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SYSTEMS AND METHODS FOR USING
IMAGE DATA TO IDENTIFY LANE WIDTH

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation-in-part of
U.S. application Ser. No. 18/303,460, filed Apr. 19, 2023,
which claims priority to U.S. Provisional Application No.
63/447,766, filed Feb. 23, 2023, U.S. Provisional Applica-
tion No. 63/434,843, filed Dec. 22, 2022, and U.S. Provi-
sional Application No. 63/376,860, filed Sep. 23, 2022, each
of which is incorporated herein by reference in its entirety
for all purposes.

TECHNICAL FIELD

[0002] The present disclosure relates generally to using
machine learning to analyze an image, and more particu-
larly, to using machine learning to analyze an image to
identify a lane width and to localize a vehicle.

BACKGROUND

[0003] Inautonomous driving applications, the position of
an autonomous vehicle is critical to monitor with sufficient
accuracy. The position of the autonomous vehicle on a
roadway is utilized to determine autonomous navigation and
maneuvering. The existing solutions for localization rely on
a combination of Global Navigation Satellite System
(GNSS), an inertial measurement unit, and a digital map.
However, such existing solutions can be either computation-
ally expensive, unavailable (e.g., in a tunnel), or comprise
significant errors in location (e.g., in an area with reduced
signal reception) or location resolution.

SUMMARY

[0004] The systems and methods of the present disclosure
may solve the problems set forth above and/or other prob-
lems in the art. The scope of the current disclosure, however,
is defined by the attached claims, and not by the ability to
solve any specific problem. Disclosed herein are techniques
to improve lane attribute detection during autonomous
vehicle operation through the use of machine learning
models that generate lane indices, which correspond to the
lane of a multi-lane roadway upon which the autonomous
vehicle is operating. Rather than relying on potentially
inaccurate sources of location data, such as GNSS, the
systems and methods described herein provide techniques
for training and executing machine learning models that
generate lane information based on image data captured in
real time or near real time by sensors of the autonomous
vehicle.

[0005] Also disclosed herein are methods and systems to
identify/predict a lane width. Moreover, the methods and
systems discussed herein can be used to determine a total
number of lanes associated with a road being driven by a
vehicle.

[0006] In an embodiment, a method, comprises identify-
ing, by one or more processors coupled to non-transitory
memory, a set of image data captured by at least one
autonomous vehicle when the at least one autonomous
vehicle was positioned in a lane of a roadway, and respective
ground truth localization data of the at least one autonomous
vehicle; determining, by the one or more processors, a
plurality of lane width values for the set of image data;
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labeling, by the one or more processors, the set of image data
with the plurality of lane width values, the plurality of lane
width values representing a width of a lane in which the at
least one autonomous vehicle was positioned; and training,
by the one or more processors, using the labeled set of image
data, a machine learning model, such that the machine
learning model is configured to predict a new lane width
value for a new lane as output.

[0007] The plurality of lane width values may be deter-
mined based on the ground truth localization data.

[0008] The plurality of lane width values may be deter-
mined using an image recognition or image segmentation
protocol.

[0009] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0010] A plurality of lane indications of the set of image
data may be defined at least in part as a feature on a raster
layer of the high-definition (HD) map.

[0011] The machine learning model may comprise a plu-
rality of neural network layers.

[0012] The method may further comprise executing, by
the one or more processors, the machine learning model for
a second autonomous vehicle.

[0013] In another embodiment, a non-transitory machine-
readable storage medium having computer-executable
instructions stored thereon that, when executed by one or
more processors, cause the one or more processors to
perform operations comprises identify a set of image data
captured by at least one autonomous vehicle when the at
least one autonomous vehicle was positioned in a lane of a
roadway, and respective ground truth localization data of the
at least one autonomous vehicle; determine a plurality of
lane width values for the set of image data; label the set of
image data with the plurality of lane width values, the
plurality of lane width values representing a width of a lane
in which the at least one autonomous vehicle was posi-
tioned; and train using the labeled set of image data, a
machine learning model, such that the machine learning
model is configured to predict a new lane width value for a
new lane as output.

[0014] The plurality of lane width values may be deter-
mined based on the ground truth localization data.

[0015] The plurality of lane width values may be deter-
mined using an image recognition or image segmentation
protocol.

[0016] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0017] A plurality of lane indications of the set of image
data may be defined at least in part as a feature on a raster
layer of the high-definition (HD) map.

[0018] The machine learning model may comprise a plu-
rality of neural network layers.

[0019] The instruction may further cause the one or more
processors to executing, by the one or more processors, the
machine learning model for a second autonomous vehicle.
[0020] In another embodiment, a system comprising a
processor configured to identify a set of image data captured
by at least one autonomous vehicle when the at least one
autonomous vehicle was positioned in a lane of a roadway,
and respective ground truth localization data of the at least
one autonomous vehicle; determine a plurality of lane width
values for the set of image data; label the set of image data
with the plurality of lane width values, the plurality of lane
width values representing a width of a lane in which the at
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least one autonomous vehicle was positioned; and train
using the labeled set of image data, a machine learning
model, such that the machine learning model is configured
to predict a new lane width value for a new lane as output.
[0021] The plurality of lane width values is determined
based on the ground truth localization data.

[0022] The plurality of lane width values may be deter-
mined using an image recognition or image segmentation
protocol.

[0023] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0024] A plurality of lane indications of the set of image
data are defined at least in part as a feature on a raster layer
of the high-definition (HD) map.

[0025] The processor may be further configured to execute
the machine learning model for a second autonomous
vehicle.

[0026] Inanother embodiment, a method, comprises iden-
tifying, by one or more processors coupled to non-transitory
memory, a set of image data captured by at least one
autonomous vehicle when the at least one autonomous
vehicle was positioned in a lane of a roadway, and respective
ground truth localization data of the at least one autonomous
vehicle; determining, by the one or more processors, a total
number of lanes for the roadway; labeling, by the one or
more processors, the set of image data with the total number
of lanes for the roadway; and training, by the one or more
processors, using the labeled set of image data, a machine
learning model, such that the machine learning model is
configured to predict a new total number of lanes for a new
roadway as output.

[0027] The method may further comprise determining, by
the one or more processors, a direction associated with at
least one lane; and training, by the one or more processors,
the machine learning model to predict a direction for at least
one lane within the new roadway.

[0028] The method of claim 1, wherein the total number of
lanes for the roadway is determined using an image recog-
nition or image segmentation protocol.

[0029] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0030] A plurality of lane indications of the set of image
data are defined at least in part as a feature on a raster layer
of the high-definition (HD) map.

[0031] The machine learning model may comprise a plu-
rality of neural network layers.

[0032] The method may further comprise executing, by
the one or more processors, the machine learning model for
a second autonomous vehicle.

[0033] In another embodiment, a non-transitory machine-
readable storage medium having computer-executable
instructions stored thereon that, when executed by one or
more processors, cause the one or more processors to
perform operations comprises identify a set of image data
captured by at least one autonomous vehicle when the at
least one autonomous vehicle was positioned in a lane of a
roadway, and respective ground truth localization data of the
at least one autonomous vehicle; determine a total number of
lanes for the roadway; label the set of image data with the
total number of lanes for the roadway; and train using the
labeled set of image data, a machine learning model, such
that the machine learning model is configured to predict a
new total number of lanes for a new roadway as output.
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[0034] The instructions may further cause the one or more
processors to determine a direction associated with at least
one lane; and train the machine learning model to predict a
direction for at least one lane within the new roadway.
[0035] The total number of lanes for the roadway may be
determined using an image recognition or image segmenta-
tion protocol.

[0036] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0037] The plurality of lane indications of the set of image
data may be defined at least in part as a feature on a raster
layer of the high-definition (HD) map.

[0038] The machine learning model may comprise a plu-
rality of neural network layers.

[0039] The instructions may further cause the one or more
processors to execute the machine learning model for a
second autonomous vehicle.

[0040] In another embodiment, a system comprises a
processor configured to identify a set of image data captured
by at least one autonomous vehicle when the at least one
autonomous vehicle was positioned in a lane of a roadway,
and respective ground truth localization data of the at least
one autonomous vehicle; determine a total number of lanes
for the roadway; label the set of image data with the total
number of lanes for the roadway; and train using the labeled
set of image data, a machine learning model, such that the
machine learning model is configured to predict a new total
number of lanes for a new roadway as output.

[0041] The processor may be further configured to deter-
mine a direction associated with at least one lane; and train
the machine learning model to predict a direction for at least
one lane within the new roadway.

[0042] The total number of lanes for the roadway may be
determined using an image recognition or image segmenta-
tion protocol.

[0043] The ground truth localization data may include data
derived from a high-definition (HD) map.

[0044] A plurality of lane indications of the set of image
data may be defined at least in part as a feature on a raster
layer of the high-definition (HD) map.

[0045] The processor may be further configured to execute
the machine learning model for a second autonomous
vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
various exemplary embodiments and together with the
description, serve to explain the principles of the disclosed
embodiments.

[0047] FIG. 1 is a schematic illustration including a bird’s
eye view of a vehicle traveling along a roadway using a lane
attribute predictor, according to an embodiment.

[0048] FIG. 2 is an exemplary environment for creating
one or more trained machine learning algorithms for pre-
dicting a lane attribute, such as the lane attribute of FIG. 1,
according to an embodiment.

[0049] FIG. 3 is a controller for localizing a vehicle using
real time data, such as in the scenario depicted in FIG. 1,
according to an embodiment.

[0050] FIG. 4 is a process for training a machine learning
model to predict a lane width from real time image data,
according to an embodiment.
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[0051] FIG. 5 illustrates a roadway, according to an
embodiment.
[0052] FIG. 6 is a process for executing a machine learn-

ing model to predict a lane width from real time image data,
according to an embodiment.

[0053] FIG. 7 is a process for training a machine learning
model to predict a total number of lanes from real time
image data, according to an embodiment.

[0054] FIG. 8 is a process for training a machine learning
model to predict a total number of lanes from real time
image data, according to an embodiment.

DETAILED DESCRIPTION

[0055] The following detailed description describes vari-
ous features and functions of the disclosed systems and
methods with reference to the accompanying figures. In the
figures, similar components are identified using similar
symbols, unless otherwise contextually dictated. The exem-
plary system(s) and method(s) described herein are not
limiting, and it may be readily understood that certain
aspects of the disclosed systems and methods can be vari-
ously arranged and combined, all of which arrangements
and combinations are contemplated by this disclosure.

[0056] Both the foregoing general description and the
following detailed description are exemplary and explana-
tory only and are not restrictive of the features, as claimed.
As used herein, the terms “comprises,” “comprising,” “has,”
“having,” “includes,” “including,” or other variations
thereof, are intended to cover a non-exclusive inclusion such
that a process, method, article, or apparatus that comprises
a list of elements does not include only those elements, but
may include other elements not expressly listed or inherent
to such a process, method, article, or apparatus. In this
disclosure, unless stated otherwise, relative terms, such as,
for example, “about,” “substantially,” and “approximately”
are used to indicate a possible variation of £10% in the
stated value.

[0057] Autonomous vehicle virtual driver systems are
structured on three pillars of technology: 1) perception, 2)
maps/localization, and 3) behaviors planning and control.
The mission of perception is to sense an environment
surrounding an ego vehicle and interpret it. To interpret the
surrounding environment, a perception engine may identity
and classify objects or groups of objects in the environment.
For example, an autonomous system may use a perception
engine to identify one or more objects (e.g., pedestrians,
vehicles, debris, etc.) in the road before a vehicle and
classify the objects in the road as distinct from the road. The
mission of maps/localization is to figure out where in the
world, or where on a pre-built map, is the ego vehicle. One
way to do this is to sense the environment surrounding the
ego vehicle (e.g., perception systems) and to correlate fea-
tures of the sensed environment with details (e.g., digital
representations of the features of the sensed environment) on
a digital map. Once the systems on the ego vehicle have
determined its location with respect to the map features (e.g.,
intersections, road signs, etc.) the ego vehicle (or just “ego™)
can plan maneuvers and/or routes with respect to the fea-
tures of the environment. The mission of behaviors, plan-
ning, and control is to make decisions about how the ego
should move through the environment to get to its goal or
destination. It consumes information from the perception
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engine and the maps/localization modules to know where it
is relative to the surrounding environment and what other
traffic actors are doing.

[0058] Localization, or the estimate of ego vehicle’s posi-
tion to varying degrees of accuracy, often with respect to one
or more landmarks on a map, is critical information that may
enable advanced driver-assistance systems or self-driving
cars to execute autonomous driving maneuvers. Such
maneuvers can often be mission or safety related. For
example, localization may be a prerequisite for an ADAS or
a self-driving car to provide intelligent and autonomous
driving maneuvers to arrive at point C from points B and A.
Currently existing solutions for localization may rely on a
combination of Global Navigation Satellite System (GNSS),
an inertial measurement unit (IMU), and a digital map (e.g.,
an HD map or other map file including one or more semantic
layers).

[0059] Localizations can be expressed in various forms
based on the medium in which they may be expressed. For
example, a vehicle could be globally localized using a global
positioning reference frame, such as latitude and longitude.
The relative location of the ego vehicle with respect to one
or more objects or features in the surrounding environment
could then be determined with knowledge of ego vehicle’s
global location and the knowledge of the one or more
objects’ or feature’s global location(s). Alternatively, an ego
vehicle could be localized with respect to one or more
features directly. To do so, the ego vehicle may identify and
classify one or more objects or features in the environment
and may do this using, for example, its own on board sensing
systems (e.g., perception systems), such as LiDARs, cam-
eras, radars, etc. and one or more on-board computers
storing instructions for such identification and classification.
[0060] Environments intended for use by vehicles,
whether such vehicles include autonomous features or not,
tend to be pattern rich. That is, environments intended for
use by automobiles are structured according to a pattern(s)
that is recognizable by human drivers and increasingly by
autonomous systems (e.g., all stop signs use same shape/
color, all stop lights are green/yellow/red, etc.) The patterns
enable and, indeed, may require predictable behavior by the
operators of the vehicles in the environment, whether human
or machine. One such pattern is used in lane indications,
which may indicate lane boundaries intended to require
particular behavior within the lane (e.g., maintaining a
constant path with respect to the lane line, not crossing a
solid lane line, etc.) Due to their consistency, predictability,
and ubiquity, lane lines may serve as a good basis for a
lateral component localization.

[0061] FIG. 1 illustrates a system 100 for localizing a
vehicle 102. The vehicle 102 depicted in FIG. 1 is a truck
(e.g., a tractor trailer), but it is to be understood that the
vehicle 102 could be any type of vehicle including a car, a
mobile machine, etc. The vehicle 102 includes a controller
300 that is communicatively coupled to a camera system
104, a LiDAR system 106, a GNSS 108, a transceiver 109,
and an inertial measurement unit 111 (IMU). The vehicle
102 may operate autonomously or semi-autonomously in
any environment. As depicted, the vehicle 102 operates
along a roadway 112 that includes a left shoulder, a right
shoulder, and multiple lanes including a center lane 114 that
is bounded by a right center lane marker 116 (lane indicator
or lane indication). The right center lane marker 116 is
depicted as a dashed line in convention with the center lane
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markers in several-lane roadways or highways in the United
States, however, the lane marker could take any form (e.g.,
solid line, etc.) In the particular scenario depicted in FIG. 1,
the vehicle 102 is approaching a right turn 113 (or right hand
bend in the roadway 112), but any type of roadway or
situation is considered herein. For example, the vehicle 102
could be on a road that continues straight, turns left, includes
an exit ramp, approaches a stop sign or other traffic signal,
etc. Accordingly, the road being traveled by the vehicle 102
may include three lanes having widths 132 (for the right
lane), 134 (for the middle lane), and 136 (for the left lane).
[0062] The vehicle 102 has various physical features and/
or aspects including a longitudinal centerline 118. As
depicted in FIG. 1, the vehicle 102 generally progresses
down the roadway 112 in a direction parallel to its longitu-
dinal centerline 118. As the vehicle 102 drives down the
roadway 112, it may capture LiDAR point cloud data and
visual camera data (when referred to collectively, “image
data”) using, for example, the LiDAR system 106 and the
camera system 104, respectively. In some aspects, the
vehicle 102 may also include other sensing systems (e.g., a
radar system, etc.) While it travels, the vehicle 102 may
constantly, periodically, or on-demand determine its position
and/or orientation with the GNSS 108 and/or the IMU 111.
The vehicle 102 may be communicatively coupled with a
network 220 via a wireless connection 124 using, for
example, the transceiver 109.

[0063] As the vehicle 102 travels, its systems and/or
systems connected to the vehicle 102 may determine a
lateral offset 130 from one or more features of the roadway
112. For example, in the particular embodiment depicted in
FIG. 1, the vehicle 102 may calculate a lateral offset 130
from the right center lane marker 116. The lateral offset 130
may be, for example, a horizontal distance between the
longitudinal centerline 118 of the vehicle 102 and the right
center lane marker 116. However, these are merely two
examples of features that could be used to calculate a vehicle
offset. It is contemplated that any feature of the vehicle 102
(e.g., the right side, the left side, etc.) and any feature of the
roadway 112 (e.g., the center lane left side marker, the right
lane right side marker, the edge of the right shoulder, etc.)
could be used to calculate a lateral offset. In some embodi-
ments, the lateral offset 130 may be used to localize the
vehicle 102 as described in greater detail herein.

[0064] Still referring to FIG. 1, the controller 300, which
is described in greater detail herein, especially with respect
to FIG. 3, is configured to receive an input(s) and provide an
output(s) to various other systems or components of the
system 100. For example, the controller 300 may receive
visual system data from the camera system 104, LiDAR
system data from the LiDAR system 106, GNSS data from
the GNSS 108, external system data from the transceiver
109, and IMU system data from the IMU 111.

[0065] The camera system 104 may be configured to
capture images of the environment surrounding the vehicle
102 in a field of view (FOV) 138. Although depicted
generally surrounding the vehicle 102, the FOV 138 can
have any angle or aspect such that images of the areas ahead
of, to the side, and behind the vehicle 102 may be captured.
In some embodiments, the FOV 138 may surround 360
degrees of the vehicle 102. In some embodiments, the
vehicle 102 includes multiple cameras and the images from
each of the multiple cameras may be stitched to generate a
visual representation of the FOV 138, which may be used to
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generate a birdseye view of the environment surrounding the
vehicle 102, such as that depicted in FIG. 1. In some
embodiments, the image file(s) generated by the camera
system(s) 104 and sent to the controller 300 and other
aspects of the system 100 may include the vehicle 102 or a
generated representation of the vehicle 102. In some
embodiments, the visual image generated from image data
from the camera(s) 104 may appear generally as that
depicted in FIG. 1 and show features depicted in FIG. 1 (e.g.,
lane markers, the roadway, etc.) distinguished from other
objects as pixels in an image. In some embodiments, one or
more systems or components of the system 100 may overlay
labels to the features depicted in the image data, such as on
a raster layer or other semantic layer of an HD map. The
camera system 104 may include one or more cameras with
fields of view horizontally from the vehicle 102 for specific
view of the lane indications (including, for example, the
right center lane marker 116).

[0066] The LiDAR system 106 can send and receive a
LiDAR signal 140. Although depicted generally forward,
left, and right of the vehicle 102, the LiDAR signal 140 can
be emitted and received from any direction such that LiDAR
point clouds (or “LiDAR images”) of the areas ahead of; to
the side, and behind the vehicle 102 can be captured. In
some embodiments, the vehicle 102 includes multiple
LiDAR sensors and the LiDAR point clouds from each of
the multiple LiDAR sensors may be stitched to generate a
LiDAR-based representation of the area covered by the
LiDAR signal 140, which may be used to generate a
birdseye view of the environment surrounding the vehicle
102. In some embodiments, the LiDAR point cloud(s)
generated by the LiDAR sensors and sent to the controller
300 and other aspects of the system 100 may include the
vehicle 102. In some embodiments, a LiDAR point cloud
generated by the LiDAR system 106 may appear generally
as that depicted in FIG. 1 and show features depicted in FIG.
1 (e.g., lane markers, the roadway, etc.) distinguished from
other objects as pixels in a LiDAR point cloud. In some
embodiments, the system inputs from the camera system
104 and the LiDAR system 106 may be fused.

[0067] The GNSS 108 may be positioned on the vehicle
102 and may be configured to determine a location of the
vehicle 102, which it may embody as GNSS data, as
described herein, especially with respect to FIG. 3. The
GNSS 108 may be configured to receive one or more signals
from a global navigation satellite system (GNSS) (e.g., GPS
system) to localize the vehicle 102 via geolocation. In some
embodiments, the GNSS 108 may provide an input to or be
configured to interact with, update, or otherwise utilize one
or more digital maps, such as an HD map (e.g., in a raster
layer or other semantic map). In some embodiments, the
GNSS 108 is configured to receive updates from the external
network 220 (e.g., via a GNSS/GPS receiver (not depicted),
the transceiver 109, etc.) The updates may include one or
more of position data, speed/direction data, traffic data,
weather data, or other types of data about the vehicle 102
and its environment.

[0068] The transceiver 109 may be configured to commu-
nicate with the external network 220 via the wireless con-
nection 124. The wireless connection 124 may be a wireless
communication signal (e.g., Wi-Fi, cellular, LTE, 5g, etc.).
However, in some embodiments, the transceiver 109 may be
configured to communicate with the external network 220
via a wired connection, such as, for example, during testing
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or initial installation of the system 100 to the vehicle 102.
The wireless connection 124 may be used to download and
install various lines of code in the form of digital files (e.g.,
HD maps), executable programs (e.g., navigation programs),
and other computer-readable code that may be used by the
system 100 to navigate the vehicle 102 or otherwise operate
the vehicle 102, either autonomously or semi-autonomously.
The digital files, executable programs, and other computer
readable code may be stored locally or remotely and may be
routinely updated (e.g., automatically or manually) via the
transceiver 109 or updated on demand. In some embodi-
ments, the vehicle 102 may deploy with all of the data it
needs to complete a mission (e.g., perception, localization,
and mission planning) and may not utilize the wireless
connection 124 while it is underway.

[0069] The IMU 111 may be an electronic device that
measures and reports one or more features regarding the
motion of the vehicle 102. For example, the IMU 111 may
measure a velocity, acceleration, angular rate, and or an
orientation of the vehicle 102 or one or more of its individual
components using a combination of accelerometers, gyro-
scopes, and/or magnetometers. The IMU 111 may detect
linear acceleration using one or more accelerometers and
rotational rate using one or more gyroscopes. In some
embodiments, the IMU 111 may be communicatively
coupled to the GNSS 108 and may provide an input to and
receive an output from the GNSS 108, which may allow the
GNSS 108 to continue to predict a location of the vehicle
102 even when the GNSS cannot receive satellite signals.
[0070] Referring now to FIG. 2, an exemplary environ-
ment 200 for generating and training machine learning
models to predict a lane attribute according to an exemplary
process of the present disclosure is shown. FIG. 2 includes
the environment 200 which may include the network 220
that communicatively couples one or more server systems
210, one or more vehicle based sensing systems 230 which
may include one or more imaging systems 232 (e.g., LIDAR
systems and/or camera systems), one or more GNSS sys-
tems 240, one or more HD map systems 250, one or more
IMU systems 260, and one or more imaging databases 270.
Additionally, the controller 300 of FIGS. 1 and 3 may be
communicatively coupled to the network 220 and may
upload and download data from one or more of the other
systems connected to the network 220 as described herein.
In some embodiments, the exemplary environment may
include one or more displays, such as the display 211, for
displaying information.

[0071] The server systems 210 may include one or more
processing devices 212 and one or more storage devices 214.
The processing devices 212 may be configured to implement
an image processing system 216. The image processing
system 216 may apply Al, machine learning, and/or image
processing techniques to image data received, e.g., from
vehicle based sensing systems 230, which may include
LiDAR(s) 234, camera(s) 236. Other vehicle based sensing
systems are contemplated such as, for example, radar, ultra-
sonic sensing, etc. The vehicle based sensing systems 230
may be deployed on, for example, a fleet of vehicles such as
the vehicle 102 of FIG. 1.

[0072] Still referring to FIG. 2, the image processing
system 216 may include a training image platform config-
ured to generate and train a plurality of trained machine
learning models 218 based on datasets of training images
received, e.g., from one or more imaging databases 270 over
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the network 120 and/or from the vehicle based sensing
systems 230 on the fleet of vehicles. In some embodiments,
data generated using the vehicle based sensing systems 230
may be used to populate the imaging databases 270. The
training images may be, for example, images of vehicles
operating on a roadway including one or more lane bound-
aries or lane features (e.g., a lane boundary line, a right
roadway shoulder edge, etc.) The training images may be
real images or synthetically generated images (e.g., to com-
pensate for data sparsity, if needed). The training images
received may be annotated e.g., using one or more of the
known or future data annotation techniques, such as poly-
gons, brushes/erasers, bounding boxes, keypoints, keypoint
skeletons, lines, ellipses, cuboids, classification tags, attri-
butes, instance/object tracking identifiers, free text, and/or
directional vectors, in order to train any one or more of the
known or future model types, such as image classifiers,
video classifiers, image segmentation, object detection,
object direction, instance segmentation, semantic segmen-
tation, volumetric segmentation, composite objects, key-
point detection, keypoint mapping, 2-Dimension/3-Dimen-
sion and 6 degrees-of-freedom object poses, pose
estimation, regressor networks, ellipsoid regression, 3D
cuboid estimation, optical character recognition, text detec-
tion, and/or artifact detection.

[0073] The trained machine learning models 218 may
include convolutional neural networks (CNNs), support
vector machines (SVMs), generative adversarial networks
(GANSs), and/or other similar types of models that are trained
using supervised, unsupervised, and/or reinforcement learn-
ing techniques. For example, as used herein, a “machine
learning model” generally encompasses instructions, data,
and/or a model configured to receive input, and apply one or
more of a weight, bias, classification, or analysis on the input
to generate an output. The output may include, e.g., a
classification of the input, an analysis based on the input, a
design, process, prediction, or recommendation associated
with the input, or any other suitable type of output. A
machine learning system or model may be trained using
training data, e.g., experiential data and/or samples of input
data, which are fed into the system in order to establish, tune,
or modify one or more aspects of the system, e.g., the
weights, biases, criteria for forming classifications or clus-
ters, or the like. The training data may be generated,
received, and/or otherwise obtained from internal or external
resources. Aspects of a machine learning system may oper-
ate on an input linearly, in parallel, via a network (e.g., a
neural network), or via any suitable configuration.

[0074] The execution of the machine learning system may
include deployment of one or more machine learning tech-
niques, such as linear regression, logistical regression, ran-
dom forest, gradient boosted machine (GBM), deep learn-
ing, and/or a deep neural network (e.g., multi-layer
perceptron (MLP), CNN, recurrent neural network). Super-
vised and/or unsupervised training may be employed. For
example, supervised learning may include providing train-
ing data and labels corresponding to the training data, e.g.,
as ground truth. Training data may comprise images anno-
tated by human technicians (e.g., engineers, drivers, etc.)
and/or other autonomous vehicle professionals. Unsuper-
vised approaches may include clustering, classification, or
the like. K-means clustering or K-Nearest Neighbors may
also be used, which may be supervised or unsupervised.
Combinations of K-Nearest Neighbors and an unsupervised
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cluster technique may also be used. Any suitable type of
training may be used, e.g., stochastic, gradient boosted,
random seeded, recursive, epoch or batch-based, etc. Alter-
natively, reinforcement learning may be employed for train-
ing. For example, reinforcement learning may include train-
ing an agent interacting with an environment to make a
decision based on the current state of the environment,
receive feedback (e.g., a positive or negative reward based
on accuracy of decision), adjusts its decision to maximize
the reward, and repeat again until a loss function is opti-
mized.

[0075] The trained machine learning models 218 may be
stored by the storage device 214 to allow subsequent
retrieval and use by the system 210, e.g., when an image is
received for processing by the vehicle 102 of FIG. 1. In other
techniques, a third party system may generate and train the
plurality of trained machine learning models 218. The server
systems 210 may send and/or receive trained machine
learning models 218 from the third party system and store
within the storage devices 214. In some examples, the
images generated by the imaging systems 232 may be
transmitted over the network 220 to the imaging databases
270 or to the server systems 210 for use as training image
data. In some embodiments, the trained machine learning
models 218 may be trained to generate a trained model file
which may be sent, for example, to a memory 302 of the
controller 300 and used by the vehicle 102 to localize the
vehicle 102 as described in greater detail herein.

[0076] The network 220 over which the one or more
components of the environment 200 communicate may be a
remote electronic network and may include one or more
wired and/or wireless networks, such as a wide area network
(“WAN”), a local area network (“LAN”), personal area
network (“PAN”), a cellular network (e.g., a 3G network, a
4G network, a 5G network, etc.) or the like. In one tech-
nique, the network 120 includes the Internet, and informa-
tion and data provided between various systems occurs
online. “Online” may mean connecting to or accessing
source data or information from a location remote from
other devices or networks coupled to the Internet. Alterna-
tively, “online” may refer to connecting or accessing an
electronic network (wired or wireless) via a mobile com-
munications network or device. The server systems 210,
imaging systems 230, GNSS 240, HD Map 250, and IMU
260, and/or imaging databases 270 may be connected via the
network 120, using one or more standard communication
protocols. In some embodiments, the vehicle 102 (FIG. 1)
may be communicatively coupled (e.g., via the controller
300) with the network 220.

[0077] The GNSS 240 may be communicatively coupled
to the network 220 and may provide highly accurate location
data to the server systems 210 for one or more of the vehicles
in a fleet of vehicles. The GNSS signal received from the
GNSS 240 of each of the vehicles may be used to localize
the individual vehicle on which the GNSS receiver is
positioned. The GNSS 240 may generate location data
which may be associated with a positon from which par-
ticular image data is captured (e.g., a location at which an
image is captured) and, in some embodiments, may be
considered a ground truth position for the image data. In
some embodiments, image data captured by the one or more
vehicles in the fleet of vehicles may be associated with (e.g.,
stamped) with data from the GNSS 240 which may relate the
image data to an orientation, a velocity, a position, or other
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aspect of the vehicle capturing the image data. In some
embodiments, the GNSS 240 may be used to associate
location data with image data such that a subset of the
trained model file can be generated based on the capture
location of a particular set of image data to generate a
location-specific trained model file.

[0078] In some embodiments, the HD map 250, including
one or more layers, may provide an input to or receive an
input from one or more of the systems or components
connected to the network 220. For example, the HD map 250
may provide raster map data as an input to the server
systems 210 which may include data categorizing or other-
wise identifying portions, features, or aspects of a vehicle
lane (e.g., the lane markings of FIG. 1) or other features of
the environment surrounding a vehicle (e.g., stop signs,
intersections, street names, etc.)

[0079] The IMU 260 may be an eclectronic device that
measures and reports one or more of a specific force, angular
rate, and/or the orientation of a vehicle (e.g., the vehicle 102
of FIG. 1) using a combination of accelerometers, gyro-
scopes, and/or magnetometers. The IMU 260 may be com-
municatively coupled to the network 220 and may provide
dead reckoning position data or other position, orientation,
or movement data associated with one or more vehicles in
the fleet of vehicles. In some embodiments, image data
captured by the one or more vehicles in the fleet of vehicles
may be associated with (e.g., stamped) with data from the
IMU 260 which may relate the image data to a position,
orientation, or velocity of the vehicle capturing the data. In
some embodiments, data from the IMU 260 may be used in
parallel with or in place of GNSS data from the GNSS 240
(e.g., when a vehicle captures image data from inside a
tunnel where no GNSS signal is capable).

[0080] Referring now to FIG. 3, the controller 300 is
depicted in greater detail. The controller 300 may receive
inputs 301 and generate outputs 303. The controller 300 may
include a memory 302, a lane module 312, and a localization
module 314. The inputs 301 may include LiDAR system
data 304, visual system data 306, GNSS system data 308,
and IMU system data 310. The outputs 303 may include a
localization signal 316. The memory 302 may include a
trained model file, which may have been trained, for
example, by the machine learning models 218 of FIG. 2.
[0081] The controller 300 may comprise a data processor,
a microcontroller, a microprocessor, a digital signal proces-
sor, a logic circuit, a programmable logic array, or one or
more other devices for controlling the system 100 in
response to one or more of the inputs 301. Controller 300
may embody a single microprocessor or multiple micropro-
cessors that may include means for automatically generating
a localization of the vehicle 102. For example, the controller
300 may include a memory, a secondary storage device, and
a processor, such as a central processing unit or any other
means for accomplishing a task consistent with the present
disclosure. The memory or secondary storage device asso-
ciated with controller 300 may store data and/or software
routines that may assist the controller 300 in performing its
functions.

[0082] Further, the memory or secondary storage device
associated with the controller 300 may also store data
received from various inputs associated with the system 100.
Numerous commercially available microprocessors can be
configured to perform the functions of the controller 300. It
should be appreciated that controller 300 could readily
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embody a general machine controller capable of controlling
numerous other machine functions. Alternatively, a special-
purpose machine controller could be provided. Further, the
controller 300, or portions thereof, may be located remote
from the system 100. Various other known circuits may be
associated with the controller 300, including signal-condi-
tioning circuitry, communication circuitry, hydraulic or
other actuation circuitry, and other appropriate circuitry.
[0083] The memory 302 may store software-based com-
ponents to perform various processes and techniques
described herein of the controller 300, including the lane
module 312, and the localization module 314. The memory
302 may store one or more machine readable and executable
software instructions, software code, or executable com-
puter programs, which may be executed by a processor of
the controller 300. The software instructions may be further
embodied in one or more routines, subroutines, or modules
and may utilize various auxiliary libraries and input/output
functions to communicate with other equipment, modules,
or aspects of the system 100.

[0084] As mentioned above, the memory 302 may store a
trained model file(s) which may serve as an input to one or
more of the lane module 312 and/or the localization module
314. The trained model file(s) may be stored locally on the
vehicle such that the vehicle need not receive updates when
on a mission. The trained model files may be machine-
trained files that include associations between historical
image data and historical lane attribute data associated with
the historical image data. The trained model file may contain
trained lane attribute data that may have been trained by one
or more machine-learning models having been configured to
learn associations between the historical image data and the
historical lane attribute data as will be described in greater
detail herein. In some embodiments, the trained model file
may be specific to a particular region or jurisdiction and may
be trained specifically on that region or jurisdiction. For
example, in jurisdictions in which a lane indication has
particular features (e.g., a given length, width, color, etc.) the
trained model file may be trained on training data including
only those features. The features and aspects used to deter-
mine which training images to train a model file may be
based on, for example, location data as determined by the
GNSS system 108, for example.

[0085] The lane module 312 may predict a lane attribute in
association with the vehicle 102. As used herein, an attribute
of the lane may include any data, such as a width of the lane
(e.g., the lane being driven by the vehicle 102) and a total
number of lanes.

[0086] In an embodiment, the lane module 312 or the
controller 300 may execute a lane analysis module to
generate one or more lane indices based on data captured
during operation of the autonomous vehicle. The lane mod-
ule 312 may be configured to generate and/or receive, for
example, one or more trained model files in order to that may
then be used, along with other data (e.g., LIDAR system data
304, visual system data 306, GNSS system data 308, IMU
system data 310, and/or the trained model file) by the
localization module 314 to localize the vehicle 102.
[0087] FIG. 4 is a flowchart diagram of an example
method of training machine learning models to generate lane
width based on image data, according to an embodiment.
The steps of the method 400 of FIG. 4 may be executed, for
example, by any of the processors, servers, or autonomous
vehicles described in connection with the system 100, 200,
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the controller 300, or any other processor or module dis-
cussed herein, according to some embodiments. The method
400 shown in FIG. 4 comprises execution steps 410-440.
However, it should be appreciated that other embodiments
may comprise additional or alternative execution steps, or
may omit one or more steps altogether. It should also be
appreciated that other embodiments may perform certain
execution steps in a different order. Steps discussed herein
may also be performed simultaneously or near-simultane-
ously with one another.

[0088] The method 400 of FIG. 4 is described as being
performed by a server, which may include the server systems
210 depicted in FIG. 2. However, it should be understood
that any device or system with one or more processors, may
perform the steps of the method 400, including the controller
300 depicted in FIG. 3 or any other processor discussed
herein.

[0089] In some embodiments, one or more of the steps
may be performed by a different processor, server, or any
other computing device. For instance, one or more of the
steps may be performed via a cloud-based service including
any number of servers, which may be in communication
with the processor of the autonomous vehicle and/or its
autonomy system. In a non-limiting example, a first proces-
sor may train the machine learning model discussed herein,
and a local processor (e.g., a processor of a vehicle) may
transmit the images captured by the vehicle to the trained
model and execute the model itself.

[0090] Although the steps shown in FIG. 4 have a par-
ticular order, it is intended that the steps may be performed
in any order. It is also intended that some of these steps may
be optional.

[0091] At step 410, a server (e.g., the server system 210)
may identify a set of image data captured by at least one
autonomous vehicle when the at least one autonomous
vehicle was positioned in a lane of a roadway, and respective
ground truth localization data of the at least one autonomous
vehicle. The server may identify a set of image data captured
by one or more autonomous vehicles (e.g., the vehicle 102)
when the one or more autonomous vehicles were positioned
in respective lanes of one or more roadways. The server can
further identify respective ground truth localization data of
the at least one autonomous vehicle representing the position
of the autonomous vehicle on the roadway when the set of
image data was captured. In an embodiment, the ground
truth localization data can include multiple locations of the
autonomous vehicle, with each or position within the road-
way corresponding to a respective image in the set of image
data. The image data may include LiDAR images (e.g.,
collections of LiDAR points, a point cloud, etc.) captured by
LiDAR sensors of the autonomous vehicle or visual images
(e.g., images, video frames) captured by cameras of the
autonomous vehicle. To obtain the image data, steps similar
to those described in connection with step 402 of FIG. 4 may
be performed.

[0092] The ground truth localization data may be identi-
fied as stored in association with the set of image data
received from one or more autonomous vehicles. The
ground truth localization may include a relative and/or
absolute position (e.g., GPS coordinates, latitude/longitude
coordinates, etc.) and may be obtained separately or con-
temporaneously with the image data. In some embodiments,
portions of the ground truth localization data may represent
the ground truth location of the vehicle capturing the image
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data at the time the image was captured. For example, while
capturing LiDAR or camera images or video frames, the
autonomous vehicle may capture highly accurate GNSS data
(e.g., using the GNSS 108). In some embodiments, the
server can generate a confidence value for one or more of the
ground truth information sources, and the ground truth
information sources may be selected based on the confi-
dence values. Identifying the ground truth localization data
may include retrieving the ground truth localization data
from a memory or database, or receiving the ground truth
localization data from one or more autonomous vehicles that
captured the set of image data. In an embodiment, at least a
portion of the ground truth localization data may include
data derived from an HD map. For example, localization of
the autonomous vehicle may be determined based on one or
more lane indications in the set of image data that are
defined at least in part as a feature on a raster layer of the HD
map, as described herein. Identifying the ground truth local-
ization data can include any of the operations described
herein.

[0093] At step 420, the server may determine a plurality of
lane width values for the set of image data. The server may
determine lane width values for the set of image data based
on the ground truth localization data. The lane width values
can identify a width of one or more lanes of a road (e.g.,
multiway roadway) in which the autonomous vehicle was
traveling when the autonomous vehicle captured an image of
the image data. The lane with values can be an integer that
indicates the width of a lane being traveled and/or other
lanes within the road.

[0094] The lane width values may be determined, at least
in part, based on a localization process. For example, the
server can utilize the ground truth localization data to
identify a location of the autonomous vehicle in the road-
way, as described herein. Using that localization data, and
data from, for example, HD maps or other data sources that
include information relating to the roadway upon which the
autonomous vehicle was traveling, the server can determine
a distance between the autonomous vehicle and the lane
lines. Knowing the width of the autonomous vehicle itself,
the server may calculate a width for the lane as well.

[0095] For the lanes not being traveled by the autonomous
vehicle, the server may use an image recognition protocol
and/or image segmentation protocols to identify lane width
values. For instance, the server may determine a location of
the lane lines and compare the distance between the lane
lines to a known object within the image, such as the
autonomous vehicle itself, known landmarks, other vehicles,
and the like. In some embodiments, the server may deter-
mine the lane width using various extrinsic sources, such as
retrieving data from an HD map to augment its calculation
of the lane width.

[0096] Referring to FIG. 5, a non-limiting example of
images received from one or more autonomous vehicles is
depicted, in accordance with an embodiment. FIG. 5 illus-
trates Lidar data received from an autonomous vehicle
traveling the roadway 500. The roadway 500 may include
three lanes 530, 540, and 550) where each lane is separated
by lane lines, such as lane lines 510 and 520. Additionally,
lanes 530 and 550 may also have side lane lines 512 and 522
accordingly. When the server receives the image depicted in
FIG. 5 from a LiDAR sensor of the autonomous vehicle, the
server may perform various analytical protocols discussed
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herein to identify each lane’s width, as depicted in lane
width values 532, 542, and 552.

[0097] Referring back to FIG. 4, at step 430, the server
may label the set of image data with the plurality of lane
width values, the plurality of lane width values representing
a width of a lane in which the at least one autonomous
vehicle was positioned. The server may label the set of
image data with the plurality of lane width values to generate
a set of training data for one or more machine learning
models, as described herein. Labeling the data can include
associating each image with the respective lane index values
determined for the image in step 420. Each respective lane
width value can be utilized as a ground truth value for
training a respective machine learning model, as described
herein. Labeling can include performing steps similar to
those described in connection with step 408 of FIG. 4. In an
embodiment, the server can allocate a portion of the training
data as an evaluation set, which may not be utilized for
training but may be utilized to evaluate the performance of
machine learning models trained using the training data
described herein.

[0098] In some embodiments, the position of various
features in the environment surrounding the vehicle may be
known based on input from, for example, a digital map (e.g.,
an HD map). For example, a ground truth location of one or
more lane indications or other features of the environment
may be included as data in a map file (e.g., in one or more
raster layers of an HD map file or other semantic map files)
as feature ground truth location data (e.g., lane indicator
ground truth location data). In such embodiments, the
ground truth location of the particular features (as deter-
mined from the digital map) and may be compared to a
ground truth location of an autonomous vehicle (as deter-
mined, for example, based on a GNSS signal or IMU signal)
and a lane offset, lane width, total number of lanes could be
generated based on this difference between the ground truth
location of the feature (e.g., the lane indication) and the
vehicle feature (e.g., the centerline).

[0099] It should also be understood that image data (e.g.,
camera data and/or LiDAR data) obtained by one or more
ego vehicles in a fleet of vehicles can be captured, recorded,
stored, and labeled with ground truth location data for use to
train a machine learning model(s) to predict a lane offset
using only real-time image data captured by an ego vehicle
using a camera or LiDAR system and presenting the cap-
tured real-time image data to the machine learning model(s).
The use of such models may significantly reduce computa-
tional requirements aboard a fleet of vehicles utilizing the
method(s) and may make the vehicles more robust to
meeting location-based requirements, such as localization
and behavior planning, and mission control.

[0100] At step 440, the server may train, using the labeled
set of image data, machine learning models that generate a
lane width value as output. The machine learning models
may be similar to the machine learning models 218
described herein and may include one or more neural
network layers (e.g., convolutional layers, fully connected
layers, pooling layers, activation layers, and/or normaliza-
tion layers). Training the machine learning models can
include performing operations similar to those described
herein. In some embodiments, to train the machine learning
model, the predicted lane width output by the machine
learning model for given image data may be compared to the
label corresponding to the ground truth location to determine
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a loss or error. For example, a predicted lane width value for
a first training image may be compared to a known lane
width (ground truth) identified by the corresponding label.
The machine learning model may be modified or altered
(e.g., weights and/or bias may be adjusted) based on the
error to improve the accuracy of the machine learning
model. This process may be repeated for each training image
or at least until a determined loss or error is below a
predefined threshold. In some examples, at least a portion of
the training images and corresponding labels (e.g., ground
truth location) may be withheld and used to further validate
or test the trained machine learning model.

[0101] The machine learning models can be trained using
supervised and/or unsupervised training techniques. For
example, using a supervised learning approach, the machine
learning models may be trained using providing training
data and labels corresponding to the training data (e.g., as
ground truth). The training data may include a respective
label for each of the machine-learning models for a given
input image. During training, the machine learning models
may be provided with the same input data but may be trained
using different and respective labels.

[0102] In an embodiment, the server can evaluate the
machine learning models based on the set of training data
allocated as an evaluation set. Evaluating the machine
learning models can include determining accuracy, precision
and recall, and F1 score, among others. The machine learn-
ing models can be iteratively trained until a training termi-
nation condition (e.g., a maximum number of iterations, a
performance threshold determined using the evaluation
dataset, a rate of change in model parameters falling below
a threshold, etc.) has been reached. Once trained, the
machine learning models can be provided to one or more
autonomous vehicles for execution during the operation of
the autonomous vehicle. The machine learning models can
be executed by autonomous vehicles to efficiently generate
predictions of lane widths, which may be utilized by the
autonomous vehicle to perform localization in real-time or
near real-time and/or make a decision regarding autonomous
driving.

[0103] In an embodiment, the method 400 of FIG. 4 may
be executed to train one or more additional machine learning
models using additional ground truth data and/or input data
(e.g., any of the LiDAR system data, the visual system data,
the GNSS system data, and/or the IMU system data). The
additional machine learning models may have any suitable
architecture (e.g., a neural network, a CNN, a regression
model, etc.), and may be trained according to the supervised
or unsupervised learning techniques described herein to
output various characteristics of the roadway using at least
image data described herein as input. For example, the
additional machine learning models may be trained to output
one or more of respective distances from respective shoul-
ders, lane width of one or more lanes of the roadway,
shoulder width of the roadway, a classification of the type of
road, a classification of whether there is an intersection in
the roadway, and classifications of lane line types around the
autonomous vehicle on the roadway (e.g., solid lane lines,
dashed lane lines, etc.).

[0104] FIG. 6 is a flowchart diagram of an example
method of using machine learning models to predict a lane
width value using real-time image data, according to an
embodiment. The steps of the method 600 of FIG. 6 may be
executed, for example, by an autonomous vehicle system,
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including vehicle 102, the controller 300, or any other
processor discussed herein, according to some embodi-
ments. The method 600 shown in FIG. 6 comprises execu-
tion steps 610-620. However, it should be appreciated that
other embodiments may comprise additional or alternative
execution steps, or may omit one or more steps altogether.
It should also be appreciated that other embodiments may
perform certain execution steps in a different order. Steps
discussed herein may also be performed simultaneously or
near-simultaneously with one another.

[0105] The method 600 of FIG. 6 is described as being
performed by an autonomous vehicle system (e.g., the
vehicle 102 and/or the controller 300). However, in some
embodiments, one or more of the steps may be performed by
a different processor(s) or any other computing device. For
instance, one or more of the steps may be performed via a
cloud-based service or another processor in communication
with the processor of the autonomous vehicle and/or its
autonomy system. Although the steps are shown in FIG. 6 as
having a particular order, it is intended that the steps may be
performed in any order. It is also intended that some of these
steps may be optional.

[0106] At step 610, the autonomous vehicle system of an
autonomous vehicle can identify image data indicative of a
field of view from the autonomous vehicle when the autono-
mous vehicle is positioned in a lane of a multi-lane roadway.
The image data may include LiDAR images (e.g., collec-
tions of LiDAR points, a point cloud, etc.) captured by
LiDAR sensors of the autonomous vehicle or visual images
(e.g., images, video frames) captured by cameras of the
autonomous vehicle. The server may use various protocols
discussed herein to identify and/or pre-process the image
data. The image data may be captured by one or more
cameras or sensors of the autonomous vehicle, and stored in
the memory of the autonomous vehicle system for process-
ing, in a non-limiting example. In an embodiment, the steps
of the method 600 may be performed upon capturing addi-
tional image data during the operation of the autonomous
vehicle on the multi-lane roadway.

[0107] At step 620, the autonomous vehicle system may
execute machine learning models using the image data as
input to generate/predict a lane width value. To execute the
machine learning models, the autonomous vehicle system
can propagate the image data identified in step 610 through
each layer of each of the machine learning models, perform-
ing the mathematical calculations of each successive layer
based at least on the output of each previous layer or the
input data. Each of the machine learning models may
respectively output one or more of a lane width value. In an
embodiment, the autonomous vehicle system can execute
additional machine learning models using input data to
generate various predictions of road characteristics, as
described herein.

[0108] In some embodiments, the autonomous vehicle
system can localize the autonomous vehicle based on the
predictions generated in step 620. For example, the autono-
mous vehicle system may localize the autonomous vehicle
by correlating the lane index values and/or lane width values
with other data (e.g., longitudinal position data, which may
be generated based on one or more of, for example, a GNSS
system of the autonomous vehicle or an IMU system of the
autonomous vehicle) to localize the autonomous vehicle.
Localizing the autonomous vehicle can include generating
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an accurate lateral position based on the lane index values
and an accurate, longitudinal position based on the GNSS
and the IMU.

[0109] Using the methods 400 and 600, the server can
collect and analyze image data received from a plurality of
vehicles. Using the analyzed set of images, the server may
train a machine learning model to ingest a new set of images
(e.g., video feed or LiDAR sensor) from a new vehicle and
predict a lane width for the roadway in which the new
vehicle is located.

[0110] FIG. 7 is a flowchart diagram of an example
method of training machine learning models to predict a
total number of lanes based on image data, according to an
embodiment. The steps of the method 700 of FIG. 7 may be
executed, for example, by any of the processors, servers, or
autonomous vehicles described in connection with the sys-
tem 100, 200, the controller 300, or any other processor or
module discussed herein, according to some embodiments.
The method 700 shown in FIG. 7 comprises execution steps
710-740. However, it should be appreciated that other
embodiments may comprise additional or alternative execu-
tion steps, or may omit one or more steps altogether. It
should also be appreciated that other embodiments may
perform certain execution steps in a different order. Steps
discussed herein may also be performed simultaneously or
near-simultaneously with one another.

[0111] The method 700 of FIG. 7 is described as being
performed by a server, which may include the server systems
210 depicted in FIG. 2. However, it should be understood
that any device or system with one or more processors, may
perform the steps of the method 700, including the controller
300 depicted in FIG. 3 or any other processor discussed
herein.

[0112] In some embodiments, one or more of the steps
may be performed by a different processor, server, or any
other computing device. For instance, one or more of the
steps may be performed via a cloud-based service including
any number of servers, which may be in communication
with the processor of the autonomous vehicle and/or its
autonomy system. In a non-limiting example, a first proces-
sor may train the machine learning model discussed herein,
and a local processor (e.g., a processor of a vehicle) may
transmit the images captured by the vehicle to the trained
model and execute the model itself.

[0113] Although the steps are shown in FIG. 7 has a
particular order, it is intended that the steps may be per-
formed in any order. It is also intended that some of these
steps may be optional.

[0114] At step 710, the server may identify a set of image
data captured by at least one autonomous vehicle when the
at least one autonomous vehicle was positioned in a lane of
a roadway and the respective ground truth localization data
of at least one autonomous vehicle. Similar to the step 410
(FIG. 4), the server may collect image data. As discussed
herein, image data may include any data, collected from one
or more sensors of the autonomous vehicle, that correspond
to the vehicle’s surroundings. For instance, the methods and
systems discussed herein may use LiDAR data and/or data
received from a camera.

[0115] At step 720, the server may determine the total
number of lanes. Using the methods and systems discussed
herein, the server may determine the number of each lane in
accordance with their corresponding lane lines. For instance,
the server may analyze the images received (using image
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recognition or segmentation protocols) to determine the
position (or number of lane lines). Using the identified lane
lines, the server may determine the total number of lanes for
the roadway. For instance, and referring back to FIG. 5, the
server may identify the lanes 530, 540, and 550 in accor-
dance with the lane lines 510, 512, 520, and 522 respec-
tively.

[0116] In some embodiments, extrinsic data, such as
manual human reviewers, HD maps, and other data indicat-
ing the number of lanes may be used to identify and/or
confirm the number of lanes.

[0117] In some embodiments, the server may also deter-
mine (using image recognition, extrinsic data, human
reviewers, and the like) a direction associated with each
lane. For instance, using a location-tracking sensor of the
vehicle associated with each set of images, the server may
determine a direction of travel associated with the set of
images. In a non-limiting example, the server may determine
that the vehicle associated with the set of images being
analyzed is traveling westbound. As a result, the server may
assume that the lane (in which the vehicle is located) is
westbound. In some embodiments, the lane line type may
also be used to determine directionality. For instance, refer-
ring to FIG. 5, the server may determine that the lane line
510 is double solid lines, which indicates that the lanes on
either side of the lane line 510 have opposite directionality.
Using this data, the server may infer a direction. For
instance, if the lane 530 is determined to have west-bound
directionality, the server then infers (using the double solid
lane line 510) that the lanes 540 and 550 are east-bound.

[0118] Referring back to FIG. 7, at the step 730, the server
may label the set of image data with the plurality of lane
width values, the plurality of lane width values representing
a width of a lane in which the at least one autonomous
vehicle was positioned. Using the identified number of lanes
(step 720). As discussed in the step 430 (FIG. 4) the server
may label the data.

[0119] If the server has identified a direction associated
with one or more lanes, then each lane may also include
corresponding labeling data. For instance, the set of images
may include a total number of lanes where each lane (e.g.,
the first lane from the left or the second lane from the right)
is further labeled with direction data.

[0120] At the step 740, the server may train a machine
learning model for predicting lane width using new image
data. The server may use the methods and systems discussed
herein, such as in the step 440 to train a machine-learning
model.

[0121] FIG. 8 is a flowchart diagram of an example
method of using machine learning models to predict a lane
width value using real-time image data, according to an
embodiment. The steps of the method 800 of FIG. 8 may be
executed, for example, by an autonomous vehicle system,
including the vehicle 102, the controller 300, or any other
processor discussed herein, according to some embodi-
ments. The method 800 shown in FIG. 8 comprises execu-
tion steps 810-820. However, it should be appreciated that
other embodiments may comprise additional or alternative
execution steps, or may omit one or more steps altogether.
It should also be appreciated that other embodiments may
perform certain execution steps in a different order. Steps
discussed herein may also be performed simultaneously or
near-simultaneously with one another.
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[0122] The method 800 of FIG. 8 is described as being
performed by an autonomous vehicle system (e.g., the
vehicle 102 and/or the controller 300). However, in some
embodiments, one or more of the steps may be performed by
a different processor(s) or any other computing device. For
instance, one or more of the steps may be performed via a
cloud-based service or another processor in communication
with the processor of the autonomous vehicle and/or its
autonomy system. Although the steps are shown in FIG. 8 as
having a particular order, it is intended that the steps may be
performed in any order. It is also intended that some of these
steps may be optional.

[0123] At the step 810, the server may identify a set of
image data indicative of a field of view from an autonomous
vehicle. Similar in the step 610 (FIG. 6), the server may be
in communication with one or more sensors of the vehicle.
Using the sensors, the server may receive/retrieve a set of
images. The images may correspond to the surroundings of
the vehicle.

[0124] At step 820, the server may execute a trained
machine-learning model to generate several lanes within a
roadway. Using the trained machine learning model, the
server may determine the total number of lanes for the
roadway. In some embodiments, the server may also iden-
tify/predict the direction of each lane. For instance, the
machine learning model may determine (using the ongoing
traffic or using an HD map) may determine that the roadway
includes one lane going westbound and two lanes going
eastbound.

[0125] Using the methods 700 and 800, the server can
collect and analyze image data received from a plurality of
vehicles. Using the analyzed set of images, the server may
train a machine learning model to ingest a new set of images
(e.g., video feed or LiDAR sensor) from a new vehicle and
predict a total number of lanes (or a directionality for at least
one lane) for the roadway in which the new vehicle is
located.

[0126] The various illustrative logical blocks, modules,
circuits, and algorithm steps described in connection with
the embodiments disclosed herein may be implemented as
electronic hardware, computer software, or combinations of
both. To clearly illustrate this interchangeability of hardware
and software, various components, blocks, modules, cir-
cuits, and steps have been generally described in terms of
their functionality. Whether such functionality is imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as
causing a departure from the scope of this disclosure or the
claims.

[0127] Embodiments implemented in computer software
may be implemented in software, firmware, middleware,
microcode, hardware description languages, or any combi-
nation thereof. A code segment or machine-executable
instructions may represent a procedure, a function, a sub-
program, a program, a routine, a subroutine, a module, a
software package, a class, or any combination of instruc-
tions, data structures, or program statements. A code seg-
ment may be coupled to another code segment or a hardware
circuit by passing and/or receiving information, data, argu-
ments, parameters, or memory contents. Information, argu-
ments, parameters, data, etc., may be passed, forwarded, or
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transmitted via any suitable means including memory shar-
ing, message passing, token passing, network transmission,
etc.
[0128] The actual software code or specialized control
hardware used to implement these systems and methods is
not limiting of the claimed features or this disclosure. Thus,
the operation and behavior of the systems and methods were
described without reference to the specific software code, it
being understood that software and control hardware can be
designed to implement the systems and methods based on
the description herein.
[0129] When implemented in software, the functions may
be stored as one or more instructions or code on a non-
transitory computer-readable or processor-readable storage
medium. The steps of a method or algorithm disclosed
herein may be embodied in a processor-executable software
module, which may reside on a computer-readable or pro-
cessor-readable storage medium. A non-transitory computer-
readable or processor-readable media includes both com-
puter storage media and tangible storage media that facilitate
transfer of a computer program from one place to another. A
non-transitory processor-readable storage media may be any
available media that may be accessed by a computer. By way
of example, and not limitation, such non-transitory proces-
sor-readable media may comprise RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk stor-
age or other magnetic storage devices, or any other tangible
storage medium that may be used to store desired program
code in the form of instructions or data structures and that
may be accessed by a computer or processor. Disk and disc,
as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray
disc, where “disks” usually reproduce data magnetically,
while “discs” reproduce data optically with lasers. Combi-
nations of the above should also be included within the
scope of computer-readable media. Additionally, the opera-
tions of a method or algorithm may reside as one or any
combination or set of codes and/or instructions on a non-
transitory processor-readable medium and/or computer-
readable medium, which may be incorporated into a com-
puter program product.
[0130] The preceding description of the disclosed embodi-
ments is provided to enable any person skilled in the art to
make or use the embodiments described herein and varia-
tions thereof. Various modifications to these embodiments
will be readily apparent to those skilled in the art, and the
principles defined herein may be applied to other embodi-
ments without departing from the spirit or scope of the
subject matter disclosed herein. Thus, the present disclosure
is not intended to be limited to the embodiments shown
herein but is to be accorded the widest scope consistent with
the following claims and the principles and novel features
disclosed herein.
[0131] While various aspects and embodiments have been
disclosed, other aspects and embodiments are contemplated.
The various aspects and embodiments disclosed are for
purposes of illustration and are not intended to be limiting,
with the true scope and spirit being indicated by the follow-
ing claims.

What is claimed is:

1. A method, comprising:

identifying, by one or more processors coupled to non-

transitory memory, a set of image data captured by at
least one autonomous vehicle when the at least one
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autonomous vehicle was positioned in a lane of a
roadway, and respective ground truth localization data
of the at least one autonomous vehicle;

determining, by the one or more processors, a plurality of

lane width values for the set of image data;

labeling, by the one or more processors, the set of image

data with the plurality of lane width values, the plural-
ity of lane width values representing a width of a lane
in which the at least one autonomous vehicle was
positioned; and

training, by the one or more processors, using the labeled

set of image data, a machine learning model, such that
the machine learning model is configured to predict a
new lane width value for a new lane as output.

2. The method of claim 1, wherein the plurality of lane
width values is determined based on the ground truth
localization data.

3. The method of claim 1, wherein the plurality of lane
width values is determined using an image recognition or
image segmentation protocol.

4. The method of claim 1, wherein the ground truth
localization data includes data derived from a high-defini-
tion (HD) map.

5. The method of claim 4, wherein a plurality of lane
indications of the set of image data are defined at least in part
as a feature on a raster layer of the high-definition (HD) map.

6. The method of claim 1, wherein the machine learning
model comprises a plurality of neural network layers.

7. The method of claim 1, further comprising:

executing, by the one or more processors, the machine

learning model for a second autonomous vehicle.

8. A non-transitory machine-readable storage medium
having computer-executable instructions stored thereon that,
when executed by one or more processors, cause the one or
more processors to perform operations comprising:

identify a set of image data captured by at least one

autonomous vehicle when the at least one autonomous
vehicle was positioned in a lane of a roadway, and
respective ground truth localization data of the at least
one autonomous vehicle;

determine a plurality of lane width values for the set of

image data;

label the set of image data with the plurality of lane width

values, the plurality of lane width values representing
a width of a lane in which the at least one autonomous
vehicle was positioned; and

train using the labeled set of image data, a machine

learning model, such that the machine learning model
is configured to predict a new lane width value for a
new lane as output.

9. The non-transitory machine-readable storage medium
of claim 8, wherein the plurality of lane width values is
determined based on the ground truth localization data.
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10. The non-transitory machine-readable storage medium
of claim 8, wherein the plurality of lane width values is
determined using an image recognition or image segmenta-
tion protocol.

11. The non-transitory machine-readable storage medium
of claim 8, wherein the ground truth localization data
includes data derived from a high-definition (HD) map.

12. The non-transitory machine-readable storage medium
of claim 11, wherein a plurality of lane indications of the set
of image data are defined at least in part as a feature on a
raster layer of the high-definition (HD) map.

13. The non-transitory machine-readable storage medium
of claim 8, wherein the machine learning model comprises
a plurality of neural network layers.

14. The non-transitory machine-readable storage medium
of claim 8, wherein the instruction further cause the one or
more processors to:

executing, by the one or more processors, the machine

learning model for a second autonomous vehicle.

15. A system comprising a processor configured to:

identify a set of image data captured by at least one

autonomous vehicle when the at least one autonomous
vehicle was positioned in a lane of a roadway, and
respective ground truth localization data of the at least
one autonomous vehicle;

determine a plurality of lane width values for the set of

image data;

label the set of image data with the plurality of lane width

values, the plurality of lane width values representing
a width of a lane in which the at least one autonomous
vehicle was positioned; and

train using the labeled set of image data, a machine

learning model, such that the machine learning model
is configured to predict a new lane width value for a
new lane as output.

16. The system of claim 15, wherein the plurality of lane
width values is determined based on the ground truth
localization data.

17. The system of claim 15, wherein the plurality of lane
width values is determined using an image recognition or
image segmentation protocol.

18. The system of claim 15, wherein the ground truth
localization data includes data derived from a high-defini-
tion (HD) map.

19. The system of claim 18, wherein a plurality of lane
indications of the set of image data are defined at least in part
as a feature on a raster layer of the high-definition (HD) map.

20. The system of claim 15, wherein the processor is
further configured to:

execute the machine learning model for a second autono-

mous vehicle.



