US 20230315553A1

a2y Patent Application Publication o) Pub. No.: US 2023/0315553 A1l

a9y United States

Kumar et al.

(54) SYSTEM FOR EARLY DETECTION OF

OPERATIONAL FAILURE IN

COMPONENT-LEVEL FUNCTIONS WITHIN

A COMPUTING ENVIRONMENT

(71) Applicant: BANK OF AMERICA
CORPORATION, Charlotte, NC (US)

(72) Inventors: Ashok Kumar, Telangana (IN);
Narsing Raj, Telangana (IN); Venkata
Lakshmi Sai Siva Kumar Devulapalli,
Telangana (IN)

BANK OF AMERICA
CORPORATION, Charlotte, NC (US)

(73) Assignee:

@
(22)

Appl. No.: 17/708,167

Filed: Mar. 30, 2022

Publication Classification

Int. CL.
GoO6F 11/07

(51)
(2006.01)

202

T

! DATA T

ACQUISITION

[N

___,/&

” DATA PRE-
PROCESSING

———

43) Pub. Date: Oct. 5, 2023
(52) U.S. CL
CPC ... GO6F 11/0751 (2013.01); GOGF 11/0787
(2013.01); GOGF 11/0721 (2013.01)
(57) ABSTRACT

Systems, computer program products, and methods are
described herein for early detection of operational failure in
component-level functions within a computing environ-
ment. The present invention is configured to receive, from
one or more source devices, log data; determine, using a
trained machine learning model, a likelihood that a first
subset of the log data is associated with an operational
failure of one or more component-level functions; determine
that the likelihood that the first subset of the log data is
associated with the operational failure of one or more
component-level functions is greater than a predetermined
threshold; determine that the first subset of the log data
reflects a current state of a first subset of source devices;
generate a notification indicating that the first subset of
source devices is likely to experience the operational failure
of one or more component-level functions; and display the
notification on an administrator device associated with the
first subset of source devices.

e 200

234
BATCH DATA .
——— WAREHOUSE TRAINING
N SN _/ DATA
LIVE DATA

220
i

ML ALGORITHM SELECTION

e s

PUUCUNUUE SU) St SN SUN U SUN U UG SURPUUS AU DI U ST 4

%
|

i ML MODEL TUNING)
../'““&

f
&

Some

TESTING

Patent Application Publication

- 100

e

|
t
i }
: !
t |
!]
! i
I VAN \ {
I ¢ N \
x A \ :
i N Y {
i N \
" / \\ \ |
/ X i
! / ™. \ A
i AN \] g
i / N \ |
4 ~ !
{ / / N \ | D
I ~ N o
{ !y AN \

/ NI § Jowat
| /A o~ SN ==
:// Q E 3 W
74 A i - Y

\\ \\ N
g
[
(!

<

Q

4

O .) (O | \
Lo
ool
-
\N
LS S S S B M c
i)
O
i
L

Oct. 5,2023 Sheet 1 of 3

US 2023/0315553 Al

USER

N \
N
AN \\
\\ \
N \
\ 3
N
QI @
' @
b R
N
\/
i
by
Lo
N S
o0
O
i)
5
L
Ll
#
/ '”‘\./“"\\Z\ ;
/)
/’" ™
| 5)
O - TN
i = ;
N, b -
(i Ve MI
¢ Z. 'g =
.
T v
S A S

144 ¢ TANOLA
7 NOUWHENYD ONUSIL NOILVZIVILING\

ﬁ@f Q@@ coon 2
o OO

_
[
e _
1244 "
!

US 2023/0315553 Al

T

[—

NOLLOFT3S AHLIHODTY TN p

- \ wz_zzhammmm\.cu.mz !!!!!! , o7z
[
(=
o
- | M
& i
= i I e
20! i viva ’ N2 \
. ! SNINTVHL | FmnommvM | ———
« | | | VIVGHIIVE Pl iz
y | - = |
N i
w @...M..M _p i \) i {
o |
S - “

ﬂ |

907

{714

91¢ NOIISIONI NOILISINGIV
4 / viva F Viva)

N o e - -~ T e e v - o~ -

[1TiA— 0Tz 702

|
1 |
{ |
{ |
\ FE4VIVA " £ " —
t |
§ |
f |
{ i

Patent Application Publication

Patent Application Publication Oct. 5,2023 Sheet 3 of 3 US 2023/0315553 A1

»/MM 300

ELECTRONICALLY RECEIVING, FROM ONE OR MORE SOURCE DEVICES, LOG DATA
302

:

ANALYZING USING A MACHINE LEARNING SUBSYSTEM, THE LOG DATA FOR
INDICATIONS OF OPERATIONAL FAILURE OF ONE OR MORE COMPONENT-LEVEL
FUNCTIONS ASSOCIATED WITH THE ONE OR MORE SOURCE DEVICES
304

4

DETERMINING THAT THE FIRST SUBSET OF THE LOG DATA REFLECTS A CURRENT
STATE OF A FIRST SUBSET OF SOURCE DEVICES.
306

k4

DETERMINING THAT THE FIRST SUBSET OF SOURCE DEVICES IS LIKELY TO
EXPERIENCE THE OPERATIONAL FAILURE OF ONE OR MORE COMPONENT-LEVEL
FUNCTIONS BASED ON AT LEAST THEIR CURRENT STATE

308

¥
GENERATING A NOTIFICATION INDICATING THAT THE FIRST SUBSET OF SOURCE
DEVICES IS LIKELY TO EXPERIENCE THE OPERATIONAL FAILURE OF ONE OR
MORE COMPONENT-LEVEL FUNCTIONS
310

v
TRANSMITTING CONTROL SIGNALS CONFIGURED TO CAUSE AN ADMINISTRATOR
DEVICE ASSOCIATED WITH THE FIRST SUBSET OF SOURCE DEVICES TO DISPLAY
THE NOTIFICATION
312

FIGURE 3

US 2023/0315553 Al

SYSTEM FOR EARLY DETECTION OF
OPERATIONAL FAILURE IN
COMPONENT-LEVEL FUNCTIONS WITHIN
A COMPUTING ENVIRONMENT

FIELD OF THE INVENTION

[0001] The present invention embraces a system for early
detection of operational failure in component-level func-
tions within a computing environment.

BACKGROUND

[0002] Application performance management (APM) is
the monitoring and management of performance and avail-
ability of devices and applications by diagnosing complex
application performance problems to maintain an expected
level of service. Operational elements of a computing envi-
ronment are becoming increasingly difficult to manage as
they move toward highly distributed, multi-tier, multi-ele-
ment constructs. Any operational failure detection and miti-
gation in services, processes, hosts, logs, networks, and/or
the like, often involves manual intervention which can
become a tedious process. Therefore, there is a need for an
intelligent system for early detection of operational failure in
component-level functions within a computing environ-
ment.

SUMMARY

[0003] The following presents a simplified summary of
one or more embodiments of the present invention, in order
to provide a basic understanding of such embodiments. This
summary is not an extensive overview of all contemplated
embodiments and is intended to neither identify key or
critical elements of all embodiments nor delineate the scope
of any or all embodiments. Its sole purpose is to present
some concepts of one or more embodiments of the present
invention in a simplified form as a prelude to the more
detailed description that is presented later.

[0004] In one aspect, a system for early detection of
operational failure in component-level functions within a
computing environment is presented. The system compris-
ing: at least one non-transitory storage device; and at least
one processor coupled to the at least one non-transitory
storage device, wherein the at least one processor is con-
figured to: electronically receive, from one or more source
devices, log data; analyze, using a machine learning sub-
system, the log data for indications of operational failure of
one or more component-level functions associated with the
one or more source devices, wherein analyzing further
comprises: determining, using a trained machine learning
model, a likelihood that a first subset of the log data is
associated with operational failure of one or more compo-
nent-level functions; determining that the likelihood that the
first subset of the log data is associated with the operational
failure of one or more component-level functions is greater
than a predetermined threshold; determine that the first
subset of the log data reflects a current state of a first subset
of source devices; generate a notification indicating that the
first subset of source devices is likely to experience the
operational failure of one or more component-level func-
tions; and transmit control signals configured to cause an
administrator device associated with the first subset of
source devices to display the notification.

Oct. 5, 2023

[0005] In some embodiments, the at least one processor is
further configured to: retrieve, from a first internal reposi-
tory, one or more mitigation actions associated with the
operational failure of one or more component-level func-
tions; and transmit control signals configured to cause the
administrator device to display the one or more mitigation
actions.

[0006] In some embodiments, the one or more mitigation
actions are preventative actions that are to be implemented
before the first subset of source devices experience the
operational failure of one or more component-level func-
tions.

[0007] In some embodiments, the one or more mitigation
actions are remedial actions that are to be implemented after
the first subset of source devices experience the operational
failure of one or more component-level functions.

[0008] In some embodiments, the at least one processor is
further configured to: continuously monitor component-
level functions of one or more source devices within the
computing environment; determine a current state of the one
or more source devices based on at least monitoring the
component-level functions of the one or more source
devices; and electronically receive, from one or more source
devices, the log data reflecting the current state of the one or
more source devices.

[0009] In some embodiments, the at least one processor is
further configured to: continuously monitor incidences of
historical component-level functional failures associated
with the one or more source devices; retrieve historical log
data corresponding to the historical component-level func-
tional failures, wherein the historical log data reflects a state
of the one or more source devices a predetermined period of
time prior to the incidences of the historical component-
level functional failures; and store the historical log data and
the corresponding historical component-level functional
failures in a second internal repository.

[0010] In some embodiments, the at least one processor is
further configured to: retrieve, from the second internal
repository, the historical log data and the corresponding
historical component-level functional failures; and generate
a training dataset using the historical log data and the
corresponding historical component-level functional fail-
ures.

[0011] In some embodiments, the at least one processor is
further configured to: train a machine learning model with
the training dataset using a machine learning algorithm; and
generate the trained machine learning model.

[0012] In another aspect, a computer program product for
early detection of operational failure in component-level
functions within a computing environment is presented. The
computer program product comprising a non-transitory
computer-readable medium comprising code causing a first
apparatus to: electronically receive, from one or more source
devices, log data; analyze, using a machine learning sub-
system, the log data for indications of operational failure of
one or more component-level functions associated with the
one or more source devices, wherein analyzing further
comprises: determining, using a trained machine learning
model, a likelihood that a first subset of the log data is
associated with operational failure of one or more compo-
nent-level functions; determining that the likelihood that the
first subset of the log data is associated with the operational
failure of one or more component-level functions is greater
than a predetermined threshold; determine that the first

US 2023/0315553 Al

subset of the log data reflects a current state of a first subset
of source devices; generate a notification indicating that the
first subset of source devices is likely to experience the
operational failure of one or more component-level func-
tions; and transmit control signals configured to cause an
administrator device associated with the first subset of
source devices to display the notification.

[0013] In yet another aspect, a method for early detection
of operational failure in component-level functions within a
computing environment is presented. The method compris-
ing: electronically receiving, from one or more source
devices, log data; analyzing, using a machine learning
subsystem, the log data for indications of operational failure
of one or more component-level functions associated with
the one or more source devices, wherein analyzing further
comprises: determining, using a trained machine learning
model, a likelihood that a first subset of the log data is
associated with operational failure of one or more compo-
nent-level functions; determining that the likelihood that the
first subset of the log data is associated with the operational
failure of one or more component-level functions is greater
than a predetermined threshold; determining that the first
subset of the log data reflects a current state of a first subset
of source devices; generating a notification indicating that
the first subset of source devices is likely to experience the
operational failure of one or more component-level func-
tions; and transmitting control signals configured to cause an
administrator device associated with the first subset of
source devices to display the notification.

[0014] The features, functions, and advantages that have
been discussed may be achieved independently in various
embodiments of the present invention or may be combined
with yet other embodiments, further details of which can be
seen with reference to the following description and draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Having thus described embodiments of the inven-
tion in general terms, reference will now be made the
accompanying drawings, wherein:

[0016] FIG. 1 illustrates technical components of an
exemplary distributed computing environment for early
detection of operational failure in component-level func-
tions within a computing environment, in accordance with
an embodiment of the invention;

[0017] FIG. 2 illustrates an exemplary machine learning
subsystem architecture, in accordance with an embodiment
of the invention; and

[0018] FIG. 3 illustrates a process flow for early detection
of operational failure in component-level functions within a
computing environment, in accordance with an embodiment
of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

[0019] Embodiments of the present invention will now be
described more fully hereinafter with reference to the
accompanying drawings, in which some, but not all,
embodiments of the invention are shown. Indeed, the inven-
tion may be embodied in many different forms and should
not be construed as limited to the embodiments set forth
herein; rather, these embodiments are provided so that this
disclosure will satisfy applicable legal requirements. Where

Oct. 5, 2023

possible, any terms expressed in the singular form herein are
meant to also include the plural form and vice versa, unless
explicitly stated otherwise. Also, as used herein, the term “a”
and/or “an” shall mean “one or more,” even though the
phrase “one or more” is also used herein. Furthermore, when
it is said herein that something is “based on” something else,
it may be based on one or more other things as well. In other
words, unless expressly indicated otherwise, as used herein
“based on” means “based at least in part on” or “based at
least partially on.” Like numbers refer to like elements
throughout.

[0020] As used herein, an “entity” may be any institution
employing information technology resources and particu-
larly technology infrastructure configured for processing
large amounts of data. Typically, these data can be related to
the people who work for the organization, its products or
services, the customers or any other aspect of the operations
of the organization. As such, the entity may be any institu-
tion, group, association, financial institution, establishment,
company, union, authority or the like, employing informa-
tion technology resources for processing large amounts of
data.

[0021] As described herein, a “user” may be an individual
associated with an entity. As such, in some embodiments, the
user may be an individual having past relationships, current
relationships or potential future relationships with an entity.
In some embodiments, a “user” may be an employee (e.g.,
an associate, a project manager, an IT specialist, a manager,
an administrator, an internal operations analyst, or the like)
of the entity or enterprises affiliated with the entity, capable
of operating the systems described herein. In some embodi-
ments, a “user” may be any individual, entity or system who
has a relationship with the entity, such as a customer or a
prospective customer. In other embodiments, a user may be
a system performing one or more tasks described herein.
[0022] As used herein, a “user interface” may be any
device or software that allows a user to input information,
such as commands or data, into a device, or that allows the
device to output information to the user. For example, the
user interface includes a graphical user interface (GUI) or an
interface to input computer-executable instructions that
direct a processor to carry out specific functions. The user
interface typically employs certain input and output devices
to input data received from a user second user or output data
to a user. These input and output devices may include a
display, mouse, keyboard, button, touchpad, touch screen,
microphone, speaker, LED, light, joystick, switch, buzzer,
bell, and/or other user input/output device for communicat-
ing with one or more users.

[0023] As used herein, an “engine” may refer to core
elements of an application, or part of an application that
serves as a foundation for a larger piece of software and
drives the functionality of the software. In some embodi-
ments, an engine may be self-contained, but externally-
controllable code that encapsulates powerful logic designed
to perform or execute a specific type of function. In one
aspect, an engine may be underlying source code that
establishes file hierarchy, input and output methods, and
how a specific part of an application interacts or communi-
cates with other software and/or hardware. The specific
components of an engine may vary based on the needs of the
specific application as part of the larger piece of software. In
some embodiments, an engine may be configured to retrieve
resources created in other applications, which may then be

US 2023/0315553 Al

ported into the engine for use during specific operational
aspects of the engine. An engine may be configurable to be
implemented within any general purpose computing system.
In doing so, the engine may be configured to execute source
code embedded therein to control specific features of the
general purpose computing system to execute specific com-
puting operations, thereby transforming the general purpose
system into a specific purpose computing system.

[0024] As used herein, “authentication credentials” may
be any information that can be used to identify of a user. For
example, a system may prompt a user to enter authentication
information such as a username, a password, a personal
identification number (PIN), a passcode, biometric informa-
tion (e.g., iris recognition, retina scans, fingerprints, finger
veins, palm veins, palm prints, digital bone anatomy/struc-
ture and positioning (distal phalanges, intermediate phalan-
ges, proximal phalanges, and the like), an answer to a
security question, a unique intrinsic user activity, such as
making a predefined motion with a user device. This authen-
tication information may be used to authenticate the identity
of the user (e.g., determine that the authentication informa-
tion is associated with the account) and determine that the
user has authority to access an account or system. In some
embodiments, the system may be owned or operated by an
entity. In such embodiments, the entity may employ addi-
tional computer systems, such as authentication servers, to
validate and certify resources inputted by the plurality of
users within the system. The system may further use its
authentication servers to certify the identity of users of the
system, such that other users may verify the identity of the
certified users. In some embodiments, the entity may certify
the identity of the users. Furthermore, authentication infor-
mation or permission may be assigned to or required from a
user, application, computing node, computing cluster, or the
like to access stored data within at least a portion of the
system.

[0025] It should also be understood that “operatively
coupled,” as used herein, means that the components may be
formed integrally with each other, or may be formed sepa-
rately and coupled together. Furthermore, “operatively
coupled” means that the components may be formed directly
to each other, or to each other with one or more components
located between the components that are operatively
coupled together. Furthermore, “operatively coupled” may
mean that the components are detachable from each other, or
that they are permanently coupled together. Furthermore,
operatively coupled components may mean that the com-
ponents retain at least some freedom of movement in one or
more directions or may be rotated about an axis (i.e.,
rotationally coupled, pivotally coupled). Furthermore,
“operatively coupled” may mean that components may be
electronically connected and/or in fluid communication with
one another.

[0026] As used herein, an “interaction” may refer to any
communication between one or more users, one or more
entities or institutions, and/or one or more devices, nodes,
clusters, or systems within the system environment
described herein. For example, an interaction may refer to a
transfer of data between devices, an accessing of stored data
by one or more nodes of a computing cluster, a transmission
of a requested task, or the like.

[0027] As used herein, “determining” may encompass a
variety of actions. For example, “determining” may include
calculating, computing, processing, deriving, investigating,

Oct. 5, 2023

ascertaining, and/or the like. Furthermore, “determining”
may also include receiving (e.g., receiving information),
accessing (e.g., accessing data in a memory), and/or the like.
Also, “determining” may include resolving, selecting,
choosing, calculating, establishing, and/or the like. Deter-
mining may also include ascertaining that a parameter
matches a predetermined criterion, including that a threshold
has been met, passed, exceeded, and so on.

[0028] Application performance management (APM) is
the monitoring and management of performance and avail-
ability of devices and applications by diagnosing complex
application performance problems to maintain an expected
level of service. Operational elements of a computing envi-
ronment are becoming increasingly difficult to manage as
they move toward highly distributed, multi-tier, multi-ele-
ment constructs. Any operational failure detection and miti-
gation in services, processes, hosts, logs, networks, and/or
the like often involves manual intervention which can
become a tedious process. Therefore, there is a need for an
intelligent system for early detection of operational failure in
component-level functions within a computing environ-
ment.

[0029] FIG. 1 illustrates technical components of an
exemplary distributed computing environment for early
detection of operational failure in component-level func-
tions within a computing environment 100, in accordance
with an embodiment of the invention. FIG. 1 provides a
unique system that includes specialized servers and system
communicably linked across a distributive network of nodes
required to perform the functions of the process flows
described herein in accordance with embodiments of the
present invention.

[0030] As illustrated, the distributed computing environ-
ment 100 includes a network 110, a system 130, and a user
input device 140. In some embodiments, the system 130, and
the user input device 140 may be used to implement the
processes described herein, in accordance with an embodi-
ment of the present invention. In this regard, the system 130
and/or the user input device 140 may include one or more
applications stored thereon that are configured to interact
with one another to implement any one or more portions of
the various user interfaces and/or process flow described
herein.

[0031] In accordance with embodiments of the invention,
the system 130 is intended to represent various forms of
digital computers, such as laptops, desktops, video record-
ers, audio/video player, radio, workstations, servers, wear-
able devices, Internet-of-things devices, electronic kiosk
devices, blade servers, mainframes, or any combination of
the aforementioned. In accordance with embodiments of the
invention, the user input device 140 is intended to represent
various forms of mobile devices, such as personal digital
assistants, cellular telephones, smartphones, and other simi-
lar computing devices. The components shown here, their
connections and relationships, and their functions, are meant
to be exemplary only, and are not meant to limit implemen-
tations of the inventions described and/or claimed in this
document.

[0032] In accordance with some embodiments, the system
130 may include a processor 102, memory 104, input/output
(I/0) device 116, and a storage device 110. The system 130
may also include a high-speed interface 108 connecting to
the memory 104, and a low-speed interface 112 connecting
to low speed bus 114 and storage device 110. Each of the

US 2023/0315553 Al

components 102, 104, 108, 110, and 112 may be operatively
coupled to one another using various buses and may be
mounted on a common motherboard or in other manners as
appropriate. The processor 102 may include a number of
subsystems to execute the portions of processes described
herein. Each subsystem may be a self-contained component
of a larger system (e.g., system 130) and capable of being
configured to execute specialized processes as part of the
larger system.

[0033] The processor 102 can process instructions, includ-
ing instructions stored in the memory 104 or on the storage
device 110, for execution within the system 130 using any
subsystems described herein. It is to be understood that the
system 130 may use, as appropriate, multiple processors,
along with multiple memories, and/or I/O devices, to
execute the processes described herein. Also, multiple sys-
tems, same or similar to system 130 may be connected, with
each system providing portions of the necessary operations
(e.g., as a server bank, a group of blade servers, or a
multi-processor system). In some embodiments, the system
130 may be managed by the entity. The system 130 may be
located at the facility associated with the entity or remotely
from the facility associated with the entity.

[0034] The memory 104 stores information within the
system 130. In one implementation, the memory 104 is a
volatile memory unit or units, such as volatile random access
memory (RAM) having a cache area for the temporary
storage of information, such as a command, a current
operating state of the distributed computing environment
100, an intended operating state of the distributed computing
environment 100, instructions related to various methods
and/or functionalities described herein, and/or the like. In
another implementation, the memory 104 is a non-volatile
memory unit or units. The memory 104 may also be another
form of computer-readable medium, such as a magnetic or
optical disk, which may be embedded and/or may be remov-
able. The non-volatile memory may additionally or alterna-
tively include an EEPROM, flash memory, and/or the like
for storage of information such as instructions and/or data
that may be read during execution of computer instructions.
The memory 104 may store, recall, receive, transmit, and/or
access various files and/or information used by the system
130 during operation.

[0035] The storage device 106 is capable of providing
mass storage for the system 130. In one aspect, the storage
device 106 may be or contain a computer-readable medium,
such as a floppy disk device, a hard disk device, an optical
disk device, or a tape device, a flash memory or other similar
solid state memory device, or an array of devices, including
devices in a storage area network or other configurations. A
computer program product can be tangibly embodied in an
information carrier. The computer program product may
also contain instructions that, when executed, perform one
or more methods, such as those described above. The
information carrier may be a non-transitory computer- or
machine-readable storage medium, such as the memory 104,
the storage device 104, or memory on processor 102.
[0036] In some embodiments, the system 130 may be
configured to access, via the network 110, a number of other
computing devices (not shown) in addition to the user input
device 140. In this regard, the system 130 may be configured
to access one or more storage devices and/or one or more
memory devices associated with each of the other comput-
ing devices. In this way, the system 130 may implement

Oct. 5, 2023

dynamic allocation and de-allocation of local memory
resources among multiple computing devices in a parallel or
distributed system. Given a group of computing devices and
a collection of interconnected local memory devices, the
fragmentation of memory resources is rendered irrelevant by
configuring the system 130 to dynamically allocate memory
based on availability of memory either locally, or in any of
the other computing devices accessible via the network. In
effect, it appears as though the memory is being allocated
from a central pool of memory, even though the space is
distributed throughout the system. This method of dynami-
cally allocating memory provides increased flexibility when
the data size changes and allows memory reuse for better
utilization of the memory resources when the data sizes are
large.

[0037] The high-speed interface 108 manages bandwidth-
intensive operations for the system 130, while the low speed
controller 112 manages lower bandwidth-intensive opera-
tions. Such allocation of functions is exemplary only. In
some embodiments, the high-speed interface 108 is coupled
to memory 104, input/output (1/O) device 116 (e.g., through
a graphics processor or accelerator), and to high-speed
expansion ports 111, which may accept various expansion
cards (not shown). In such an implementation, low-speed
controller 112 is coupled to storage device 106 and low-
speed expansion port 114. The low-speed expansion port
114, which may include various communication ports (e.g.,
USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more input/output devices, such as a
keyboard, a pointing device, a scanner, or a networking
device such as a switch or router, e.g., through a network
adapter.

[0038] The system 130 may be implemented in a number
of different forms, as shown in FIG. 1. For example, it may
be implemented as a standard server, or multiple times in a
group of such servers. Additionally, the system 130 may also
be implemented as part of a rack server system or a personal
computer such as a laptop computer. Alternatively, compo-
nents from system 130 may be combined with one or more
other same or similar systems and an entire system 130 may
be made up of multiple computing devices communicating
with each other.

[0039] FIG. 1 also illustrates a user input device 140, in
accordance with an embodiment of the invention. The user
input device 140 includes a processor 152, memory 154, an
input/output device such as a display 156, a communication
interface 158, and a transceiver 160, among other compo-
nents. The user input device 140 may also be provided with
a storage device, such as a microdrive or other device, to
provide additional storage. Each of the components 152,
154, 158, and 160, are interconnected using various buses,
and several of the components may be mounted on a
common motherboard or in other manners as appropriate.

[0040] The processor 152 is configured to execute instruc-
tions within the user input device 140, including instructions
stored in the memory 154, which in one embodiment
includes the instructions of an application that may perform
the functions disclosed herein. The processor may be imple-
mented as a chipset of chips that include separate and
multiple analog and digital processors. The processor may
be configured to provide, for example, for coordination of
the other components of the user input device 140, such as

US 2023/0315553 Al

control of user interfaces, applications run by user input
device 140, and wireless communication by user input
device 140.

[0041] The processor 152 may be configured to commu-
nicate with the user through control interface 164 and
display interface 166 coupled to a display 156. The display
156 may be, for example, a TFT LCD (Thin-Film-Transistor
Liquid Crystal Display) or an OLED (Organic Light Emit-
ting Diode) display, or other appropriate display technology.
The display interface 156 may comprise appropriate cir-
cuitry and configured for driving the display 156 to present
graphical and other information to a user. The control
interface 164 may receive commands from a user and
convert them for submission to the processor 152. In addi-
tion, an external interface 168 may be provided in commu-
nication with processor 152, so as to enable near area
communication of user input device 140 with other devices.
External interface 168 may provide, for example, for wired
communication in some implementations, or for wireless
communication in other implementations, and multiple
interfaces may also be used.

[0042] The memory 154 stores information within the user
input device 140. The memory 154 can be implemented as
one or more of a computer-readable medium or media, a
volatile memory unit or units, or a non-volatile memory unit
or units. Expansion memory may also be provided and
connected to user input device 140 through an expansion
interface (not shown), which may include, for example, a
SIMM (Single In Line Memory Module) card interface.
Such expansion memory may provide extra storage space
for user input device 140 or may also store applications or
other information therein. In some embodiments, expansion
memory may include instructions to carry out or supplement
the processes described above and may include secure
information also. For example, expansion memory may be
provided as a security module for user input device 140 and
may be programmed with instructions that permit secure use
of user input device 140. In addition, secure applications
may be provided via the SIMM cards, along with additional
information, such as placing identifying information on the
SIMM card in a non-hackable manner. In some embodi-
ments, the user may use the applications to execute pro-
cesses described with respect to the process flows described
herein. Specifically, the application executes the process
flows described herein.

[0043] The memory 154 may include, for example, flash
memory and/or NVRAM memory. In one aspect, a computer
program product is tangibly embodied in an information
carrier. The computer program product contains instructions
that, when executed, perform one or more methods, such as
those described herein. The information carrier is a com-
puter- or machine-readable medium, such as the memory
154, expansion memory, memory on processor 152, or a
propagated signal that may be received, for example, over
transceiver 160 or external interface 168.

[0044] In some embodiments, the user may use the user
input device 140 to transmit and/or receive information or
commands to and from the system 130 via the network 110.
Any communication between the system 130 and the user
input device 140 (or any other computing devices) may be
subject to an authentication protocol allowing the system
130 to maintain security by permitting only authenticated
users (or processes) to access the protected resources of the
system 130, which may include servers, databases, applica-

Oct. 5, 2023

tions, and/or any of the components described herein. To this
end, the system 130 may require the user (or process) to
provide authentication credentials to determine whether the
user (or process) is eligible to access the protected resources.
Once the authentication credentials are validated and the
user (or process) is authenticated, the system 130 may
provide the user (or process) with permissioned access to the
protected resources. Similarly, the user input device 140 (or
any other computing devices) may provide the system 130
with permissioned to access the protected resources of the
user input device 130 (or any other computing devices),
which may include a GPS device, an image capturing
component (e.g., camera), a microphone, a speaker, and/or
any of the components described herein.

[0045] The user input device 140 may communicate with
the system 130 (and one or more other devices) wirelessly
through communication interface 158, which may include
digital signal processing circuitry where necessary. Com-
munication interface 158 may provide for communications
under various modes or protocols, such as GSM voice calls,
SMS, EMS, or MMS messaging, CDMA, TDMA, PDC,
WCDMA, CDMA2000, or GPRS, among others. Such
communication may occur, for example, through radio-
frequency transceiver 160. In addition, short-range commu-
nication may occur, such as using a Bluetooth, Wi-Fi, or
other such transceiver (not shown). In addition, GPS (Global
Positioning System) receiver module 170 may provide addi-
tional navigation- and location-related wireless data to user
input device 140, which may be used as appropriate by
applications running thereon, and in some embodiments, one
or more applications operating on the system 130.

[0046] The user input device 140 may also communicate
audibly using audio codec 162, which may receive spoken
information from a user and convert it to usable digital
information. Audio codec 162 may likewise generate
audible sound for a user, such as through a speaker, e.g., in
a handset of user input device 140. Such sound may include
sound from voice telephone calls, may include recorded
sound (e.g., voice messages, music files, etc.) and may also
include sound generated by one or more applications oper-
ating on the user input device 140, and in some embodi-
ments, one or more applications operating on the system
130.

[0047] Various implementations of the systems and tech-
niques described here can be realized in digital electronic
circuitry, integrated circuitry, specially designed ASICs (ap-
plication specific integrated circuits), computer hardware,
firmware, software, and/or combinations thereof. These
various implementations can include implementation in one
or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device.

[0048] These computer programs (also known as pro-
grams, software, software applications or code) include
machine instructions for a programmable processor and can
be implemented in a high-level procedural and/or object-
oriented programming language, and/or in assembly/ma-
chine language. As used herein, the terms “machine-read-
able medium” “computer-readable medium” refers to any
computer program product, apparatus and/or device (e.g.,

US 2023/0315553 Al

magnetic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/
or data to a programmable processor, including a machine-
readable medium that receives machine instructions as a
machine-readable signal. The term “machine-readable sig-
nal” refers to any signal used to provide machine instruc-
tions and/or data to a programmable processor.

[0049] To provide for interaction with a user, the systems
and techniques described here can be implemented on a
computer having a display device (e.g., a CRT (cathode ray
tube) or LCD (liquid crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback (e.g., visual feedback, auditory feedback, or tactile
feedback); and input from the user can be received in any
form, including acoustic, speech, or tactile input.

[0050] The systems and techniques described here can be
implemented in a technical environment that includes a back
end component (e.g., as a data server), that includes a
middleware component (e.g., an application server), that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of such back end, middleware, or front end components.
[0051] As shown in FIG. 1, the components of the system
130 and the user input device 140 are interconnected using
the network 110. The network 110, which may be include
one or more separate networks, be a form of digital com-
munication network such as a telecommunication network,
a local area network (“LAN”), a wide area network
(“WAN”), a global area network (“GAN™), the Internet, or
any combination of the foregoing. It will also be understood
that the network 110 may be secure and/or unsecure and may
also include wireless and/or wired and/or optical intercon-
nection technology.

[0052] In accordance with an embodiment of the inven-
tion, the components of the distributed computing environ-
ment 100, such as the system 130 and the user input device
140 may have a client-server relationship, where the user
input device 130 makes a service request to the system 130,
the system 130 accepts the service request, processes the
service request, and returns the requested information to the
user input device 140, and vice versa. This relationship of
client and server typically arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

[0053] It will be understood that the embodiment of the
distributed computing environment 100 illustrated in FIG. 1
is exemplary and that other embodiments may vary. As
another example, in some embodiments, the distributed
computing environment may include more, fewer, or differ-
ent components. As another example, in some embodiments,
some or all of the portions of the distributed computing
environment 100 may be combined into a single portion.
Likewise, in some embodiments, some, or all of the portions
of'the system 130 may be separated into two or more distinct
portions.

[0054] FIG. 2 illustrates an exemplary machine learning
(ML) subsystem architecture 200, in accordance with an
embodiment of the invention. The machine learning subsys-

Oct. 5, 2023

tem 200 may include a data acquisition engine 202, data
ingestion engine 210, data pre-processing engine 216, ML
model tuning engine 222, and inference engine 236.

[0055] The data acquisition engine 202 may identify vari-
ous internal and/or external data sources to generate, test,
and/or integrate new features for training the machine learn-
ing model 224. These internal and/or external data sources
204, 206, and 208 may be initial locations where the data
originates or where physical information is first digitized.
The data acquisition engine 202 may identify the location of
the data and describe connection characteristics for access
and retrieval of data. In some embodiments, data is trans-
ported from each data source 204, 206, or 208 using any
applicable network protocols, such as the File Transfer
Protocol (FTP), Hyper-Text Transfer Protocol (HTTP), or
any of the myriad Application Programming Interfaces
(APIs) provided by websites, networked applications, and
other services. In some embodiments, the these data sources
204, 206, and 208 may include Enterprise Resource Plan-
ning (ERP) databases that host data related to day-to-day
business activities such as accounting, procurement, project
management, exposure management, supply chain opera-
tions, and/or the like, mainframe that is often the entity’s
central data processing center, edge devices that may be any
piece of hardware, such as sensors, actuators, gadgets,
appliances, or machines, that are programmed for certain
applications and can transmit data over the internet or other
networks, and/or the like. The data acquired by the data
acquisition engine 202 from these data sources 204, 206, and
208 may then be transported to the data ingestion engine 210
for further processing.

[0056] Depending on the nature of the data imported from
the data acquisition engine 202, the data ingestion engine
210 may move the data to a destination for storage or further
analysis. Typically, the data imported from the data acqui-
sition engine 202 may be in varying formats as they come
from different sources, including RDBMS, other types of
databases, S3 buckets, CSVs, or from streams. Since the
data comes from different places, it needs to be cleansed and
transformed so that it can be analyzed together with data
from other sources. At the data ingestion engine 202, the
data may be ingested in real-time, using the stream process-
ing engine 212, in batches using the batch data warehouse
214, or a combination of both. The stream processing engine
212 may be used to process continuous data stream (e.g.,
data from edge devices), i.e., computing on data directly as
it is received, and filter the incoming data to retain specific
portions that are deemed useful by aggregating, analyzing,
transforming, and ingesting the data. On the other hand, the
batch data warehouse 214 collects and transfers data in
batches according to scheduled intervals, trigger events, or
any other logical ordering.

[0057] In machine learning, the quality of data and the
useful information that can be derived therefrom directly
affects the ability of the machine learning model 224 to
learn. The data pre-processing engine 216 may implement
advanced integration and processing steps needed to prepare
the data for machine learning execution. This may include
modules to perform any upfront, data transformation to
consolidate the data into alternate forms by changing the
value, structure, or format of the data using generalization,
normalization, attribute selection, and aggregation, data
cleaning by filling missing values, smoothing the noisy data,

US 2023/0315553 Al

resolving the inconsistency, and removing outliers, and/or
any other encoding steps as needed.

[0058] In addition to improving the quality of the data, the
data pre-processing engine 216 may implement feature
extraction and/or selection techniques to generate training
data 218. Feature extraction and/or selection is a process of
dimensionality reduction by which an initial set of data is
reduced to more manageable groups for processing. A
characteristic of these large data sets is a large number of
variables that require a lot of computing resources to pro-
cess. Feature extraction and/or selection may be used to
select and/or combine variables into features, effectively
reducing the amount of data that must be processed, while
still accurately and completely describing the original data
set. Depending on the type of machine learning algorithm
being used, this training data 218 may require further
enrichment. For example, in supervised learning, the train-
ing data is enriched using one or more meaningful and
informative labels to provide context so a machine learning
model can learn from it. For example, labels might indicate
whether a photo contains a bird or car, which words were
uttered in an audio recording, or if an x-ray contains a tumor.
Data labeling is required for a variety of use cases including
computer vision, natural language processing, and speech
recognition. In contrast, unsupervised learning uses unla-
beled data to find patterns in the data, such as inferences or
clustering of data points.

[0059] The ML model tuning engine 222 may be used to
train a machine learning model 224 using the training data
218 to make predictions or decisions without explicitly
being programmed to do so. The machine learning model
224 represents what was learned by the selected machine
learning algorithm 220 and represents the rules, numbers,
and any other algorithm-specific data structures required for
classification. Selecting the right machine learning algo-
rithm may depend on a number of different factors, such as
the problem statement and the kind of output needed, type
and size of the data, the available computational time,
number of features and observations in the data, and/or the
like. Machine learning algorithms may refer to programs
(math and logic) that are configured to self-adjust and
perform better as they are exposed to more data. To this
extent, machine learning algorithms are capable of adjusting
their own parameters, given feedback on previous perfor-
mance in making prediction about a dataset.

[0060] The machine learning algorithms contemplated,
described, and/or used herein include supervised learning
(e.g., using logistic regression, using back propagation neu-
ral networks, using random forests, decision trees, etc.),
unsupervised learning (e.g., using an Apriori algorithm,
using K-means clustering), semi-supervised learning, rein-
forcement learning (e.g., using a Q-learning algorithm, using
temporal difference learning), and/or any other suitable
machine learning model type. Each of these types of
machine learning algorithms can implement any of one or
more of a regression algorithm (e.g., ordinary least squares,
logistic regression, stepwise regression, multivariate adap-
tive regression splines, locally estimated scatterplot smooth-
ing, etc.), an instance-based method (e.g., k-nearest neigh-
bor, learning vector quantization, self-organizing map, etc.),
a regularization method (e.g., ridge regression, least absolute
shrinkage and selection operator, elastic net, etc.), a decision
tree learning method (e.g., classification and regression tree,
iterative dichotomiser 3, C4.5, chi-squared automatic inter-

Oct. 5, 2023

action detection, decision stump, random forest, multivariate
adaptive regression splines, gradient boosting machines,
etc.), a Bayesian method (e.g., naive Bayes, averaged one-
dependence estimators, Bayesian belief network, etc.), a
kernel method (e.g., a support vector machine, a radial basis
function, etc.), a clustering method (e.g., k-means clustering,
expectation maximization, etc.), an associated rule learning
algorithm (e.g., an Apriori algorithm, an Eclat algorithm,
etc.), an artificial neural network model (e.g., a Perceptron
method, a back-propagation method, a Hopfield network
method, a self-organizing map method, a learning vector
quantization method, etc.), a deep learning algorithm (e.g.,
a restricted Boltzmann machine, a deep belief network
method, a convolution network method, a stacked auto-
encoder method, etc.), a dimensionality reduction method
(e.g., principal component analysis, partial least squares
regression, Sammon mapping, multidimensional scaling,
projection pursuit, etc.), an ensemble method (e.g., boosting,
bootstrapped aggregation, AdaBoost, stacked generaliza-
tion, gradient boosting machine method, random forest
method, etc.), and/or the like.

[0061] To tune the machine learning model, the ML model
tuning engine 222 may repeatedly execute cycles of experi-
mentation 226, testing 228, and tuning 230 to optimize the
performance of the machine learning algorithm 220 and
refine the results in preparation for deployment of those
results for consumption or decision making. To this end, the
ML model tuning engine 222 may dynamically vary hyper-
parameters each iteration (e.g., number of trees in a tree-
based algorithm or the value of alpha in a linear algorithm),
run the algorithm on the data again, then compare its
performance on a validation set to determine which set of
hyperparameters results in the most accurate model. The
accuracy of the model is the measurement used to determine
which set of hyperparameters is best at identifying relation-
ships and patterns between variables in a dataset based on
the input, or training data 218. A fully trained machine
learning model 232 is one whose hyperparameters are tuned
and model accuracy maximized.

[0062] The trained machine learning model 232, similar to
any other software application output, can be persisted to
storage, file, memory, or application, or looped back into the
processing component to be reprocessed. More often, the
trained machine learning model 232 is deployed into an
existing production environment to make practical business
decisions based on live data 234. To this end, the machine
learning subsystem 200 uses the inference engine 236 to
make such decisions. The type of decision-making may
depend upon the type of machine learning algorithm used.
For example, machine learning models trained using super-
vised learning algorithms may be used to structure compu-
tations in terms of categorized outputs (e.g., C_1,C_2 ...
C_n 238) or observations based on defined classifications,
represent possible solutions to a decision based on certain
conditions, model complex relationships between inputs and
outputs to find patterns in data or capture a statistical
structure among variables with unknown relationships, and/
or the like. On the other hand, machine learning models
trained using unsupervised learning algorithms may be used
to group (e.g., C_1, C_2 ... C_n 238) live data 234 based
on how similar they are to one another to solve exploratory
challenges where little is known about the data, provide a
description or label (e.g.,C_1,C_2...C_n238)to live data

US 2023/0315553 Al

234, such as in classification, and/or the like. These catego-
rized outputs, groups (clusters), or labels are then presented
to the user input system 130.

[0063] It will be understood that the embodiment of the
machine learning subsystem 200 illustrated in FIG. 2 is
exemplary and that other embodiments may vary. As another
example, in some embodiments, the machine learning sub-
system 200 may include more, fewer, or different compo-
nents.

[0064] FIG. 3 illustrates a process flow for early detection
of operational failure in component-level functions within a
computing environment 300, in accordance with an embodi-
ment of the invention. As shown in block 302, the process
flow includes electronically receiving, from one or more
source devices, log data. Log data records and tracks all
interactions through which data, files or applications are
stored, accessed, or modified on a storage device or appli-
cation across a distributed computing environment such as a
technology infrastructure of an entity. By collecting and
storing log data over a period of time, entities can use log
data to analyze specific trends or record the data-based
events/actions of a device, system, or network, collectively
referred to herein as “source devices.” In some embodi-
ments, each source device may be associated with one or
more independent hardware and/or software components
that operate synchronously to execute component-level
functions. Log data may be generated by continuously
monitoring component-level functions of various hardware
and/or software components of each source device. Log data
may include measurable properties or characteristics of each
hardware and/or software component that reflects every-
thing and anything that happens within source device,
including events such as transactions, errors, and intrusions.
In one example, log data may reflect a processor perfor-
mance, memory utilization of a source device over time,
network bandwidth usage, and/or the like. Therefore, by
continuously monitoring the component-level functions of a
source device, the system may be configured to determine a
current state of the source device, its configuration, and
operational status at any time instant.

[0065] Next, as shown in block 304, the process flow
includes analyzing using a machine learning subsystem, the
log data for indications of operational failure of one or more
component-level functions associated with the one or more
source devices. In this regard, the machine learning subsys-
tem may be configured to determine, using a trained
machine learning model, a likelihood that a first subset of the
log data is associated with operational failure of one or more
component-level functions. As described herein, the
machine learning model may refer to a mathematical model
generated by machine learning algorithms based on training
data, to make predictions or decisions without being explic-
itly programmed to do so. In some embodiments, the
machine learning subsystem may be configured to train the
machine learning model using the log data and map specific
log data patterns to operational failure of one or more
component-level functions. Once trained, the machine learn-
ing subsystem may be configured to determine model
parameters for the trained machine learning model that are
then used on unseen (or live) log data to recognize patterns
or indications of similar operational failure of one or more
component-level functions.

[0066] To generate the training dataset, the machine learn-
ing subsystem may be configured to continuously monitor

Oct. 5, 2023

incidences of historical component-level functional failures
associated with the one or more source devices. In response,
the machine learning subsystem may be configured to
retrieve historical log data corresponding to the historical
component-level functional failures and map specific log
data patterns that correspond to the historical component-
level functional failures. In some embodiments, the log data
patterns from the historical log data may reflect a state of the
one or more source devices a predetermined period of time
prior to the incidences of the historical component-level
functional failures. In this way, the present invention pro-
vides the functional benefit of training for and recognizing
patterns of operational failure of one or more component-
level functions prior to their incidence. In response, the
system may be configured to store the historical log data and
the corresponding historical component-level functional
failures in a second internal repository. This historical log
data and the corresponding historical component-level func-
tional failures form the training dataset for the machine
learning model.

[0067] In some embodiments, the machine learning sub-
system may be configured to determine, using the trained
machine learning model, a similarity between the patterns
identified in the log data with pre-recorded patterns made by
operational failure of one or more component-level func-
tions. Based on this similarity, the machine learning sub-
system may be configured to determine the likelihood that
the patterns identified in the first subset of the log data is
associated with operational failure of one or more compo-
nent-level functions. This likelihood is continuously com-
pared to a predetermined threshold to determine a severity of
the condition.

[0068] Next, as shown in block 306, the process flow
includes determining that the first subset of the log data
reflects a current state of a first subset of source devices. In
some embodiments, the system may be configured to deter-
mine specific hardware and/or software components of the
first subset of source devices, whose current state was
reflected in the first subset of the log data. Next, as shown
in block 308, the process flow includes determining that the
first subset of source devices is likely to experience the
operational failure of one or more component-level func-
tions based on at least their current state. If the likelihood
that the patterns identified in the first subset of the log data
is associated with operational failure of one or more com-
ponent-level functions is greater than the predetermined
threshold, the system may be configured to determine that
the specific hardware and/or software components of the
first subset of source devices are likely to experience the
operational failure of one or more component-level func-
tions.

[0069] Next, as shown in block 310, the process flow
includes generating a notification indicating that the first
subset of source devices is likely to experience the opera-
tional failure of one or more component-level functions.
Next, as shown in block 312, the process flow includes
transmitting control signals configured to cause an admin-
istrator device associated with the first subset of source
devices to display the notification.

[0070] In some embodiments, the operational failure of
one or more component-level functions may be tiered based
on their impact to the overall computing environment. Each
tier may be associated with a set of mitigation actions to be
executed in response to the operational failure of one or

US 2023/0315553 Al

more component-level functions in that tier. Accordingly,
based on the specific tier, the system may be configured to
retrieve, from a first internal repository, mitigation actions
associated with the operational failure of one or more
component-level functions. In one aspect, the mitigation
actions may be preventative actions that are to be imple-
mented before the first subset of source devices experience
the operational failure of one or more component-level
functions. In another aspect, the mitigation actions are
remedial actions that are to be implemented after the first
subset of source devices experience the operational failure
of one or more component-level functions. In response, the
system may be configured to transmit control signals con-
figured to cause the administrator device to display the one
or more mitigation actions.

[0071] As will be appreciated by one of ordinary skill in
the art in view of this disclosure, the present invention may
include and/or be embodied as an apparatus (including, for
example, a system, machine, device, computer program
product, and/or the like), as a method (including, for
example, a business method, computer-implemented pro-
cess, and/or the like), or as any combination of the forego-
ing. Accordingly, embodiments of the present invention may
take the form of an entirely business method embodiment,
an entirely software embodiment (including firmware, resi-
dent software, micro-code, stored procedures in a database,
or the like), an entirely hardware embodiment, or an
embodiment combining business method, software, and
hardware aspects that may generally be referred to herein as
a “system.” Furthermore, embodiments of the present inven-
tion may take the form of a computer program product that
includes a computer-readable storage medium having one or
more computer-executable program code portions stored
therein. As used herein, a processor, which may include one
or more processors, may be “configured to” perform a
certain function in a variety of ways, including, for example,
by having one or more general-purpose circuits perform the
function by executing one or more computer-executable
program code portions embodied in a computer-readable
medium, and/or by having one or more application-specific
circuits perform the function.

[0072] It will be understood that any suitable computer-
readable medium may be utilized. The computer-readable
medium may include, but is not limited to, a non-transitory
computer-readable medium, such as a tangible electronic,
magnetic, optical, electromagnetic, infrared, and/or semi-
conductor system, device, and/or other apparatus. For
example, in some embodiments, the non-transitory com-
puter-readable medium includes a tangible medium such as
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a compact disc read-only memory (CD-ROM),
and/or some other tangible optical and/or magnetic storage
device. In other embodiments of the present invention,
however, the computer-readable medium may be transitory,
such as, for example, a propagation signal including com-
puter-executable program code portions embodied therein.
[0073] One or more computer-executable program code
portions for carrying out operations of the present invention
may include object-oriented, scripted, and/or unscripted
programming languages, such as, for example, Java, Perl,
Smalltalk, C++, SAS, SQL, Python, Objective C,
JavaScript, and/or the like. In some embodiments, the one or

Oct. 5, 2023

more computer-executable program code portions for car-
rying out operations of embodiments of the present inven-
tion are written in conventional procedural programming
languages, such as the “C” programming languages and/or
similar programming languages. The computer program
code may alternatively or additionally be written in one or
more multi-paradigm programming languages, such as, for
example, F #.

[0074] Some embodiments of the present invention are
described herein with reference to flowchart illustrations
and/or block diagrams of apparatus and/or methods. It will
be understood that each block included in the flowchart
illustrations and/or block diagrams, and/or combinations of
blocks included in the flowchart illustrations and/or block
diagrams, may be implemented by one or more computer-
executable program code portions. These one or more com-
puter-executable program code portions may be provided to
a processor of a general purpose computer, special purpose
computer, and/or some other programmable data processing
apparatus in order to produce a particular machine, such that
the one or more computer-executable program code por-
tions, which execute via the processor of the computer
and/or other programmable data processing apparatus, cre-
ate mechanisms for implementing the steps and/or functions
represented by the flowchart(s) and/or block diagram block
(s).

[0075] The one or more computer-executable program
code portions may be stored in a transitory and/or non-
transitory computer-readable medium (e.g. a memory) that
can direct, instruct, and/or cause a computer and/or other
programmable data processing apparatus to function in a
particular manner, such that the computer-executable pro-
gram code portions stored in the computer-readable medium
produce an article of manufacture including instruction
mechanisms which implement the steps and/or functions
specified in the flowchart(s) and/or block diagram block(s).
[0076] The one or more computer-executable program
code portions may also be loaded onto a computer and/or
other programmable data processing apparatus to cause a
series of operational steps to be performed on the computer
and/or other programmable apparatus. In some embodi-
ments, this produces a computer-implemented process such
that the one or more computer-executable program code
portions which execute on the computer and/or other pro-
grammable apparatus provide operational steps to imple-
ment the steps specified in the flowchart(s) and/or the
functions specified in the block diagram block(s). Alterna-
tively, computer-implemented steps may be combined with,
and/or replaced with, operator- and/or human-implemented
steps in order to carry out an embodiment of the present
invention.

[0077] Although many embodiments of the present inven-
tion have just been described above, the present invention
may be embodied in many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclo-
sure will satisfy applicable legal requirements. Also, it will
be understood that, where possible, any of the advantages,
features, functions, devices, and/or operational aspects of
any of the embodiments of the present invention described
and/or contemplated herein may be included in any of the
other embodiments of the present invention described and/or
contemplated herein, and/or vice versa. In addition, where
possible, any terms expressed in the singular form herein are

US 2023/0315553 Al

meant to also include the plural form and/or vice versa,
unless explicitly stated otherwise. Accordingly, the terms
“a” and/or “an” shall mean “one or more,” even though the
phrase “one or more” is also used herein. [ike numbers refer
to like elements throughout.

[0078] While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the specific constructions and
arrangements shown and described, since various other
changes, combinations, omissions, modifications and sub-
stitutions, in addition to those set forth in the above para-
graphs, are possible. Those skilled in the art will appreciate
that various adaptations, modifications, and combinations of
the just described embodiments can be configured without
departing from the scope and spirit of the invention. There-
fore, it is to be understood that, within the scope of the
appended claims, the invention may be practiced other than
as specifically described herein.

What is claimed is:

1. A system for early detection of operational failure in
component-level functions within a computing environ-
ment, the system comprising:

at least one non-transitory storage device; and

at least one processor coupled to the at least one non-

transitory storage device,

wherein the at least one processor is configured to:

electronically receive, from one or more source devices,

log data;

analyze, using a machine learning subsystem, the log data

for indications of operational failure of one or more
component-level functions associated with the one or
more source devices, wherein analyzing further com-
prises:

determining, using a trained machine learning model, a

likelihood that a first subset of the log data is associated
with operational failure of one or more component-
level functions; and

determining that the likelihood that the first subset of the

log data is associated with the operational failure of one
or more component-level functions is greater than a
predetermined threshold;
determine that the first subset of the log data reflects a
current state of a first subset of source devices;

determine that the first subset of source devices is likely
to experience the operational failure of one or more
component-level functions based on at least their cur-
rent state;
generate a notification indicating that the first subset of
source devices is likely to experience the operational
failure of one or more component-level functions; and

transmit control signals configured to cause an adminis-
trator device associated with the first subset of source
devices to display the notification.
2. The system of claim 1, wherein the at least one
processor is further configured to:
retrieve, from a first internal repository, one or more
mitigation actions associated with the operational fail-
ure of one or more component-level functions; and

transmit control signals configured to cause the adminis-
trator device to display the one or more mitigation
actions.

Oct. 5, 2023

3. The system of claim 2, wherein the one or more
mitigation actions are preventative actions that are to be
implemented before the first subset of source devices expe-
rience the operational failure of one or more component-
level functions.

4. The system of claim 2, wherein the one or more
mitigation actions are remedial actions that are to be imple-
mented after the first subset of source devices experience the
operational failure of one or more component-level func-
tions.

5. The system of claim 1, wherein the at least one
processor is further configured to:

continuously monitor component-level functions of one

or more source devices within the computing environ-
ment;
determine a current state of the one or more source
devices based on at least monitoring the component-
level functions of the one or more source devices; and

electronically receive, from one or more source devices,
the log data reflecting the current state of the one or
more source devices.

6. The system of claim 1, wherein the at least one
processor is further configured to:

continuously monitor incidences of historical component-

level functional failures associated with the one or
more source devices;

retrieve historical log data corresponding to the historical

component-level functional failures, wherein the his-
torical log data reflects a state of the one or more source
devices a predetermined period of time prior to the
incidences of the historical component-level functional
failures; and

store the historical log data and the corresponding his-

torical component-level functional failures in a second
internal repository.

7. The system of claim 6, wherein the at least one
processor is further configured to:

retrieve, from the second internal repository, the historical

log data and the corresponding historical component-
level functional failures; and

generate a training dataset using the historical log data

and the corresponding historical component-level func-
tional failures.

8. The system of claim 7, wherein the at least one
processor is further configured to:

train a machine learning model with the training dataset

using a machine learning algorithm; and

generate the trained machine learning model.

9. A computer program product for early detection of
operational failure in component-level functions within a
computing environment, the computer program product
comprising a non-transitory computer-readable medium
comprising code causing a first apparatus to:

electronically receive, from one or more source devices,

log data;

analyze, using a machine learning subsystem, the log data

for indications of operational failure of one or more

component-level functions associated with the one or

more source devices, wherein analyzing further com-

prises:

determining, using a trained machine learning model, a
likelihood that a first subset of the log data is
associated with operational failure of one or more
component-level functions; and

US 2023/0315553 Al

determining that the likelihood that the first subset of
the log data is associated with the operational failure
of one or more component-level functions is greater
than a predetermined threshold;
determine that the first subset of the log data reflects a
current state of a first subset of source devices;

determine that the first subset of source devices is likely
to experience the operational failure of one or more
component-level functions based on at least their cur-
rent state;
generate a notification indicating that the first subset of
source devices is likely to experience the operational
failure of one or more component-level functions; and

transmit control signals configured to cause an adminis-
trator device associated with the first subset of source
devices to display the notification.
10. The computer program product of claim 9, wherein
the first apparatus is further configured to:
retrieve, from a first internal repository, one or more
mitigation actions associated with the operational fail-
ure of one or more component-level functions; and

transmit control signals configured to cause the adminis-
trator device to display the one or more mitigation
actions.

11. The computer program product of claim 10, wherein
the one or more mitigation actions are preventative actions
that are to be implemented before the first subset of source
devices experience the operational failure of one or more
component-level functions.

12. The computer program product of claim 10, wherein
the one or more mitigation actions are remedial actions that
are to be implemented after the first subset of source devices
experience the operational failure of one or more compo-
nent-level functions.

13. The computer program product of claim 9, wherein
the first apparatus is further configured to:

continuously monitor component-level functions of one

or more source devices within the computing environ-
ment;
determine a current state of the one or more source
devices based on at least monitoring the component-
level functions of the one or more source devices; and

electronically receive, from one or more source devices,
the log data reflecting the current state of the one or
more source devices.

14. The computer program product of claim 9, wherein
the first apparatus is further configured to:

continuously monitor incidences of historical component-

level functional failures associated with the one or
more source devices;

retrieve historical log data corresponding to the historical

component-level functional failures, wherein the his-
torical log data reflects a state of the one or more source
devices a predetermined period of time prior to the
incidences of the historical component-level functional
failures; and

store the historical log data and the corresponding his-

torical component-level functional failures in a second
internal repository.

Oct. 5, 2023

15. The computer program product of claim 14, wherein
the first apparatus is further configured to:

retrieve, from the second internal repository, the historical

log data and the corresponding historical component-
level functional failures; and

generate a training dataset using the historical log data

and the corresponding historical component-level func-
tional failures.

16. The computer program product of claim 15, wherein
the first apparatus is further configured to:

train a machine learning model with the training dataset

using a machine learning algorithm; and

generate the trained machine learning model.

17. A method for early detection of operational failure in
component-level functions within a computing environ-
ment, the method comprising:

electronically receiving, from one or more source devices,

log data;
analyzing, using a machine learning subsystem, the log
data for indications of operational failure of one or
more component-level functions associated with the
one or more source devices, wherein analyzing further
comprises:
determining, using a trained machine learning model, a
likelihood that a first subset of the log data is
associated with operational failure of one or more
component-level functions; and
determining that the likelihood that the first subset of
the log data is associated with the operational failure
of one or more component-level functions is greater
than a predetermined threshold;
determining that the first subset of the log data reflects a
current state of a first subset of source devices;

determining that the first subset of source devices is likely
to experience the operational failure of one or more
component-level functions based on at least their cur-
rent state;
generating a notification indicating that the first subset of
source devices is likely to experience the operational
failure of one or more component-level functions; and

transmitting control signals configured to cause an admin-
istrator device associated with the first subset of source
devices to display the notification.
18. The method of claim 17, wherein the method further
comprises:
retrieving, from a first internal repository, one or more
mitigation actions associated with the operational fail-
ure of one or more component-level functions; and

transmitting control signals configured to cause the
administrator device to display the one or more miti-
gation actions.

19. The method of claim 18, wherein the one or more
mitigation actions are preventative actions that are to be
implemented before the first subset of source devices expe-
rience the operational failure of one or more component-
level functions.

20. The method of claim 18, wherein the one or more
mitigation actions are remedial actions that are to be imple-
mented after the first subset of source devices experience the
operational failure of one or more component-level func-
tions.

