating a plurality of the partial
sums,
wherein Y1, Y2, X, and F are all integers greater than one.

% Y % % %

