
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0213026 A1

US 20170213026A1

WU et al. (43) Pub. Date: Jul. 27, 2017

(54) METHODS AND APPARATUS FOR G06F2L/82 (2006.01)
AUTOMATIC DETECTION AND G06F 7/50 (2006.01)
ELMINATION OF FUNCTIONAL (52) U.S. Cl.
HARDWARE TROUANS IN IC DESIGNS CPC G06F 21/554 (2013.01); G06F 17/505

(2013.01); G06F 2 1/568 (2013.01); G06F
(71) Applicant: Yu-Liang Wu, Hong Kong (CN) 21/82 (2013.01); G06F 222 1/034 (2013.01)

(72) Inventors: Yu-Liang WU, Hong Kong (CN); Xing
WEI, Hong Kong (CN); Yi DIAO, (57) ABSTRACT
Hong Kong (CN) A method detects, locates, and masks a hardware Trojan

(HT) in an arithmetic circuit to improve circuit security. The
(21) Appl. No.: 15/405,329 method provides a first netlist and a second netlist of the

1-1. arithmetic circuit, uses reverse engineering to extract 2-input
(22) Filed: Jan. 13, 2017 XOR sub circuits, XOR trees, 1-bit adders, 1-bit adder

Related U.S. Application Data graphs and arithmetic macros from the first netlist and the
second netlist to obtain a first plurality of arithmetic macros

(60) Provisional application No. 62/281,738, filed on Jan. and a second plurality of arithmetic macros, detects the HT
22, 2016. by comparing the first plurality of arithmetic macros with

O O the second plurality of arithmetic macros with functional
Publication Classification ECO engine, locates the HT in the second netlist, and

(51) Int. Cl. improves security of the arithmetic circuit by masking the
G06F 2/55 (2006.01) HT with addition of a patch in the second netlist to obtain a
G06F 2/56 (2006.01) patched netlist.

100

Customer
110

Design house
120

RTL-level Circuit
122

Gate-level circuit
124

Circuit-level Circuit
126

Patent Application Publication

Customer
110

Jul. 27, 2017. Sheet 1 of 16

Design house
120

RTL-level Circuit
122

Gate-level Circuit
124

Circuit-level Circuit
126

Figure 1

US 2017/0213026 A1

Patent Application Publication Jul. 27, 2017 Sheet 2 of 16 US 2017/0213026 A1

210 N

214

Out

Figure 2A

220 N

224

223

Out

Figure 2B

Patent Application Publication Jul. 27, 2017 Sheet 3 of 16 US 2017/0213026 A1

230 N
232 in 7:0

234

Figure 2C

240 N

118-AND logic
and g1 (W1, in O), in 1); and g2 (W2, W1, in2));
and g3 (W3, W2, in3), and g4 (W4, W3, in4),
and g5 (W5, W4, in5), and g6 (W6, W5, in6),
and g7 (w7, w8, in 7),
l6-XOR logic-------------------------------------
xorg11 (W11, in O), in 1)), Xor g12 (W12, W11, in2)); 242
xor g13 (w13, W12, in3); xorg14 (w14, w13, in 4)),
XOrg15 (w15, w14, in5); xorg16 (w16, w15, in 6));
xOrg17 (W17 W16.in/l).........................
//MUX2TO1
not gnot (WSnot,s) 244
and g8 (ws1, s, W7), and g9 (ws0, WSnot, W17);
Org10 (Out WS1 WSO)

Figure 2D

Patent Application Publication Jul. 27, 2017 Sheet 4 of 16 US 2017/0213026 A1

300

Providing a first netlist of an arithmetic circuit
302

Providing a second netlist of the arithmetic circuit
304

Extracting arithmetic macros from the first netlist to obtain a
first plurality of arithmetic macros

306

Extracting arithmetic macros from the second netlist to obtain
a second plurality of arithmetic macros

3O8

Detecting a hardware Trojan (HT) by comparing the first
plurality of arithmetic macros with the second plurality of
arithmetic maCrOS

31 O

Locating, with a functional-Engineering Change Order (ECO)
engine, the HT in the second netlist

312

Improving security of the arithmetic circuit by masking the HT
with addition of a patch in the second netlist to obtain a
patched netlist with the ECO engine

314

Figure 3

Patent Application Publication Jul. 27, 2017 Sheet 5 of 16 US 2017/0213026 A1

420 N

Figure 4B

Patent Application Publication Jul. 27, 2017 Sheet 6 of 16 US 2017/0213026 A1

Figure 5

600

Algorithm. Procedure of identifying 1-bit adder graph
Input gate-level circuit
Output identified arithmetic macros
1 begin

Identify 2-input XOR sub circuits
Build XOR trees;
ldentify carry signals based on XOR trees
ldentify 1-bit adder sub circuits
Build 1-bit adder graph
Determine functionality of 1-bit adder graph

Figure 6

Patent Application Publication Jul. 27, 2017 Sheet 7 of 16 US 2017/0213026 A1

710

Figure 7A

720 N

Figure 7B

Patent Application Publication Jul. 27, 2017 Sheet 8 of 16 US 2017/0213026 A1

730 N

Figure 7C

Patent Application Publication Jul. 27, 2017 Sheet 9 of 16 US 2017/0213026 A1

810-N
816 Input vector

Figure 8A

820-N
Input vector

Diff
824

Figure 8B

US 2017/0213026 A1 Jul. 27, 2017. Sheet 10 of 16 Patent Application Publication

Figure 9A

Figure 9B

US 2017/0213026 A1 Jul. 27, 2017. Sheet 11 of 16 Patent Application Publication

Figure 10A

Figure 10B

Patent Application Publication Jul. 27, 2017. Sheet 12 of 16 US 2017/0213026 A1

Figure 11A

Figure 11B

Patent Application Publication Jul. 27, 2017. Sheet 13 of 16 US 2017/0213026 A1

Figure 12B

Patent Application Publication Jul. 27, 2017. Sheet 14 of 16 US 2017/0213026 A1

1300

Extracted arithmetics Width

1 NB 6-8 AxC+BXC,
Ut 280-1261 (A+B)xC

Ut2 1197-1994 AXB

2727a-4226 AxB

1025-2261 (s&(AxB))(s&(CxD))
474-2301 AXB

1061-2308 AxB

697-2385 AXB

14O2a-3442 AxB

851 a 3O23 AXB

584a226OO

564-10383

711-248O AxB

2855-25489 NO arithmetic macro

1103-5463 AXB

563a-2452O AXB

462-8672 A+B+C.

789-5262 AXB

479-5127 AxB

697-2385 AXB

712a-2773 AXB

1OO4a3327 AXB

18911~61496. No arithmetic macro

1157-21467

588 a 22629

Figure 13

Patent Application Publication Jul. 27, 2017. Sheet 15 of 16 US 2017/0213026 A1

1400 N.

case at a For AERT Case C1 #C2 iFOatch Time (Sec) ifoatch Time (Sec
54 51 O O O O
54 51 O O

14
17
15

10 38
18 32
108 245
1 4.
10 34
9 17
18 27
75 19
10
35 129
3 96
54 111
55 55
65 Fail
53 117

8
Fail
6

22 28

Ratio 61% 14% 1 1

Figure 14

Patent Application Publication Jul. 27, 2017. Sheet 16 of 16 US 2017/0213026 A1

Server 1510

PrOCeSSOr Memory
1512 1514

Circuit Security Enhancer 1518

PED 1550

C D PrOCeSSOr
1552

Storage Network(s)
1530 152O Memory

1554

Display
1556

Portable Electronic Device (PED)
1540

Processor Memory Display
1542 1544 1546

Circuit Security Enhancer
1548

Figure 15

US 2017/0213026 A1

METHODS AND APPARATUS FOR
AUTOMATIC DETECTION AND
ELMINATION OF FUNCTIONAL

HARDWARE TROUANS IN C DESIGNS

CLAIM OF BENEFIT TO PRIORAPPLICATION

0001. This application claims benefit to U.S. Provisional
Patent Application 62/281,738, entitled “To Detect, Locate,
and Mask Hardware Trojans in Digital Circuits', filed on
Jan. 22, 2016, the content of which is incorporated herein by
reference in its entirety.

FIELD OF THE INVENTION

0002 The present invention generally relates to circuits,
and more particularly to methods and apparatus that improve
circuit security.

BACKGROUND

0003 Modern circuits (such as integrated circuits (ICs))
are enormously complicated. For example, an average desk
top computer chip can have over 1 billion transistors. Due to
the complexity and high cost, IC design is often outsourced
to a third party that completes the circuit design by using
hardware that incorporates software (such as Electronic
design automation (EDA) or Computer Aided Design
(CAD) tools). Such outsourcing provides opportunities for
attackers to take over the designed IC by introducing mali
cious alterations or hardware Trojans (HTS), which causes
serious security concerns especially for security-critical
applications such as military applications. A HT can cause
malfunction for a circuit into which the HT is embedded or
destroy a system incorporating such circuit, lower circuit
reliability and leak confidential information.
0004 New methods and apparatus that assist in advanc
ing technological and security needs and industrial applica
tions in circuit technology, IC design, Verification, and
fabrication processes are desirable.

SUMMARY OF THE INVENTION

0005 One example embodiment provides a method to
detect, locate, and mask a functional hardware Trojan (HT)
in an arithmetic circuit to improve circuit security over
conventional methods. The method provides a first netlist
and a second netlist of the arithmetic circuit, extracts arith
metic macros from the first netlist and the second netlist to
obtain a first plurality of arithmetic macros and a second
plurality of arithmetic macros, detects the HT by comparing
the first plurality of arithmetic macros with the second
plurality of arithmetic macros, locates the HT in the second
netlist, and improves security of the arithmetic circuit by
masking the HT with addition of a patch in the second netlist
to obtain a patched netlist.
0006. Other example embodiments are discussed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 shows a graph illustrating a scenario of
hardware Trojan (HT) implantation during a circuit design
process in accordance with an example embodiment.
0008 FIG. 2A shows a graph illustrating a gate-level
(GTL) circuit in accordance with an example embodiment.

Jul. 27, 2017

0009 FIG. 2B shows a graph illustrating an HT injection
in a GTL circuit in accordance with an example embodi
ment.
0010 FIG. 2C shows a graph illustrating a patched GTL
circuit in accordance with an example embodiment.
0011 FIG. 2D shows a graph illustrating a HT diagnostic
report in accordance with an example embodiment.
0012 FIG. 3 shows a flow diagram illustrating an
example method in accordance with an example embodi
ment.

0013 FIG. 4A shows a graph illustrating a multiplier in
accordance with an example embodiment.
0014 FIG. 4B shows a graph illustrating a multiplier in
accordance with an example embodiment.
0015 FIG. 5 shows construction of an XOR forest in
accordance with an example embodiment.
0016 FIG. 6 shows a table illustrating example reverse
engineering in accordance with an example embodiment.
0017 FIG. 7A shows a graph illustrating an examined
netlist in accordance with an example embodiment.
0018 FIG. 7B shows a graph illustrating a golden netlist
in accordance with an example embodiment.
0019 FIG. 7C shows a graph illustrating a trimmed
netlist in accordance with an example embodiment.
0020 FIG. 8A shows a graph illustrating patch creation
before patching in accordance with an example embodi
ment.

0021 FIG. 8B shows a graph illustrating patch creation
after patching in accordance with an example embodiment.
0022 FIG. 9A shows a graph illustrating conservative
patch creation before patching in accordance with an
example embodiment.
0023 FIG. 9B shows a graph illustrating conservative
patch creation after patching in accordance with an example
embodiment.
0024 FIG. 10A shows a graph illustrating aggressive
patch creation before patching in accordance with an
example embodiment.
0025 FIG. 10B shows a graph illustrating aggressive
patch creation after patching in accordance with an example
embodiment.
0026 FIG. 11A shows a graph illustrating a patch before
an Add-First rewiring transformation in accordance with an
example embodiment.
0027 FIG. 11B shows a graph illustrating a patch after an
Add-First rewiring transformation in accordance with an
example embodiment.
0028 FIG. 12A shows a graph illustrating a patch before
a Cut-First rewiring transformation in accordance with an
example embodiment.
0029 FIG. 12B shows a graph illustrating a patch after a
Cut-First rewiring transformation in accordance with an
example embodiment.
0030 FIG. 13 shows a table illustrating characteristics of
benchmarks in accordance with an example embodiment.
0031 FIG. 14 shows a table illustrating example methods
in accordance with an example embodiment.
0032 FIG. 15 shows a computer system in accordance
with an example embodiment.

DETAILED DESCRIPTION

0033 Example embodiments relate to methods and appa
ratus that improve circuit security.

US 2017/0213026 A1

0034. Circuit (such as integrated circuits (ICs)) or chip
design and fabrication are enormously complicated. A mod
ern IC typically includes millions of miniscule electronic
components, such as gates, transistors and diodes (e.g. an
average desktop computer chip nowadays can have over 1
billion transistors), which makes it impossible for a person
to design such circuits or chips mentally or manually with a
pencil and paper. Hardware, Such as a computer device or
system that incorporates or embeds Software (such as Elec
tronic design automation (EDA) or Computer Aided Design
(CAD) tools), is generally employed to complete Such tasks.
0035. Due to the significantly increased complexity of IC
design and fabrication, design is often outsourced by using
third party Intellectual Properties (3PIPs) from a vendor.
Risks are raised because a hardware Trojan (HT) or bug (e.g.
unintended or unauthorized functional hardware insertion,
malicious hardware insertion, or unauthorized design modi
fication) can be injected into a circuit by an attacker (such as
an untrusted person or dishonest engineer or spy). In addi
tion, it is possible for unexpected functions to be fitted to a
circuit or chip by an untrusted foundry and/or distributor.
0036 AHT or bug harms a circuit or chip in many ways.
For example, a HT maliciously changes or modifies func
tionality of a circuit by adding, deleting or modifying
circuit's one or more components (such as logic gates,
transistors, diodes, etc.). As another example, a HT changes
circuit function indirectly by modifying one or more param
eters to be fed into a circuit. A HT can disrupt operation of
a circuit (such as an IC) or other circuits that couple to the
circuit. By way of example, a HT causes an IC to malfunc
tion and/or conduct one or more functions that constitute a
security attack. A HT can also be designed or implanted by
a spy to retrieve sensitive data or information, or be designed
to change a hosting circuitry specification Such as delay,
power consumption and reliability. For example, a circuit or
chip that is specified to function properly for ten years may
be reliable for only one year if a HT is implanted or
embedded in the circuit. Detecting presence of a HT or bug
in a circuit (e.g. arithmetic circuits, such as an IC) and
masking or killing Such HT is therefore of great importance
for industries such as IC design, Verification and fabrication,
consumer products and military applications etc. Effective
ness and efficiency to detect and remove Such HTS or bugs
to improve circuit security have great importance in these
industries. Undetected HTs in a circuit such as IC can make
the circuit worthless or in great danger in terms of a number
of aspects such as sensitive information leakage. Low effi
ciency (Such as high runtime or time complexity) in detect
ing and removing HTS lengthens design cycles and increases
time-to-market and jeopardizes profit margins. Furthermore,
unsatisfactory efficiency or runtime complexity requires
more resource usage (such as memory usage), high perfor
mance (such as high processing capacity and speed) for a
computer device, and also increases network consumption
when data is transmitted over a network to a remote server
for processing as an example. Thus, unsatisfactory methods
or schemes for HT detection and capture not only jeopardize
many industries (such as IC industry and other industries
that relate to or depend on IC industry) technologically and
economically, but also require costly computer hardware by
demanding large resource consumption Such as memory
usage and high processing speed.
0037 Existing or conventional methods are flawed or
have difficulties in detecting and killing HTs in circuits. On

Jul. 27, 2017

one hand, this is because presence of a HT cannot be easily
detected. A HT may reside within a testing circuit of a chip
to avoid being detected during normal operation and be
activated occasionally to carry out malicious operations.
Also, the amount of logic gates in a modern IC or chip is too
large that exhaustive testing is infeasible. On the other hand,
the existing methods have flaws intrinsically in one or more
aspects.
0038. For example, many existing methods can only
extract simple logic patterns such as gates from a gate-level
(GTL) netlist, but cannot handle complex but basic arith
metic blocks such as adders and multipliers. Some existing
methods use simulation tools to identify logic gates that
have low activation probability, which, however, is inaccu
rate. Some existing methods employ satisfiability (SAT)-
based functional formal verification techniques to detect
HTs in circuits, which, however, is incapable in verifying
certain arithmetic logics designed in different styles (e.g.
Non-Booth versus Booth multipliers). A main reason that the
existing SAT-based functional formal verification tech
niques do not work well is because existing SAT solvers
highly rely on Successfully locating of internal equivalent
points of compared logics. When few internal equivalent
points are found, even for a quite Small circuit, the Solving
time or runtime grows exponentially in the worst cases Such
as when performing comparison between multipliers
designed in different styles (e.g. non-Booth versus Booth).
Existing SAT solvers also show inability or inefficiency in
terms of equivalence checking for circuits (e.g. arithmetic
circuits). Such as incapability in proving equality between
two arithmetic circuits. Furthermore, existing methods fail
to detect and locate where the body and boundary of a HT
exactly is in a circuit for the chip owner or designer to
analyze intending damage of the HT, and do not have a
100% guarantee of catching all HTs in a circuit.
0039 Thus, existing methods or schemes are neither
effective nor efficient in detecting and masking or removing
a HT in a circuit or arithmetic circuit (Such as IC, Applica
tion Specific Integrated Circuit (ASIC), and Field-Program
mable Gate array (FPGA), Digital Signal Processor (DSP),
etc.), which jeopardizes circuit industry by lengthening
design cycle and causing serious problems such as circuit
failure, short circuit lifetime, and sensitive information
leakage or stolen etc. Exiting methods or schemes are also
unfavorable from perspective of computer technology
because a less efficient process of detecting and masking
HTs may be trapped into exponential time (e.g. high time
complexity, several tens of hours or days, or even not
converging (“forever runtime that leaves subject problem
unsolved)), which demands large resource usage (such as
memory usage and network consumption) and costly com
puter device (such as high processing capacity).
0040. Example embodiments solve the above-stated
problems by providing technical Solutions in new methods
and apparatus that function in unconventional ways to
benefit circuit industry and computer industry. Example
embodiments benefit circuit (such as IC, ASIC, FPGA, DSP
etc.) industry by preventing (such as detecting, locating, and
masking or removing) HTs in a circuit with significantly
improved or enhanced effectiveness and efficiency, which,
on one hand, increases circuit production (e.g. yield) and
lifetime by reducing or preventing circuit failure and mal
functions caused by HTS, and on the other hand, improves
circuit security by avoiding sensitive data leakage or by

US 2017/0213026 A1

avoiding a circuit or an apparatus or machine that incorpo
rates Such circuit being taken over by an attacker or spy.
Example embodiments further benefit computer technology
by reducing resource consumption (e.g. memory usage and
network consumption). Example methods can be executed
by a computer device or system with lower hardware
requirement to perform circuit design and thus mitigate
demand of costly computers with expensive chips, memory
and other internal electronic components.
0041. Example embodiments solve the above-stated
problems by providing technical Solutions in new methods
and apparatus that detect one or more functionality differ
ences between circuits (such as between two circuit netlists
or macros) that are likely be caused by one or more HTs or
bugs, locate or output the differences to correct the HTs or
to investigate the tampering intention or purpose, and kill,
mask, or remove the HTs by restoring the functionality back
to original specification (e.g. golden specification or correct
specification). By way of example, example embodiments
restore the functionality of a circuit or chip back to original
specification with a minimum circuitry change to avoid
affecting performance (such as clock and timing, etc.) of the
circuit or chip significantly. Example embodiments improve
circuit security by blocking intentional or plotted damage to
a circuit at an early stage and figuring out a spy source by
revealing the HT intention.
0042. By way of example, example embodiments solve
the above-stated problems by providing technical solutions
with incorporation or combination of reverse engineering,
formal verification, functional Engineering Change Order
(ECO), and logic rewiring to detect, locate, and mask HTS in
a circuit. As an example, example embodiments handle a
number of HTS automatically with guarantee of catching
100% of HTs in a circuit.

0043. By way of example, example embodiments solve
the above-stated problems by providing technical solutions
that couple or combine reverse engineer and formal verifi
cation (so-called Complementary Greedy Coupling (CGC)
formal verification scheme) to overcome the incapability of
SAT solvers in arithmetic verification. Example reverse
engineering performs well in verification or proof of equal
ity, and example SAT solvers perform well in verification or
proof of inequality. Coupling of reverse engineering and
SAT techniques takes advantage of strong points of both
reverse engineering and SAT and obtains a combined advan
tage, which improves HT detection with reduced runtime
complexity and increased capability Such as capability to
tackle NP-complete circuits efficiently. By way of example,
example embodiments can formally compare the function
ality between a netlist of correct or golden design and an
examined design with a HT embedded or implanted.
0044. In an example embodiment, when a logic differ
ence is detected, a functional-ECO technique is applied to
locate HTS and a patch or rectification patch logic is inserted
or added to mask the HTs. In another example embodiment,
a logic rewiring treatment or technique is applied to opti
mize the patch such that size of the path is minimized, which
improves circuit (such as IC) technology because perturba
tion or interference (such as timing perturbation) to a target
circuit or chip is reduced or minimized to increase circuit
performance.
0045. By way of example, runtime of example embodi
ments to detect, locate and mask multiple HTS (no limit on

Jul. 27, 2017

the number of HTs) in an IC with millions of logic gates is
within minutes in contrast with hours or days for existing
methods.

0046 Example embodiments include a computer system
with specific Software incorporated, as well as Such a
computer system embedded in a network. Example com
puter system solves technical problems raised in circuit
industry such as IC industry by executing example methods
herein. When executing example methods, example com
puter system improves hardware performance by reducing
resource usage such as memory usage and network con
Sumption.
0047 FIG. 1 shows a graph illustrating a scenario of HT
implantation during a circuit design process in accordance
with an example embodiment. The graph 100 includes a
customer or party 110, a design house 120, a chip 130, and
a spy or attacker 140.
0048. By way of example, the customer 110 has a plan or
proposed specification (e.g. a microarchitecture and a sys
tem-level specification, etc.) for designing a new circuit or
chip (e.g. IC, ASIC, FPGA, DSP, etc.) to fit into an industry
segment. As an example, the plan or proposed specification
is specified using a register transfer level (RTL) specification
language (such as Verilog and VHDL). The plan or proposed
specification then goes through a long tract of design pro
cesses in the design house 120 where a design team pro
cesses circuit design with hardware (such as a computer)
that incorporates software (such as EDA or CAD tools). The
design house 120 belongs to either the customer 110 or a
third part to which a design task is outsourced.
0049. By way of example, the design processes per
formed in the design house 120 include logical synthesis and
physical place and route (P&R). As shown in FIG. 1 for
example, a RTL-level circuit 122 is synthesized into a
gate-level (GTL) circuit 124 that is then synthesized into a
circuit-level circuit 126. Based on the completed circuit
design, the chip 130 is fabricated or produced.
0050. As shown in FIG. 1, during design phase in the
design house 120, the spy 140 (such as an untrusted person
or dishonest engineer) maliciously injects or embeds a HT or
bug into the circuit or chip. As an example, the HT can be
introduced to the circuit at either intermediate stage in the
design house 120. Such as either design process of the
RTL-level circuit 122, the Gate-level circuit 124, and cir
cuit-level circuit 126.

0051. For the customer 110 that concerns circuit security,
the HT must be detected and removed effectively and
efficiently (e.g. 100% capture within a practical time limit
Such as polynomial time and even linear time). Otherwise,
the spy 140, with the injected HT, can cause malfunctions of
the circuit or chip, destroy a system that incorporates the
chip, or steal confidential information. The customer 100 is
also likely to favor a HT-capture process that is not expen
sive (e.g. lower requirement for hardware such as a com
puter device).
0.052 FIGS. 2A-2D show graphs illustrating an HT injec
tion in a gate-level (GTL) circuit in accordance with an
example embodiment. For illustrative purpose only, FIG. 2A
shows an original GTL circuit 210 that includes a 8-AND
gate 214 (herein “8-AND” indicates there are eight inputs
for the AND gate) with an input vector 212 (shown as in 7:0
which indicates that there are 8 input signals named in 7.
in 6, in O) and a AND gate 216. The AND gate 216 has one

US 2017/0213026 A1

output 218 (shown as out) and two inputs, one being the
output of the 8-AND gate 214 and the other being an input
213 (shown ass).
0053 As an example, the GTL circuit 210 in FIG. 2A is
an original netlist of a circuit. By way of example, the input
213 receives from the input 213 a redundant internal signal
S that is a stuck-at logic 1 during the normal working mode
or normal operation.
0054 FIG. 2B shows a HT-tempered netlist 220 that
includes a malicious logic or HT 225 in accordance with an
example embodiment. As a result, the AND gate 216 in FIG.
2A is replaced with or changed into a multiplexer (MUX)
226. The added malicious logic 225 is not triggered on a
normal working mode and is thus unable to be tested or
detected by simulation using conventional methods such as
normal input testing vectors.
0055 FIG. 2C shows a patched netlist 230 in accordance
with an example embodiment. As shown, the patched netlist
230 includes a patch or patch logic 235 that masks or kills
the malicious logic or HT 225. In one example embodiment,
the patch 235 is minimized in size to reduce timing pertur
bation for the target circuit or chip. A target circuit or chip,
as an example, is a final product based on the finalized
design of a circuit with HTs removed or masked through a
circuit varication or checking process.
0056 FIG. 2D shows a HT diagnostic report 240 in
accordance with an example embodiment. The HT diagnos
tic report 240 includes a first part 242 that shows netlist of
the patch 235, and a second part 244 that shows the MUX
236 after correction or rectification with the patch 235.
0057. As illustrated in FIGS. 2A-2D, circuit security is
improved with example methods by detecting, locating, and
masking or killing an inserted or implanted HT or bug in a
circuit. The inserted HT is masked by introducing a patch
Such that the circuit is restored back to a circuit in accor
dance with original or correct specification.
0058 FIG.3 shows a flow diagram in accordance with an
example embodiment. The flow diagram 300 illustrates an
example method that is executed by a computer that incor
porates Software or an apparatus that incorporates Such
computer. The computer includes electronic devices such as
a computer system or electronic system, wearable electronic
devices, servers, portable electronic devices, handheld por
table electronic devices, and hardware (e.g., a processor,
processing unit, digital signal processor, controller, memory,
etc.).
0059. The example method, when executed by the com
puter, Solves one or more existing technical problems as
stated above in circuit industry by improving effectiveness
and efficiency (such as reduced runtime complexity) for
circuit design. The example method also improves perfor
mance of the computer that executes the example method by
consuming less resource Such as memory, processor, and
network usage Such as bandwidth.
0060 Block 302 states providing a first netlist of an
arithmetic circuit.
0061 For example, the first netlist is an originally speci
fied (golden or correct) netlist that conforms to a customer
or person’s plan or proposed specification. By way of
example, the first netlist is a gate-level (GTL) netlist that is
synthesized from a golden register-transfer level (RTL)
circuit.
0062 Block 304 states providing a second netlist of an
arithmetic circuit.

Jul. 27, 2017

0063 For example, the second netlist is an examined
netlist. By way of example, the second netlist is HT
tempered or injected, for example, by a spy or an attacker.
To improve circuit security, the second netlist is examined to
detect and mask or remove one or more HTS or bugs that are
maliciously inserted or injected.
0064. Block 306 states extracting arithmetic macros from
the first netlist to obtain a first plurality of arithmetic macros.
Block 308 states extracting arithmetic macros from the
second netlist to obtain a second plurality of arithmetic
aCOS.

0065. By way of example, a macro or operator macro is
defined to be a block of logic which is a building component
in a circuit (e.g. an IC) such as adders, multipliers, multi
plexers (MUX) or a formula such as (A+8)x C.
0066. In an example embodiment, example reverse engi
neering (RE) techniques are applied to extract and compare
all arithmetic macros Such as adders and multipliers with
their formula forms. The arithmetic macros are often con
structed by a number of elementary components “1-bit
adders’ which include 1-bit half adders (HA) and/or 1-bit
full adders (FA) in specific styles. The reverse engineering
technique first identifies all these elementary components
from the whole circuit. Secondly, RE builds a 1-bit adder
graph where the output of one adder is the input of another
adder. The functionality or formula of the arithmetic logics
is obtained from the style of the built adder graph.
0067 By way of example, arithmetic components (such
as an adder and a multiplier) are implemented in a number
of Styles Such as carry-look ahead adder (CLA), Ripple,
Booth and Non-Booth which are constructed by 1-bit
adders. For example, FIGS. 4A-4B show two graphs in
accordance with an example embodiment. The graph in FIG.
4A is an illustrative multiplier 410, and the graph in FIG. 4B
is an illustrative multiplier 420, wherein FA represents a
1-bit full adder and HA represents a 1-bit half adder. As
illustrated, the multiplier 410 and the multiplier 420 share
Some common structural units (such as 1-bit adders).
0068. In an example embodiment, all 1-bit adders includ
ing their connections are extracted firstly. A 1-bit full adder
has 3 input signals (e.g. a, b and c), and 2 output signals (e.g.
sum and carry (also called co)). The functionality of a 1-bit
full adder is as follows:

where “8” is also called XOR operation means Boolean
&g 99 “exclusive or function, '+' means Boolean 'or' function,

and “&’ means Boolean “and” function.

0069. A 1-bit half adder has two input signals (e.g. a and
b), and 2 output signals (e.g. Sum and carry (also called co)).
The functionality of a 1-bit half adder is as follows:

0070. By way of example, both an adder and a multiplier
are composed of one or more 1-bit adders. For example, the
third output of a 4-bit multiplier in Non-Booth style is
expressed as:

US 2017/0213026 A1

32 = HASum(FASum(aOb2, a1b1, a2b0), HAco(aOb1, a1b0)) (2)

0071. As an example, the fourth output of a 4-bit multi
plier in Non-Booth style is expressed as:

3 = HAston (FAston (FAsun (aob3, a1b2, a2b), a3bo, FA.co), HAco (3)

where FA and HA are carry out signals from other adders
0072. In an example embodiment, to figure out 1-bit
adder graph, all 1-bit adders are firstly identified. To figure
out 1-bit adders, all 2-input single-output Sub circuits whose
function is exclusive or (XOR) are firstly identified. Then
one or more XOR trees which contain multiple 2-input XOR
sub circuits and where an input of a first XOR sub circuit is
an output of a second XOR sub circuit are identified. Inputs
of the one or more XOR trees are either bit products of
adders and multipliers or carry signals of internal 1-bit
adders. On basis of the one or more XOR trees, carry signals
are deduced and the one or more XOR trees are connected
to form or create a XOR forest. As an example, the XOR
forest is considered as a 1-bit adder graph. Construction of
a 1-bit adder graph in accordance with an example embodi
ment is shown in FIG. 5.
0073 FIG. 6 shows a table illustrating reverse engineer
ing in accordance with an example embodiment. The
example method illustrated in the table 600 includes iden
tifying or determining a plurality of 2-input XOR sub
circuits, building a plurality of XOR trees based on that an
output of one XOR operation is an input of another XOR
operation, determining carry signals of internal 1-bit adders
from the plurality of XOR trees and connecting the plurality
of XOR trees to form an XOR forest such as 1-bit adder
graph such that one or more 1-bit adder graphs are obtained,
and determining arithmetic functions and arithmetic bound
aries for each of the one or more XOR forests such that a
plurality of arithmetic macros are extracted. In an example
embodiment, after the network of 1-bit-adders (such as a
XOR forest) is formed or built, arithmetic functions such as
additions, Subtractions and multiplications are determined
with the XOR forest. A complex arithmetic logic (e.g.
combination of adders and multipliers (such as (a+b)xc,
axb+cxd, etc.)) is built or determined bottom up.
0074 Return back to FIG. 3, Block 310 states detecting
a HT by comparing the first plurality of arithmetic macros
with the second plurality of arithmetic macros.
0075. In an example embodiment, the process as stated in
Block 310 is considered as global HT locating because it
globally determine which one or more areas HTs are located.
In another example embodiment, to improve efficiency of
locating one or more HTs globally, a trimming technique or
process is applied.
0076. By way of example, with trimming treatment or
technique, equivalent Sub-circuit pairs or areas are identified
and stripped from a circuit, and all HTs only exist or locate
inside the non-equivalent Sub-circuit areas. As an example,
if a first part of a first circuit and a second part of a second
circuit are equivalent Sub-circuit pairs, the first part and the

Jul. 27, 2017

second part have same function, or they are functionally
equivalent. If the first part and the second part have different
function, they are functionally non-equivalent and are not
equivalent Sub-circuit pairs. As another example, the first
plurality of arithmetic macros consist of part A1 and part B1,
and the second plurality of arithmetic macros consist of part
A2 and part B2. The part A1 and the part A2 are functionally
equivalent, and the part B1 and the part B2 are functionally
non-equivalent. As an example, the part A2 is trimmed out
from the second plurality of arithmetic macroS Such that a
HT is determined to be located in the part B2 of the second
plurality of arithmetic macros.
(0077. By way of example, FIG. 7A-7C show graphs
illustrating a trimming process in accordance with example
embodiment. FIG. 7A shows an examined netlist 710 (or a
second netlist) that is HT injected. The examined netlist 710
includes a part 714 that has a 6-XOR sub-circuit (i.e.
implementing a 6-input XOR function) and a part 712
indicating other part of the examined netlist 710. FIG. 7B
shows a golden or correct netlist 720 (or a first netlist) that
is originally specified. The golden netlist 720 includes a part
724 that has a 6-XOR sub-circuit and a part 722 indicating
other part of the golden netlist 720. Thus, the part 714 and
the part 724 have same function or are functionally equiva
lent but with different implementation style.
0078. As shown in FIG. 7C, an equivalent pair, the part
714 and the part 724, is trimmed out or stripped away from
respective netlist to obtain a trimmed netlist 730. In an
example embodiment, a trimming or stripping process is
iteratively performed to minimize the non-equivalent circuit
part. In another example embodiment, a trimming or strip
ping process is iteratively performed until no equivalent
Sub-circuit pair or equivalent pair is found between the
examined netlist 710 and the golden netlist720. Return back
to FIG. 3, Block 312 states locating, with a functional
Engineering Change Order (ECO) engine, the HT in the
second netlist.
0079. By way of example, a functional-ECO engine or
technique is applied to locating and masking HTS.
0080 Block 314 states improving security of the arith
metic circuit by masking the HT with addition of a patch in
the second netlist to obtain a patched netlist with ECO
engine.
I0081. By way of example, functional ECO engine
denotes a set of primary inputs (PIs) in a circuit as a set of
Boolean variables X={x1, . . . , X. Functions of primary
outputs (POs) in an examined design or specification and a
golden or correct specification are denoted by F(X)={f(X),
f(X), f(X)} and G(X)={g (X), g2(X), g.,(X)}
respectively.
0082 For an examined and golden function pair, f, and g,
a diff-set characterizes a set of input assignments for which
the functions f, and g, have opposite values and is defined as
follows:

I0083. The functional ECO engine minimizes the diff-set
for every function pair by adding patch logics/circuits incre
mentally until all diff-sets are empty, which indicates that the
examined function and golden function are equivalent and
the HT is eliminated. In an example embodiment, a patch
logic is inserted into the circuit to minimize the diff-set.
I0084. For example, for an internal signal r within the
circuit where the patch logic is to be inserted, assume

US 2017/0213026 A1

function of r is t(X), and a PO (PO, driven by r whose
function is f.), f(X.r) is expressed in terms X and r, then the
care-set for r is defined as follows:

0085. A care-set characterizes a set of input assignments
for which any change at signal r can be observed at the
output function n. In an example embodiment, the care-set
overlaps with the diff-set and is divided into two partitions:

I0086 (i) care-out-diff including Boolean expression
resulting in 1 for the output (min-terms) in the care-set
but not in the diff-set, care, A - diff; and

I0087 (ii) care-in-diff: including min-terms in both the
care-set and diff-set, care. A diff.

0088. By way of example, changing values of the min
terms in the care-Out-diff changes value off, and enlarges the
diff-set. Hence, the min-terms in the function t is preserved
and the following constraint is satisfied by the patch function
p(X):

p(x)=f(X) A care, (X) A diff(x) (6)
0089. On the other hand, in order to minimize the diff-set,

t’s min-terms inside the care-in-diff is evaluated to the
opposite values:

p(X), tCX) A care, (X) A diff(x) (7)
0090. Therefore, if p(X) and diff-set satisfy the following
condition,

p(X), tCX) A diff;(x) (8)

which implies that

care, (X) diff(X) (9)

then p(X) completely empties diff(X) and accomplishes the
golden function g,
0091 Specifically, for example, when r=PO, care, (X)
diff(X) is always satisfied, which implies that a patch

function can be found that satisfies constraint Equation (8),
which completely empties diff (X) and accomplishes golden
function g, (e.g., g, is directly used as a patch function).
0092 FIGS. 8A-8B show graphs illustrating patch func
tion creation in accordance with an example embodiment.
FIG. 8A shows a graph 810 before patching. The graph 810
includes a care-set 812 and a diff-set 814 that have an
overlap 816 (i.e. care-in-diff). The care-set 812 with the
care-in-diff 816 excluded is care-out-diff. FIG. 8B shows a
graph 820 after patching. The graph 820 includes a diff-set
824 that is smaller than the diff-set 814. The diff-set is
reduced in size after generation of a patch.
0093. By way of example, constraints Equation (6-8) are
considered when creating patch or patch functions. If the
signal r only drives a single output, the corresponding patch
function must satisfy both Equation (6) and Equation (7). In
an example embodiment, to enhance possibility of creating
an effective patch while avoiding exhaustive searches, the
patch is one of conservative patch and aggressive patch.
0094 FIGS.9A-9B show graphs illustrating conservative
patch in accordance with an example embodiment. FIG. 9A
shows a graph 910 illustrating conservative patch creation
before pathing. FIG. 9B shows a graph 920 illustrating
conservative patch creation after pathing.
0095. In the conservative patch or strategy, a patch at
signal r guarantees that no diff-set of the Primary Out (PO)
is worsened. Thus constraint Equation (6) is satisfied for all
POs. By way of example, a subset of POS is selected from

Jul. 27, 2017

the PO set {PO, PO,..., PO}. The subset {PO, PO,
, PO,} is called an improved PO set. A created patch at

r cuts down the diff-set of POs in the improved PO set. In
other words, for each PO in this set, constraint Equation (7)
is satisfied.
(0096. By way of example, the selection of POs and the
size of the improved PO set is adjusted dynamically as the
logic patching proceeds. The smaller the improved PO set
size is, the easier to create a satisfying patch.
(0097. As shown in FIGS. 9A-9B, a conservative patch is
created at an internal signal driving two primary outputs.
The diff-sets of both outputs are minimized as shown.
0.098 FIGS. 10A-10B show graphs illustrating aggres
sive patch in accordance with an example embodiment. FIG.
10A shows a graph 1010 illustrating aggressive patch cre
ation before pathing. FIG. 10B shows a graph 1020 illus
trating aggressive patch creation after pathing.
(0099. By way of example, diff-sets of some POs are
improved while diff-sets of some other POs are ignored. In
an example, a PO set is divided into three subsets:

0.100 (i) Ignored Set: POs in the set is not considered
during a patching process, and in an example embodi
ment, diff-sets of such POs become worse after patch
1ng.

0101 (ii) No Change Set: diff-sets of POs in this set do
not become worse. In an example embodiment, diff
sets of POs in this set do not improve either. Constraint
Equation (6) is satisfied for every PO in this set. The
POS that have been fixed in previous iterations (e.g.
their diff-sets are already empty) are assigned to this
set, to Such that they do not become unfixed again.

0102 (iii) Improved Set: diff-sets of POs in this set are
improved by a created patch. Both constraints Equation
(6) and Equation (7) are satisfied. Furthermore, for at
least one PO in this set, constraint Equation (8) is
satisfied, which implies that the patch created is able to
fix at least one PO completely.

(0103 As shown in FIGS. 10A-10B, the diff-set of ol can
be completely eliminated while the diff-set of o2 is enlarged.
0104. In an example embodiment, example methods
include improving efficiency of locating the HT in a netlist
with a functional-Engineering Change Order (ECO) engine.
As an example, a conservative patch candidate and an
aggressive patch candidate are generated, and then a patch
candidate with a smaller size between the conservative patch
candidate and the aggressive patch candidate is chosen or
selected as a real patch.
0105. In some example embodiments, a patch is
improved by optimizing the patch with logic rewiring treat
ment to minimize size of the patch, which have many
benefits such as helping reduce timing perturbation for a
target circuit or chip. As an example, a patch optimization
process or treatment includes an Add-First rewiring trans
formation and a Cut-First rewiring transformation.
0106 FIGS. 11A-11B show graphs illustrating an Add
First rewiring transformation in accordance with an example
embodiment. The graph 1110 in FIG. 11A shows a patch
before an Add-First rewiring transformation, and the graph
1120 in FIG. 11B shows a patch after an Add-First rewiring
transformation.
0107 As shown, for Add-First rewiring transformation, a
wire or redundant wire 1112 is added into a patch circuit first
(e.g. a wire from g5 to g9 in the figure). Then several wires
and consequentially several gates (e.g. g4. g6, and g7)

US 2017/0213026 A1

become redundant and are thus removable or can be
removed as shown in FIG. 11B. As shown, the optimized
patch is minimized with reduced size. The detail implemen
tation of the rewiring transformation is described in paper
“Combinational and Sequential Logic Optimization by
Redundancy Addition and Removal written by L. A.
Entrena and K.-T. Cheng, published in IEEE transaction on
Computer-Aided Design on 1995.
0108 FIGS. 12A-12B show graphs illustrating a Cut
First rewiring transformation in accordance with an example
embodiment. The graph 1210 in FIG. 12A shows a patch
before a Cut-First rewiring transformation, and the graph
1220 in FIG. 12B shows a patch after a Cut-First rewiring
transformation.
0109 As shown, a wire from b to g6 is removed first,
which causes observable errors propagating from g6 to o2.
By an error cancellation analysis, all errors are correctable
by adding additional logics at g8 and g9. The corrected patch
requires fewer gates and wires as shown in FIG. 12B. The
implementation of Cut-First rewiring transformation is
described in paper “ECR: a low complexity generalized
error cancellation rewiring scheme', written by Xiao Qing
Yang, Tak-Kei Lam and Yu-Liang Wu, published in Pro
ceedings of the 47th Design Automation Conference on
2010.
0110. By way of example, for a serial of Internet of
Things (IoT) chips with a few minor differences to be
designed, given that each chip requires 3 months to complete
a P&R process, existing methods requires 3+3–6 months to
complete design of two chips. In contrast, example methods
in accordance with Some example embodiments complete
the same task in in 3 months--10 minutes.
0111 FIG. 13 shows a table illustrating characteristics of
benchmarks in accordance with an example embodiment. In
the table 1300, in the column of “Style”, B represents Booth
multiplier, and NB represents Non-Booth multiplier. As
shown, besides multiplication, some more complicated
arithmetic functions (see the column of “Extracted arithmet
ics’ in the table 1300) also exist in the benchmarks.
0112. In the table 1300, the first column is the name of a
case suite. Each suite includes 13 benchmarks which imple
ment similar arithmetic functions but with different oper
ands' bitwidths. Example extracted arithmetic logics as well
as their design styles (in Booth or in Non-Booth) and
operands' bit-widths are shown at columns 3-5. Example
methods extract most (97%) of the benchmarks with only
suites ut36 and hid 10 failed. With the arithmetic logics
Successfully extracted, example formal verification tech
niques such as example SAT solvers are employed or called
for the extracted circuits to detect presence of one or more
HTS.

0113. By way of example, each of these benchmarks is a
gate-level (GTL) combinational circuit including arithmetic
logics. Example reverse engineering techniques are applied
to locate the arithmetic logics from flatten circuits (like “sea
of gates') without knowing of the component input/output
(I/O) and boundaries. The table 1300 shows that the formu
lae are successfully extracted with example methods.
0114 FIG. 14 shows a table illustrating example methods
in accordance with an example embodiment.
0115. In the table 1400, the first three columns show
benchmark information. Each benchmark has two circuits
g1 and g2, which have logic differences. As an example, g1
is a HT-tampered or examined circuit and g2 is the golden

Jul. 27, 2017

or correct circuit. The next 2 columns show patch size in
gates and runtime with example methods or schemes. Last
2 columns show the patch size in gates and runtime using
two example methods (i.e. Example method 1 and Example
method 2). As shown, example methods generate patches
40% smaller with central processing unit (CPU) time
reduced by 86%.
0116 FIG. 15 shows a computer system or electronic
system in accordance with an example embodiment. The
computer system 1500 includes one or more computers or
electronic devices (such as one or more servers) 1510 that
includes a processor or processing unit 1512 (Such as one or
more processors, microprocessors, and/or microcontrollers),
one or more components of computer readable medium
(CRM) or memory 1514, and a circuit security enhancer
1518.
0117 The memory 1514 stores instructions that when
executed cause the processor 1512 to execute a method
discussed herein and/or one or more blocks discussed
herein. The circuit security enhancer 1518 is example of
specialized hardware and/or Software that assist in improv
ing performance of a computer and/or execution of a method
discussed herein and/or one or more blocks discussed
herein. Example functions of a circuit security enhancer are
discussed in connection with FIG. 3.
0118. In an example embodiment, the computer system
1500 includes a storage or memory 1530, a portable elec
tronic device or PED 1540 in communication over one or
more networks 1520.
0119 The storage 1530 can include one or more of
memory or databases that store one or more of image files,
audio files, video files, Software applications, and other
information discussed herein. By way of example, the
storage 1530 store image, instructions or software applica
tion that are retrieved by the server 1510 over the network
1520 such that a method discussed herein and/or one or more
blocks discussed herein are executed.
0.120. The PED 1540 includes a processor or processing
unit 1542 (Such as one or more processors, microprocessors,
and/or microcontrollers), one or more components of com
puter readable medium (CRM) or memory 1544, one or
more displays 1546, and a circuit security enhancer 1548.
0121. The PED 1540 can execute a method discussed
herein and/or one or more blocks discussed herein and
display an image or a file (such as a netlist) for review.
Alternatively or additionally, the PED1540 can retrieve files
Such as images and files and Software instructions from the
storage 1530 over the network 1520 and execute a method
discussed herein and/or one or more blocks discussed
herein.
I0122. In an example embodiment, the computer system
1500 includes a PED 1550 that includes a processor or
processing unit 1552 (Such as one or more processors,
microprocessors, and/or microcontrollers), one or more
components of computer readable medium (CRM) or
memory 1554, and one or more displays 1556.
(0123. By way of example, the PED 1550 communicates
with the server 1510 and/or the storage 1530 over the
network 1520 such that a method discussed herein and/or
one or more blocks discussed herein is executed either by the
server 1510 and results are sent back to the PED 1550 for
output, storage and review.
0.124. The network 1520 can include one or more of a
cellular network, a public switch telephone network, the

US 2017/0213026 A1

Internet, a local area network (LAN), a wide area network
(WAN), a metropolitan area network (MAN), a personal
area network (PAN), home area network (HAM), and other
public and/or private networks. Additionally, the electronic
devices need not communicate with each other through a
network. As one example, electronic devices can couple
together via one or more wires. Such as a direct wired
connection. As another example, electronic devices can
communicate directly through a wireless protocol, Such as
Bluetooth, near field communication (NFC), or other wire
less communication protocol.
0.125. In some example embodiments, the methods illus
trated herein and data and instructions associated therewith,
are stored in respective storage devices that are implemented
as non-transitory computer-readable and/or machine-read
able storage media, physical or tangible media, and/or
non-transitory storage media. These storage media include
different forms of memory including semiconductor
memory devices such as DRAM, or SRAM, Erasable and
Programmable Read-Only Memories (EPROMs), Electri
cally Erasable and Programmable Read-Only Memories
(EEPROMs) and flash memories; magnetic disks such as
fixed and removable disks; other magnetic media including
tape; optical media Such as Compact Disks (CDS) or Digital
Versatile Disks (DVDs). Note that the instructions of the
Software discussed above can be provided on computer
readable or machine-readable storage medium, or alterna
tively, can be provided on multiple computer-readable or
machine-readable storage media distributed in a large sys
tem having possibly plural nodes. Such computer-readable
or machine-readable medium or media is (are) considered to
be part of an article (or article of manufacture). An article or
article of manufacture can refer to a manufactured single
component or multiple components.
0126 Blocks and/or methods discussed herein can be
executed a processor, controller, and other hardware dis
cussed herein. Furthermore, blocks and/or methods dis
cussed herein can be executed automatically with or without
instruction from a user.

0127. The methods in accordance with example embodi
ments are provided as examples, and examples from one
method should not be construed to limit examples from
another method. Figures and other information show
example data and example structures; other data and other
database structures can be implemented with example
embodiments. Further, methods discussed within different
figures can be added to or exchanged with methods in other
figures. Further yet, specific numerical data values (such as
specific quantities, numbers, categories, etc.) or other spe
cific information should be interpreted as illustrative for
discussing example embodiments. Such specific information
is not provided to limit example embodiments.
0128. As used herein, the term “hardware Trojan' (HT)
refers to an unauthorized or unintended alteration, modifi
cation, insertion, implantation or inclusion to a circuit. For
example, a HT causes malfunction, reduced reliability, con
fidential information leakage, etc. or combination thereof.
0129. As used herein, the term “arithmetic circuit” refers
to a circuit in which one or more parts of the circuit are used
to accomplish arithmetic operations such as addition, Sub
traction, multiplication and any other arithmetic operations.
0130. As used herein, the term “netlist” lists the connec
tivity between logic gates forming a circuit.

Jul. 27, 2017

0.131. As used herein, the term “macro” or "arithmetic
macro' refers to a number of logic primitives or standard
cells which compose a component in a circuit (e.g. an IC)
such as adders, multipliers, multiplexers (MUX) or a for
mula Such as (A+8)XC, etc.
(0132. As used herein, the term “sub circuit” refers to term
"macro” and these two terms can be used interchangeably.
0.133 As used herein, the term “2-input exclusive-or
(XOR) sub circuit” refers to a sub circuit which has 2 input
signals and 1 output signal. The functionality of the output
signal is the exclusive or function of two input signals.
0134. As used herein, the term “XOR tree' refers to a sub
circuit which is composed of one or more 2-input XOR sub
circuits and their connections.
0135. As used herein, the term “1-bit adder refers to
1-bit half adder and/or 1-bit full adder.
0.136. As used herein, the term “1-bit half adder” refers to
an arithmetic macro which has 2 inputs (e.g. a and b) and 2
outputs (e.g. sum and co). “co' can be also called carry or
carry out. The functionality of sum is “exclusive or func
tion of a and b; the functionality of co is “and” function of
a and b.
0.137 As used herein, the term “1-bit full adder refers to
an arithmetic macro which has 3 inputs (e.g. a, b, and c) and
2 outputs (e.g. sum and co). “co' can be also called carry or
carry out. The functionality of sum is “exclusive or func
tion of a, b and c; the functionality of co is “majority”
function of a, b and c.
0.138. As used herein, the term “1-bit adder graph” refers
to a sub circuit which is composed of one or more 1-bit
adders and their connections.
0.139. As used herein, the term “XOR forest” refers to the
term “1-bit adder graph” and these two terms can be used
interchangeably.
0140. As used herein, the term “reverse engineering
(RE) refers to the process to extract arithmetic macros from
a circuit. An RE process comprises identifying 2-input
exclusive-or (XOR) sub circuits, XOR trees, 1-bit adders,
1-bit adder graphs, and arithmetic macros.
0.141. As used herein, the term “exponential time' refers
to running time for an algorithm or a method is upper
bounded by 2”", where poly(n) is some polynomial in n,
wherein n is size of the input for the algorithm.
0142. As used herein, the term “polynomial time' refers
to running time for an algorithm or a method is upper
bounded by a polynomial expression in the size of the input
for the algorithm.
0.143 As used herein, the term “linear time' refers to
running time for an algorithm or a method increases linearly
with the size of the input for the algorithm.
What is claimed is:
1. A method executed by a computer system to detect,

locate, and mask a functional hardware Trojan (HT) in an
arithmetic circuit to improve circuit security, the method
comprising:

providing a first netlist of the arithmetic circuit;
providing a second netlist of the arithmetic circuit,

wherein the second netlist is HT tampered;
extracting, by the computer system, arithmetic macros

from the first netlist to obtain a first plurality of
arithmetic macros;

extracting, by the computer system, arithmetic macros
from the second netlist to obtain a second plurality of
arithmetic macros;

US 2017/0213026 A1

detecting, by the computer system, the HT by comparing
the first plurality of arithmetic macros with the second
plurality of arithmetic macros;

locating, by the computer system and with a functional
Engineering Change Order (ECO) engine, the HT in the
second netlist; and

improving, by the computer system and with the func
tional-ECO engine, security of the arithmetic circuit by
masking the HT with addition of a patch in the second
netlist to obtain a patched netlist.

2. The method of claim 1, wherein the first netlist is a
gate-level (GTL) netlist that is synthesized from a register
transfer level (RTL) specification of the arithmetic circuit.

3. The method of claim 1, further comprises, for each of
the first netlist and the second netlist of the arithmetic
circuit:

identifying, by the computer system, a plurality of 2-input
exclusive-or (XOR) sub-circuits;

building, by the computer system and based on that an
output of one XOR sub circuit is an input of another
XOR sub circuit, a plurality of XOR trees;

determining, by the computer system, carry out signals of
1-bit adders and 1-bit adders from the plurality of XOR
trees;

building, by the computer system and connecting the
plurality of 1-bit adders, 1-bit adder graph; and

determining, by the computer system, arithmetic func
tions and arithmetic boundaries for each of the one or
more 1-bit adder graph such that a plurality of arith
metic macros are extracted.

4. The method of claim 1, wherein the first plurality of
arithmetic macros consist of part A1 and part B1, and the
second plurality of arithmetic macros consist of part A2 and
part B2, and wherein part A1 and part A2 are functionally
equivalent, and part B1 and part B2 are functionally non
equivalent,

wherein the method further comprises:
trimming out, by the computer system, part A2 from the

second plurality of arithmetic macros such that the
HT is determined to be located in part B2 of the
second plurality of arithmetic macros.

5. The method of claim 1, wherein the patch is one of
conservative patch and aggressive patch.

6. The method of claim 1, further comprises:
improving, by the computer system, the patch by opti

mizing the patch with logic rewiring treatment to
minimize size of the patch.

7. The method of claim 1, further comprises patch opti
mization executed by the computer system to minimize size
of the patch, wherein the patch optimization includes an
Add-First rewiring transformation and a Cut-First rewiring
transformation.

8. The method of claim 1, further comprising:
optimizing, by the computer system and with an Add-First

rewiring transformation and a Cut-First rewiring trans
formation, the patch to reduce size of the patch,

wherein the Add-First rewiring transformation includes
adding a redundant wire into the patch Such that one or
more wires and one or more gates in the patch become
redundant and removable; and

wherein the Cut-First rewiring transformation includes
removing a wire from the patch to generate an error

Jul. 27, 2017

followed by an error correction with one or more logics
added such that a resultant patch is generated with
fewer gates and wires.

9. A computer system that detects, locates, and masks a
hardware Trojan (HT) in an arithmetic circuit to improve
circuit security, wherein the arithmetic circuit has a first
netlist and a second netlist, and the second netlist is HT
tampered, the computer system comprising:

a processor;
a non-transitory computer-readable medium having

stored therein instructions that when executed cause the
processor to:
extract arithmetic macros from the first netlist to obtain

a first plurality of arithmetic macros;
extract arithmetic macros from the second netlist to

obtain a second plurality of arithmetic macros;
detect the HT by comparing the first plurality of arith

metic macros with the second plurality of arithmetic
macroS,

locate the HT in the second netlist with a functional
Engineering Change Order (ECO) engine; and

improve security of the arithmetic circuit by masking
the HT with addition of a patch in the second netlist
to obtain a patched netlist such that the HT does no
harm to the arithmetic circuit.

10. The computer system of claim 9, wherein the instruc
tions when executed further cause the processor to:

Identify a plurality of 2-input exclusive-or (XOR) sub
circuits;

build, based on that an output of one XOR operation is an
input of another XOR operation, a plurality of XOR
trees;

determine carry out signals of 1-bit adders and 1-bit
adders from the plurality of XOR trees;

build, based on the plurality of XOR trees, 1-bit adder
graphs; and

determine arithmetic functions and arithmetic boundaries
for each 1-bit adder graph such that a plurality of
arithmetic macros are extracted.

11. The computer system of claim 9, wherein the first
plurality of arithmetic macros consist of part A1 and part B1,
and the second plurality of arithmetic macros consist of part
A2 and part B2, and wherein part A1 and part A2 are
functionally equivalent, and part B1 and part B2 are func
tionally non-equivalent,

wherein the instructions when executed further cause the
processor to:
trim out part A2 from the second plurality of arithmetic

macros such that the HT is determined to be located
in part B2 of the second plurality of arithmetic
aCOS.

12. The computer system of claim 9, wherein the patch is
one of conservative patch and aggressive patch.

13. The computer system of claim 9, wherein the instruc
tions when executed further cause the processor to:

improve the patch by optimizing the patch with logic
rewiring treatment to minimize size of the patch.

14. The computer system of claim 9, wherein the instruc
tions when executed further cause the processor to perform
patch optimization to minimize size of the patch, wherein
the patch optimization includes an Add-First rewiring trans
formation and a Cut-First rewiring transformation.

15. The computer system of claim 9, wherein the instruc
tions when executed further cause the processor to:

US 2017/0213026 A1

optimize the patch with an Add-First rewiring transfor
mation and a Cut-First rewiring transformation to
reduce size of the patch,

wherein the Add-First rewiring transformation includes
adding a redundant wire into the patch Such that one or
more wires and one or more gates in the patch become
redundant and removable; and

wherein the Cut-First rewiring transformation includes
removing a wire from the patch to generate an error
followed by an error correction with one or more logics
added Such that a resultant patch is generated with
fewer gates and wires.

16. A computer-implemented method that improves per
formance of a computer system to detect, locate, and mask
a hardware Trojan (HT) in an arithmetic circuit, the method
comprising:

receiving, by the computer system, a first netlist of the
arithmetic circuit;

receiving, by the computer system, a second netlist of the
arithmetic circuit, wherein the second netlist is HT
tampered;

extracting, by the computer system, arithmetic macros
from the first netlist to obtain a first plurality of
arithmetic macros;

extracting, by the computer system, arithmetic macros
from the second netlist to obtain a second plurality of
arithmetic macros;

improving performance of the computer system by reduc
ing resource usage of the computer system by trimming
out a first part from the second plurality of arithmetic
macros that has counterpart in the first plurality of
arithmetic macros that performs same function Such
that the HT is detected to be located in a second part of
the second plurality of arithmetic macros that has no
counterpart in the first plurality of arithmetic macros
that performs same function;

locating, by the computer system, the HT in the second
netlist; and

improving, by the computer system, security of the arith
metic circuit by masking the HT with addition of a
patch in the second netlist to obtain a patched netlist.

Jul. 27, 2017

17. The method of claim 16, further comprises improving
performance of the computer system by improving extrac
tion of arithmetic macros that comprises, for each of the first
netlist and the second netlist of the arithmetic circuit:

determining, by the computer system, a plurality of 2-in
put exclusive-or (XOR) sub-circuits;

building, by the computer system and based on that an
output of one XOR operation is an input of another
XOR operation, a plurality of XOR trees;

identifying, by the computer system, carry out signals of
1-bit adders and 1-bit adders from the plurality of XOR
trees;

building, by the computer system, 1-bit adder graphs by
connecting the plurality of XOR trees; and

determining, by the computer system, arithmetic func
tions and arithmetic boundaries for each of the one or
more 1-bit adder graphs such that a plurality of arith
metic macros are extracted.

18. The method of claim 16, further comprises improving
performance of the computer system by improving effi
ciency of locating the HT in the second netlist with a
functional-Engineering Change Order (ECO) engine that
comprises:

generating, by the computer system, a conservative patch
candidate;

generating, by the computer system, an aggressive patch
candidate;

choose, by the computer system, a patch candidate with a
Smaller size between conservative and aggressive patch
candidate as a real patch.

19. The method of claim 16, further comprises:
improving, by the computer system, the patch by mini

mizing size of the patch with logic rewiring treatment.
20. The method of claim 16, further comprises:
improving, by the computer system, patch optimization

executed by the computer system by minimizing size of
the patch, wherein the patch optimization includes an
Add-First rewiring transformation and a Cut-First
rewiring transformation.

k k k k k

