a2 United States Patent

Jiang et al.

US011775635B2

US 11,775,635 B2
Oct. 3, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

AUTONOMOUS DETECTION OF
CACHE-BASED SIDE-CHANNEL ATTACKS

Applicant: NEC Laboratories Europe GmbH,
Heidelberg (DE)

Inventors: Jianyu Jiang, Pokfulam (HK);
Ghassan Karame, Heidelberg (DE);
Claudio Soriente, Madrid (ES)

Assignee: NEC CORPORATION, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 758 days.

Appl. No.: 16/826,319
Filed: Mar. 23, 2020

Prior Publication Data

US 2021/0192045 Al Jun. 24, 2021

Related U.S. Application Data

Provisional application No. 62/952,513, filed on Dec.
23, 2019.

Int. CL.

GO6F 21/55 (2013.01)

GO6F 21/53 (2013.01)

GO6N 5/04 (2023.01)

GO6N 20/00 (2019.01)

U.S. CL

CPC GO6F 21/554 (2013.01); GO6F 21/53

(2013.01); GO6N 5/04 (2013.01); GO6N 20/00
(2019.01); GOGF 2221/034 (2013.01)
Field of Classification Search
CPC e GOG6F 21/554
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2017/0142072 Al* 5/2017 Reubenstein HO4L 63/1441
2018/0341600 Al* 11/2018 Schuster GO6F 12/0806
2021/0192045 Al* 6/2021 Jiangccocoeee. GOG6F 21/554

FOREIGN PATENT DOCUMENTS

WO WO0-2019140274 A1 * 7/2019
WO WO-2020217043 Al * 10/2020

............. GO6F 21/12
......... GO6F 12/0864

OTHER PUBLICATIONS

Oleksenko, Oleksii et al. “Varys: Protecting SGX enclaves from
practical side-channel attacks,” USENIX ATC *18, Jul. 11-13, 2018,
Boston, MA, USA.

Chen, Guoxing et al. “Racing in Hyperspace: Closing Hyper-
Threading Side Channels on SGX with Contrived Data Races,”
2018 IEEE Symposium on Security and Privacy, May 21-23, 2018.

* cited by examiner

Primary Examiner — Saleh Najjar

Assistant Examiner — Simon Kanaan

(74) Attorney, Agent, or Firm — Leydig, Voit & Mayer,
Ltd.

(57) ABSTRACT

A method for detecting a cache-based side-channel attack
includes utilizing a timer thread that continuously incre-
ments a variable in code of an application. The code has
been instrumented such that the instrumented code uses the
variable incremented by the timer thread to infer an amount
of time taken for running a part of the code. A number of
cache misses during execution of the part of the code is
determined based on the amount of time. It is determined
whether the application is experiencing the cache-based
side-channel attack using a classifier which uses as input the
number of cache misses.

20 Claims, 6 Drawing Sheets

io

ook 7 i
2 4 2
\ (> N
Ape-1 AN A2 | [App-3
b
Enclave % Enciav X\I\A‘ § i3 @
Tirnar Thrond T Tt AR Ao 1]
H H] Frack Throad
WaiThrewd TSNASNS Malss Theamd "W AASANS
A kS ' M 5
A Pl ;
P! . St ; £
; i i o i
| Core-1 i Dore-2]; Dore-d | Cove-d
£ L t

Lasttevel Cache 13

U.S. Patent Oct. 3, 2023 Sheet 1 of 6 US 11,775,635 B2

Anp-1

Enclave

App-d 1 HApp-3

Enclave

Timear Theoad Tiener Thread

8ainThraad

L

2 ¢ +
18 i
"

P Attack Throad
Main Theead NSNS AP
])) 5

I8

1)
i ¥’

o
s

. K £
k3 ¥ £

Core-1 || Core-2 || Core3 || Core-4

Lastlovel Cache 13

FIG. |

US 11,775,635 B2

Sheet 2 of 6

Oct. 3, 2023

U.S. Patent

< DId

€7 BYDET) PASHISET

B0 £-BI00) Z-BIOTY L-BI00)
¥ *
MN s\.n,,.. ..uw wN ,..,,.“. w N
pranyy uen ; peBSILEY

PRI Uy
aapougy / angpuy
o-ddyl | seung {~sichy
AN
4
sT
0T \\

U.S. Patent Oct. 3, 2023 Sheet 3 of 6 US 11,775,635 B2

16, 26

/

unsigned long long

cnt;

cnt = 0

while (running) {
cnt++;

FIG. 3

U.S. Patent

Oct. 3, 2023

Sheet 4 of 6

US 11,775,635 B2

40

rd

: mw {cm] z‘ax e

e
t
[

F1G. 4A

Fetch timer

| Compute ime
| difference

M Decide if there are
..+ | cache misses

43

mov [ont], rax
jz L4

/

L4
- sub rax, [end]

é Qushzb@
mov rsp, rbp

ﬁmp rax, «t‘ﬁf’ﬁ‘%ﬁhﬂiid

F1G. 48

US 11,775,635 B2

Sheet 5 of 6

Oct. 3, 2023

U.S. Patent

FRPON-TIN

§DIA

SOy puRys-apg |

sohueg
BHYSIN
BDRD

o

S

BROTY RIBLUNAST

SABISLEY

N

ara

U.S. Patent Oct. 3, 2023 Sheet 6 of 6 US 11,775,635 B2

60

Enclave

LContinue
instrument Code Execution

44, 45

Pradiction Result
fprohabiiily of allaal
 Classdmation of atbacks)

Predict

Cache Misses , L T — Response
Report i EY)
. o Module
5t MioModud 1
5
7 abort =
4

F1G. 6

US 11,775,635 B2

1
AUTONOMOUS DETECTION OF
CACHE-BASED SIDE-CHANNEL ATTACKS

CROSS-REFERENCE TO PRIOR APPLICATION

Priority is claimed to U.S. Provisional Patent Application
No. 62/952,513 filed on Dec. 23, 2019, the entire contents of
which is hereby incorporated by reference herein.

FIELD

The present invention relates to a method and system for
detecting and preventing side-channel attacks which exploit
shared cache resources in central processing unit (CPUs).

BACKGROUND

Side-channel attacks based on shared resources enable a
malicious process to infer secret information of a victim. For
example, if the victim’s memory access depends on the
value of a secret (e.g., a private key), a malicious process
could learn the secret by monitoring how the victim accesses
the memory.

Prominent side-channels attacks use shared caches avail-
able in modern processors. Depending on the cores where
the victim and attacker process are running, cache-based
side-channels can be partitioned in same-core and cross-core
attacks. Same-core attacks require the victim and the
attacker to run on the same core and exploit .1 and [.2
caches. Cross-core attacks can be executed even when the
victim and the attacker run on different cores of the same
CPU and exploit L3 cache, since I.1 and L2 caches are
core-private.

Most side-channel attacks fall into one of two categories:
prime-and-probe or flush-and-reload. In a prime-and-probe
attack, the attacker starts by priming the cache, i.e., filling it
with its own data. After the priming phase, the attacker waits
for a fixed amount of time to let the victim run. Finally, in
the probing phase the attacker fetches data that occupied a
given cache line during the priming phase. Fetching time
allows the attacker to distinguish whether the victim touched
that cache line during its execution, i.e., if the victim
requested a memory address that was cached at that specific
cache line. If fetching is slow, the victim has accessed
memory that maps to that specific cache line. On the other
hand, if fetching is fast, the victim has not accessed memory
that maps to that cache line. In a flush-and-reload attack, the
attacker starts by flushing the cache. After flushing, the
attacker waits for a fixed amount of time to let the victim
run. Finally, in the reload phase the attacker fetches data that
would be cached at a specific cache line. As in a prime-and-
probe attack, the fetching time allows the attacker to distin-
guish whether the victim has accessed a given memory
address during its execution.

SUMMARY

In an embodiment, the present invention provides a
method for detecting a cache-based side-channel attack. The
method includes utilizing a timer thread that continuously
increments a variable in code of an application. The code has
been instrumented such that the instrumented code uses the
variable incremented by the timer thread to infer an amount
of time taken for running a part of the code. A number of
cache misses during execution of the part of the code is
determined based on the amount of time. It is determined

10

15

30

35

40

45

55

2

whether the application is experiencing the cache-based
side-channel attack using a classifier which uses as input the
number of cache misses.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will be described in
even greater detail below based on the exemplary figures.
The present invention is not limited to the exemplary
embodiments. All features described and/or illustrated
herein can be used alone or combined in different combi-
nations in embodiments of the present invention. The fea-
tures and advantages of various embodiments of the present
invention will become apparent by reading the following
detailed description with reference to the attached drawings
which illustrate the following:

FIG. 1 schematically illustrates a system for detecting
side-channel attacks according to an embodiment of the
present invention;

FIG. 2 schematically illustrates a system for detecting
side-channel attacks according to another embodiment of the
present invention;

FIG. 3 shows exemplary pseudo code for a timer thread;

FIG. 4A shows instrumented code for a simple memory
load instruction;

FIG. 4B shows instrumented code for a control flow
instructions;

FIG. 5 schematically illustrates a method for training
machine learning (ML) model according to an embodiment
of the present invention; and

FIG. 6 schematically illustrates a detection phase in an
application enclave using instrumented code according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention enable the detec-
tion of side-channel attacks that exploit shared cache
resources in modern CPUs. In particular, the inventors have
recognized that, in both prime-and-probe and flush-and-
reload side-channel attacks, the adversary manipulating the
cache shared with the victim results in the victim being
likely to experience a number of cache misses (i.e., the
requested memory address is not mapped to cache) that is
higher than the number of cache misses it would experience
if no attack is underway. Accordingly, a process under attack
is likely to experience a high number of cache misses. These
cache misses can be detected by the process in accordance
with embodiments by providing access to a trusted timer.
Embodiments of the present invention implement the trusted
timer as a thread separate from the main application thread.
The main application thread leverages the timer thread to
counts its cache misses and uses this number to estimate the
probability of being a victim of a cache-based side-channel
attack. The mechanisms according to embodiments of the
present invention allow to detect attacks without relying on
services provided by the operating system (OS), such as
trusted timers or performance counters. Accordingly,
embodiments of the present invention can be particularly
advantageously applied to trusted execution environment
(TEE) applications where no performance counters or
trusted sources of time are available.

Trusted timers or performance counters to determine the
number of cache misses are typically services made avail-
able by the OS. In contrast, embodiments of the present
invention provide a detection mechanism for cache-based
side-channels attacks that does not require trusted timers or

US 11,775,635 B2

3

performance counters as services of the OS. In particular, the
detection mechanism relies on the fact that the time con-
sumed by a memory access depends on whether the accessed
address is mapped to cache or not. By timing the access to
the address, the application can infer a cache hit or miss. As
such, as already mentioned above, embodiments of the
present invention are particularly suited for applications
running in TEE such as INTEL SGX where no performance
counters or trusted sources of time are available.

A system according to an embodiment of the present
invention can be implemented in a cloud scenario where the
cloud provider offers TEE-enabled hosts to users. The users
run their application on the remote hosts of the cloud so that
applications from different users run on the same hosts. It is
assumed that applications run all or part of their code within
the TEE of the hosts. For example, if the TEE is instantiated
by INTEL SGX, it is assumed the applications run in
enclaves. Embodiments of the present invention are able to
detect cache-based side-channel attacks at different cache
levels depending on whether applications can have a core
reserved. Core reservation can be achieved by using the
“core affinity” feature of the OS. Alternatively, core reser-
vation can be achieved by using core-reservation techniques
described in Oleksii Oleksenko, et al., “Varys: Protecting
SGX Enclaves from Practical Side-Channel Attacks,”
USENIX Annual Technical Conference, pp. 227-240 (2018)
or Guoxing Chen, et al., “Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with Contrived
Data Races,” IEEE Symposium on Security and Privacy, pp.
178-194 (2018), each of which is hereby incorporated by
reference herein.

If core reservation is available, an embodiment of the
present invention detects side-channel based on last-level
cache (also known as L3 cache). This is because core
reservation rules out attacks based on L1 and L2. If core
reservation is not available, embodiments of the present
invention can be used to detect side-channel based on any
cache.

In an embodiment, the present invention provides a
method for detecting a cache-based side-channel attack. The
method includes utilizing a timer thread that continuously
increments a variable in code of an application. The code has
been instrumented such that the instrumented code uses the
variable incremented by the timer thread to infer an amount
of time taken for running a part of the code. A number of
cache misses during execution of the part of the code is
determined based on the amount of time. It is determined
whether the application is experiencing the cache-based
side-channel attack using a classifier which uses as input the
number of cache misses.

In an embodiment, the number of cache misses is deter-
mined by comparing the amount of time to a threshold.

In an embodiment, the application runs in an enclave of
a host of a cloud provider which implements a trusted
execution environment.

In an embodiment, the timer thread is implemented sepa-
rately from a main thread of the application.

In an embodiment, the timer thread is implemented in a
same enclave of a trusted execution environment as the
application.

In an embodiment, the application runs in an enclave of
a trusted execution environment, and the timer thread is
implemented outside of the enclave and on a different core
of a host than the enclave.

In an embodiment, the classifier is trained by running
applications in a controlled environment with different cache
configurations and/or while running a cache-based side-

20

40

45

50

55

60

4

channel attack, collecting a number of cache misses during
execution, and using the number of cache misses to generate
a classification model used by the classifier.

In an embodiment, the method further comprises aborting
execution of the application based on the classifier deter-
mining the application is experiencing the cache-based
side-channel attack.

In an embodiment, the timer thread is not a service
provided by an operating system running the application.

In an embodiment, the instrumented code of the applica-
tion is instrumented to access a computer register containing
a current value of the variable at least twice during execution
of the part of the code.

In an embodiment, the instrumented code of the applica-
tion is instrumented to access the computer register before
and after each memory access instruction, and the number of
cache misses is determined based on a total number of times
during execution of the part of the code that a time elapsed
for one of the memory access instructions exceeds a thresh-
old.

In an embodiment, the instrumented code of the applica-
tion is instrumented to perform a conditional jump and to
access the computer register before and after the conditional
jump.

In another embodiment, the present invention provides a
system comprising one or more processors which, alone or
in combination, are configured to provide for execution of a
method according to an embodiment of the present inven-
tion. In an embodiment of the system, the application runs
in an enclave of a host of a cloud provider which implements
a trusted execution environment.

In a further embodiment, the present invention provides a
tangible, non-transitory computer-readable medium having
instructions thereon which, upon being executed by one or
more processors, alone or in combination, provide for
execution of a method according to an embodiment of the
invention.

FIG. 1 shows a system 10 according to an embodiment of
the present invention where multiple application enclaves 12
running applications App-1 and App-2 run on a host 15
where a malicious application App-3 is also running. The
applications App-1, App, 2, App-3 have cores reserved to
themselves and all of the applications App-1, App, 2, App-3
share the last-level cache L3, also known as L3 cache. In this
example, application App-1 runs on a first core core-1,
application App-2 runs on a third core core-3 and the
malicious application App-3 runs on a fourth core core-4,
while a second core core-2 is empty. The cores core-1,
core-2, core-3, core-4 are cores of a CPU of the host 15. The
malicious application App-3 runs an attack thread 13 which,
for example, is designed to implement a prime-and-probe or
a flush-and-reload attack. Embodiments of the present
invention can be particularly advantageously applied in
TEEs where the OS does not offer a trusted timer or
performance counters. In order that the cache is shared, a
victim application such as application App-1 and/or App-2
runs on the same CPU as the adversary, such as the mali-
cious application App-3.

An embodiment of the present invention aims at prevent-
ing the cloud operator or any other application running in the
cloud, such as the malicious application App-3, from infer-
ring secrets in the application enclaves 12, including through
side-channels. To do so, an embodiment of the present
invention instruments the applications App-1 and App-2
running in the application enclaves 12 with a separate timer
thread 16 that uses a clock 17 to act as a timer, in particular,
by continuously incrementing a variable shared between a

US 11,775,635 B2

5

main thread 18 of the applications App-1 and App-2 and the
timer thread 16, as illustrated in FIG. 1.

In an alternative embodiment, a system 20 as shown in
FIG. 2 uses a single timer thread 26 which increments a
variable for multiple applications running on a host 25, for
example the applications App-1 and App-2. As in FIG. 1, a
malicious application App-3 running an attack thread 23
which is, for example, designed to implement a prime-and-
probe or a flush-and-reload attack also runs on the host 25.
In this example, the timer thread 26 and the malicious
application App-3 may or not also run in an enclave. The
main threads 28 of the Applications App-1 and App-2 can
determine the number of clock cycles of a clock 27 which
have elapsed between two reads of the variable incremented
by the timer thread 26 and, in turn, can determine the
number of clock cycles consumed to run a piece of its code.
In this example, the applications App-1 and App-2 can run
in application enclaves 22 as in the embodiment of FIG. 1.
In this example, the application App-1 runs on a first core
core-1, the application App-2 runs on a second core core-2,
the timer thread 26 runs on a third core core-3 and the
malicious application App-3 runs on a fourth core core-4.

FIG. 3 shows an embodiment of the timer thread 16 and
26 of FIGS. 1 and 2. As shown in FIG. 3, the timer thread
16 or 26 simply updates a shared variable cnt by one in a
busy loop. FIG. 3 shows a loop where the variable cnt is
incremented by 1 at each cycle. Alternatively, the variable
cnt could be incremented by any constant or even by a value
determined by a pseudo-random function initialized with a
secret seed. In the latter case, the secret seed must be
available to the main threads 18 or 28 of the applications
App-1 and App-2. In any of the cases, the main thread 18 or
28 can compute elapsed time by comparing the values of two
different accesses to the variable cnt. Specifically, the main
thread 18 or 28 first reads the variable cnt before a given
sequence of instructions (this time is denoted as cntl). After
the execution of the given sequence of instructions, the main
thread 18 or 28 reads the variable cnt again (this time is
denoted as cnt2). Thus, the main thread 18 or 28 can infer
the execution time of the instruction sequence as the time
difference between the reads (cnt2-cntl). Since executions
time depends on whether data is in cache or nor, longer
execution times allow to infer that the data was not cached.

An embodiment of the present invention instruments the
code of the applications App-1 and App-2 to measure its
cache misses using the timer thread 16 or 26. For example,
each memory access instruction can be timed by comparing
the value read from the variable cnt before and after its
execution. A memory access instruction will take X clock
ticks if the data stored at the accessed address is also stored
in cache. Otherwise, if the data is not stored in cache, the
memory access instruction will take Y clock ticks, where
X<<Y. Preferably, the time taken for each memory access
instruction is checked and the amount of time can be
compared to a threshold to decide whether the data stored at
the accessed address is also stored in cache.

FIG. 4A shows an example of instrumented code 40 for a
simple memory load instruction. The instrumented code 40
first fetches the timer and loads the value of the variable cnt
to CPU register rax (mov [cnt], rax), executes a memory
load instruction to CPU register rbx (mov [mem], rbx) and
then retrieves a new or current value of the variable cnt and
computes the difference between the new or current value
and the old value stored in the CPU register rax to get the
execution time of the memory load instruction (sub rax,
[ent]). The memory load instruction (mov [mem], rbx) is
part of the original or ordinary application code while the

10

15

20

25

30

35

40

45

50

55

60

65

6

other instructions in FIG. 4A are instrumented into the
original or ordinary application code. The instrumented code
40 then compares the elapsed time with a pre-defined
threshold to decide whether there was a cache miss or not
(cmp rax, —threshold). The instrumented code 40 provides a
conditional branch based on this comparison which jumps to
another piece of code labelled Lcache-miss in a case that a
cache miss is detected (jlt Lcache_miss). This code can then
keep track of the number of cache misses over time and
detect side-channel attacks based thereon.

To detect cache misses of control flow instructions, time
measurement code is injected to a call site and its callee, that
is right before pointing to an instruction or piece of code, and
right after the start of the execution of that instruction or
piece of code. FIG. 4B shows an example of instrumented
code 45 for a control flow instruction. In one piece of the
instrumented code 45 (shown in the upper box of FIG. 4B),
the program jumps to L4 (jz L4), which is located in another
piece of the instrumented code 45 (shown in the lower box
of FIG. 4B), if the value of a specific register is 0. Before
jumping to L4, the instrumented code 45 saves the value of
the timer variable cnt into the CPU register rax (mov [cnt],
rax). After jumping to L4, the elapsed time is computed by
retrieving a new or current value of the variable cnt and
subtracting the new or current value from what was the old
value that was saved in the CPU register rax (sub rax, [cnt]).
The instrumented code 45 compares the elapsed time with a
pre-defined threshold value (cmp rax, —threshold) and pro-
vides a conditional branch based on this comparison which
jumps to another piece of code labelled Lcache-miss in a
case that a cache miss is detected (jlit Lcache_miss). As
above, the piece of code labelled Lcache_miss would take
care of the scenario where a cache miss is detected. The two
remaining instructions (push rbp and mov rsp, rbp) are the
original or ordinary code (without instrumentation to detect
and handle cache misses). Accordingly, after the CPU
fetches the code into cache (if necessary), the target code
starts execution. However, instead of directly starting execu-
tion, the instrumented code 45 first reads the post-execution
timer value and checks if the elapsed time exceeds a
threshold. In FIG. 4B, the conditional jump (jz L4) is
therefore instrumented using similar code to the memory
load instruction of FIG. 4A (mov [mem], rbx).

Since instrumenting all instructions of an application
leads to sensible overhead, an embodiment of the present
invention provides that developers annotate memory
accesses that may leak secret information via side-channels.
For example, this could be a secret-dependent conditional
branch in ElGamal encryption, or secret-dependent table
lookups in advanced encryption standard (AES).

An embodiment of the present invention also instruments
the application with a classifier that, given the number of
cache misses consumed to execute a piece of code, computes
the probability that the process is being victim of a cache-
based side-channel attack. For each function of the appli-
cation, a cache miss counter is defined. When a cache miss
occurs, the counter is incremented by one. Specifically, the
counter is updated in cache miss shown in FIGS. 4A and 4B.
These cache miss counters are used as features to classify if
an enclave is under cache attacks.

The classifier to detect side-channel attacks according to
embodiments of the present invention is trained preferably
during an offline phase where the application is run multiple
times in a controlled environment with different cache
configurations and/or while running different cache-based
side-channel attacks. Cache misses at each execution are fed

US 11,775,635 B2

7

to the classifier. Additional features may include the CPU
architecture and other hardware features.

FIG. 5 depicts a training process 50 according to an
embodiment of the present invention. The cache misses
samples 52 are collected from the applications running with
instrumented code 40 or 45 within application enclaves 12
or 22 and are used to create a classification model by
machine learning (ML), or an ML model 55. The ML
training 54 of the ML model 55 is preferably run outside of
the enclaves 12 or 22 so as to speed up training (e.g., using
a graphics processing (GPU)). Different classifiers, e.g.,
based on simple threshold, or Naive Bayes, support vector
machine (SVM), decision tree and random forest can be
used for training and detecting cache side-channel attacks.

FIG. 6 shows a detection phase 60 according to an
embodiment of the present invention. The instrumented
code 40 or 45 of the application enclave 12 or 22 is
instrumented to periodically invoke the prediction of the
classifier using cache misses information, for example a
cache misses report 62, collected during the period as
features. The prediction results are passed to a response
module 65, which may be located within the same applica-
tion enclave 12 or 22, in another enclave on the same
machine, or in a different host, to decide if the application
should continue execution or abort.

Embodiments of the present invention provide for the
following improvements/advantages:

1) Using a timer thread that continuously increments a
variable so that applications on the same host can
monitor the time required to execute a piece of code
and, in turn, infer the number of cache misses caused by
the execution of that piece of code; and/or

2) Using the number of cache misses inferred in the
previous step to infer, using a machine-learning clas-
sifier, the occurrence of a cache-based side-channel.

An embodiment of the present invention provides a
method for detecting cache-based side-channel attacks, the
method comprising the steps of:

1) Creating a timer thread that continuously increments a

variable,

2) Instrumenting the code of an application so that the
application can use the variable incremented by the
timer thread to infer the time taken for running a given
piece of code, and, in turn, the number of cache misses
during that execution, and

3) Determining, by means of a classification system that
takes as input the number of cache misses obtained at
the previous step, whether the application is under a
cache-based side-channel attack.

Since embodiments of the present invention do not use
OS services such as performance counters or trusted sources
of times, these embodiments enable detection of cache-
based side-channel attacks in a scenario where the OS does
not provide such services or where the OS is not trusted to
provide such services.

While it could be possible to design an alternative heu-
ristic to detect cache misses, such a design would not
provide the accuracy and/or security provided by embodi-
ments of the present invention. For example, cache misses
may be inferred by an external application that monitors the
cache of a given application. However, monitoring from
outside of the application requires trust and will likely
provide less accurate results since the external application
may not know what piece of code the monitored application
is running.

While embodiments of the invention have been illustrated
and described in detail in the drawings and foregoing

25

30

35

40

45

55

65

8

description, such illustration and description are to be con-
sidered illustrative or exemplary and not restrictive. It will
be understood that changes and modifications may be made
by those of ordinary skill within the scope of the present
invention. In particular, the present invention covers further
embodiments with any combination of features from differ-
ent embodiments described above and below. Additionally,
statements made herein characterizing the invention refer to
an embodiment of the invention and not necessarily all
embodiments.

The terms used in the claims should be construed to have
the broadest reasonable interpretation consistent with the
foregoing description. For example, the use of the article “a”
or “the” in introducing an element should not be interpreted
as being exclusive of a plurality of elements. Likewise, the
recitation of “or” should be interpreted as being inclusive,
such that the recitation of “A or B” is not exclusive of “A and
B,” unless it is clear from the context or the foregoing
description that only one of A and B is intended. Further, the
recitation of “at least one of A, B and C” should be
interpreted as one or more of a group of elements consisting
of A, B and C, and should not be interpreted as requiring at
least one of each of the listed elements A, B and C,
regardless of whether A, B and C are related as categories or
otherwise. Moreover, the recitation of “A, B and/or C” or “at
least one of A, B or C” should be interpreted as including
any singular entity from the listed elements, e.g., A, any
subset from the listed elements, e.g., A and B, or the entire
list of elements A, B and C.

What is claimed is:

1. A method for detecting a cache-based side-channel
attack, the method comprising:

utilizing a timer thread that continuously increments a

variable in code of an application that has been instru-
mented such that the instrumented code uses the vari-
able incremented by the timer thread to infer an amount
of time taken for running a part of the code;
determining a number of cache misses during execution
of the part of the code based on the amount of time; and
determining whether the application is experiencing the
cache-based side-channel attack using a classifier
which uses as input the number of cache misses.

2. The method according to claim 1, wherein the number
of cache misses is determined by comparing the amount of
time to a threshold.

3. The method according to claim 1, wherein the appli-
cation runs in a trusted execution environment implemented
on a host machine that also runs a further application outside
of'the trusted execution environment, the application and the
further application running on different cores of the host
machine and sharing last-level cache.

4. The method according to claim 1, wherein the timer
thread is implemented separately from a main thread of the
application.

5. The method according to claim 4, wherein the timer
thread is implemented in a same trusted execution environ-
ment as the application.

6. The method according to claim 4, wherein the appli-
cation runs in a trusted execution environment, and wherein
the timer thread is implemented outside of the trusted
execution environment and on a different core of a same host
machine on which the application runs than the trusted
execution environment.

7. The method according to claim 1, wherein the classifier
is trained by running applications in a controlled environ-
ment with different cache configurations and/or while run-
ning a cache-based side-channel attack, collecting a number

US 11,775,635 B2

9

of cache misses during execution, and using the number of
cache misses to generate a classification model used by the
classifier.

8. The method according to claim 1, further comprising
aborting execution of the application based on the classifier
determining the application is experiencing the cache-based
side-channel attack.

9. The method according to claim 1, wherein the timer
thread is not a service provided by an operating system
running the application.

10. The method according to claim 1, wherein the instru-
mented code of the application is instrumented to access a
computer register containing a current value of the variable
at least twice during execution of the part of the code to infer
the amount of time taken for running the part of the code.

11. The method according to claim 10, wherein the
instrumented code of the application is instrumented to
access the computer register before and after each memory
access instruction, and wherein the number of cache misses
is determined based on a total number of times during
execution of the part of the code that a time elapsed for one
of the memory access instructions exceeds a threshold.

12. The method according to claim 10, wherein the
instrumented code of the application is instrumented to
perform a conditional jump and to access the computer
register before and after the conditional jump.

13. A system comprising one or more processors which,
alone or in combination, are configured to provide for
execution of a method comprising:

utilizing a timer thread that continuously increments a

variable in code of an application that has been instru-
mented such that the instrumented code uses the vari-
able incremented by the timer thread to infer an amount
of time taken for running a part of the code;
determining a number of cache misses during execution
of' the part of the code based on the amount of time; and
determining whether the application is experiencing the
cache-based side-channel attack using a classifier
which uses as input the number of cache misses.

14. The system according to claim 13, wherein the appli-
cation runs in a trusted execution environment implemented
on a host machine that also runs a further application outside

10

40

10

of'the trusted execution environment, the application and the
further application running on different cores of the host
machine and sharing last-level cache.

15. A tangible, non-transitory computer-readable medium
having instructions thereon which, upon being executed by
one or more processors, alone or in combination, provide for
execution of a method comprising:

utilizing a timer thread that continuously increments a

variable in code of an application that has been instru-
mented such that the instrumented code uses the vari-
able incremented by the timer thread to infer an amount
of time taken for running a part of the code;
determining a number of cache misses during execution
of the part of the code based on the amount of time; and
determining whether the application is experiencing the
cache-based side-channel attack using a classifier
which uses as input the number of cache misses.

16. The method according to claim 1, wherein the variable
is shared with a main thread of the application, the main
thread including the instrumented code which is instru-
mented to access a computer register containing a current
value of the variable at least twice during execution of the
part of the code to infer the amount of time taken for running
the part of the code.

17. The method according to claim 16, wherein the main
thread of the application is running in a trusted execution
environment, and wherein the timer thread is running in the
same trusted execution environment or on a different core of
a same host machine that runs the application than the
trusted execution environment.

18. The method according to claim 17, wherein the timer
thread does not use a timer or counter service provided by
an operating system of the host machine.

19. The method according to claim 17, wherein an addi-
tional application is running in a separate trusted execution
environment on the same host machine that runs the appli-
cation, and wherein the variable is shared by the main thread
of the application and a main thread of the additional
application.

20. The method according to claim 1, wherein the timer
thread increments the variable using a busy loop.

#* #* #* #* #*

