US 20170213153A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0213153 A1

Wang et al.

43) Pub. Date: Jul. 27, 2017

(54)

(71)

(72)

@
(22)

(60)

SYSTEMS AND METHODS FOR EMBEDDED
UNSUPERVISED FEATURE SELECTION

Applicant: ARIZONA BOARD OF REGENTS
ON BEHALF OF ARIZONA STATE
UNIVERSITY, Tempe, AZ (US)

Inventors: Suhang Wang, Mesa, AZ (US); Jiliang
Tang, Mesa, AZ (US); Huan Liu,
Tempe, AZ (US)

Appl. No.: 15/412,909

Filed: Jan. 23, 2017

Related U.S. Application Data

Provisional application No. 62/286,232, filed on Jan.

22, 2016.

Publication Classification

(51) Int. CL
GOG6N 99/00 (2006.01)
GOGF 17/30 (2006.01)
(52) US.CL
CPC ... GO6N 99/005 (2013.01); GOGF 17/30598
(2013.01)
(57) ABSTRACT

Systems and methods for executing an unsupervised feature
selection algorithm on a processor which directly embeds
feature selection into a clustering algorithm using sparse
learning are disclosed. The direct embedding of the feature
selection, via sparse learning, reduces storage requirement
of collected data. In one method, unsupervised feature
selection may be accomplished through a removal of redun-
dant, irrelevant, and/or noisy features of incoming high-
dimensional data.
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SYSTEMS AND METHODS FOR EMBEDDED
UNSUPERVISED FEATURE SELECTION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This is a non-provisional application that claims
benefit to U.S. provisional application Ser. No. 62/286,232
filed on Jan. 22, 2016, which is herein incorporated by
reference in its entirety.

GOVERNMENT SUPPORT

[0002] This presently disclosed technology was made with
government support under government contract no. 1217466
awarded by the National Science Foundation. The govern-
ment has certain rights in the presently disclosed technology.

FIELD

[0003] The present disclosure generally relates to sparse
learning and in particular to system and methods for sparse
learning using embedded unsupervised feature selection.

BACKGROUND

[0004] Data mining, machine learning, and other algo-
rithms often involve high-dimensional data. In many cases,
working with high dimensional data not only significantly
increases processing time and memory requirements of the
algorithms but degenerates performance of the algorithms
due to the curse of dimensionality and the existence of
irrelevant, redundant and noisy dimensions. Feature selec-
tion, which reduces the dimensionality by selecting a subset
of most relevant features, is often utilized as an effective and
efficient way to handle high dimensional data. In terms of the
label availability, feature selection methods can be broadly
classified into supervised methods and unsupervised meth-
ods. The availability of the class label allows supervised
feature selection algorithms to effectively select discrimina-
tive features to distinguish samples from different classes.
Sparse learning may be a powerful technique in supervised
feature selection, which enables feature selection to be
embedded in the classification (or regression) problem.
However, supervised feature selection often expends sig-
nificant resources because most data is unlabeled, and it is
very expensive to label the data.

[0005] Without label information to define feature rel-
evance, a number of alternative criteria have been proposed
for unsupervised feature selection. One commonly used
criterion is to select features that can preserve the data
similarity or manifold structure constructed from the whole
feature space. Alternatively or additionally, as can be under-
stood from FIG. 1A, conventional methods of applying
sparse learning in unsupervised feature selection usually
generate cluster labels via clustering algorithms and then
transform unsupervised feature selection into sparse learn-
ing based supervised feature selection with these generated
cluster labels, such as multi-cluster feature selection, Non-
negative Discriminative Feature Selection (NDFS), and
Robust Unsupervised Feature Selection (RUFS). Such meth-
ods typically have increased computational cost and/or
decreased clustering performance. It is with these observa-
tions in mind, among others, that various aspects of the
present disclosure were conceived and developed.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1A is illustrates a prior art sparse learning
technique based on unsupervised feature selection methods.
[0007] FIG. 1B illustrates spare learning using embedded
unsupervised feature selection in accordance with an imple-
mentation of the presently disclosed technology.

[0008] FIGS. 2A-2D are graphs illustrating ACC and NMI
of EUFS with different a.,  and feature numbers on datasets
COIL20.

[0009] FIG. 3 depicts an example network environment
that may implement various systems and methods of the
presently disclosed technology.

[0010] FIG. 4 shows an example computing system that
may implement various systems and methods of the pres-
ently disclosed technology.

[0011] Corresponding reference characters indicate corre-
sponding elements among the view of the drawings. The
headings used herein do not limit the scope of the claims.

DETAILED DESCRIPTION

[0012] Aspects of the present disclosure involve systems
and methods of unsupervised feature selection using an
Embedded Unsupervised Feature Selection (EUFS). Unlike
existing unsupervised feature selection methods, such as
MCFS, NDFS or RUFS, which transform unsupervised
feature selection into sparse learning based supervised fea-
ture selection with cluster labels generated by clustering
algorithms, the feature selection of the presently disclosed
technology is directly embedded into a clustering algorithm
via sparse learning without the transformation as shown in
FIG. 1A. The EUFS thus extends the current state-of-the-art
unsupervised feature selection and algorithmically expands
the capability of the same. An empirical demonstration of
the efficacy of the EUFS is provided herein.

[0013] In one aspect, the systems and methods described
herein directly embed unsupervised feature selection algo-
rithm into a clustering algorithm via sparse learning instead
of transforming it into sparse learning based supervised
feature selection with cluster labels. Further, an embedded
feature selection framework is provided, which selects fea-
tures in unsupervised scenarios with sparse learning. While
discussed in the context of clustering, it will be appreciated
that the systems and methods described herein are applicable
in other contexts, such as dimensionality reduction algo-
rithms.

[0014] To begin a detailed description of an example
EUFS framework 100, reference is made to FIG. 1B. In one
implementation, a data matrix is obtained at a computing
device, such as those described with respect to FIGS. 3 and
4. The data matrix has a plurality of rows with one or more
features. The computing device clusters the data matrix into
one or more clusters using the EUFS framework 100 by
selecting the one or more features in an unsupervised
environment with sparse learning. The clustering algorithm
of the EUFS framework 100, as discussed in more detail
below, is generated based on a cluster indicator and a latent
feature matrix. In one implementation, the latent feature
matrix includes a sparse learning technique for feature
selection.

[0015] Systems and methods for applying an unsupervised
feature selection approach, the EUFS framework 100, which
directly embeds feature selection into a clustering algorithm
via sparse learning, eliminates the need for transforming
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unsupervised feature selection into the sparse learning based
supervised feature selection with pseudo labels. Nonnega-
tive orthogonality is applied on the cluster indicator to make
the problem tractable and ensure that feature selection on
latent features has similar effects as on original features. As
will be understood from the discussion of the EUFS frame-
work 100 below, I,, 1-norm is applied on the cost function
to reduce the effects of the noise introduced by the recon-
struction of X and feature selection on V. Experimental
results on six different real world datasets validate the
unique contributions of EUFS framework 100.

Embedded Unsupervised Feature Selection

[0016] Below is a detailed description of the EUFS frame-
work 100. Throughout this discussion, matrices are written
as boldface capital letters and vectors are denoted as bold-
face lowercase letters. For an arbitrary matrix M €&%#% M,
denotes the (i, j)-th entry of M while m, and n¥ mean the i-th
row and j-th column of M respectively. ||M||z is the Frobenius
norm of M and Tr(M) is the trace of M if M is square. (A,
B) equals Tr(A”B), which is the standard inner product
between two matrices. | is the identity matrix and 1 is a
vector whose elements are all 1. The 1, ;-norm is defined as

||M||2,1:2i:1m||mi”:2i:1m \% ZjZlnMijz)'
[0017] Let X €ER¥*¢ be the data matrix with each row x,

E¥ 74 being a data instance. & ={f,, ..., f,} may be used
to denote the d features and f|, . . ., fd are the corresponding
feature vectors. Assume that each feature has been normal-
ized, ie., [[f]l,=1 for j=1, . . ., d. Suppose it is desired to
cluster X into k clusters (C,, C,, . . ., C,,) under the matrix
factorization framework as:

. _ T2 (1)
rgjgvrlIIX UV'lIg

st Uefo, PV, uT1=1

[0018] where U €&%%* ig the cluster indicator and V

ER%#¥ ig the latent feature matrix. The problem in
Equation(1) is difficult to solve due to the constraint on
U. Following the common relaxation for label indicator
matrix, the constraint on U is relaxed to orthogonality,
i.e., UTU=I, U=z0. After the relaxation, Equation (1) can
be rewritten as:

. _ T2 (2)
rgjgvrlIIX UV'lIg

st. UTU=1,U=0

[0019] Another significance of the orthogonality con-
straint on U is to allow the EUFS framework 100 to perform
feature selection via V, which can be stated by the follow
theorem:

[0020] Theorem 1. Let X={f,, f,,. .., f;}, and ||f||=1 for
i=1, ..., d. We use UV7 to reconstruct X, i.e., X=UVZ,
If U is orthogonal, then we can perform feature selection
via V can be performed.

[0021] Proof. Since X=UV7, we have: {=Uv,”. Then

HﬁHz:HUviT"2:(ViUTUVi)1/2:HViH2 3
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[0022] Consider the case that |v, is close to 0, which
indicates that the reconstructed feature representation [[f]]. is
close to 0. |[f]||=1 means f, is not well reconstructed via which
suggests that this corresponding feature could be not repre-
sentative and such features should be excluded to have a
better reconstruction. One way to do this is to add a selection
matrix diag(p) to X and V as,

IXdiag(p)-Uldiag@)P) 7l *
[0023] where p={0, 1}¢ with p,=1 if the i-th feature is
selected and otherwise p,=0, which completes the proof.
[0024] With Theorem 1, if we want to select m, features

for the clustering algorithm in Equation (2), we can rewrite
it as:

min||Xdiaglp) - U (diag(p)V) Iz ©)

st UTU=1,U=0

pef0, 1}, pl=m

[0025] The constraint on p makes Equation (5) mixed
integer programming, which is difficult to solve. The prob-
lem is relaxed in the following way. First, the following
theorem suggests that we can ignore the selection matrix on
X as

minllX - Udiag(p)V)T I} ©

st. UTu=1U=0

pef0, 1}, pl=m

[0026] Theorem 2. The optimization problems in Equation
(5) and Equation (6) are equivalent.

[0027] Proof. One way to prove Theorem 2 is to show that

the objective functions in Equation (5) and Equation (6) are

equivalent. For Equation (5):

d @)
IXdiag(p) - Utdiag(p)V) Iz = Y lIpifi = iUV I
i=1

2
= > s-0]l;
1

iipj=

And for Equation (6):
[0028]

d 8
IX - Utdiag V) IIz = D 11 = itV Iz

i=1
= D =0l + N =m)

iipi=1

which complete the proof.

[0029] It’s observed that diag(p) and V is as the form of
diag(p)V in Equation (6). Since p is a binary vector and N-m
rows of the diag(p) are all zeros, diag(p)V is a matrix where
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elements of many rows are all zeros. This motivates us to
absorb the diag(p) into V, i.e., V=diag(p)V, and add I, ; norm
on V to achieve feature selection as:

. 2
a_rgrlrju‘;ﬂlX -UVTl; + aVllp, @

st. UTu=1U=0

[0030] Since it forces some rows of V close to 0, U and V
may poorly reconstruct some data instances. Reconstructing
errors from these instances may easily dominate the objec-
tive function because of the squared errors. To make the
model robust to these instances, a robust analysis should be
conducted, i.e., replace the loss function by I, ;-norm, as
follows

argminl| X — UV [l + eV, (10

st. UTu=1U=0

[0031] To take advantage of information from attribute-
value part, i.e, X, similar data instances should have similar
labels, according to the spectral analysis, the following term
to force is added similar instances with similar labels as:

min Tr(UTLU) 11)
[0032] where L=D-S is the Laplacian matrix and D is a
diagonal matrix with its elements defined as D,=X%,_,”'S,. S

ER¥¥ denotes the similarity matrix based on X, which is
obtained through RBF kernel as

ey =212 (12)

S‘_/ = e’””p

[0033] Putting Equation (10) and Equation (11) together,
the proposed framework EUFS is to solve the following
optimization problem:

argmin| X - UV i1 + |Vl + BTHUTLU) (13)

st. UTu=1U=0

Optimization Algorithm

[0034] The objective function in Equation (13) is not
convex in both U and V but is convex if we update the two
variables alternatively. The presently disclosed technology
uses an Alternating Direction Method of Multiplier to opti-
mize the objective function. By introducing two auxiliary
variables E=X-UV7 and Z=U, Equation (13) is converted
into the following equivalent problem,

arg min [IEll,y +allVilps + ATHZTLU) 14

st. E=Xx-0V,Zz=U0,U0TU=1,Z=0
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[0035]
problem

which can be solved by the following ADMM

i E| v THZTLU) +(Y;,Z - U (15)
vayEryrZL'lyr}'yzyull o, + eIVl + BT )+ (1, )+

u
(2. X =0V = Ey+ 5 (12~ Ullg +IX = UV ~ El)

st. UTu=1,Z=0

[0036] where Y1, Y2 are two Lagrangian multipliers and
p is a scalar to control the penalty for the violation of
equality constraints E=X-UV? and Z=U.

Update E

[0037] To update E, other variables are fixed except E and
remove terms that are irrelevant to E. Then Equation (15)
becomes

1 A L (16)
min 5 ‘E—(X -Vl + ;YZ)HF + ;||E||2,1
[0038] The equation has a closed form solution by the

following Lemma:

[0039] Lemma3.LetQ=[q;;qs;--.;q,] be agiven matrix
and A a positive scalar. if the the optimal solution of

1 , an
min W = QI + AWl

[0040] is W*, then the i-th row of W* is

(1= o i llgl > A ®
we = U)o il

0, otherwise

[0041] Apparently, if

1
0=X-UV +-1,
u

then using Lemma 3, E can be updated as

Ly ! 19)
(1= et > -
e = Allgill u

0, otherwise

Update V

[0042] To update V, other variables are fixed except V and
remove terms that are irrelevant to V, then Equation (15)
becomes min
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1 20)
min EHX —UV —E+-Y,
v,uTu=1 4

2
+allVlly,
F

[0043] Using the fact that U7U=I, we can reformulate
Eq.(20) as

1.y )P 2D
‘V—(X _E+ —Yz) U‘
H F

min—
v 2

+ v
“ 2,1

[0044] Again, the above equation has a closed form solu-
tion according to Lemma 3.

1 T
LetK:(X—E+—Y2) U,
u

then
Y Ve ks & 22
" :{(1 e >
0, otherwise
Update Z
[0045] Similarly, to update Z, we fix U, V,E, Y,, Y,, nand

remove terms irrelevant to Z, then Equation (15) becomes

win 12— VI + B1rZTLU) + (1, Z- U @3

[0046] Equation (23) may be rewritten by putting the
second and third terms to the quadratic term and get a
compact form

nllZ - T 24
min||Z - Tl 24

[0047] where T is defined as

o)

[0048] Equation (24) can be further decomposed to ele-
ment-wise optimization problems as

i T2 26
gjll_z%(zu Ty) 26)

[0049]

is

Clearly, the optimal solution of the above problem

Zz=max(Ty, 0)
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Update U

[0050] Optimizing Equation (15) with respect to U yields
the equation

min (Y1, Z=UY+ (Yo, X = UV —E) + (28)
vTu=1

g(uz— IR+ 11X - UV = EI2)+ BTAZTLU)

[0051] By expanding Equation (28) and dropping terms
that are independent of U, the following equation (29) is
arrived at:

L u
min SJUIE - wv. 0) @)
uTu=-12

[0052] where N is defined as

1 1 (30)
N=on +Z—ﬁlZ+(X—E+;Y2)V

[0053] The above equation may be written into a more
compact form as:

min || - N2 @D
vTu=1

[0054] And now the objective function of updating U has
been converted to the classical Orthogonal Procrutes prob-
lem and can be solved using the following lemma:

[0055] Lemma 4. Given the objective in Eq.(31), the
optimal U is defined as

U=pPQ7Y (32)

[0056] where P and Q are the left and right singular
vectors of the economic singular value decomposition
(SVD) of N.

Update Y1, Y2 and p

[0057] After updating the variables, as known, the ADMM
parameters may be updated as follows:
Y=Y +u(Z-0) (33)
Y, =Y, +u(X-UV'-E) (34)
PEmax(PH, L) (35
[0058] Here, p>1 is a parameter to control the conver-

gence speed and p,,. is a larger number to prevent
becomes too large.

[0059] With these updating rules, EUFS algorithm is sum-
marized in Algorithm 1.
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Algorithm 1 Embedded Unsupervised Feature Selection

Input: X ERY*¢ o B, n, latent dimensional k
Output: n features for the dataset
1: Initialize p = 1073, p = 1.1, pmax = 10'°, U = 0, V = 0 (or initialized
using K-means)
2: repeat

1
3: Caleulate Q =X - UVT + —Y,
u

4: Update E (36)

1 . 1

(1= oo i >

e = Aligll “

0, otherwise

1 T
5: Calculate K = (X -E+ pYz) U

6: Update V (37)

(1- L)k- if kil > <

v :{ P Ly

0, otherwise

7: Calculate T using Eq. (25)
8: Update Z using Eq. (27)
9: Calculate N according to Eq. (30)
10: Update U by Lemma 4
11: Update Y, Yo, p
12: until convergence
13: Sort each feature of X according to IIv;, in descending order and
select the top-n ranked ones

Parameter Initialization

[0060] One way to initialize U and V is to simply set them
to be 0. As the algorithm runs, the objective function will
gradually converge to the optimal value. To accelerate the
convergence speed, following the common way of initial-
izing NMF, k-means is used to initialize U and V. In some
embodiments, k-means is applied to cluster rows of X and
get the soft cluster indicator U. V is simply set as XU. u is
typically set in the range of 107° to 107> initially depending
on the datasets and is updated in each iteration. ,,,. is set
to be a large value such as 10'° to give u freedom to increase
but prevent it from being too large. p is empirically setto 1.1
in the algorithm executed by the systems and methods of the
present presently disclosed technology. The larger p is, the
faster u becomes larger and the more the deviation of the
equality constraint is penalized, which makes it converges
faster. However, some precision of the final objective func-
tion with large p is sacrificed.

Convergence Analysis

[0061] The convergence of the algorithm depends on the
convergence of the ADMM. The detailed convergence proof
of ADMM can be found is known in the art. The conver-
gence criteria can be set as

|Jr+1 - Jr| <e
J; ’
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where J, is the objective function value in Equation (14) and
f is some tolerance value. In practice, the number of itera-
tions can be controlled by setting a maximum iteration
value. The experiments that were conducted found that the
developed algorithm converges within 110 iterations for all
the datasets that were used.

Time Complexity Analysis

[0062] The computation cost for E depends on the com-
putation of

1
0=X-UV +-Y,
u

and update of E. Since U is sparse, i.e., each row of U only
has one nonzero element, then the computation cost is
O(Nd) and O(Nd), respectively.

[0063] Similarly, the computation cost for V involves the
computation of

1 T
K:(X—E+—Y2) U
u

and update of V, which is O(Nd) again due to the sparsity of
U.

[0064] The main computation cost for Z is the computa-
tion of

1
T:(U——YIT—ELU)
“ “

which is O(k?) due to the sparsity of both U and L.

[0065] The main computation cost of U involves the
computation of N and its SVD decomposition, which is
O(Ndk) and O(Nk?). The computational cost for Y, and Y,
are both O(Nd). Therefore, the overall time complexity is
O(Ndk+NKk?). Since d>>k, the final computation cost if
O(Ndk) for each iteration.

Experimental Analysis

[0066] In this section, experiments were conducted to
evaluate the effectiveness of EUFS. After introducing data-
sets and experimental settings, the EUFS framework 100
was compared with the state-of-the-art unsupervised feature
selection methods. Further experiments were conducted to
investigate the effects of important parameters on the EUFS
framework 100.

Datasets

[0067] The experiments are conducted on six publicly
available benchmark datasets, including one Mass Spec-
trometry (MS) dataset ALLAML, two microarray datasets,
i.e., Prostate Cancer gene expression (Prostate-GE) and
TOX-171, two face image datasets, i.e., PIX1OP and
PIE10P and one object image dataset COIL20. The statistics
of the datasets used in the experiments are summarized in
Table 1.
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TABLE 1

Statistics of the Dataset

Dataset # of Samples # of Features # of Classes
ALLAML 72 7192 2
COIL20 1440 1024 20
PIE1OP 210 1024 10
TOX-171 171 5748 4
PIX10P 100 10000 10
Prostate-GE 102 5996 2

Experimental Settings

[0068] Following the common way to evaluate unsuper-
vised feature selection algorithms, the EUFS framework 100
was assessed in terms of clustering performance. The EUFS
framework 100 was compared with the following represen-
tative unsupervised feature selection algorithms:

[0069] All Features: All original features are adopted
[0070] LS: Laplacian Score which evaluates the impor-
tance of a feature through its power of locality preservation
[0071] MCFS: Multi-Cluster Feature Selection which
selects features using spectral regression with I, -norm regu-
larization

[0072] NDFS: Nonnegative Discriminative Feature Selec-
tion which selects features by a joint framework of non-
negative spectral analysis and 1, regularized regression
[0073] RUFS: Robust Unsupervised Feature Selection
which jointly performs robust label learning via local learn-
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ing regularized robust orthogonal non-negative matrix fac-
torization and robust feature learning via joint I, ;-norms
minimization.

[0074] Two widely used evaluation metrics, accuracy
(ACC) and normalized mutual information (NMI), are
employed to evaluate the quality of clusters. The larger ACC
and NMI are, the better performance is.

[0075] There are some parameters to be set. Following, for
LS, MCFS, NDFS, RUFS and EUFS, the neighborhood size
was fixed to be 5 for all the datasets. To fairly compare
different unsupervised feature selection methods, the param-
eters were tuned for all methods by a “grid-search” strategy
from {107%, 10~*, . . . 10% 10°}. For EUFS, the latent
dimension was set as the number of clusters. How to
determine the optimal number of selected features is still an
open problem, the number of selected features was set as
{50, 100, 150, . . ., 300} for all datasets. Best clustering
results from the optimal parameters are reported for all the
algorithms. In the evaluation, K-means was used to cluster
samples based on the selected features. Since K-means
depends on initialization, the experiments were repeated
twenty times and the average results with standard deviation
are reported.

Experimental Results

[0076] The experimental results of different methods on
the datasets are summarized in Table 2 and Table 3. We make
the following observations:

TABLE 2

in parentheses is the number of features when the performance is achieved.

Clustering results(ACC % = std) of different feature selection algorithms
on different datasets. The best results are highlighted in bold. The number

ALL Laplacian
Dataset Features Score MCFS NDFS RUFS
ALLAML 673 +6.72 732 +552 684+104 694 +0.00 722+0.00 73.6=0.00
(150) (100) (100) (150) (100)
COIL20 53.6 +3.83 552 +2.84 59.7+4.03 60.114.26 627 = 3.51 634 =547
(250) (250) (300) (150) (100)
PIE 30.8 +2.29 360295 443320 405+451 426 +4.61 464 =2.69
(100) (50) (100) (50) (50)
TOX-171 415 +3.88 475+ 133 425515 461 +255 478 +3.78 49.5 +2.57
(200) (100) (100) (300) (100)
PDCIOP 743 +12.1 76.6+810 759+859 767 +852 732+940 768 =5.88
(150) (200) (200) (300) (150)
Prostate- 581 +044 575+049 573050 583+050 59.8=+0.00 604 =0.80
GE (300) (300) (100) (50) (100)
TABLE 3

Clustering results(NMI % = std) of different feature selection algorithms
on different datasets. The best results are highlighted in bold. The number
in parentheses is the number of features when the performance is achieved.

ALL Laplacian
Dataset Features Score MCFS NDFS RUFS EUFS
ALLAML 855 %562 150+ 134 11.7+122 7.20+030 12.0=+0.00 151 =0.00
(100) (50) (300) (150) (100)
COIL20 70.6 +1.95 703+ 1.73 724+190 721+1.75 731+1.69 7724275
(300) (150) (300) (150) (100)
PIE1OP 322 £347 385144 543339 460+3.14 49.6=+515 498 +3.10
(50) (50) (100) (50) (150)
TOX-171 17.815.20 305+ 270 17.7+6.88 223 +241 288+271 260+241

(150) (100) (300) (300) (100)
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TABLE 3-continued

Clustering results(NMI % = std) of different feature selection algorithms
on different datasets. The best results are highlighted in bold. The number
in parentheses is the number of features when the performance is achieved.

Jul. 27,2017

ALL Laplacian

Dataset Features Score MCFS NDFS RUFS

EUFS

PIX10P 82.8 + 648 843 +4.63 850495 848 +476 81.116.23 85.1 + 430

(150) (200) (200)

(300)

(50)

Prostate- 1.95 +0.27 1.5910.21 153 +0.21 2.02+0.25 286+0.00 336048

GE (300) (300) (100)

(100)

[0077] Itwas discovered that feature selection is necessary
and effective. The selected subset of the features can not
only reduce the computation cost, but also improve the
clustering performance;

[0078] Robust analysis is also important for unsupervised
feature selection, which helps select more relevant features
and improve the performance;

[0079] The EUFS framework 100 tends to achieve better
performance with usually fewer selected features such as 50
or 100; and most of the time, the proposed framework the
EUFS framework 100 outperforms baseline methods, which
demonstrates the effectiveness of the proposed algorithm.
There are two major reasons. First, the feature selection is
directly embedded in the process of clustering using sparse
learning and the norm of the latent feature reflects the quality
of the reconstruction and thus the importance of the original
feature. Second, the graph regularize helps to learn better
cluster indicators that fits the existing manifold structure,
which leads to a better latent feature matrix. Finally, a robust
analysis was introduced to ensure that these poorly recon-
structed instances have less effect on feature selection.
[0080] A parameter analysis is also performed for some
important parameters of the EUFS framework 100. The
results on COIL20 shown as graphs 200-206 are illustrated
in FIGS. 2A-D. The experimental results show that the
method is not very sensitive to o and . However, the
performance is relatively sensitive to the number of selected
features, which is a common problem for many unsuper-
vised feature selection methods.

[0081] FIG. 3 illustrates an example network environment
300 for implementing the various systems and methods, as
described herein. As depicted in FIG. 3, a communications
network 302 (e.g., the Internet) is used by one or more
computing or data storage devices for implementing the
systems and methods for managing high-dimensional data
using the EUFS framework 100. In one implementation, one
or more databases 302, such as a storage cluster, one or more
computing devices 304, and/or other network components or
computing devices described herein are communicatively
connected to the communications network 302. Examples of
the computing devices 304 include a terminal, personal
computer, a mobile device, a smart-phone, a tablet, a mul-
timedia console, a gaming console, a set top box, etc.
[0082] A server 306 hosts the system. In one implemen-
tation, the server 306 also hosts a website or an application
that users may visit to access the high-dimensional data
and/or the EUFS framework 100. The server 306 may be one
single server, a plurality of servers 306 with each such server
306 being a physical server or a virtual machine, or a
collection of both physical servers and virtual machines. In
another implementation, a cloud hosts one or more compo-

nents of the system. The computing devices 304, the server
306, and other resources connected to the communications
network 302 may access one or more additional servers for
access to one or more websites, applications, web services
interfaces, etc. that are used for data management. In one
implementation, the server 306 also hosts a search engine
that the system uses for accessing and modifying informa-
tion, including without limitation, high-dimensional data
and/or algorithms of the EUFS framework 100.

[0083] Referring to FIG. 4, a detailed description of an
example computing system 400 having one or more com-
puting units that may implement various systems and meth-
ods discussed herein is provided. The computing system 400
may be applicable to the computing device 304, the server
306, and other computing or network devices. It will be
appreciated that specific implementations of these devices
may be of differing possible specific computing architec-
tures not all of which are specifically discussed herein but
will be understood by those of ordinary skill in the art.
[0084] The computer system 400 may be a computing
system is capable of executing a computer program product
to execute a computer process. Data and program files may
be input to the computer system 400, which reads the files
and executes the programs therein. Some of the elements of
the computer system 400 are shown in FIG. 4, including one
or more hardware processors 402, one or more data storage
devices 404, one or more memory devices 408, and/or one
or more ports 408-410. Additionally, other elements that will
be recognized by those skilled in the art may be included in
the computing system 400 but are not explicitly depicted in
FIG. 13 or discussed further herein. Various elements of the
computer system 400 may communicate with one another by
way of one or more communication buses, point-to-point
communication paths, or other communication means not
explicitly depicted in FIG. 4.

[0085] The processor 402 may include, for example, a
central processing unit (CPU), a microprocessor, a micro-
controller, a digital signal processor (DSP), and/or one or
more internal levels of cache. There may be one or more
processors 402, such that the processor 402 comprises a
single central-processing unit, or a plurality of processing
units capable of executing instructions and performing
operations in parallel with each other, commonly referred to
as a parallel processing environment.

[0086] The computer system 400 may be a conventional
computer, a distributed computer, or any other type of
computer, such as one or more external computers made
available via a cloud computing architecture. The presently
described technology is optionally implemented in software
stored on the data stored device(s) 404, stored on the
memory device(s) 406, and/or communicated via one or
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more of the ports 408-410, thereby transforming the com-
puter system 400 in FIG. 4 to a special purpose machine for
implementing the operations described herein.

[0087] Examples of the computer system 400 include
personal computers, terminals, workstations, mobile phones,
tablets, laptops, personal computers, multimedia consoles,
gaming consoles, set top boxes, and the like.

[0088] The one or more data storage devices 404 may
include any non-volatile data storage device capable of
storing data generated or employed within the computing
system 400, such as computer executable instructions for
performing a computer process, which may include instruc-
tions of both application programs and an operating system
(OS) that manages the various components of the computing
system 400. The data storage devices 404 may include,
without limitation, magnetic disk drives, optical disk drives,
solid state drives (SSDs), flash drives, and the like. The data
storage devices 404 may include removable data storage
media, non-removable data storage media, and/or external
storage devices made available via a wired or wireless
network architecture with such computer program products,
including one or more database management products, web
server products, application server products, and/or other
additional software components. Examples of removable
data storage media include Compact Disc Read-Only
Memory (CD-ROM), Digital Versatile Disc Read-Only
Memory (DVD-ROM), magneto-optical disks, flash drives,
and the like. Examples of non-removable data storage media
include internal magnetic hard disks, SSDs, and the like. The
one or more memory devices 406 may include volatile
memory (e.g., dynamic random access memory (DRAM),
static random access memory (SRAM), etc.) and/or non-
volatile memory (e.g., read-only memory (ROM), flash
memory, etc.).

[0089] Computer program products containing mecha-
nisms to effectuate the systems and methods in accordance
with the presently described technology may reside in the
data storage devices 404 and/or the memory devices 406,
which may be referred to as machine-readable media. It will
be appreciated that machine-readable media may include
any tangible non-transitory medium that is capable of stor-
ing or encoding instructions to perform any one or more of
the operations of the present disclosure for execution by a
machine or that is capable of storing or encoding data
structures and/or modules utilized by or associated with such
instructions. Machine-readable media may include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more executable instructions or data structures.
[0090] Insome implementations, the computer system 400
includes one or more ports, such as an input/output (1/O)
port 408 and a communication port 410, for communicating
with other computing, network, or vehicle devices. It will be
appreciated that the ports 408-410 may be combined or
separate and that more or fewer ports may be included in the
computer system 400.

[0091] The I/O port 408 may be connected to an [/O
device, or other device, by which information is input to or
output from the computing system 400. Such I/O devices
may include, without limitation, one or more input devices,
output devices, and/or environment transducer devices.
[0092] In one implementation, the input devices convert a
human-generated signal, such as, human voice, physical
movement, physical touch or pressure, and/or the like, into
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electrical signals as input data into the computing system
400 via the /O port 408. Similarly, the output devices may
convert electrical signals received from computing system
400 via the I/O port 408 into signals that may be sensed as
output by a human, such as sound, light, and/or touch. The
input device may be an alphanumeric input device, includ-
ing alphanumeric and other keys for communicating infor-
mation and/or command selections to the processor 402 via
the 1/O port 408. The input device may be another type of
user input device including, but not limited to: direction and
selection control devices, such as a mouse, a trackball,
cursor direction keys, a joystick, and/or a wheel; one or more
sensors, such as a camera, a microphone, a positional sensor,
an orientation sensor, a gravitational sensor, an inertial
sensor, and/or an accelerometer; and/or a touch-sensitive
display screen (“touchscreen™). The output devices may
include, without limitation, a display, a touchscreen, a
speaker, a tactile and/or haptic output device, and/or the like.
In some implementations, the input device and the output
device may be the same device, for example, in the case of
a touchscreen.

[0093] The environment transducer devices convert one
form of energy or signal into another for input into or output
from the computing system 400 via the I/O port 408. For
example, an electrical signal generated within the computing
system 400 may be converted to another type of signal,
and/or vice-versa. In one implementation, the environment
transducer devices sense characteristics or aspects of an
environment local to or remote from the computing device
400, such as, light, sound, temperature, pressure, magnetic
field, electric field, chemical properties, physical movement,
orientation, acceleration, gravity, and/or the like. Further, the
environment transducer devices may generate signals to
impose some effect on the environment either local to or
remote from the example computing device 400, such as,
physical movement of some object (e.g., a mechanical
actuator), heating or cooling of a substance, adding a chemi-
cal substance, and/or the like.

[0094] In one implementation, a communication port 410
is connected to a network by way of which the computer
system 400 may receive network data useful in executing the
methods and systems set out herein as well as transmitting
information and network configuration changes determined
thereby. Stated differently, the communication port 410
connects the computer system 400 to one or more commu-
nication interface devices configured to transmit and/or
receive information between the computing system 400 and
other devices by way of one or more wired or wireless
communication networks or connections. Examples of such
networks or connections include, without limitation, Uni-
versal Serial Bus (USB), Ethernet, Wi-Fi, Bluetooth®, Near
Field Communication (NFC), Long-Term Evolution (LTE),
and so on. One or more such communication interface
devices may be utilized via the communication port 410 to
communicate one or more other machines, either directly
over a point-to-point communication path, over a wide area
network (WAN) (e.g., the Internet), over a local area net-
work (LAN), over a cellular (e.g., third generation (3G) or
fourth generation (4G)) network, or over another commu-
nication means. Further, the communication port 410 may
communicate with an antenna or other link for electromag-
netic signal transmission and/or reception.

[0095] In an example implementation, the EUFS frame-
work 100 algorithms, including the clustering algoritm, and
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other software and/or modules and services may be embod-
ied by instructions stored on the data storage devices 404
and/or the memory devices 406 and executed by the pro-
cessor 402.

[0096] The system set forth in FIG. 4 is but one possible
example of a computer system that may employ or be
configured in accordance with aspects of the present disclo-
sure. It will be appreciated that other non-transitory tangible
computer-readable storage media storing computer-execut-
able instructions for implementing the presently disclosed
technology on a computing system may be utilized.

[0097] In the present disclosure, the methods disclosed
may be implemented as sets of instructions or software
readable by a device. Further, it is understood that the
specific order or hierarchy of steps in the methods disclosed
are instances of example approaches. Based upon design
preferences, it is understood that the specific order or
hierarchy of steps in the method can be rearranged while
remaining within the disclosed subject matter. The accom-
panying method claims present elements of the various steps
in a sample order, and are not necessarily meant to be limited
to the specific order or hierarchy presented.

[0098] The described disclosure may be provided as a
computer program product, or software, that may include a
non-transitory machine-readable medium having stored
thereon instructions, which may be used to program a
computer system (or other electronic devices) to perform a
process according to the present disclosure. A machine-
readable medium includes any mechanism for storing infor-
mation in a form (e.g., software, processing application)
readable by a machine (e.g., a computer). The machine-
readable medium may include, but is not limited to, mag-
netic storage medium, optical storage medium; magneto-
optical storage medium, read only memory (ROM); random
access memory (RAM); erasable programmable memory
(e.g., EPROM and EEPROM); flash memory; or other types
of medium suitable for storing electronic instructions.

[0099] While the present disclosure has been described
with reference to various implementations, it will be under-
stood that these implementations are illustrative and that the
scope of the present disclosure is not limited to them. Many
variations, modifications, additions, and improvements are
possible. More generally, embodiments in accordance with
the present disclosure have been described in the context of
particular implementations. Functionality may be separated
or combined in blocks differently in various embodiments of
the disclosure or described with different terminology. These
and other variations, modifications, additions, and improve-
ments may fall within the scope of the disclosure as defined
in the claims that follow.

What is claimed is:

1. A method for managing high-dimensional data, the
method comprising:

generating a data matrix for the high-dimensional data
with a computing device, the data matrix having a
plurality of rows with one or more features, each of the
plurality of rows being a data instance; and

clustering the data matrix into one or more clusters using
an embedded unsupervised feature selection frame-
work, the embedded unsupervised feature selection
framework selecting the one or more features in an
unsupervised environment with sparse learning.
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2. The method of claim 1, wherein the embedded unsu-
pervised feature selection framework is generated based on
a cluster indicator and a latent feature matrix.

3. The method of claim 2, wherein the latent feature
matrix includes a sparse leaning technique, the embedded
unsupervised feature selection framework selecting the one
or more features via the latent feature matrix.

4. The method of claim 2, wherein the latent feature
matrix and the cluster indicator are each set to 0 during
initialization and subsequently converge to an optimal value.

5. The method of claim 1, wherein the embedded unsu-
pervised feature selection framework is optimized using an
Alternating Direction Method of Multiplier.

6. The method of claim 1, wherein the embedded unsu-
pervised feature selection framework is optimized using a
first equality constraint and a second equality constraint.

7. The method of claim 1, wherein the embedded unsu-
pervised feature selection framework sorts the one or more
features into a descending order.

8. The method of claim 7, wherein the embedded unsu-
pervised feature selection framework selects one or more top
ranked features from the descending order.

9. The method of claim 1, wherein the embedded unsu-
pervised feature selection framework removes at least one of
redundant, irrelevant, or noisy features of the high-dimen-
sional data.

10. One or more non-transitory tangible computer-read-
able storage media storing computer-executable instructions
for performing a computer process on a computing system,
the computer process comprising:

generating a data matrix for high-dimensional data, the

data matrix having a plurality of rows with one or more
features, each of the plurality of rows being a data
instance; and

clustering the data matrix into one or more clusters using

an embedded unsupervised feature selection frame-
work, the embedded unsupervised feature selection
framework selecting the one or more features in an
unsupervised environment with sparse learning.

11. The one or more non-transitory tangible computer-
readable storage media of claim 10, wherein the embedded
unsupervised feature selection framework is generated
based on a cluster indicator and a latent feature matrix.

12. The one or more non-transitory tangible computer-
readable storage media of claim 11, wherein the latent
feature matrix includes a sparse leaning technique, the
embedded unsupervised feature selection framework select-
ing the one or more features via the latent feature matrix.

13. The one or more non-transitory tangible computer-
readable storage media of claim 11, wherein the latent
feature matrix and the cluster indicator are each set to 0
during initialization and subsequently converge to an opti-
mal value.

14. The one or more non-transitory tangible computer-
readable storage media of claim 10, wherein the embedded
unsupervised feature selection framework is optimized
using Alternating Direction Method of Multiplier.

15. The one or more non-transitory tangible computer-
readable storage media of claim 10, wherein the embedded
unsupervised feature selection framework is optimized
using a first equality constraint and a second equality
constraint.

16. The one or more non-transitory tangible computer-
readable storage media of claim 10, wherein the embedded
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unsupervised feature selection framework sorts the one or
more features into a descending order.

17. The one or more non-transitory tangible computer-
readable storage media of claim 16, wherein the embedded
unsupervised feature selection framework selects one or
more top ranked features from the descending order.

18. The one or more non-transitory tangible computer-
readable storage media of claim 10, wherein the embedded
unsupervised feature selection framework removes at least
one of redundant, irrelevant, or noisy features of the high-
dimensional data.

19. A system for managing high-dimensional data, the
system comprising:

one or more databases storing the high-dimensional data;

and

a computing device in communication with the one or

more databases, the computing device clustering the
data matrix for the high-dimensional data into one or
more clusters using an embedded unsupervised feature
selection framework, the data matrix having a plurality
of rows with one or more features, the embedded
unsupervised feature selection framework selecting the
one or more features in an unsupervised environment
with sparse learning.

20. The system of claim 19, wherein the embedded
unsupervised feature selection framework is generated
based on a cluster indicator and a latent feature matrix.
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