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METHODS AND APPARATUS FOR 
AUTOMATIC DETECTION AND 
ELMINATION OF FUNCTIONAL 

HARDWARE TROUANS IN C DESIGNS 

CLAIM OF BENEFIT TO PRIORAPPLICATION 

0001. This application claims benefit to U.S. Provisional 
Patent Application 62/281,738, entitled “To Detect, Locate, 
and Mask Hardware Trojans in Digital Circuits', filed on 
Jan. 22, 2016, the content of which is incorporated herein by 
reference in its entirety. 

FIELD OF THE INVENTION 

0002 The present invention generally relates to circuits, 
and more particularly to methods and apparatus that improve 
circuit security. 

BACKGROUND 

0003 Modern circuits (such as integrated circuits (ICs)) 
are enormously complicated. For example, an average desk 
top computer chip can have over 1 billion transistors. Due to 
the complexity and high cost, IC design is often outsourced 
to a third party that completes the circuit design by using 
hardware that incorporates software (such as Electronic 
design automation (EDA) or Computer Aided Design 
(CAD) tools). Such outsourcing provides opportunities for 
attackers to take over the designed IC by introducing mali 
cious alterations or hardware Trojans (HTS), which causes 
serious security concerns especially for security-critical 
applications such as military applications. A HT can cause 
malfunction for a circuit into which the HT is embedded or 
destroy a system incorporating such circuit, lower circuit 
reliability and leak confidential information. 
0004 New methods and apparatus that assist in advanc 
ing technological and security needs and industrial applica 
tions in circuit technology, IC design, Verification, and 
fabrication processes are desirable. 

SUMMARY OF THE INVENTION 

0005 One example embodiment provides a method to 
detect, locate, and mask a functional hardware Trojan (HT) 
in an arithmetic circuit to improve circuit security over 
conventional methods. The method provides a first netlist 
and a second netlist of the arithmetic circuit, extracts arith 
metic macros from the first netlist and the second netlist to 
obtain a first plurality of arithmetic macros and a second 
plurality of arithmetic macros, detects the HT by comparing 
the first plurality of arithmetic macros with the second 
plurality of arithmetic macros, locates the HT in the second 
netlist, and improves security of the arithmetic circuit by 
masking the HT with addition of a patch in the second netlist 
to obtain a patched netlist. 
0006. Other example embodiments are discussed herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007 FIG. 1 shows a graph illustrating a scenario of 
hardware Trojan (HT) implantation during a circuit design 
process in accordance with an example embodiment. 
0008 FIG. 2A shows a graph illustrating a gate-level 
(GTL) circuit in accordance with an example embodiment. 
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0009 FIG. 2B shows a graph illustrating an HT injection 
in a GTL circuit in accordance with an example embodi 
ment. 
0010 FIG. 2C shows a graph illustrating a patched GTL 
circuit in accordance with an example embodiment. 
0011 FIG. 2D shows a graph illustrating a HT diagnostic 
report in accordance with an example embodiment. 
0012 FIG. 3 shows a flow diagram illustrating an 
example method in accordance with an example embodi 
ment. 

0013 FIG. 4A shows a graph illustrating a multiplier in 
accordance with an example embodiment. 
0014 FIG. 4B shows a graph illustrating a multiplier in 
accordance with an example embodiment. 
0015 FIG. 5 shows construction of an XOR forest in 
accordance with an example embodiment. 
0016 FIG. 6 shows a table illustrating example reverse 
engineering in accordance with an example embodiment. 
0017 FIG. 7A shows a graph illustrating an examined 
netlist in accordance with an example embodiment. 
0018 FIG. 7B shows a graph illustrating a golden netlist 
in accordance with an example embodiment. 
0019 FIG. 7C shows a graph illustrating a trimmed 
netlist in accordance with an example embodiment. 
0020 FIG. 8A shows a graph illustrating patch creation 
before patching in accordance with an example embodi 
ment. 

0021 FIG. 8B shows a graph illustrating patch creation 
after patching in accordance with an example embodiment. 
0022 FIG. 9A shows a graph illustrating conservative 
patch creation before patching in accordance with an 
example embodiment. 
0023 FIG. 9B shows a graph illustrating conservative 
patch creation after patching in accordance with an example 
embodiment. 
0024 FIG. 10A shows a graph illustrating aggressive 
patch creation before patching in accordance with an 
example embodiment. 
0025 FIG. 10B shows a graph illustrating aggressive 
patch creation after patching in accordance with an example 
embodiment. 
0026 FIG. 11A shows a graph illustrating a patch before 
an Add-First rewiring transformation in accordance with an 
example embodiment. 
0027 FIG. 11B shows a graph illustrating a patch after an 
Add-First rewiring transformation in accordance with an 
example embodiment. 
0028 FIG. 12A shows a graph illustrating a patch before 
a Cut-First rewiring transformation in accordance with an 
example embodiment. 
0029 FIG. 12B shows a graph illustrating a patch after a 
Cut-First rewiring transformation in accordance with an 
example embodiment. 
0030 FIG. 13 shows a table illustrating characteristics of 
benchmarks in accordance with an example embodiment. 
0031 FIG. 14 shows a table illustrating example methods 
in accordance with an example embodiment. 
0032 FIG. 15 shows a computer system in accordance 
with an example embodiment. 

DETAILED DESCRIPTION 

0033 Example embodiments relate to methods and appa 
ratus that improve circuit security. 
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0034. Circuit (such as integrated circuits (ICs)) or chip 
design and fabrication are enormously complicated. A mod 
ern IC typically includes millions of miniscule electronic 
components, such as gates, transistors and diodes (e.g. an 
average desktop computer chip nowadays can have over 1 
billion transistors), which makes it impossible for a person 
to design such circuits or chips mentally or manually with a 
pencil and paper. Hardware, Such as a computer device or 
system that incorporates or embeds Software (such as Elec 
tronic design automation (EDA) or Computer Aided Design 
(CAD) tools), is generally employed to complete Such tasks. 
0035. Due to the significantly increased complexity of IC 
design and fabrication, design is often outsourced by using 
third party Intellectual Properties (3PIPs) from a vendor. 
Risks are raised because a hardware Trojan (HT) or bug (e.g. 
unintended or unauthorized functional hardware insertion, 
malicious hardware insertion, or unauthorized design modi 
fication) can be injected into a circuit by an attacker (such as 
an untrusted person or dishonest engineer or spy). In addi 
tion, it is possible for unexpected functions to be fitted to a 
circuit or chip by an untrusted foundry and/or distributor. 
0036 AHT or bug harms a circuit or chip in many ways. 
For example, a HT maliciously changes or modifies func 
tionality of a circuit by adding, deleting or modifying 
circuit's one or more components (such as logic gates, 
transistors, diodes, etc.). As another example, a HT changes 
circuit function indirectly by modifying one or more param 
eters to be fed into a circuit. A HT can disrupt operation of 
a circuit (such as an IC) or other circuits that couple to the 
circuit. By way of example, a HT causes an IC to malfunc 
tion and/or conduct one or more functions that constitute a 
security attack. A HT can also be designed or implanted by 
a spy to retrieve sensitive data or information, or be designed 
to change a hosting circuitry specification Such as delay, 
power consumption and reliability. For example, a circuit or 
chip that is specified to function properly for ten years may 
be reliable for only one year if a HT is implanted or 
embedded in the circuit. Detecting presence of a HT or bug 
in a circuit (e.g. arithmetic circuits, such as an IC) and 
masking or killing Such HT is therefore of great importance 
for industries such as IC design, Verification and fabrication, 
consumer products and military applications etc. Effective 
ness and efficiency to detect and remove Such HTS or bugs 
to improve circuit security have great importance in these 
industries. Undetected HTs in a circuit such as IC can make 
the circuit worthless or in great danger in terms of a number 
of aspects such as sensitive information leakage. Low effi 
ciency (Such as high runtime or time complexity) in detect 
ing and removing HTS lengthens design cycles and increases 
time-to-market and jeopardizes profit margins. Furthermore, 
unsatisfactory efficiency or runtime complexity requires 
more resource usage (such as memory usage), high perfor 
mance (such as high processing capacity and speed) for a 
computer device, and also increases network consumption 
when data is transmitted over a network to a remote server 
for processing as an example. Thus, unsatisfactory methods 
or schemes for HT detection and capture not only jeopardize 
many industries (such as IC industry and other industries 
that relate to or depend on IC industry) technologically and 
economically, but also require costly computer hardware by 
demanding large resource consumption Such as memory 
usage and high processing speed. 
0037 Existing or conventional methods are flawed or 
have difficulties in detecting and killing HTs in circuits. On 
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one hand, this is because presence of a HT cannot be easily 
detected. A HT may reside within a testing circuit of a chip 
to avoid being detected during normal operation and be 
activated occasionally to carry out malicious operations. 
Also, the amount of logic gates in a modern IC or chip is too 
large that exhaustive testing is infeasible. On the other hand, 
the existing methods have flaws intrinsically in one or more 
aspects. 
0038. For example, many existing methods can only 
extract simple logic patterns such as gates from a gate-level 
(GTL) netlist, but cannot handle complex but basic arith 
metic blocks such as adders and multipliers. Some existing 
methods use simulation tools to identify logic gates that 
have low activation probability, which, however, is inaccu 
rate. Some existing methods employ satisfiability (SAT)- 
based functional formal verification techniques to detect 
HTs in circuits, which, however, is incapable in verifying 
certain arithmetic logics designed in different styles (e.g. 
Non-Booth versus Booth multipliers). A main reason that the 
existing SAT-based functional formal verification tech 
niques do not work well is because existing SAT solvers 
highly rely on Successfully locating of internal equivalent 
points of compared logics. When few internal equivalent 
points are found, even for a quite Small circuit, the Solving 
time or runtime grows exponentially in the worst cases Such 
as when performing comparison between multipliers 
designed in different styles (e.g. non-Booth versus Booth). 
Existing SAT solvers also show inability or inefficiency in 
terms of equivalence checking for circuits (e.g. arithmetic 
circuits). Such as incapability in proving equality between 
two arithmetic circuits. Furthermore, existing methods fail 
to detect and locate where the body and boundary of a HT 
exactly is in a circuit for the chip owner or designer to 
analyze intending damage of the HT, and do not have a 
100% guarantee of catching all HTs in a circuit. 
0039 Thus, existing methods or schemes are neither 
effective nor efficient in detecting and masking or removing 
a HT in a circuit or arithmetic circuit (Such as IC, Applica 
tion Specific Integrated Circuit (ASIC), and Field-Program 
mable Gate array (FPGA), Digital Signal Processor (DSP), 
etc.), which jeopardizes circuit industry by lengthening 
design cycle and causing serious problems such as circuit 
failure, short circuit lifetime, and sensitive information 
leakage or stolen etc. Exiting methods or schemes are also 
unfavorable from perspective of computer technology 
because a less efficient process of detecting and masking 
HTs may be trapped into exponential time (e.g. high time 
complexity, several tens of hours or days, or even not 
converging (“forever runtime that leaves subject problem 
unsolved)), which demands large resource usage (such as 
memory usage and network consumption) and costly com 
puter device (such as high processing capacity). 
0040. Example embodiments solve the above-stated 
problems by providing technical Solutions in new methods 
and apparatus that function in unconventional ways to 
benefit circuit industry and computer industry. Example 
embodiments benefit circuit (such as IC, ASIC, FPGA, DSP 
etc.) industry by preventing (such as detecting, locating, and 
masking or removing) HTs in a circuit with significantly 
improved or enhanced effectiveness and efficiency, which, 
on one hand, increases circuit production (e.g. yield) and 
lifetime by reducing or preventing circuit failure and mal 
functions caused by HTS, and on the other hand, improves 
circuit security by avoiding sensitive data leakage or by 
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avoiding a circuit or an apparatus or machine that incorpo 
rates Such circuit being taken over by an attacker or spy. 
Example embodiments further benefit computer technology 
by reducing resource consumption (e.g. memory usage and 
network consumption). Example methods can be executed 
by a computer device or system with lower hardware 
requirement to perform circuit design and thus mitigate 
demand of costly computers with expensive chips, memory 
and other internal electronic components. 
0041. Example embodiments solve the above-stated 
problems by providing technical Solutions in new methods 
and apparatus that detect one or more functionality differ 
ences between circuits (such as between two circuit netlists 
or macros) that are likely be caused by one or more HTs or 
bugs, locate or output the differences to correct the HTs or 
to investigate the tampering intention or purpose, and kill, 
mask, or remove the HTs by restoring the functionality back 
to original specification (e.g. golden specification or correct 
specification). By way of example, example embodiments 
restore the functionality of a circuit or chip back to original 
specification with a minimum circuitry change to avoid 
affecting performance (such as clock and timing, etc.) of the 
circuit or chip significantly. Example embodiments improve 
circuit security by blocking intentional or plotted damage to 
a circuit at an early stage and figuring out a spy source by 
revealing the HT intention. 
0042. By way of example, example embodiments solve 
the above-stated problems by providing technical solutions 
with incorporation or combination of reverse engineering, 
formal verification, functional Engineering Change Order 
(ECO), and logic rewiring to detect, locate, and mask HTS in 
a circuit. As an example, example embodiments handle a 
number of HTS automatically with guarantee of catching 
100% of HTs in a circuit. 

0043. By way of example, example embodiments solve 
the above-stated problems by providing technical solutions 
that couple or combine reverse engineer and formal verifi 
cation (so-called Complementary Greedy Coupling (CGC) 
formal verification scheme) to overcome the incapability of 
SAT solvers in arithmetic verification. Example reverse 
engineering performs well in verification or proof of equal 
ity, and example SAT solvers perform well in verification or 
proof of inequality. Coupling of reverse engineering and 
SAT techniques takes advantage of strong points of both 
reverse engineering and SAT and obtains a combined advan 
tage, which improves HT detection with reduced runtime 
complexity and increased capability Such as capability to 
tackle NP-complete circuits efficiently. By way of example, 
example embodiments can formally compare the function 
ality between a netlist of correct or golden design and an 
examined design with a HT embedded or implanted. 
0044. In an example embodiment, when a logic differ 
ence is detected, a functional-ECO technique is applied to 
locate HTS and a patch or rectification patch logic is inserted 
or added to mask the HTs. In another example embodiment, 
a logic rewiring treatment or technique is applied to opti 
mize the patch such that size of the path is minimized, which 
improves circuit (such as IC) technology because perturba 
tion or interference (such as timing perturbation) to a target 
circuit or chip is reduced or minimized to increase circuit 
performance. 
0045. By way of example, runtime of example embodi 
ments to detect, locate and mask multiple HTS (no limit on 
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the number of HTs) in an IC with millions of logic gates is 
within minutes in contrast with hours or days for existing 
methods. 

0046 Example embodiments include a computer system 
with specific Software incorporated, as well as Such a 
computer system embedded in a network. Example com 
puter system solves technical problems raised in circuit 
industry such as IC industry by executing example methods 
herein. When executing example methods, example com 
puter system improves hardware performance by reducing 
resource usage such as memory usage and network con 
Sumption. 
0047 FIG. 1 shows a graph illustrating a scenario of HT 
implantation during a circuit design process in accordance 
with an example embodiment. The graph 100 includes a 
customer or party 110, a design house 120, a chip 130, and 
a spy or attacker 140. 
0048. By way of example, the customer 110 has a plan or 
proposed specification (e.g. a microarchitecture and a sys 
tem-level specification, etc.) for designing a new circuit or 
chip (e.g. IC, ASIC, FPGA, DSP, etc.) to fit into an industry 
segment. As an example, the plan or proposed specification 
is specified using a register transfer level (RTL) specification 
language (such as Verilog and VHDL). The plan or proposed 
specification then goes through a long tract of design pro 
cesses in the design house 120 where a design team pro 
cesses circuit design with hardware (such as a computer) 
that incorporates software (such as EDA or CAD tools). The 
design house 120 belongs to either the customer 110 or a 
third part to which a design task is outsourced. 
0049. By way of example, the design processes per 
formed in the design house 120 include logical synthesis and 
physical place and route (P&R). As shown in FIG. 1 for 
example, a RTL-level circuit 122 is synthesized into a 
gate-level (GTL) circuit 124 that is then synthesized into a 
circuit-level circuit 126. Based on the completed circuit 
design, the chip 130 is fabricated or produced. 
0050. As shown in FIG. 1, during design phase in the 
design house 120, the spy 140 (such as an untrusted person 
or dishonest engineer) maliciously injects or embeds a HT or 
bug into the circuit or chip. As an example, the HT can be 
introduced to the circuit at either intermediate stage in the 
design house 120. Such as either design process of the 
RTL-level circuit 122, the Gate-level circuit 124, and cir 
cuit-level circuit 126. 

0051. For the customer 110 that concerns circuit security, 
the HT must be detected and removed effectively and 
efficiently (e.g. 100% capture within a practical time limit 
Such as polynomial time and even linear time). Otherwise, 
the spy 140, with the injected HT, can cause malfunctions of 
the circuit or chip, destroy a system that incorporates the 
chip, or steal confidential information. The customer 100 is 
also likely to favor a HT-capture process that is not expen 
sive (e.g. lower requirement for hardware such as a com 
puter device). 
0.052 FIGS. 2A-2D show graphs illustrating an HT injec 
tion in a gate-level (GTL) circuit in accordance with an 
example embodiment. For illustrative purpose only, FIG. 2A 
shows an original GTL circuit 210 that includes a 8-AND 
gate 214 (herein “8-AND” indicates there are eight inputs 
for the AND gate) with an input vector 212 (shown as in 7:0 
which indicates that there are 8 input signals named in 7. 
in 6, in O) and a AND gate 216. The AND gate 216 has one 
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output 218 (shown as out) and two inputs, one being the 
output of the 8-AND gate 214 and the other being an input 
213 (shown ass). 
0053 As an example, the GTL circuit 210 in FIG. 2A is 
an original netlist of a circuit. By way of example, the input 
213 receives from the input 213 a redundant internal signal 
S that is a stuck-at logic 1 during the normal working mode 
or normal operation. 
0054 FIG. 2B shows a HT-tempered netlist 220 that 
includes a malicious logic or HT 225 in accordance with an 
example embodiment. As a result, the AND gate 216 in FIG. 
2A is replaced with or changed into a multiplexer (MUX) 
226. The added malicious logic 225 is not triggered on a 
normal working mode and is thus unable to be tested or 
detected by simulation using conventional methods such as 
normal input testing vectors. 
0055 FIG. 2C shows a patched netlist 230 in accordance 
with an example embodiment. As shown, the patched netlist 
230 includes a patch or patch logic 235 that masks or kills 
the malicious logic or HT 225. In one example embodiment, 
the patch 235 is minimized in size to reduce timing pertur 
bation for the target circuit or chip. A target circuit or chip, 
as an example, is a final product based on the finalized 
design of a circuit with HTs removed or masked through a 
circuit varication or checking process. 
0056 FIG. 2D shows a HT diagnostic report 240 in 
accordance with an example embodiment. The HT diagnos 
tic report 240 includes a first part 242 that shows netlist of 
the patch 235, and a second part 244 that shows the MUX 
236 after correction or rectification with the patch 235. 
0057. As illustrated in FIGS. 2A-2D, circuit security is 
improved with example methods by detecting, locating, and 
masking or killing an inserted or implanted HT or bug in a 
circuit. The inserted HT is masked by introducing a patch 
Such that the circuit is restored back to a circuit in accor 
dance with original or correct specification. 
0058 FIG.3 shows a flow diagram in accordance with an 
example embodiment. The flow diagram 300 illustrates an 
example method that is executed by a computer that incor 
porates Software or an apparatus that incorporates Such 
computer. The computer includes electronic devices such as 
a computer system or electronic system, wearable electronic 
devices, servers, portable electronic devices, handheld por 
table electronic devices, and hardware (e.g., a processor, 
processing unit, digital signal processor, controller, memory, 
etc.). 
0059. The example method, when executed by the com 
puter, Solves one or more existing technical problems as 
stated above in circuit industry by improving effectiveness 
and efficiency (such as reduced runtime complexity) for 
circuit design. The example method also improves perfor 
mance of the computer that executes the example method by 
consuming less resource Such as memory, processor, and 
network usage Such as bandwidth. 
0060 Block 302 states providing a first netlist of an 
arithmetic circuit. 
0061 For example, the first netlist is an originally speci 
fied (golden or correct) netlist that conforms to a customer 
or person’s plan or proposed specification. By way of 
example, the first netlist is a gate-level (GTL) netlist that is 
synthesized from a golden register-transfer level (RTL) 
circuit. 
0062 Block 304 states providing a second netlist of an 
arithmetic circuit. 
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0063 For example, the second netlist is an examined 
netlist. By way of example, the second netlist is HT 
tempered or injected, for example, by a spy or an attacker. 
To improve circuit security, the second netlist is examined to 
detect and mask or remove one or more HTS or bugs that are 
maliciously inserted or injected. 
0064. Block 306 states extracting arithmetic macros from 
the first netlist to obtain a first plurality of arithmetic macros. 
Block 308 states extracting arithmetic macros from the 
second netlist to obtain a second plurality of arithmetic 
aCOS. 

0065. By way of example, a macro or operator macro is 
defined to be a block of logic which is a building component 
in a circuit (e.g. an IC) such as adders, multipliers, multi 
plexers (MUX) or a formula such as (A+8)x C. 
0066. In an example embodiment, example reverse engi 
neering (RE) techniques are applied to extract and compare 
all arithmetic macros Such as adders and multipliers with 
their formula forms. The arithmetic macros are often con 
structed by a number of elementary components “1-bit 
adders’ which include 1-bit half adders (HA) and/or 1-bit 
full adders (FA) in specific styles. The reverse engineering 
technique first identifies all these elementary components 
from the whole circuit. Secondly, RE builds a 1-bit adder 
graph where the output of one adder is the input of another 
adder. The functionality or formula of the arithmetic logics 
is obtained from the style of the built adder graph. 
0067 By way of example, arithmetic components (such 
as an adder and a multiplier) are implemented in a number 
of Styles Such as carry-look ahead adder (CLA), Ripple, 
Booth and Non-Booth which are constructed by 1-bit 
adders. For example, FIGS. 4A-4B show two graphs in 
accordance with an example embodiment. The graph in FIG. 
4A is an illustrative multiplier 410, and the graph in FIG. 4B 
is an illustrative multiplier 420, wherein FA represents a 
1-bit full adder and HA represents a 1-bit half adder. As 
illustrated, the multiplier 410 and the multiplier 420 share 
Some common structural units (such as 1-bit adders). 
0068. In an example embodiment, all 1-bit adders includ 
ing their connections are extracted firstly. A 1-bit full adder 
has 3 input signals (e.g. a, b and c), and 2 output signals (e.g. 
sum and carry (also called co)). The functionality of a 1-bit 
full adder is as follows: 

where “8” is also called XOR operation means Boolean 
&g 99 “exclusive or function, '+' means Boolean 'or' function, 

and “&’ means Boolean “and” function. 

0069. A 1-bit half adder has two input signals (e.g. a and 
b), and 2 output signals (e.g. Sum and carry (also called co)). 
The functionality of a 1-bit half adder is as follows: 

0070. By way of example, both an adder and a multiplier 
are composed of one or more 1-bit adders. For example, the 
third output of a 4-bit multiplier in Non-Booth style is 
expressed as: 
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32 = HASum(FASum(aOb2, a1b1, a2b0), HAco(aOb1, a1b0)) (2) 

0071. As an example, the fourth output of a 4-bit multi 
plier in Non-Booth style is expressed as: 

3 = HAston (FAston (FAsun (aob3, a1b2, a2b), a3bo, FA.co), HAco (3) 

where FA and HA are carry out signals from other adders 
0072. In an example embodiment, to figure out 1-bit 
adder graph, all 1-bit adders are firstly identified. To figure 
out 1-bit adders, all 2-input single-output Sub circuits whose 
function is exclusive or (XOR) are firstly identified. Then 
one or more XOR trees which contain multiple 2-input XOR 
sub circuits and where an input of a first XOR sub circuit is 
an output of a second XOR sub circuit are identified. Inputs 
of the one or more XOR trees are either bit products of 
adders and multipliers or carry signals of internal 1-bit 
adders. On basis of the one or more XOR trees, carry signals 
are deduced and the one or more XOR trees are connected 
to form or create a XOR forest. As an example, the XOR 
forest is considered as a 1-bit adder graph. Construction of 
a 1-bit adder graph in accordance with an example embodi 
ment is shown in FIG. 5. 
0073 FIG. 6 shows a table illustrating reverse engineer 
ing in accordance with an example embodiment. The 
example method illustrated in the table 600 includes iden 
tifying or determining a plurality of 2-input XOR sub 
circuits, building a plurality of XOR trees based on that an 
output of one XOR operation is an input of another XOR 
operation, determining carry signals of internal 1-bit adders 
from the plurality of XOR trees and connecting the plurality 
of XOR trees to form an XOR forest such as 1-bit adder 
graph such that one or more 1-bit adder graphs are obtained, 
and determining arithmetic functions and arithmetic bound 
aries for each of the one or more XOR forests such that a 
plurality of arithmetic macros are extracted. In an example 
embodiment, after the network of 1-bit-adders (such as a 
XOR forest) is formed or built, arithmetic functions such as 
additions, Subtractions and multiplications are determined 
with the XOR forest. A complex arithmetic logic (e.g. 
combination of adders and multipliers (such as (a+b)xc, 
axb+cxd, etc.)) is built or determined bottom up. 
0074 Return back to FIG. 3, Block 310 states detecting 
a HT by comparing the first plurality of arithmetic macros 
with the second plurality of arithmetic macros. 
0075. In an example embodiment, the process as stated in 
Block 310 is considered as global HT locating because it 
globally determine which one or more areas HTs are located. 
In another example embodiment, to improve efficiency of 
locating one or more HTs globally, a trimming technique or 
process is applied. 
0076. By way of example, with trimming treatment or 
technique, equivalent Sub-circuit pairs or areas are identified 
and stripped from a circuit, and all HTs only exist or locate 
inside the non-equivalent Sub-circuit areas. As an example, 
if a first part of a first circuit and a second part of a second 
circuit are equivalent Sub-circuit pairs, the first part and the 
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second part have same function, or they are functionally 
equivalent. If the first part and the second part have different 
function, they are functionally non-equivalent and are not 
equivalent Sub-circuit pairs. As another example, the first 
plurality of arithmetic macros consist of part A1 and part B1, 
and the second plurality of arithmetic macros consist of part 
A2 and part B2. The part A1 and the part A2 are functionally 
equivalent, and the part B1 and the part B2 are functionally 
non-equivalent. As an example, the part A2 is trimmed out 
from the second plurality of arithmetic macroS Such that a 
HT is determined to be located in the part B2 of the second 
plurality of arithmetic macros. 
(0077. By way of example, FIG. 7A-7C show graphs 
illustrating a trimming process in accordance with example 
embodiment. FIG. 7A shows an examined netlist 710 (or a 
second netlist) that is HT injected. The examined netlist 710 
includes a part 714 that has a 6-XOR sub-circuit (i.e. 
implementing a 6-input XOR function) and a part 712 
indicating other part of the examined netlist 710. FIG. 7B 
shows a golden or correct netlist 720 (or a first netlist) that 
is originally specified. The golden netlist 720 includes a part 
724 that has a 6-XOR sub-circuit and a part 722 indicating 
other part of the golden netlist 720. Thus, the part 714 and 
the part 724 have same function or are functionally equiva 
lent but with different implementation style. 
0078. As shown in FIG. 7C, an equivalent pair, the part 
714 and the part 724, is trimmed out or stripped away from 
respective netlist to obtain a trimmed netlist 730. In an 
example embodiment, a trimming or stripping process is 
iteratively performed to minimize the non-equivalent circuit 
part. In another example embodiment, a trimming or strip 
ping process is iteratively performed until no equivalent 
Sub-circuit pair or equivalent pair is found between the 
examined netlist 710 and the golden netlist720. Return back 
to FIG. 3, Block 312 states locating, with a functional 
Engineering Change Order (ECO) engine, the HT in the 
second netlist. 
0079. By way of example, a functional-ECO engine or 
technique is applied to locating and masking HTS. 
0080 Block 314 states improving security of the arith 
metic circuit by masking the HT with addition of a patch in 
the second netlist to obtain a patched netlist with ECO 
engine. 
I0081. By way of example, functional ECO engine 
denotes a set of primary inputs (PIs) in a circuit as a set of 
Boolean variables X={x1, . . . , X. Functions of primary 
outputs (POs) in an examined design or specification and a 
golden or correct specification are denoted by F(X)={f(X), 
f(X), . . . . f(X)} and G(X)={g (X), g2(X), . . . . g.,(X)} 
respectively. 
0082 For an examined and golden function pair, f, and g, 
a diff-set characterizes a set of input assignments for which 
the functions f, and g, have opposite values and is defined as 
follows: 

I0083. The functional ECO engine minimizes the diff-set 
for every function pair by adding patch logics/circuits incre 
mentally until all diff-sets are empty, which indicates that the 
examined function and golden function are equivalent and 
the HT is eliminated. In an example embodiment, a patch 
logic is inserted into the circuit to minimize the diff-set. 
I0084. For example, for an internal signal r within the 
circuit where the patch logic is to be inserted, assume 
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function of r is t(X), and a PO (PO, driven by r whose 
function is f.), f(X.r) is expressed in terms X and r, then the 
care-set for r is defined as follows: 

0085. A care-set characterizes a set of input assignments 
for which any change at signal r can be observed at the 
output function n. In an example embodiment, the care-set 
overlaps with the diff-set and is divided into two partitions: 

I0086 (i) care-out-diff including Boolean expression 
resulting in 1 for the output (min-terms) in the care-set 
but not in the diff-set, care, A - diff; and 

I0087 (ii) care-in-diff: including min-terms in both the 
care-set and diff-set, care. A diff. 

0088. By way of example, changing values of the min 
terms in the care-Out-diff changes value off, and enlarges the 
diff-set. Hence, the min-terms in the function t is preserved 
and the following constraint is satisfied by the patch function 
p(X): 

p(x)=f(X) A care, (X) A diff(x) (6) 
0089. On the other hand, in order to minimize the diff-set, 

t’s min-terms inside the care-in-diff is evaluated to the 
opposite values: 

p(X), tCX) A care, (X) A diff(x) (7) 
0090. Therefore, if p(X) and diff-set satisfy the following 
condition, 

p(X), tCX) A diff;(x) (8) 

which implies that 

care, (X) diff(X) (9) 

then p(X) completely empties diff(X) and accomplishes the 
golden function g, 
0091 Specifically, for example, when r=PO, care, (X) 
diff(X) is always satisfied, which implies that a patch 

function can be found that satisfies constraint Equation (8), 
which completely empties diff (X) and accomplishes golden 
function g, (e.g., g, is directly used as a patch function). 
0092 FIGS. 8A-8B show graphs illustrating patch func 
tion creation in accordance with an example embodiment. 
FIG. 8A shows a graph 810 before patching. The graph 810 
includes a care-set 812 and a diff-set 814 that have an 
overlap 816 (i.e. care-in-diff). The care-set 812 with the 
care-in-diff 816 excluded is care-out-diff. FIG. 8B shows a 
graph 820 after patching. The graph 820 includes a diff-set 
824 that is smaller than the diff-set 814. The diff-set is 
reduced in size after generation of a patch. 
0093. By way of example, constraints Equation (6-8) are 
considered when creating patch or patch functions. If the 
signal r only drives a single output, the corresponding patch 
function must satisfy both Equation (6) and Equation (7). In 
an example embodiment, to enhance possibility of creating 
an effective patch while avoiding exhaustive searches, the 
patch is one of conservative patch and aggressive patch. 
0094 FIGS.9A-9B show graphs illustrating conservative 
patch in accordance with an example embodiment. FIG. 9A 
shows a graph 910 illustrating conservative patch creation 
before pathing. FIG. 9B shows a graph 920 illustrating 
conservative patch creation after pathing. 
0095. In the conservative patch or strategy, a patch at 
signal r guarantees that no diff-set of the Primary Out (PO) 
is worsened. Thus constraint Equation (6) is satisfied for all 
POs. By way of example, a subset of POS is selected from 
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the PO set {PO, PO,..., PO}. The subset {PO, PO, 
, PO,} is called an improved PO set. A created patch at 

r cuts down the diff-set of POs in the improved PO set. In 
other words, for each PO in this set, constraint Equation (7) 
is satisfied. 
(0096. By way of example, the selection of POs and the 
size of the improved PO set is adjusted dynamically as the 
logic patching proceeds. The smaller the improved PO set 
size is, the easier to create a satisfying patch. 
(0097. As shown in FIGS. 9A-9B, a conservative patch is 
created at an internal signal driving two primary outputs. 
The diff-sets of both outputs are minimized as shown. 
0.098 FIGS. 10A-10B show graphs illustrating aggres 
sive patch in accordance with an example embodiment. FIG. 
10A shows a graph 1010 illustrating aggressive patch cre 
ation before pathing. FIG. 10B shows a graph 1020 illus 
trating aggressive patch creation after pathing. 
(0099. By way of example, diff-sets of some POs are 
improved while diff-sets of some other POs are ignored. In 
an example, a PO set is divided into three subsets: 

0.100 (i) Ignored Set: POs in the set is not considered 
during a patching process, and in an example embodi 
ment, diff-sets of such POs become worse after patch 
1ng. 

0101 (ii) No Change Set: diff-sets of POs in this set do 
not become worse. In an example embodiment, diff 
sets of POs in this set do not improve either. Constraint 
Equation (6) is satisfied for every PO in this set. The 
POS that have been fixed in previous iterations (e.g. 
their diff-sets are already empty) are assigned to this 
set, to Such that they do not become unfixed again. 

0102 (iii) Improved Set: diff-sets of POs in this set are 
improved by a created patch. Both constraints Equation 
(6) and Equation (7) are satisfied. Furthermore, for at 
least one PO in this set, constraint Equation (8) is 
satisfied, which implies that the patch created is able to 
fix at least one PO completely. 

(0103 As shown in FIGS. 10A-10B, the diff-set of ol can 
be completely eliminated while the diff-set of o2 is enlarged. 
0104. In an example embodiment, example methods 
include improving efficiency of locating the HT in a netlist 
with a functional-Engineering Change Order (ECO) engine. 
As an example, a conservative patch candidate and an 
aggressive patch candidate are generated, and then a patch 
candidate with a smaller size between the conservative patch 
candidate and the aggressive patch candidate is chosen or 
selected as a real patch. 
0105. In some example embodiments, a patch is 
improved by optimizing the patch with logic rewiring treat 
ment to minimize size of the patch, which have many 
benefits such as helping reduce timing perturbation for a 
target circuit or chip. As an example, a patch optimization 
process or treatment includes an Add-First rewiring trans 
formation and a Cut-First rewiring transformation. 
0106 FIGS. 11A-11B show graphs illustrating an Add 
First rewiring transformation in accordance with an example 
embodiment. The graph 1110 in FIG. 11A shows a patch 
before an Add-First rewiring transformation, and the graph 
1120 in FIG. 11B shows a patch after an Add-First rewiring 
transformation. 
0107 As shown, for Add-First rewiring transformation, a 
wire or redundant wire 1112 is added into a patch circuit first 
(e.g. a wire from g5 to g9 in the figure). Then several wires 
and consequentially several gates (e.g. g4. g6, and g7) 
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become redundant and are thus removable or can be 
removed as shown in FIG. 11B. As shown, the optimized 
patch is minimized with reduced size. The detail implemen 
tation of the rewiring transformation is described in paper 
“Combinational and Sequential Logic Optimization by 
Redundancy Addition and Removal written by L. A. 
Entrena and K.-T. Cheng, published in IEEE transaction on 
Computer-Aided Design on 1995. 
0108 FIGS. 12A-12B show graphs illustrating a Cut 
First rewiring transformation in accordance with an example 
embodiment. The graph 1210 in FIG. 12A shows a patch 
before a Cut-First rewiring transformation, and the graph 
1220 in FIG. 12B shows a patch after a Cut-First rewiring 
transformation. 
0109 As shown, a wire from b to g6 is removed first, 
which causes observable errors propagating from g6 to o2. 
By an error cancellation analysis, all errors are correctable 
by adding additional logics at g8 and g9. The corrected patch 
requires fewer gates and wires as shown in FIG. 12B. The 
implementation of Cut-First rewiring transformation is 
described in paper “ECR: a low complexity generalized 
error cancellation rewiring scheme', written by Xiao Qing 
Yang, Tak-Kei Lam and Yu-Liang Wu, published in Pro 
ceedings of the 47th Design Automation Conference on 
2010. 
0110. By way of example, for a serial of Internet of 
Things (IoT) chips with a few minor differences to be 
designed, given that each chip requires 3 months to complete 
a P&R process, existing methods requires 3+3–6 months to 
complete design of two chips. In contrast, example methods 
in accordance with Some example embodiments complete 
the same task in in 3 months--10 minutes. 
0111 FIG. 13 shows a table illustrating characteristics of 
benchmarks in accordance with an example embodiment. In 
the table 1300, in the column of “Style”, B represents Booth 
multiplier, and NB represents Non-Booth multiplier. As 
shown, besides multiplication, some more complicated 
arithmetic functions (see the column of “Extracted arithmet 
ics’ in the table 1300) also exist in the benchmarks. 
0112. In the table 1300, the first column is the name of a 
case suite. Each suite includes 13 benchmarks which imple 
ment similar arithmetic functions but with different oper 
ands' bitwidths. Example extracted arithmetic logics as well 
as their design styles (in Booth or in Non-Booth) and 
operands' bit-widths are shown at columns 3-5. Example 
methods extract most (97%) of the benchmarks with only 
suites ut36 and hid 10 failed. With the arithmetic logics 
Successfully extracted, example formal verification tech 
niques such as example SAT solvers are employed or called 
for the extracted circuits to detect presence of one or more 
HTS. 

0113. By way of example, each of these benchmarks is a 
gate-level (GTL) combinational circuit including arithmetic 
logics. Example reverse engineering techniques are applied 
to locate the arithmetic logics from flatten circuits (like “sea 
of gates') without knowing of the component input/output 
(I/O) and boundaries. The table 1300 shows that the formu 
lae are successfully extracted with example methods. 
0114 FIG. 14 shows a table illustrating example methods 
in accordance with an example embodiment. 
0115. In the table 1400, the first three columns show 
benchmark information. Each benchmark has two circuits 
g1 and g2, which have logic differences. As an example, g1 
is a HT-tampered or examined circuit and g2 is the golden 
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or correct circuit. The next 2 columns show patch size in 
gates and runtime with example methods or schemes. Last 
2 columns show the patch size in gates and runtime using 
two example methods (i.e. Example method 1 and Example 
method 2). As shown, example methods generate patches 
40% smaller with central processing unit (CPU) time 
reduced by 86%. 
0116 FIG. 15 shows a computer system or electronic 
system in accordance with an example embodiment. The 
computer system 1500 includes one or more computers or 
electronic devices (such as one or more servers) 1510 that 
includes a processor or processing unit 1512 (Such as one or 
more processors, microprocessors, and/or microcontrollers), 
one or more components of computer readable medium 
(CRM) or memory 1514, and a circuit security enhancer 
1518. 
0117 The memory 1514 stores instructions that when 
executed cause the processor 1512 to execute a method 
discussed herein and/or one or more blocks discussed 
herein. The circuit security enhancer 1518 is example of 
specialized hardware and/or Software that assist in improv 
ing performance of a computer and/or execution of a method 
discussed herein and/or one or more blocks discussed 
herein. Example functions of a circuit security enhancer are 
discussed in connection with FIG. 3. 
0118. In an example embodiment, the computer system 
1500 includes a storage or memory 1530, a portable elec 
tronic device or PED 1540 in communication over one or 
more networks 1520. 
0119 The storage 1530 can include one or more of 
memory or databases that store one or more of image files, 
audio files, video files, Software applications, and other 
information discussed herein. By way of example, the 
storage 1530 store image, instructions or software applica 
tion that are retrieved by the server 1510 over the network 
1520 such that a method discussed herein and/or one or more 
blocks discussed herein are executed. 
0.120. The PED 1540 includes a processor or processing 
unit 1542 (Such as one or more processors, microprocessors, 
and/or microcontrollers), one or more components of com 
puter readable medium (CRM) or memory 1544, one or 
more displays 1546, and a circuit security enhancer 1548. 
0121. The PED 1540 can execute a method discussed 
herein and/or one or more blocks discussed herein and 
display an image or a file (such as a netlist) for review. 
Alternatively or additionally, the PED1540 can retrieve files 
Such as images and files and Software instructions from the 
storage 1530 over the network 1520 and execute a method 
discussed herein and/or one or more blocks discussed 
herein. 
I0122. In an example embodiment, the computer system 
1500 includes a PED 1550 that includes a processor or 
processing unit 1552 (Such as one or more processors, 
microprocessors, and/or microcontrollers), one or more 
components of computer readable medium (CRM) or 
memory 1554, and one or more displays 1556. 
(0123. By way of example, the PED 1550 communicates 
with the server 1510 and/or the storage 1530 over the 
network 1520 such that a method discussed herein and/or 
one or more blocks discussed herein is executed either by the 
server 1510 and results are sent back to the PED 1550 for 
output, storage and review. 
0.124. The network 1520 can include one or more of a 
cellular network, a public switch telephone network, the 
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Internet, a local area network (LAN), a wide area network 
(WAN), a metropolitan area network (MAN), a personal 
area network (PAN), home area network (HAM), and other 
public and/or private networks. Additionally, the electronic 
devices need not communicate with each other through a 
network. As one example, electronic devices can couple 
together via one or more wires. Such as a direct wired 
connection. As another example, electronic devices can 
communicate directly through a wireless protocol, Such as 
Bluetooth, near field communication (NFC), or other wire 
less communication protocol. 
0.125. In some example embodiments, the methods illus 
trated herein and data and instructions associated therewith, 
are stored in respective storage devices that are implemented 
as non-transitory computer-readable and/or machine-read 
able storage media, physical or tangible media, and/or 
non-transitory storage media. These storage media include 
different forms of memory including semiconductor 
memory devices such as DRAM, or SRAM, Erasable and 
Programmable Read-Only Memories (EPROMs), Electri 
cally Erasable and Programmable Read-Only Memories 
(EEPROMs) and flash memories; magnetic disks such as 
fixed and removable disks; other magnetic media including 
tape; optical media Such as Compact Disks (CDS) or Digital 
Versatile Disks (DVDs). Note that the instructions of the 
Software discussed above can be provided on computer 
readable or machine-readable storage medium, or alterna 
tively, can be provided on multiple computer-readable or 
machine-readable storage media distributed in a large sys 
tem having possibly plural nodes. Such computer-readable 
or machine-readable medium or media is (are) considered to 
be part of an article (or article of manufacture). An article or 
article of manufacture can refer to a manufactured single 
component or multiple components. 
0126 Blocks and/or methods discussed herein can be 
executed a processor, controller, and other hardware dis 
cussed herein. Furthermore, blocks and/or methods dis 
cussed herein can be executed automatically with or without 
instruction from a user. 

0127. The methods in accordance with example embodi 
ments are provided as examples, and examples from one 
method should not be construed to limit examples from 
another method. Figures and other information show 
example data and example structures; other data and other 
database structures can be implemented with example 
embodiments. Further, methods discussed within different 
figures can be added to or exchanged with methods in other 
figures. Further yet, specific numerical data values (such as 
specific quantities, numbers, categories, etc.) or other spe 
cific information should be interpreted as illustrative for 
discussing example embodiments. Such specific information 
is not provided to limit example embodiments. 
0128. As used herein, the term “hardware Trojan' (HT) 
refers to an unauthorized or unintended alteration, modifi 
cation, insertion, implantation or inclusion to a circuit. For 
example, a HT causes malfunction, reduced reliability, con 
fidential information leakage, etc. or combination thereof. 
0129. As used herein, the term “arithmetic circuit” refers 
to a circuit in which one or more parts of the circuit are used 
to accomplish arithmetic operations such as addition, Sub 
traction, multiplication and any other arithmetic operations. 
0130. As used herein, the term “netlist” lists the connec 
tivity between logic gates forming a circuit. 
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0.131. As used herein, the term “macro” or "arithmetic 
macro' refers to a number of logic primitives or standard 
cells which compose a component in a circuit (e.g. an IC) 
such as adders, multipliers, multiplexers (MUX) or a for 
mula Such as (A+8)XC, etc. 
(0132. As used herein, the term “sub circuit” refers to term 
"macro” and these two terms can be used interchangeably. 
0.133 As used herein, the term “2-input exclusive-or 
(XOR) sub circuit” refers to a sub circuit which has 2 input 
signals and 1 output signal. The functionality of the output 
signal is the exclusive or function of two input signals. 
0134. As used herein, the term “XOR tree' refers to a sub 
circuit which is composed of one or more 2-input XOR sub 
circuits and their connections. 
0135. As used herein, the term “1-bit adder refers to 
1-bit half adder and/or 1-bit full adder. 
0.136. As used herein, the term “1-bit half adder” refers to 
an arithmetic macro which has 2 inputs (e.g. a and b) and 2 
outputs (e.g. sum and co). “co' can be also called carry or 
carry out. The functionality of sum is “exclusive or func 
tion of a and b; the functionality of co is “and” function of 
a and b. 
0.137 As used herein, the term “1-bit full adder refers to 
an arithmetic macro which has 3 inputs (e.g. a, b, and c) and 
2 outputs (e.g. sum and co). “co' can be also called carry or 
carry out. The functionality of sum is “exclusive or func 
tion of a, b and c; the functionality of co is “majority” 
function of a, b and c. 
0.138. As used herein, the term “1-bit adder graph” refers 
to a sub circuit which is composed of one or more 1-bit 
adders and their connections. 
0.139. As used herein, the term “XOR forest” refers to the 
term “1-bit adder graph” and these two terms can be used 
interchangeably. 
0140. As used herein, the term “reverse engineering 
(RE) refers to the process to extract arithmetic macros from 
a circuit. An RE process comprises identifying 2-input 
exclusive-or (XOR) sub circuits, XOR trees, 1-bit adders, 
1-bit adder graphs, and arithmetic macros. 
0.141. As used herein, the term “exponential time' refers 
to running time for an algorithm or a method is upper 
bounded by 2”", where poly(n) is some polynomial in n, 
wherein n is size of the input for the algorithm. 
0142. As used herein, the term “polynomial time' refers 
to running time for an algorithm or a method is upper 
bounded by a polynomial expression in the size of the input 
for the algorithm. 
0.143 As used herein, the term “linear time' refers to 
running time for an algorithm or a method increases linearly 
with the size of the input for the algorithm. 
What is claimed is: 
1. A method executed by a computer system to detect, 

locate, and mask a functional hardware Trojan (HT) in an 
arithmetic circuit to improve circuit security, the method 
comprising: 

providing a first netlist of the arithmetic circuit; 
providing a second netlist of the arithmetic circuit, 

wherein the second netlist is HT tampered; 
extracting, by the computer system, arithmetic macros 

from the first netlist to obtain a first plurality of 
arithmetic macros; 

extracting, by the computer system, arithmetic macros 
from the second netlist to obtain a second plurality of 
arithmetic macros; 
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detecting, by the computer system, the HT by comparing 
the first plurality of arithmetic macros with the second 
plurality of arithmetic macros; 

locating, by the computer system and with a functional 
Engineering Change Order (ECO) engine, the HT in the 
second netlist; and 

improving, by the computer system and with the func 
tional-ECO engine, security of the arithmetic circuit by 
masking the HT with addition of a patch in the second 
netlist to obtain a patched netlist. 

2. The method of claim 1, wherein the first netlist is a 
gate-level (GTL) netlist that is synthesized from a register 
transfer level (RTL) specification of the arithmetic circuit. 

3. The method of claim 1, further comprises, for each of 
the first netlist and the second netlist of the arithmetic 
circuit: 

identifying, by the computer system, a plurality of 2-input 
exclusive-or (XOR) sub-circuits; 

building, by the computer system and based on that an 
output of one XOR sub circuit is an input of another 
XOR sub circuit, a plurality of XOR trees; 

determining, by the computer system, carry out signals of 
1-bit adders and 1-bit adders from the plurality of XOR 
trees; 

building, by the computer system and connecting the 
plurality of 1-bit adders, 1-bit adder graph; and 

determining, by the computer system, arithmetic func 
tions and arithmetic boundaries for each of the one or 
more 1-bit adder graph such that a plurality of arith 
metic macros are extracted. 

4. The method of claim 1, wherein the first plurality of 
arithmetic macros consist of part A1 and part B1, and the 
second plurality of arithmetic macros consist of part A2 and 
part B2, and wherein part A1 and part A2 are functionally 
equivalent, and part B1 and part B2 are functionally non 
equivalent, 

wherein the method further comprises: 
trimming out, by the computer system, part A2 from the 

second plurality of arithmetic macros such that the 
HT is determined to be located in part B2 of the 
second plurality of arithmetic macros. 

5. The method of claim 1, wherein the patch is one of 
conservative patch and aggressive patch. 

6. The method of claim 1, further comprises: 
improving, by the computer system, the patch by opti 

mizing the patch with logic rewiring treatment to 
minimize size of the patch. 

7. The method of claim 1, further comprises patch opti 
mization executed by the computer system to minimize size 
of the patch, wherein the patch optimization includes an 
Add-First rewiring transformation and a Cut-First rewiring 
transformation. 

8. The method of claim 1, further comprising: 
optimizing, by the computer system and with an Add-First 

rewiring transformation and a Cut-First rewiring trans 
formation, the patch to reduce size of the patch, 

wherein the Add-First rewiring transformation includes 
adding a redundant wire into the patch Such that one or 
more wires and one or more gates in the patch become 
redundant and removable; and 

wherein the Cut-First rewiring transformation includes 
removing a wire from the patch to generate an error 
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followed by an error correction with one or more logics 
added such that a resultant patch is generated with 
fewer gates and wires. 

9. A computer system that detects, locates, and masks a 
hardware Trojan (HT) in an arithmetic circuit to improve 
circuit security, wherein the arithmetic circuit has a first 
netlist and a second netlist, and the second netlist is HT 
tampered, the computer system comprising: 

a processor; 
a non-transitory computer-readable medium having 

stored therein instructions that when executed cause the 
processor to: 
extract arithmetic macros from the first netlist to obtain 

a first plurality of arithmetic macros; 
extract arithmetic macros from the second netlist to 

obtain a second plurality of arithmetic macros; 
detect the HT by comparing the first plurality of arith 

metic macros with the second plurality of arithmetic 
macroS, 

locate the HT in the second netlist with a functional 
Engineering Change Order (ECO) engine; and 

improve security of the arithmetic circuit by masking 
the HT with addition of a patch in the second netlist 
to obtain a patched netlist such that the HT does no 
harm to the arithmetic circuit. 

10. The computer system of claim 9, wherein the instruc 
tions when executed further cause the processor to: 

Identify a plurality of 2-input exclusive-or (XOR) sub 
circuits; 

build, based on that an output of one XOR operation is an 
input of another XOR operation, a plurality of XOR 
trees; 

determine carry out signals of 1-bit adders and 1-bit 
adders from the plurality of XOR trees; 

build, based on the plurality of XOR trees, 1-bit adder 
graphs; and 

determine arithmetic functions and arithmetic boundaries 
for each 1-bit adder graph such that a plurality of 
arithmetic macros are extracted. 

11. The computer system of claim 9, wherein the first 
plurality of arithmetic macros consist of part A1 and part B1, 
and the second plurality of arithmetic macros consist of part 
A2 and part B2, and wherein part A1 and part A2 are 
functionally equivalent, and part B1 and part B2 are func 
tionally non-equivalent, 

wherein the instructions when executed further cause the 
processor to: 
trim out part A2 from the second plurality of arithmetic 

macros such that the HT is determined to be located 
in part B2 of the second plurality of arithmetic 
aCOS. 

12. The computer system of claim 9, wherein the patch is 
one of conservative patch and aggressive patch. 

13. The computer system of claim 9, wherein the instruc 
tions when executed further cause the processor to: 

improve the patch by optimizing the patch with logic 
rewiring treatment to minimize size of the patch. 

14. The computer system of claim 9, wherein the instruc 
tions when executed further cause the processor to perform 
patch optimization to minimize size of the patch, wherein 
the patch optimization includes an Add-First rewiring trans 
formation and a Cut-First rewiring transformation. 

15. The computer system of claim 9, wherein the instruc 
tions when executed further cause the processor to: 
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optimize the patch with an Add-First rewiring transfor 
mation and a Cut-First rewiring transformation to 
reduce size of the patch, 

wherein the Add-First rewiring transformation includes 
adding a redundant wire into the patch Such that one or 
more wires and one or more gates in the patch become 
redundant and removable; and 

wherein the Cut-First rewiring transformation includes 
removing a wire from the patch to generate an error 
followed by an error correction with one or more logics 
added Such that a resultant patch is generated with 
fewer gates and wires. 

16. A computer-implemented method that improves per 
formance of a computer system to detect, locate, and mask 
a hardware Trojan (HT) in an arithmetic circuit, the method 
comprising: 

receiving, by the computer system, a first netlist of the 
arithmetic circuit; 

receiving, by the computer system, a second netlist of the 
arithmetic circuit, wherein the second netlist is HT 
tampered; 

extracting, by the computer system, arithmetic macros 
from the first netlist to obtain a first plurality of 
arithmetic macros; 

extracting, by the computer system, arithmetic macros 
from the second netlist to obtain a second plurality of 
arithmetic macros; 

improving performance of the computer system by reduc 
ing resource usage of the computer system by trimming 
out a first part from the second plurality of arithmetic 
macros that has counterpart in the first plurality of 
arithmetic macros that performs same function Such 
that the HT is detected to be located in a second part of 
the second plurality of arithmetic macros that has no 
counterpart in the first plurality of arithmetic macros 
that performs same function; 

locating, by the computer system, the HT in the second 
netlist; and 

improving, by the computer system, security of the arith 
metic circuit by masking the HT with addition of a 
patch in the second netlist to obtain a patched netlist. 
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17. The method of claim 16, further comprises improving 
performance of the computer system by improving extrac 
tion of arithmetic macros that comprises, for each of the first 
netlist and the second netlist of the arithmetic circuit: 

determining, by the computer system, a plurality of 2-in 
put exclusive-or (XOR) sub-circuits; 

building, by the computer system and based on that an 
output of one XOR operation is an input of another 
XOR operation, a plurality of XOR trees; 

identifying, by the computer system, carry out signals of 
1-bit adders and 1-bit adders from the plurality of XOR 
trees; 

building, by the computer system, 1-bit adder graphs by 
connecting the plurality of XOR trees; and 

determining, by the computer system, arithmetic func 
tions and arithmetic boundaries for each of the one or 
more 1-bit adder graphs such that a plurality of arith 
metic macros are extracted. 

18. The method of claim 16, further comprises improving 
performance of the computer system by improving effi 
ciency of locating the HT in the second netlist with a 
functional-Engineering Change Order (ECO) engine that 
comprises: 

generating, by the computer system, a conservative patch 
candidate; 

generating, by the computer system, an aggressive patch 
candidate; 

choose, by the computer system, a patch candidate with a 
Smaller size between conservative and aggressive patch 
candidate as a real patch. 

19. The method of claim 16, further comprises: 
improving, by the computer system, the patch by mini 

mizing size of the patch with logic rewiring treatment. 
20. The method of claim 16, further comprises: 
improving, by the computer system, patch optimization 

executed by the computer system by minimizing size of 
the patch, wherein the patch optimization includes an 
Add-First rewiring transformation and a Cut-First 
rewiring transformation. 
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