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(57) ABSTRACT

Methods and apparatuses relating to switching of a shadow
stack pointer are described. In one embodiment, a hardware
processor includes a hardware decode unit to decode an
instruction, and a hardware execution unit to execute the
instruction to: pop a token for a thread from a shadow stack,
wherein the token includes a shadow stack pointer for the
thread with at least one least significant bit (LSB) of the
shadow stack pointer overwritten with a bit value of an
operating mode of the hardware processor for the thread,
remove the bit value in the at least one LSB from the token
to generate the shadow stack pointer, and set a current
shadow stack pointer to the shadow stack pointer from the
token when the operating mode from the token matches a
current operating mode of the hardware processor.
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HARDWARE APPARATUSES AND METHODS
TO SWITCH SHADOW STACK POINTERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application is a continuation
application claiming priority from U.S. patent application
Ser. No. 17/340,632 filed Jun. 7, 2021, now U.S. Pat. No.
11,663,006, which is a continuation application claiming
priority from U.S. patent application Ser. No. 16/534,970
filed Aug. 7, 2019, now U.S. Pat. No. 11,029,952, which is
a continuation application claiming priority from U.S. patent
application Ser. No. 14/975,840 filed Dec. 20, 2015, now
U.S. Pat. No. 10,394,556, each of which is incorporated
herein by reference in its entirety.

TECHNICAL FIELD

[0002] The disclosure relates generally to electronics, and,
more specifically, an embodiment of the disclosure relates to
a hardware processor to switch shadow stack pointers.

BACKGROUND

[0003] A processor, or set of processors, executes instruc-
tions from an instruction set, e.g., the instruction set archi-
tecture (ISA). The instruction set is the part of the computer
architecture related to programming, and generally includes
the native data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and
exception handling, and external input and output (I/O). It
should be noted that the term instruction herein may refer to
a macro-instruction, e.g., an instruction that is provided to
the processor for execution, or to a micro-instruction, e.g.,
an instruction that results from a processor’s decoder decod-
ing macro-instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present disclosure is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[0005] FIG. 1 illustrates a hardware processor coupled to
a shadow stack according to embodiments of the disclosure.
[0006] FIG. 2 illustrates a hardware processor to decode
and execute a save shadow stack pointer instruction accord-
ing to embodiments of the disclosure.

[0007] FIG. 3 illustrates a hardware processor to decode
and execute a restore shadow stack pointer instruction
according to embodiments of the disclosure.

[0008] FIG. 4 illustrates pseudocode of a shadow stack
pointer save operation according to embodiments of the
disclosure.

[0009] FIG. 5 illustrates pseudocode of a shadow stack
pointer restore operation according to embodiments of the
disclosure.

[0010] FIG. 6 illustrates a flow diagram according to
embodiments of the disclosure.

[0011] FIG. 7 illustrates a flow diagram according to
embodiments of the disclosure.

[0012] FIG. 8A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure.
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[0013] FIG. 8B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the disclosure.

[0014] FIG. 9A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network and with its local subset of the Level 2 (L.2) cache,
according to embodiments of the disclosure.

[0015] FIG. 9B is an expanded view of part of the pro-
cessor core in FIG. 9A according to embodiments of the
disclosure.

[0016] FIG. 10 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the disclosure.

[0017] FIG. 11 is a block diagram of a system in accor-
dance with one embodiment of the present disclosure.
[0018] FIG. 12 is a block diagram of a more specific
exemplary system in accordance with an embodiment of the
present disclosure.

[0019] FIG. 13 is a block diagram of a second more
specific exemplary system in accordance with an embodi-
ment of the present disclosure.

[0020] FIG. 14 is a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
disclosure.

[0021] FIG. 15 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.

DETAILED DESCRIPTION

[0022] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments of the disclosure may be practiced without these
specific details. In other instances, well-known circuits,
structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.
[0023] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.
[0024] A (e.g., hardware) processor (e.g., having one or
more cores) may execute instructions to operate on data, for
example, to perform arithmetic, logic, or other functions. A
hardware processor may execute a thread (e.g., of instruc-
tions) on data. A hardware processor may switch between
executing multiple threads, for example, where each thread
includes a context. For example, a hardware processor may
switch a first thread’s context out for a second thread’s
context to start executing the second thread, e.g., and stop
executing the first thread.

[0025] A (e.g., hardware and/or software) stack may be
used to push (e.g., load data onto the stack) and/or pop (e.g.,
remove or pull data from the stack). In one embodiment, a
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stack is a last in, first out (LIFO) data structure. As examples,
a stack may be a call stack, data stack, or a call and data
stack. In one embodiment, a context for a first thread may be
pushed and/or popped from a stack. For example, a context
for a first thread may be pushed to a stack when switching
to a second thread (e.g., and its context). Context (e.g.,
context data) sent to the stack may include (e.g., local)
variables and/or bookkeeping data for a thread. A stack
pointer (e.g., stored in a register) may be incremented or
decremented to point to a desired element of the stack.
Certain embodiments herein may provide protection from
the undesired modification (e.g., incrementing or decrement-
ing) of a stack pointer.

[0026] Return-oriented programming (ROP), jump-ori-
ented programming (JOP), and context-oriented program-
ming (COP) are examples of computer security exploit
techniques that attackers may use to gain control over
computer systems (or other electronic devices), e.g., to
perform malicious actions. In these techniques, the attacker
generally gains control of a stack (e.g., call stack) in order
to take control of (e.g., hijack) program control flow. Control
of the stack (e.g., call stack) may be achieved through a
buffer overrun exploit or attack. For example, a thread (e.g.,
section) of instructions may end with a (e.g., programmer-
intended or unintended) return instruction within the exist-
ing program code. If the return address (e.g., stack pointer)
is modified by an attacker, the execution of the return
instruction may transfer execution to the attacker chosen
return address (e.g., from the stack) and allow the attacker
to retain execution control through the program code, for
example, and thus direct execution to the next set of instruc-
tions to achieve the attackers intent. A set of attacker chosen
instruction sequences may be referred to as gadgets.

[0027] Incertain embodiments, a shadow stack is used, for
example, in addition to a (e.g., separate) stack (e.g., as
discussed herein). In one embodiment, the term shadow
stack may generally refer to a stack to store control infor-
mation, e.g., information that can affect program control
flow or transfer. In one embodiment, a shadow stack may
store control information (e.g., pointer(s) or other address
(es)) for a thread, for example, and a (e.g., data) stack may
store other data, for example, (e.g., local) variables and/or
bookkeeping data for a thread.

[0028] In certain embodiments, one or more shadow
stacks may be included and used to protect an apparatus
and/or method from tampering and/or increase security. The
shadow stack(s) (e.g., shadow stack 114 in FIG. 1) may
represent one or more additional stack type of data structures
that are separate from the stack (e.g., stack 112 in FIG. 1).
In one embodiment, the shadow stack (or shadow stacks) is
used to store control information but not data (e.g., not
parameters and other data of the type stored on the stack,
e.g., that user-level application programs are to write and/or
modify). In one embodiment, the control information stored
on the shadow stack (or stacks) is return address related
information (e.g., actual return address, information to vali-
date return address, and/or other return address information).
In one example, the shadow stack is used to store copies of
a return addresses for a thread, e.g., a return address corre-
sponding to a thread whose context or other data has been
previously pushed on the (e.g., data) stack. For example,
when functions or procedures have been called, a copy of a
return address for the caller may have been pushed onto the
shadow stack. The return information may be a shadow
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stack pointer (SSP), e.g., that identifies the most recent
element (e.g., top) of the shadow stack. In certain embodi-
ments, the shadow stack may be read and/or written to in
user level mode (for example, current privilege level (CPL)
equal to three, e.g., a lowest level of privilege) or in a
supervisor privilege level mode (for example, a current
privilege level (CPL) less than three, e.g., a higher level of
privilege than CPL=3). In one embodiment, multiple
shadow stacks may be included, but only one shadow stack
(e.g., per logical processor) at a time may be allowed to be
the current shadow stack. In certain embodiments, there is a
(e.g., one) register of the processor to store the (e.g., current)
shadow stack pointer.

[0029] In one embodiment, an attacker may attempt to
take control over the shadow stack (e.g., and thus take
control over the processor and/or software running on the
processor). For example, an attacker may attempt to change
the shadow stack pointer, for example, to change the pointer
to shift the execution to a section of (e.g., malicious)
software provided by the attacker. Certain embodiments
herein provide security for the shadow stack (e.g., in storing
and/or restoring a shadow stack pointer). Certain embodi-
ments herein allow stack pointer switching (e.g., in user
mode by user mode thread schedulers and/or without invok-
ing an (e.g., call to) operating system) without compromis-
ing the integrity of the shadow stack. Certain embodiments
herein save a shadow stack context and/or restore a shadow
stack context to allow a secure shadow stack switch, e.g.,
without invoking the operating system. Certain embodi-
ments herein ensure that a shadow stack is to be switched to
only valid shadow stacks setup by the operating system for
that program. Certain embodiments herein ensure that a user
program (e.g., with user level privilege) is not able to
manipulate the shadow stack pointer, e.g., arbitrarily. In one
embodiment, a user program (e.g., with user level privilege)
has a lower privilege (e.g., what actions may be taken) than
an operating system.

[0030] FIG. 1 illustrates a hardware processor 100 coupled
to a shadow stack 114 according to embodiments of the
disclosure. Depicted hardware processor 100 includes a
hardware decode unit 102 (e.g., decoder) and hardware
execution unit 104. Depicted hardware processor 100
includes registers 106. Registers may include one or more of
a shadow stack pointer register 108. Registers may include
one or more control registers 109, for example, to set and/or
read a (e.g., selectable) feature of a processor. One embodi-
ment of a feature is an operating mode of the processor. For
example, the current operating mode of the processor may
be selectable between a first operating mode with a first
address size and/or operand size and a second operating
mode with a second, larger address size and/or operand size.
A processor may include a control register or registers, for
example, an extended feature enable register (EFER) to
indicate which (e.g., one) of multiple operating modes a
processor is currently operating. In one embodiment, a
control register (e.g., EFER) may include a field (e.g., a bit
or flag therein) that is set to indicate if a hardware processor
is operating in 32 bit operating mode or 64 bit operating
mode. In one embodiment, a control register (e.g., EFER)
may include a field (e.g., a bit or flag therein) that is set to
indicate if a hardware processor is operating in 32 bit
operating mode, 64 bit operating mode, or a compatibility
mode that can run 32 bit and 64 bit instructions and/or data.
In one embodiment, a control register may include a field
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(e.g., to set a flag therein) that is set to indicate if a (e.g.,
same) hardware processor (e.g., a core of multiple cores
thereof) is operating in one of 32 bit operating mode and 64
bit operating mode. In one embodiment, a 32 bit operating
mode refers to a processor to execute according to a 32 bit
address size and/or a 32 bit operand size. In one embodi-
ment, a 64 bit operating mode refers to a processor to
execute according to a 64 bit address size and/or a 64 bit
operand size. Additionally or alternatively, a data structure
(e.g., a global descriptor table (GDT) or a local descriptor
table (LDT)) may be included to set and/or read a (e.g.,
selectable) feature of a processor.

[0031] Depicted hardware processor 100 may communi-
cate with (e.g., be coupled with) a data storage device 110
(e.g., memory). Data storage device (or other device in
communication with the hardware processor) may include a
(e.g., data) stack 112 and/or a shadow stack 114. Shadow
stack 114 may store a context for a thread, for example, that
includes a shadow stack pointer, e.g., for that context.
Shadow stack pointer may be an address, e.g., a linear
address or other value to indicate a value of the stack pointer.
In one embodiment, each respective linear address specifies
a different byte in memory (e.g., in a stack).

[0032] Note that the figures herein may not depict all data
communication connections. One of ordinary skill in the art
will appreciate that this is to not obscure certain details in the
figures. Note that a double headed arrow in the figures may
not require two-way communication, for example, it may
indicate one-way communication (e.g., to or from that
component or device). Any or all combinations of commu-
nications paths may be utilized in certain embodiments
herein.

[0033] Hardware decode unit 102 may receive an instruc-
tion (e.g., macro-instruction) and decode the instruction.
Hardware execution unit 104 may execute the decoded
instruction (e.g., macro-instruction) to perform an operation
or operations. For example, a first instruction to be decoded
by decode unit 102 and executed by execution unit 104 may
be a save shadow stack pointer instruction, e.g., that when
executed, is to push a shadow stack pointer onto a stack
(e.g., shadow stack 114). For example, a second instruction
to be decoded by decode unit 102 and executed by execution
unit 104 may be a restore shadow stack pointer instruction,
e.g., that when executed, is to pop (e.g., pull) a shadow stack
pointer from a stack (e.g., shadow stack 114). For example,
a stack pointer may be an address (or a reference to an
address) for an inactive element (e.g., frame) on a stack. In
one embodiment, the stack pointer for a data set to be pushed
onto the (e.g., shadow) stack is included as one part (e.g., at
the top) of that data set. In one embodiment, the control
information (e.g., shadow stack pointer) is pushed or popped
to a shadow stack and an associated entry for other infor-
mation is pushed or popped accordingly to a data stack.

[0034] In one embodiment, a (e.g., user level) request
(e.g., from a thread that is a user level privilege thread) to
switch a context (e.g., push and/or pop a shadow stack
pointer) may be received. In one embodiment, a request to
switch a context includes pushing or popping from a stack
one or more other items of data in addition to a stack pointer.
In one embodiment, program code (e.g., software) executing
in user level may request a push or a pop of a (e.g., shadow)
stack. In certain embodiments, a request is the issuance of an
instruction to a processor for decode and/or execution. For
example, a request for a pop of a shadow stack pointer from
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a shadow stack may include executing a restore shadow
stack pointer instruction. For example, a request for a push
of a shadow stack pointer to a shadow stack may include
executing a save shadow stack pointer instruction.

[0035] In certain embodiments, an instruction (e.g., a save
shadow stack pointer instruction), when executed, is to
cause a shadow stack pointer to be pushed to a shadow stack,
for example, a shadow stack pointer pushed to the shadow
stack in a token according to this disclosure. In certain
embodiments, an instruction (e.g., a restore shadow stack
pointer instruction), when executed, is to cause a shadow
stack pointer to be popped from a shadow stack, for
example, a token including the shadow stack pointer popped
from the shadow stack according to this disclosure. In
certain embodiments, an instruction (e.g., a save shadow
stack pointer instruction), when executed, is to cause the
alignment of the shadow stack to the next (for example, with
apointer increasing in address from the top of the stack (e.g.,
most recently pushed onto the stack) to the bottom of the
stack) boundary address and cause a token to be pushed onto
the stack. An instruction (e.g., a save shadow stack pointer
instruction and/or a restore shadow stack pointer instruction)
may have the right to access a (e.g., private) shadow stack.
[0036] FIG. 2 illustrates a hardware processor 200 to
decode and execute a save shadow stack pointer instruction
201 according to embodiments of the disclosure. Instruction
201 (e.g., single instruction) may be decoded (e.g., into
micro-instructions and/or micro-operations) by decode unit
202 and the decoded instruction may be executed by the
execution unit 204. Shadow stack 214 may be a data
structure in data storage device 210. Current shadow stack
pointer 218 may be stored in a shadow stack pointer register
208. A next shadow stack pointer 220 may refer to the next
shadow stack pointer that is to be written to (e.g., overwrite)
current shadow stack pointer 218. Shadow stack pointer may
be located in a location besides a register in another embodi-
ment. Current operating mode (for example, of the processor
200, e.g., the decode unit 202 and execution unit 204) may
be stored in a register, e.g., in a control register.

[0037] In certain embodiments, an instruction (e.g., a save
shadow stack pointer instruction 201), when executed, is to
cause the alignment of the shadow stack 214 to the next (for
example, with a pointer increasing in address from the top
of' the stack (e.g., most recently pushed onto the stack) to the
bottom of the stack) boundary address and/or a token 216 to
be pushed onto the stack. Although a single token 216 is
shown in shadow stack 214, multiple tokens (and their
associated other data) may be pushed and/or pulled from a
stack. An instruction may be executed in response to a (e.g.,
user level) request (e.g., from a thread that is a user level
privilege thread) to push a shadow stack pointer (e.g.,
current shadow stack pointer 218) onto shadow stack.
[0038] In one embodiment, a token includes (e.g.,
although not explicitly) the value of the shadow stack
pointer (e.g., at the time of invoking the instruction) along
with one or more bits (e.g., least significant bits (LSB))
indicating the operating mode of the processor (e.g., at the
time of invoking the instruction). For example, a shadow
stack pointer may be used by a processor only when it is
(e.g., byte) aligned, for example, to create one or more zeros
(e.g., of a binary zero and one format) in the least significant
bits of the value of the shadow stack pointer. Those least
significant bits may be utilized by the processor to store
processor information, for example, the current operating



US 2024/0078111 Al

mode (e.g., of the thread whose shadow stack pointer is to
be pushed to the shadow stack). In one embodiment, the
token is 8 bytes and the last and/or second to last bits may
be used to store the operating mode, e.g., the operating mode
of the thread whose shadow stack pointer is to be pushed
onto the stack. In one embodiment, the token is sized smaller
than the address size and/or operand size, e.g., of all oper-
ating modes of the hardware processor.

[0039] A processor (e.g., an execution unit) may include a
circuit to check that the (e.g., desired) least significant bits
are not set high (e.g., not set to one in binary format) before
overwriting (e.g., performing a write to) those least signifi-
cant bits. In one embodiment, a processor is to fault (for
example, to cause a rollback or not persist any change(s)
caused by the execution of the save shadow stack pointer
instruction, e.g., to the shadow stack and/or the associated
entry in a data stack) if any of the checked least significant
bits of the shadow stack pointer are set high.

[0040] In one embodiment, the processor (e.g., an execu-
tion unit) includes a circuit to check that the shadow stack
pointer is byte aligned, e.g., such that all bits below the
eighth bit are zero. In one embodiment, the processor (e.g.,
an execution unit) includes a circuit to check that the shadow
stack pointer is byte aligned for multiple bytes, for example,
4 byte aligned (e.g., in 32 bit operating mode) or 8 byte
aligned (e.g., in 64 bit operating mode). For example, a 4
byte alignment may include each shadow stack pointer
having bits 1 and O being zero. For example, an 8 byte
alignment may include each shadow stack pointer having
bits 2, 1, and O being zero.

[0041] In one embodiment, a hardware processor has a
plurality of selectable operating modes and two operating
modes have different address sizes, e.g., 32 bit address size
for a first operating mode and a 64 bit address size for a
second operating mode. In one embodiment, one or more
(e.g., least significant) bits of a shadow stack pointer to be
pushed onto a shadow stack are to always be set low (e.g.,
zero in binary format), for example, owing to a required
(e.g., byte) alignment of each shadow stack pointer (e.g., an
address of the shadow stack). In this embodiment, the one or
more (e.g., least significant) bits (e.g., not all of the bits of
the shadow stack pointer) that are always set low are used to
store a bit value to indicate an operating mode of the context
corresponding to the shadow stack pointer, for example,
where 0 or 1 is to indicate a first (e.g., 32 bit) operating mode
and the other of 0 or 1 is to indicate a second (e.g., 64 bit),
different operating mode. For example, using a single bit
may indicate one of two operating modes, using two bits
may indicate one of four operating modes, etc.

[0042] In one embodiment, a processor is to copy the
current shadow stack pointer to storage (e.g., a register) to
create a first value (e.g., in that register). A processor (e.g.,
an execution unit) may include a circuit to set the one or
more (e.g., least significant) bits (e.g., least significant bit or
bits that are zero because of the shadow stack pointer (e.g.,
byte) alignment) of the first value to indicate the (e.g.,
current) operating mode of the hardware processor to create
a token. A token may be pushed to (e.g., the top of) a shadow
stack. In one embodiment, a processor (e.g., an execution
unit) includes a circuit to add zeros (e.g., zero extending) to
the most significant end of the shadow stack pointer, for
example, such that a shadow stack pointer (e.g., address) for
a first operating mode with a first address size is the same
size as a second operating mode with a second, larger
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address size. For example, a processor may have a shadow
stack pointer for a 32 bit address size and (e.g., when
preparing a token) zero extend the most significant end to 64
bits, e.g., inserting the 32 bit address in bits 31 to 0 and
inserting zeros in bits 63 to 32 (e.g., when preparing a
token). In one embodiment, a shadow stack pointer pushed
on and/or pulled from a stack is (e.g., to always be) the
largest address size of multiple address sizes of multiple
operating modes. An address for the token may be saved to
memory, e.g., with the context for the thread whose shadow
stack pointer was pushed to the shadow stack. Token may be
saved across multiple entries on a stack, for example, such
that the address of the memory location on the stack that is
storing the token is the address of the first entry on the stack.

[0043] FIG. 3 illustrates a hardware processor 300 to
decode and execute a restore shadow stack pointer instruc-
tion 301 according to embodiments of the disclosure.
Instruction 301 (e.g., single instruction) may be decoded
(e.g., into micro-instructions and/or micro-operations) by
decode unit 302 and the decoded instruction may be
executed by the execution unit 304. Shadow stack 314 may
be a data structure in data storage device 310. Current
shadow stack pointer 318 may be stored in a shadow stack
pointer register 308. Next shadow stack pointer 320 may
refer to the next shadow stack pointer that is to be written to
(e.g., overwrite) current shadow stack pointer 318. Shadow
stack pointer may be located in a location besides a register
in another embodiment. Current operating mode may be
stored (e.g., set) in a register, e.g., in a control register.

[0044] In certain embodiments, an instruction (e.g., a
restore shadow stack pointer instruction 201), when
executed, is to cause the alignment of the shadow stack 314
to the next (for example, with a pointer increasing in address
from the top of the stack (e.g., most recently pushed onto the
stack) to the bottom of the stack) boundary address and/or a
token 316 to be popped from the stack. Although a single
token 316 is shown in shadow stack, multiple tokens (and
their associated other data) may be pushed and/or pulled
from a stack. An instruction may be executed in response to
a (e.g., user level) request (e.g., from a thread that is a user
level privilege thread) to pop a shadow stack pointer (e.g.,
next shadow stack pointer 320) from the shadow stack 314.

[0045] In certain embodiments, an instruction (e.g., a
restore shadow stack pointer instruction 301), when
executed, is to cause a shadow stack pointer to be popped
from the shadow stack, for example, a shadow stack pointer
popped from the shadow stack according to this disclosure.
In one embodiment, an instruction, when executed, is to
(e.g., allow a thread whose shadow stack pointer is to be
popped from the stack to) change the current shadow stack
pointer 318 to the shadow stack pointer saved on (e.g.,
popped from) the shadow stack for the context to be loaded.
For example, a token 316 according to any of the disclosure
herein may have been pushed onto the shadow stack 314
previously. An instruction 301, when executed, may pull the
token 316 from the shadow stack 314 and remove the
shadow stack pointer from the token 316 to change the
current shadow stack pointer 318 to that shadow stack
pointer removed from the token (e.g., to cause the shadow
stack pointer from the token 316 to be saved into shadow
stack pointer register 308 as the current shadow stack
pointer 318). An instruction (e.g., execution thereof) may
cause the performance (e.g., by a circuit) of one or more
checks, for example, to determine that the token is the
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correct token (e.g., and not one manipulated by an attacker).
An instruction may be executed in response to a (e.g., user
level) request (e.g., from a thread that is a user level
privilege thread) to push a shadow stack pointer onto a
shadow stack. In one embodiment, a request is from or for
a thread that is to be executed on the hardware processor and
seeking to have it shadow stack pointer as the current
shadow stack pointer, e.g., such that the thread may access
the shadow stack pointer and thus any information in the
shadow stack saved with the shadow stack pointer. In one
embodiment, an instruction may include a field (e.g., oper-
and) to indicate the (e.g., linear) address on the shadow stack
where the token (e.g., the first entry of multiple entries
containing the token) is stored.

[0046] In one embodiment, a requestor (e.g., a user level
application) specifies the address of a token 316 pushed on
the shadow stack 314 by a previous save shadow stack
pointer instruction, e.g., the address as an operand. Execu-
tion of the instruction may (e.g., cause a circuit to) verify if
the address specified is (for example, (e.g., 8) byte) aligned,
for example, and fault if not. A processor may (e.g., atomi-
cally) load the (e.g., 8 bytes of) token from the address
specified. In one embodiment, the loading of a token locks
the token and/or the location (e.g., cache line) the token is
copied into from modification by another core or processor.
Execution of the instruction may (e.g., cause a circuit to)
verify if the operating mode (e.g., in one of 32 bit and 64 bit
operating mode) of the hardware processor (e.g., core)
recorded in the token matches the current mode (or the mode
to be used for execution of the token’s thread) of the
hardware processor. For example, execution of the instruc-
tion may (e.g., cause a circuit to) verify if the operating
mode bit value stored in the token matches the current mode
(or the mode to be used for execution of the token’s thread)
of the hardware processor, e.g., as read from a control
register or other location. Execution of the instruction may
(e.g., cause a circuit to) verify if the shadow stack pointer
(e.g., in the format of a linear address) stored in the token
matches the (e.g., linear) address specified (e.g., as an
operand) to the instruction by the requestor. For example,
the instruction may (e.g., cause a circuit to) align the shadow
stack pointer (e.g., in the form of a linear address) from the
token to a next address boundary, remove (e.g., subtract) a
size of the token from the next address boundary to generate
a second address, and take a fault (e.g., not set the current
shadow stack pointer to the shadow stack pointer from the
token) when the second address does not match the address
(e.g., from the operand of the restore shadow stack pointer
instruction) provided by the requestor for the retrieval of the
shadow stack pointer.

[0047] Execution of the instruction may (e.g., cause a
circuit to) perform one or more (e.g., all) of the above
verifications (e.g., checks) and update the current shadow
stack pointer to the shadow stack pointer in the token if the
verifications are true. Certain embodiments herein cause a
restore stack pointer operation is be done to restore a shadow
stack pointer to a value that matches the shadow stack
pointer at the time of a previous save of the shadow stack
pointer (e.g., via a save shadow stack pointer operation).
Certain embodiments herein (e.g., atomically) clear a token
after it has been used (e.g., a successful restoration of the
shadow stack pointer from the token as the current shadow
stack pointer), for example, to cause a restore shadow stack
pointer operation (e.g., instruction) to be performed only on
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one hardware processor (e.g., logical processor). An oper-
ating mode verification may enforce that a shadow stack
pointer saved in one operating mode (e.g., 64 bit mode) is
not to be used in a second operating mode (e.g., 32 bit
mode). Certain embodiments may allow a requestor (e.g., a
software application) to (e.g., efficiently) switch stacks in
user mode or user space (e.g., without invoking an (e.g., call
to) operating system) without having the ability to (e.g.,
arbitrarily) change the shadow stack pointer (e.g., where the
user mode or user space does not have permission to directly
modify the shadow stack pointer). In one embodiment, an
instruction according to this disclosure may have permission
to modify and/or read a shadow stack and/or shadow stack
pointer.

[0048] In one embodiment, a token may only be loaded
from shadow stack memory. In one embodiment, no other
hardware processor (e.g., core) may modity a token (e.g.,
loaded into a register) until the hardware processor releases
the lock (e.g., on completion of the restoration of a shadow
stack pointer in the token). In one embodiment, a token is
only used to restore a shadow stack pointer once, for
example, the token is erased after the current shadow stack
pointer of a hardware processor is modified to the shadow
stack pointer from that token. In certain embodiments, a
single decode unit and single execution unit may decode and
execute, respectively, save shadow stack pointer instruction
201 and restore shadow stack pointer instruction 301.

[0049] In one embodiment, the size of the token is the
same for each pop to and pull of a token from a shadow
stack. Execution of a restore shadow stack pointer instruc-
tion may (e.g., cause a circuit to) remove the one or more
bits (e.g., least significant bits (LSB)), which one or more
bits may be the same bit location and number of bits in each
token from a shadow stack) from the token that indicate the
operating mode of the processor (e.g., at the time of invok-
ing the instruction). The value of the token with the removed
one or more bits that indicate the operating mode may be the
shadow stack pointer, which may then be loaded as the
current shadow stack pointer. In one embodiment, the token
is 8 bytes and the last and/or second to last bits are used to
store the operating mode, for example, removing (e.g.,
replacing with a zero(s)) those last and/or second to last bits
from the token generates (e.g., creates) the shadow stack
pointer. The pop of a token 316 from a shadow stack 314 to
a cache line(s) of storage may lock those cache line(s) of
storage from modification by another hardware processor,
for example, until the restore instruction that caused the pop
completes execution (e.g., is retired). In one embodiment,
the number of bits and the location of the bits in a token that
indicate the operating mode of the processor are constant,
for example, the same least significant bits are low (e.g.,
zero) in every shadow stack pointer, e.g., based on the byte
alignment. In one embodiment, an address of a token in a
shadow stack is the first address (e.g., when the token is
stored over multiple memory address locations) of multiple
addresses of a single token.

[0050] FIG. 4 illustrates pseudocode 400 of a shadow
stack pointer save operation, e.g., micro-code for a save
shadow stack pointer instruction, according to embodiments
of the disclosure. In reference to FIG. 4, EFER may refer to
an extended feature enable register, e.g., a special configu-
ration register for a processor that is to run in either 32 bit
operating mode or 64 bit operating mode at a time. EFER.
LMA may refer to a long mode activity flag in EFER that,
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e.g., when enabled (e.g., set high), places the hardware
processor into long (e.g., 64 bit) mode. Code segment long
(CS.L) may refer to a flag in a code segment entry (e.g., of
global descriptor table (GDT) or a local descriptor table
(LDT)) to indicate long (e.g., 64 bit) mode, e.g., when set
high (to one in binary format). In one embodiment, setting
CS.L=1 also sets EFER.LMA=1 and/or clearing CS.L also
clears EFER.LMA. In one embodiment, when EFER.
LMA=1 and CS.L~=1, a hardware processor is in long mode
(e.g., all instructions and/or addresses are interpreted as 64
bits in size). For example, CS.L=1 and EFER.LMA=1 may
indicate 64 bit mode and all other combinations may indi-
cate 32 bit mode.

[0051] Line 01 in pseudocode 400 is to create a token (for
example, stored in temp (e.g., a register or other memory))
having the value of the result of a bitwise OR operation of
the current shadow stack pointer value and the operating
mode of the processor (e.g., the operating mode being the
result of the bitwise AND operation of the CS.L. and EFER.
LMA in this example). For example, line 01 may create a
(e.g., 8 byte) token holding the current value of the shadow
stack pointer and operating mode of the processor (e.g.,
logical processor), e.g., that is running the thread to have its
shadow stack pointer pushed to a shadow stack. In one
embodiment, the shadow stack pointer is (e.g., always) 4
byte aligned in 32 bit mode and thus bits 1 and O are (e.g.,
always) 0 and the shadow stack pointer is (e.g., always) 8
byte aligned in 64 bit mode and thus (e.g., least significant)
bits 2, 1 and O are (e.g., always) 0. In such embodiments, the
operating mode of the machine may be stored in the overlap
of those values that are zero, for example, in bit 0 and/or bit
1 of the temporary variable (temp). In one embodiment, the
operating mode of the processor indicates whether this
pseudocode was performed in 32-bit operating mode, com-
patibility operating mode, or 64-bit operating mode, and as
one example, in 64 bit mode EFER.LMA is 1 and CS.L is 1
and thus bit 0 in temp may be set to the value of 1. In one
embodiment, compatibility bit mode EFER.LMA is 1 and
CS.L is 0, and thus bit 0 in temp is set to a value of 0. In one
embodiment, in 32-bit mode the EFER.LMA is 0, and thus
bit 0 in temp is (e.g., set to) a value of 0.

[0052] Line 02 in pseudocode 400 is to align the current
shadow stack pointer to the next 8 byte boundary (e.g., based
on a 64 bit address for all tokens) to create the next shadow
stack pointer to be saved to the current shadow stack pointer
to prepare to push the token (e.g., the value in temp). For
example, if the shadow stack grows from high address to
low address, e.g., as new data is pushed on the shadow stack,
the shadow stack pointer decreases (although in another
embodiment it may increase). Thus to align the shadow
stack pointer in this example to the next 8 byte boundary,
Line 02 clears the least significant (e.g., low order) three bits
of the shadow stack pointer. For example, if the shadow
stack pointer value was 10004 then the next 8 byte aligned
location on the shadow stack is 10000.

[0053] Line 03 in pseudocode 400 pushes the 8 byte token
(e.g., stored in location temp) onto the shadow stack. Other
embodiments of a ShadowStackPush operation may push a
desired size of token onto a shadow stack. The (e.g., linear)
address of the location on the shadow stack where the token
is stored may be stored in (e.g., different and/or non-
privileged) memory. This may be referred to as the “memory
operand” herein.

Mar. 7, 2024

[0054] FIG. 5 illustrates pseudocode 500 of a shadow
stack pointer restore operation e.g., micro-code for a restore
shadow stack pointer instruction, according to embodiments
of the disclosure. The following assumes a token has been
previously pushed onto the shadow stack and that informa-
tion is known about the location on the shadow stack where
the token was stored.

[0055] Line 01 in pseudocode 500 is to calculate the linear
address of the location of the token in the shadow stack
specified by the memory (mem) operand.

[0056] Line 02 in pseudocode 500 is to check that the
linear address of the memory operand is aligned to 8 bytes.
[0057] Ifnot, line 03 in pseudocode 500 is to cause a (e.g.,
general) fault, for example, to end the execution of the
pseudocode 500. In one embodiment, the operations
between lines 04 and 12 are performed atomically, for
example, if any portion fails (e.g., faults), then any changes
by those lines are to be rolled back (e.g., undone). In one
embodiment, performing an operation atomically implies
that once the token has been loaded (e.g., in line 04), the
processor locks that cache line such that the token in
memory cannot be modified by any other logical processor
in the system (e.g., in a central processing unit (CPU)). In
one embodiment, the term FI generally refers to an end of a
block of pseudocode that begins with the term IF. In one
embodiment, a processor and/or method is to generate a fault
indication (e.g., set the value of fault to one), for example,
and a fault handler may then handle the fault (e.g., detect a
fault indication and cause a fault operation to be executed).
[0058] Line 04 in pseudocode 500 is to load the 8 byte
token pointed to by the (e.g., linear) address specified in the
memory operand into location SSP_Tmp and lock that
location from modification by any other processor, e.g., by
taking ownership of that location (e.g., cache line)). This
may also include setting a variable for a fault (e.g., named
“fault”) to zero as depicted.

[0059] Line 05 in pseudocode 500 is to check if the bit
value of the current operating mode of the machine matches
the bit value of the operating mode in the token (e.g.,
SSP_Tmp). In one embodiment, bit 0 of the token indicates
the operating mode of the processor when the token was
created. In one embodiment, this value is to match the
current mode of the machine (e.g., as determined by EFER.
LMA & CS.L discussed above) or a fault may be generated
(e.g., fault=1), and for example, a roll back is then per-
formed.

[0060] Line 06 in pseudocode 500 is to check, if the
current operating mode of the processor is 32-bit (e.g., or
compatibility) mode, then the linear address space in this
embodiment is 32 bit and thus the shadow stack pointer
value (SSP_Tmp) recorded in the token is to be 64 bits wide
with bits 63:32 of the token being 0. If this is not the case
then a fault may be generated, and for example, a roll back
is then performed.

[0061] Line 07 in pseudocode 500 in this example is to
remove the bit value of the operating mode, e.g., in the
depicted embodiment the bit value is in bit location O in the
token (SSP_Tmp) and store that back in variable TMP. TMP
may now contain the shadow stack pointer from the token
popped from the stack.

[0062] Lines 08-10 in pseudocode 500 are to check if the
shadow stack pointer from the token is the expected value.
Line 08 in this example aligns the shadow stack pointer from
the token (stored in TMP) to the next 8 byte boundary to
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create a second value (stored in TMP), line 09 in this
example subtracts the size of the token (e.g., 8 bytes) from
the second value to create a third value (stored in TMP), and
line 10 of this example compares the third value (stored in
TMP and from the token) to the shadow stack pointer linear
address (e.g., SSP_LLA) passed in by the requestor to deter-
mine if the shadow stack pointer from the token is the
expected value of the shadow stack pointer, and, for
example, take a fault if not. For example, where a save
shadow stack pointer operation (e.g., according to pseudo-
code 400) aligns and pushes the 8 byte token which contains
the shadow stack pointer value at the time of invoking the
save shadow stack pointer operation, at least lines 08-10
may recreate what is expected to be the value following the
save shadow stack pointer operation. In one embodiment,
this recreated value is to match the linear address of the
memory operand (mem operand) provided to the restore
shadow stack pointer operation (e.g., according to pseudo-
code 500). If not a match, then in the depicted embodiment,
a fault is generated (e.g., fault=1), and for example, a roll
back is then performed, e.g., shadow stack pointer does not
change and the token is to remain on the shadow stack.
[0063] Line 11 in pseudocode 500 is to, if there is a match
(e.g., no faults), then the 8 byte token may be set to zero,
e.g., such that this token cannot be used again. Any locks
(e.g., on the cache line referenced by the memory operand
SSP_LA) may be released, e.g., in line 12 of pseudocode
500. In one embodiment, ensuring that lines 4-12 are done
atomically and by clearing the token in line 11 (e.g., if there
are no faults detected) ensures that a restore of the shadow
stack pointer in a valid token is done on only one logical
processor in a system (e.g., CPU) with multiple logical
processors, for example, to prevent conditions where mul-
tiple logical processors are executing with the same shadow
stack pointer.

[0064] Line 13 in pseudocode 500 is to, if a fault if
detected (e.g., fault equal to one), cause a control protection
(#CP) fault, e.g., with an error code indicating a fault from
this (e.g., restore shadow stack pointer) instruction.

[0065] Line 14 in pseudocode 500 is to, in no fault is
detected (e.g., fault equal to zero), set the current shadow
stack pointer to the value of the shadow stack pointer
recorded in the token. For example, bit 0 of the token in this
embodiment stores the operating mode of the processor so
bit 0 is cleared (e.g., set to zero) as the mode related checks
are complete.

[0066] The following is an example of two instructions
that may respectively utilize the pseudocode in FIGS. 4 and
5. In this example, these instructions may perform thread
switching in user mode. In this example, the outgoing
thread, e.g., the thread being descheduled, is to perform the
following steps: execute a save shadow stack pointer
instruction according to pseudocode 400 to save the shadow
stack pointer at this time along with the operating mode of
the processor in a token and push the token onto the (e.g.,
currently active) shadow stack. In this example, another
instruction may read the current shadow stack pointer value
in a register and then save this (e.g., linear) address of the top
of the shadow stack to the thread context structure of the
outgoing thread. In this example, the incoming thread, e.g.,
the thread being scheduled, may perform the following
steps: read that thread’s context structure to determine (or
obtain) the linear address of the top of the shadow stack, and
execute a restore shadow stack pointer instruction according
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to pseudocode 500 to restore the incoming thread’s shadow
stack pointer. A memory operand may be provided to the
restore shadow stack pointer instruction to specify the
address of the token created by a save shadow stack pointer
instruction, e.g., the memory operand read from the thread
context structure.

[0067] In one embodiment, shadow stack load (e.g., shad-
ow_stack_load) and shadow stack store (e.g., shadow_
stack_store) operations (e.g., micro-instructions) are differ-
ent from other (e.g., non shadow stack) load and store
operations. In certain embodiments a shadow stack load
operation is allowed only to load from memory of type
shadow stack, e.g., such that if the address to which the
shadow stack load is performed is not of shadow stack type
then this operation faults. In certain embodiments, this
prevents the use of shadow stack load operation (e.g., a
restore shadow stack pointer instruction (e.g., macro-in-
struction) that includes a shadow stack load operation) from
loading from a non shadow stack memory. In certain
embodiments, a shadow stack store operation is allowed
only to store to memory of type shadow stack, e.g., such that
if the address to which the shadow stack store operation is
to be performed is not of shadow stack type then this
operation faults (e.g., generates a fault indication). In certain
embodiments, this prevents a shadow stack store operation
(e.g., a save shadow stack pointer instruction (e.g., macro-
instruction) that includes a shadow stack store operation)
from being used to save (e.g., tricked into saving) to non
shadow stack memory, for example, due to the shadow stack
pointer being outside of the end of stack.

[0068] In certain embodiments, the shadow stack or
shadow stacks are located in memory that is marked in page
tables as being of shadow stack type, for example, such that
non shadow stack (e.g., regular) operations (e.g., operations
other than shadow stack load operations and shadow stack
store operations) are not allowed to access this memory. In
one embodiment, only a save shadow stack instruction (e.g.,
according to this disclosure) is allowed to write to memory
of the shadow stack type (e.g., region). In one embodiment,
only control flow instructions (e.g., call (CALL) instruc-
tions) and save shadow stack instructions (e.g., according to
this disclosure) are allowed to write to memory of the
shadow stack type (e.g., region). For example, a save
shadow stack (e.g., pointer) instruction that performs a
shadow stack store operation may be allowed to write to
shadow stack memory but fault (e.g., generate a fault
indication) if the memory (e.g., memory address) is not of
shadow stack type. In one embodiment, only a restore
shadow stack instruction (e.g., according to this disclosure)
is allowed to load from memory of the shadow stack type
(e.g., region). In one embodiment, only control flow instruc-
tions (e.g., return (RET) instructions) and shadow stack
restore instructions (e.g., according to this disclosure) are
allowed to load from memory of the shadow stack type (e.g.,
region). For example, a restore shadow stack (e.g., restore
shadow stack pointer) instruction that performs a shadow
stack load operation may be allowed to load from (e.g., read)
from shadow stack memory but fault if the memory (e.g.,
memory address) is not of shadow stack type.

[0069] FIG. 6 illustrates a flow diagram 600 according to
embodiments of the disclosure. Flow diagram 600 includes
popping a token for a thread from a shadow stack of a
hardware processor, wherein the token includes a shadow
stack pointer for the thread with at least one least significant
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bit (LSB) of the shadow stack pointer overwritten with a bit
value of an operating mode of the hardware processor for the
thread 602, removing the bit value in the at least one LSB
from the token to generate the shadow stack pointer 604, and
setting a current shadow stack pointer to the shadow stack
pointer from the token when the operating mode from the
token matches a current operating mode of the hardware
processor 606.

[0070] FIG. 7 illustrates a flow diagram 700 according to
embodiments of the disclosure. Flow diagram 700 includes
copying a current shadow stack pointer of a hardware
processor for a thread to create a first value 702, overwriting
at least one least significant bit (LSB) in the first value with
a bit value to indicate a current operating mode of the
hardware processor for the thread to generate a token 704,
and pushing the token to a shadow stack 706.

[0071] In one embodiment, a hardware processor includes
a hardware decode unit to decode an instruction, and a
hardware execution unit to execute the instruction to: pop a
token for a thread from a shadow stack, wherein the token
includes a shadow stack pointer for the thread with at least
one least significant bit (LSB) of the shadow stack pointer
overwritten with a bit value of an operating mode of the
hardware processor for the thread, remove the bit value in
the at least one LSB from the token to generate the shadow
stack pointer, and set a current shadow stack pointer to the
shadow stack pointer from the token when the operating
mode from the token matches a current operating mode of
the hardware processor and/or not set the current shadow
stack pointer to the shadow stack pointer from the token
when the operating mode from the token does not match the
current operating mode of the hardware processor. The
operating mode of the hardware processor may be selectable
between a first operating mode with a first address size and
a second operating mode with a second, larger address size.
The size of the token may be the second, larger address size
for both of a token for a thread in the first operating mode
and a token for a thread in the second operating mode. The
processor (e.g., the hardware execution unit) may generate
a fault indication (e.g., a fault) when an address of the token
on the shadow stack is not a shadow stack address. An
address for the token may be an operand of the instruction.
The hardware execution unit may execute the instruction to:
align the shadow stack pointer from the token to a next
address boundary, remove a size of the token from the next
address boundary to generate a second address, and not set
the current shadow stack pointer to the shadow stack pointer
from the token when the second address does not match the
address from the operand of the instruction. The hardware
execution unit may execute the instruction to clear the token
from the shadow stack when the current shadow stack
pointer is to be set to the shadow stack pointer from the
token. The hardware decode unit may decode a second
instruction, and the hardware execution unit may execute the
second instruction to: copy the current shadow stack pointer
for the thread to create a first value, set at least one least
significant bit (LSB) in the first value to indicate a current
operating mode of the hardware processor to generate a
second token, and push the second token to the shadow
stack.

[0072] Inanother embodiment, a method includes popping
a token for a thread from a shadow stack of a hardware
processor, wherein the token includes a shadow stack
pointer for the thread with at least one least significant bit
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(LSB) of the shadow stack pointer overwritten with a bit
value of an operating mode of the hardware processor for the
thread, removing the bit value in the at least one LSB from
the token to generate the shadow stack pointer, and setting
a current shadow stack pointer to the shadow stack pointer
from the token when the operating mode from the token
matches a current operating mode of the hardware processor
and/or not setting the current shadow stack pointer to the
shadow stack pointer from the token when the operating
mode from the token does not match the current operating
mode of the hardware processor. The operating mode of the
hardware processor may be selectable between a first oper-
ating mode with a first address size and a second operating
mode with a second, larger address size. The size of the
token may be the second, larger address size for both of a
token for a thread in the first operating mode and a token for
a thread in the second operating mode. The method may
include generating a fault indication (e.g., a fault) when an
address of the token on the shadow stack is not a shadow
stack address. The method may include providing an address
for the token in a request to set the current shadow stack
pointer. The method may include aligning the shadow stack
pointer from the token to a next address boundary, removing
a size of the token from the next address boundary to
generate a second address, and not setting the current
shadow stack pointer to the shadow stack pointer from the
token when the second address does not match the address
provided in the request to set the current shadow stack
pointer. The method may include clearing the token from the
shadow stack when the current shadow stack pointer is to be
set to the shadow stack pointer from the token. The method
may include copying the current shadow stack pointer for
the thread to create a first value, setting at least one least
significant bit (LSB) in the first value to indicate a current
operating mode of the hardware processor to generate a
second token, and pushing the second token to the shadow
stack.

[0073] In yet another embodiment, a hardware processor
includes a hardware decode unit to decode an instruction,
and a hardware execution unit to execute the instruction to:
copy a current shadow stack pointer for a thread to create a
first value, overwrite at least one least significant bit (LSB)
in the first value with a bit value to indicate a current
operating mode of the hardware processor for the thread to
generate a token, and push the token to a shadow stack. The
current operating mode of the hardware processor may be
selectable between a first operating mode with a first address
size and a second operating mode with a second, larger
address size. The size of the token may be the second, larger
address size for both of a token for a thread in the first
operating mode and a token for a thread in the second
operating mode. The processor (e.g., hardware execution
unit) may generate a fault indication (e.g., a fault) when an
address where the token is to be pushed is not a shadow stack
address The hardware execution unit may execute the
instruction to: align the current shadow stack pointer from
the token to a next address boundary to generate a second
value, and set the second value as a next shadow stack
pointer. The hardware decode unit may decode a second
instruction, and the hardware execution unit may execute the
second instruction to: pop the token for the thread from the
shadow stack, remove the bit value in the at least one LSB
from the token to generate a new shadow stack pointer, and
set a next shadow stack pointer to the new shadow stack
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pointer from the token when an operating mode from the
token matches the current operating mode of the hardware
processor and/or not set the next shadow stack pointer to the
new shadow stack pointer from the token when the operating
mode from the token does not match the current operating
mode of the hardware processor.

[0074] Inanother embodiment, a method includes copying
a current shadow stack pointer of a hardware processor for
a thread to create a first value, overwriting at least one least
significant bit (LSB) in the first value with a bit value to
indicate a current operating mode of the hardware processor
for the thread to generate a token, and pushing the token to
a shadow stack. The current operating mode of the hardware
processor may be selectable between a first operating mode
with a first address size and a second operating mode with
a second, larger address size. The size of the token may be
the second, larger address size for both of a token for a
thread in the first operating mode and a token for a thread in
the second operating mode. The method may include gen-
erating a fault indication (e.g., a fault) when an address
where the token is to be pushed is not a shadow stack
address. The method may include aligning the current
shadow stack pointer from the token to a next address
boundary to generate a second value, and setting the second
value as a next shadow stack pointer. The method may
include popping the token for the thread from the shadow
stack, removing the bit value in the at least one LSB from
the token to generate a new shadow stack pointer, and setting
a next shadow stack pointer to the new shadow stack pointer
from the token when an operating mode from the token
matches the current operating mode of the hardware pro-
cessor and/or not setting the next shadow stack pointer to the
new shadow stack pointer from the token when the operating
mode from the token does not match the current operating
mode of the hardware processor.

[0075] Inyet another embodiment, an apparatus comprises
a data storage device that stores code that when executed by
a hardware processor causes the hardware processor to
perform any method disclosed herein. An apparatus may be
as described in the detailed description. A method may be as
described in the detailed description.

[0076] An instruction set may include one or more instruc-
tion formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g.,
opcode) and the operand(s) on which that operation is to be
performed and/or other data field(s) (e.g., mask). Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
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have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to as
the Advanced Vector Extensions (AVX) (AVX1 and AVX2)
and using the Vector Extensions (VEX) coding scheme has
been released and/or published (e.g., see Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Septem-
ber 2015; and see Intel® Architecture Instruction Set Exten-
sions Programming Reference, August 2015).

Exemplary Core Architectures, Processors, and Computer
Architectures

[0077] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

[0078] FIG. 8A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure. FIG. 8B is a block
diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renam-
ing, out-of-order issue/execution architecture core to be
included in a processor according to embodiments of the
disclosure. The solid lined boxes in FIGS. 8A-B illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[0079] In FIG. 8A, a processor pipeline 800 includes a
fetch stage 802, a length decode stage 804, a decode stage
806, an allocation stage 808, a renaming stage 810, a
scheduling (also known as a dispatch or issue) stage 812, a
register read/memory read stage 814, an execute stage 816,
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a write back/memory write stage 818, an exception handling
stage 822, and a commit stage 824.

[0080] FIG. 8B shows processor core 890 including a
front end unit 830 coupled to an execution engine unit 850,
and both are coupled to a memory unit 870. The core 890
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 890 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0081] The front end unit 830 includes a branch prediction
unit 832 coupled to an instruction cache unit 834, which is
coupled to an instruction translation lookaside buffer (TLB)
836, which is coupled to an instruction fetch unit 838, which
is coupled to a decode unit 840. The decode unit 840 (or
decoder or decoder unit) may decode instructions (e.g.,
macro-instructions), and generate as an output one or more
micro-operations, micro-code entry points, micro-instruc-
tions, other instructions, or other control signals, which are
decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decode unit 840 may be
implemented using various different mechanisms. Examples
of suitable mechanisms include, but are not limited to,
look-up tables, hardware implementations, programmable
logic arrays (PLAs), microcode read only memories
(ROMs), etc. In one embodiment, the core 890 includes a
microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 840 or oth-
erwise within the front end unit 830). The decode unit 840
is coupled to a rename/allocator unit 852 in the execution
engine unit 850.

[0082] The execution engine unit 850 includes the rename/
allocator unit 852 coupled to a retirement unit 854 and a set
of one or more scheduler unit(s) 856. The scheduler unit(s)
856 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 856 is coupled to the physical register
file(s) unit(s) 858. Each of the physical register file(s) units
858 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 858 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 858 is overlapped by the
retirement unit 854 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 854 and the physical
register file(s) unit(s) 858 are coupled to the execution
cluster(s) 860. The execution cluster(s) 860 includes a set of
one or more execution units 862 and a set of one or more
memory access units 864. The execution units 862 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
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floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
856, physical register file(s) unit(s) 858, and execution
cluster(s) 860 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 864).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0083] The set of memory access units 864 is coupled to
the memory unit 870, which includes a data TLB unit 872
coupled to a data cache unit 874 coupled to a level 2 (L2)
cache unit 876. In one exemplary embodiment, the memory
access units 864 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 872 in the memory unit 870. The instruction
cache unit 834 is further coupled to a level 2 (1.2) cache unit
876 in the memory unit 870. The 1.2 cache unit 876 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0084] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 800 as follows: 1) the instruction
fetch 838 performs the fetch and length decoding stages 802
and 804; 2) the decode unit 840 performs the decode stage
806; 3) the rename/allocator unit 852 performs the allocation
stage 808 and renaming stage 810; 4) the scheduler unit(s)
856 performs the schedule stage 812; 5) the physical register
file(s) unit(s) 858 and the memory unit 870 perform the
register read/memory read stage 814; the execution cluster
860 perform the execute stage 816; 6) the memory unit 870
and the physical register file(s) unit(s) 858 perform the write
back/memory write stage 818; 7) various units may be
involved in the exception handling stage 822; and 8) the
retirement unit 854 and the physical register file(s) unit(s)
858 perform the commit stage 824.

[0085] The core 890 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, CA; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, CA), including the
instruction(s) described herein. In one embodiment, the core
890 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

[0086] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
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ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0087] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 834/874
and a shared L2 cache unit 876, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0088] FIGS. 9A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory I/O interfaces, and other necessary I/O logic,
depending on the application.

[0089] FIG. 9A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 902 and with its local subset of the Level 2 (L2)
cache 904, according to embodiments of the disclosure. In
one embodiment, an instruction decode unit 900 supports
the x86 instruction set with a packed data instruction set
extension. An L1 cache 906 allows low-latency accesses to
cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 908 and
a vector unit 910 use separate register sets (respectively,
scalar registers 912 and vector registers 914) and data
transferred between them is written to memory and then read
back in from a level 1 (LL1) cache 906, alternative embodi-
ments of the disclosure may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

[0090] The local subset of the .2 cache 904 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the 1.2 cache 904. Data
read by a processor core is stored in its [.2 cache subset 904
and can be accessed quickly, in parallel with other processor
cores accessing their own local L2 cache subsets. Data
written by a processor core is stored in its own [.2 cache
subset 904 and is flushed from other subsets, if necessary.
The ring network ensures coherency for shared data. The
ring network is bi-directional to allow agents such as pro-
cessor cores, .2 caches and other logic blocks to commu-
nicate with each other within the chip. Each ring data-path
is 1012-bits wide per direction.

[0091] FIG. 9B is an expanded view of part of the pro-
cessor core in FIG. 9A according to embodiments of the
disclosure. FIG. 9B includes an .1 data cache 906 A part of
the [.1 cache 904, as well as more detail regarding the vector
unit 910 and the vector registers 914. Specifically, the vector
unit 910 is a 16-wide vector processing unit (VPU) (see the
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16-wide ALU 928), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 920, numeric conversion with numeric convert
units 922A-B, and replication with replication unit 924 on
the memory input. Write mask registers 926 allow predicat-
ing resulting vector writes.

[0092] FIG. 10 is a block diagram of a processor 1000 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the disclosure. The solid lined
boxes in FIG. 10 illustrate a processor 1000 with a single
core 1002A, a system agent 1010, a set of one or more bus
controller units 1016, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1000
with multiple cores 1002A-N, a set of one or more integrated
memory controller unit(s) 1014 in the system agent unit
1010, and special purpose logic 1008.

[0093] Thus, different implementations of the processor
1000 may include: 1) a CPU with the special purpose logic
1008 being integrated graphics and/or scientific (through-
put) logic (which may include one or more cores), and the
cores 1002A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-
of-order cores, a combination of the two); 2) a coprocessor
with the cores 1002A-N being a large number of special
purpose cores intended primarily for graphics and/or scien-
tific (throughput); and 3) a coprocessor with the cores
1002A-N being a large number of general purpose in-order
cores. Thus, the processor 1000 may be a general-purpose
processor, coprocessor or special-purpose processor, such
as, for example, a network or communication processor,
compression engine, graphics processor, GPGPU (general
purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more
cores), embedded processor, or the like. The processor may
be implemented on one or more chips. The processor 1000
may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0094] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 1006, and external memory (not shown) coupled to the
set of integrated memory controller units 1014. The set of
shared cache units 1006 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1012 interconnects the integrated
graphics logic 1008, the set of shared cache units 1006, and
the system agent unit 1010/integrated memory controller
unit(s) 1014, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1006 and cores 1002-A-N.

[0095] In some embodiments, one or more of the cores
1002A-N are capable of multi-threading. The system agent
1010 includes those components coordinating and operating
cores 1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit is for
driving one or more externally connected displays.
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[0096] The cores 1002A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1002A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0097] FIGS. 11-14 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0098] Referring now to FIG. 11, shown is a block dia-
gram of a system 1100 in accordance with one embodiment
of the present disclosure. The system 1100 may include one
or more processors 1110, 1115, which are coupled to a
controller hub 1120. In one embodiment the controller hub
1120 includes a graphics memory controller hub (GMCH)
1190 and an Input/Output Hub (IOH) 1150 (which may be
on separate chips); the GMCH 1190 includes memory and
graphics controllers to which are coupled memory 1140 and
a coprocessor 1145; the IOH 1150 is couples input/output
(I/O) devices 1160 to the GMCH 1190. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1140
and the coprocessor 1145 are coupled directly to the pro-
cessor 1110, and the controller hub 1120 in a single chip with
the IOH 1150.

[0099] The optional nature of additional processors 1115 is
denoted in FIG. 11 with broken lines. Each processor 1110,
1115 may include one or more of the processing cores
described herein and may be some version of the processor
1000.

[0100] The memory 1140 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1120 communicates with the
processor(s) 1110, 1115 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 1195.
[0101] In one embodiment, the coprocessor 1145 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1120 may include an integrated graphics accel-
erator.

[0102] There can be a variety of differences between the
physical resources 1110, 1115 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0103] In one embodiment, the processor 1110 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 1110 recognizes
these coprocessor instructions as being of a type that should
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be executed by the attached coprocessor 1145. Accordingly,
the processor 1110 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1145.
Coprocessor(s) 1145 accept and execute the received copro-
cessor instructions.

[0104] Referring now to FIG. 12, shown is a block dia-
gram of a first more specific exemplary system 1200 in
accordance with an embodiment of the present disclosure.
As shown in FIG. 12, multiprocessor system 1200 is a
point-to-point interconnect system, and includes a first pro-
cessor 1270 and a second processor 1280 coupled via a
point-to-point interconnect 1250. Each of processors 1270
and 1280 may be some version of the processor 1000. In one
embodiment of the disclosure, processors 1270 and 1280 are
respectively processors 1110 and 1115, while coprocessor
1238 is coprocessor 1145. In another embodiment, proces-
sors 1270 and 1280 are respectively processor 1110 copro-
cessor 1145.

[0105] Processors 1270 and 1280 are shown including
integrated memory controller (IMC) units 1272 and 1282,
respectively. Processor 1270 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1276 and
1278; similarly, second processor 1280 includes P-P inter-
faces 1286 and 1288. Processors 1270, 1280 may exchange
information via a point-to-point (P-P) interface 1250 using
P-P interface circuits 1278, 1288. As shown in FIG. 12,
IMCs 1272 and 1282 couple the processors to respective
memories, namely a memory 1232 and a memory 1234,
which may be portions of main memory locally attached to
the respective processors.

[0106] Processors 1270, 1280 may each exchange infor-
mation with a chipset 1290 via individual P-P interfaces
1252, 1254 using point to point interface circuits 1276,
1294, 1286, 1298. Chipset 1290 may optionally exchange
information with the coprocessor 1238 via a high-perfor-
mance interface 1239. In one embodiment, the coprocessor
1238 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0107] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0108] Chipset 1290 may be coupled to a first bus 1216 via
an interface 1296. In one embodiment, first bus 1216 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present disclo-
sure is not so limited.

[0109] As shown in FIG. 12, various I/O devices 1214
may be coupled to first bus 1216, along with a bus bridge
1218 which couples first bus 1216 to a second bus 1220. In
one embodiment, one or more additional processor(s) 1215,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 1216. In one embodiment, second bus 1220 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1220 including, for example, a keyboard and/or
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mouse 1222, communication devices 1227 and a storage
unit 1228 such as a disk drive or other mass storage device
which may include instructions/code and data 1230, in one
embodiment. Further, an audio I/O 1224 may be coupled to
the second bus 1220. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 12, a system may implement a multi-drop bus
or other such architecture.

[0110] Referring now to FIG. 13, shown is a block dia-
gram of a second more specific exemplary system 1300 in
accordance with an embodiment of the present disclosure.
Like elements in FIGS. 12 and 13 bear like reference
numerals, and certain aspects of FIG. 12 have been omitted
from FIG. 13 in order to avoid obscuring other aspects of
FIG. 13.

[0111] FIG. 13 illustrates that the processors 1270, 1280
may include integrated memory and /O control logic
(“CL”) 1272 and 1282, respectively. Thus, the CL 1272,
1282 include integrated memory controller units and include
1/O control logic. FIG. 13 illustrates that not only are the
memories 1232, 1234 coupled to the CL. 1272, 1282, but also
that 1/0O devices 1314 are also coupled to the control logic
1272, 1282. Legacy 1/O devices 1315 are coupled to the
chipset 1290.

[0112] Referring now to FIG. 14, shown is a block dia-
gram of a SoC 1400 in accordance with an embodiment of
the present disclosure. Similar elements in FIG. 10 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 14, an interconnect
unit(s) 1402 is coupled to: an application processor 1410
which includes a set of one or more cores 202A-N and
shared cache unit(s) 1006; a system agent unit 1010; a bus
controller unit(s) 1016; an integrated memory controller
unit(s) 1014; a set or one or more coprocessors 1420 which
may include integrated graphics logic, an image processor,
an audio processor, and a video processor; a static random
access memory (SRAM) unit 1430; a direct memory access
(DMA) unit 1432; and a display unit 1440 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1420 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

[0113] Embodiments (e.g., of the mechanisms) disclosed
herein may be implemented in hardware, software, firm-
ware, or a combination of such implementation approaches.
Embodiments of the disclosure may be implemented as
computer programs or program code executing on program-
mable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or
storage elements), at least one input device, and at least one
output device.

[0114] Program code, such as code 1230 illustrated in FIG.
12, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0115] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
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may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0116] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores,”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0117] Such machine-readable storage media may include,
without limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritables
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

[0118] Accordingly, embodiments of the disclosure also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

[0119] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0120] FIG. 15 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 15
shows a program in a high level language 1502 may be
compiled using an x86 compiler 1504 to generate x86 binary
code 1506 that may be natively executed by a processor with
at least one x86 instruction set core 1516. The processor with
at least one x86 instruction set core 1516 represents any
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processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1504
represents a compiler that is operable to generate x86 binary
code 1506 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1516. Similarly,
FIG. 15 shows the program in the high level language 1502
may be compiled using an alternative instruction set com-
piler 1508 to generate alternative instruction set binary code
1510 that may be natively executed by a processor without
at least one x86 instruction set core 1514 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, CA and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale, CA).
The instruction converter 1512 is used to convert the x86
binary code 1506 into code that may be natively executed by
the processor without an x86 instruction set core 1514. This
converted code is not likely to be the same as the alternative
instruction set binary code 1510 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1512 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a pro-
cessor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1506.
1.-19. (canceled)
20. A processor comprising:
a shadow stack pointer (SSP) register to store a current
SSP for a current shadow stack;
a decode unit to decode an instruction to switch from the
current shadow stack to a new shadow stack, the
instruction having a memory operand to provide a
memory address of a token stored on the new shadow
stack; and
an execution unit coupled with the decode unit, the
execution unit to perform operations corresponding to
the instruction, including to:
load the token from the new shadow stack;
check that a portion of the token matches a portion of
the memory address and that a least significant bit of
the token has a value of one;

cause a fault, if the check fails; and

update the SSP register with an SSP having a least
significant bit replaced with a value of zero, if the
check succeeds.

21. The processor of claim 20, wherein the execution unit
is not to update the SSP register with the SSP, if the check
fails.

22. The processor of claim 20, wherein the execution unit
is to load the token as one of a plurality of operations to be
performed atomically.

23. The processor of claim 22, wherein, if the check
succeeds, the execution unit is further to modify the token as
one of the plurality of operations to be performed atomically.
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24. The processor of claim 20, wherein the execution unit
is to update the SSP register with the SSP having two least
significant bits replaced with a value of zero.

25. The processor of claim 20, further comprising cir-
cuitry to check that a seventh least significant bit of the token
is zero.

26. The processor of claim 20, wherein the operations
include to determine whether the memory address is in
shadow stack type memory.

27. The processor of claim 20, wherein the decode unit is
to decode a second instruction, and wherein the processor is
to perform operations corresponding to the second instruc-
tion, including to:

set the least significant bit of the token; and

store the token to the new shadow stack.

28. The processor of claim 20, wherein the portion of the
token is a most significant portion.

29. The processor of claim 20, wherein the portion of the
token corresponds to a most significant end of the token.

30. The processor of claim 20, wherein the portion of
token includes a plurality of most significant bits of the
token.

31. The processor of claim 30, wherein the plurality of
most significant bits of the token includes at least bits
[63:32] of the token.

32. The processor of claim 20, wherein the execution unit
is to update the SSP register with the SSP having a most
significant portion matching a most significant portion of the
memory address.

33. A method comprising:

storing a current SSP for a current shadow stack in a

shadow stack pointer (SSP) register;

decoding an instruction to switch from the current shadow

stack to a new shadow stack, the instruction having a
memory operand providing a memory address of a
token stored on the new shadow stack; and
performing operations corresponding to the instruction,
including:
loading the token from the new shadow stack;
performing one or more checks, including:
checking that a portion of the token matches a
portion of the memory address and that a least
significant bit of the token has a value of one;
causing a fault, if the check fails; and
updating the SSP register with an SSP having a least
significant bit replaced with a value of zero, if the
check succeeds.

34. The method of claim 33, further comprising not
updating the SSP register with the SSP, if the check fails.

35. The method of claim 33, wherein loading the token is
one of a plurality of operations to be performed atomically,
and further comprising, if the check succeeds, modifying the
token as one of the plurality of operations to be performed
atomically.

36. The method of claim 33, wherein updating the SSP
register comprises updating the SSP register with the SSP
having two least significant bits replaced with a value of
Zero.

37. The method of claim 33, further comprising checking
that a seventh least significant bit of the token is zero, and
wherein the operations include determining whether the
memory address is in shadow stack type memory.

38. The method of claim 33, wherein the portion of the
token is a most significant portion, and wherein updating the
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SSP register with the SSP comprises updating the SSP
register with the SSP having a most significant portion
matching a most significant portion of the memory address.

39. An apparatus comprising:

a memory controller; and

a processor coupled with the memory controller, the

processor comprising:
a shadow stack pointer (SSP) register to store a current
SSP for a current shadow stack;
a decode unit to decode an instruction to switch from
the current shadow stack to a new shadow stack, the
instruction having a memory operand to provide a
memory address of a token stored on the new
shadow stack; and
an execution unit coupled with the decode unit, the
execution unit to perform operations corresponding
to the instruction, including to:
load the token from the new shadow stack;
check that a portion of the token matches a portion
of the memory address and that a least significant
bit of the token has a value of one;

cause a fault, if the check fails; and

update the SSP register with an SSP having a least
significant bit replaced with a value of zero, if the
check succeeds.

40. The apparatus of claim 39, further comprising a
coprocessor coupled with the processor, wherein the execu-
tion unit is not to update the SSP register with the SSP, if the
check fails, and wherein the execution unit is to load the
token as one of a plurality of operations to be performed
atomically.

41. The apparatus of claim 40, wherein, if the check
succeeds, the execution unit is further to modify the token as
one of the plurality of operations to be performed atomically.

42. The apparatus of claim 39, further comprising a
coprocessor coupled with the processor, and wherein the
execution unit is to update the SSP register with the SSP
having two least significant bits replaced with a value of
Zero.

43. The apparatus of claim 39, further comprising a
coprocessor coupled with the processor, wherein the portion
of the token is a most significant portion, and wherein the
execution unit is to update the SSP register with the SSP
having a most significant portion matching a most signifi-
cant portion of the memory address.

44. A system comprising:

a system memory; and

a processor coupled with the system memory, the proces-

sor comprising:

a shadow stack pointer (SSP) register to store a current
SSP for a current shadow stack;

a decode unit to decode an instruction to switch from
the current shadow stack to a new shadow stack, the
instruction having a memory operand to provide a
memory address of a token stored on the new
shadow stack; and

an execution unit coupled with the decode unit, the
execution unit to perform operations corresponding
to the instruction, including to:
load the token from the new shadow stack;
check that a portion of the token matches a portion

of the memory address and that a least significant
bit of the token has a value of one;
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cause a fault, if the check fails; and

update the SSP register with an SSP having a least
significant bit replaced with a value of zero, if the
check succeeds.

45. The system of claim 44, further comprising a mass
storage device coupled with the processor, wherein the
execution unit is not to update the SSP register with the SSP,
if the checks fail, and wherein the execution unit is to load
the token as one of a plurality of operations to be performed
atomically.

46. The system of claim 45, wherein, if the check suc-
ceeds, the execution unit is further to modify the token as
one of the plurality of operations to be performed atomically.

47. The system of claim 44, further comprising a com-
munication device coupled with the processor, and wherein
the execution unit is to update the SSP register with the SSP
having two least significant bits replaced with a value of
Zero.

48. The system of claim 47, further comprising an input/
output device coupled with the processor, wherein the
portion of the token is a most significant portion, and
wherein the execution unit is to update the SSP register with
the SSP having a most significant portion matching a most
significant portion of the memory address.

49. A processor comprising:

one or more caches;

one or more control registers;

a shadow stack pointer (SSP) register to store a first SSP
for an active shadow stack;

a decode unit to decode an instruction to switch from the
active shadow stack to a new shadow stack, the instruc-
tion having a memory operand to provide a memory
address of a token stored on the new shadow stack; and

an execution unit coupled with the decode unit, the one or
more caches, and the one or more control registers, the
execution unit to execute the instruction to:
load the token;
perform a plurality of checks on the token, including to:

determine whether an operating mode indicated by a
bit value of a least significant bit of the token
matches a current operating mode of the proces-
sor; and
determine whether an SSP regenerated from the
token matches the memory address;
cause a fault if at least one of the checks fails; and
update the SSP register with a value that matches the
SSP regenerated from the token if the checks suc-
ceed.

50. A non-transitory machine-readable storage medium
storing code that if executed causes a machine to perform
operations, including to:

store a current SSP for a current shadow stack in a shadow
stack pointer (SSP) register;

decode an instruction to switch from the current shadow
stack to a new shadow stack, the instruction having a
memory operand to provide a memory address of a
token stored on the new shadow stack; and

perform operations corresponding to the instruction,
including to:
load the token from the new shadow stack;
check that a portion of the token matches a portion of

the memory address and that a least significant bit of
the token has a value of one;
cause a fault, if the check fails; and
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update the SSP register with an SSP having a least
significant bit replaced with a value of zero, if the
check succeeds.

51. The non-transitory machine-readable storage medium
of claim 50, further comprising code that if executed causes
the machine to:

load the token as one of a plurality of operations to be

performed atomically; and

if the check succeeds, modify the token as one of the

plurality of operations to be performed atomically.

52. The non-transitory machine-readable storage medium
of claim 50, wherein the code if executed causes the
machine to update the SSP register with the SSP having two
least significant bits replaced with a value of zero, and
wherein the portion of the token is a most significant portion,
and wherein the code if executed causes the machine to
update the SSP register with the SSP having a most signifi-
cant portion matching a most significant portion of the
memory address.



