a9y United States

US 20190205255A1

a2y Patent Application Publication o) Pub. No.: US 2019/0205255 A1

Hansen 43) Pub. Date: Jul. 4, 2019
(54) KEY INVALIDATION IN CACHE SYSTEMS (52) US. CL
CPC GO6F 12/0891 (2013.01); GOGF 17/30949
(71) Applicant: salesforce.com, inc., San Francisco, CA (2013.01); GOGF 2212/608 (2013.01); GO6F
us) 12/0875 (2013.01); GOG6F 12/0864 (2013.01)
(72) Inventor: Nick Hansen, Arvada, CO (US) (57) ABSTRACT
(21) Appl. No.: 15/862,142 Techniques are disclosed relating to invalidating keys in a
T ’ cache. In some embodiments, a computer system may
iled: Jan. 4. 2018 implement a cache for a data store, where the cache stores
(22) Filed - % a data set and is organized such that a stored data item of the
Publication Classification data set is specified by a corresponding key having one or
more portions. The computer system may store metadata for
(51) Int. CL the cache, where the metadata includes nodes organized in
GO6F 12/0891 (2006.01) a hierarchy. The computer system may receive a request to
GO6F 17/30 (2006.01) invalidate one or more keys of the cache, and may invalidate
GO6F 12/0864 (2006.01) a particular node within the metadata based on a key value
GOG6F 12/0875 (2006.01) corresponding to the request.
System 100
Data Store
106
Application Server
102
User Network Cache
System Interface
110 0 108 104
— Request 116 -
7\
Key 118: Key Portion 1/Key Portion 2/Key Portion 3 / \
Metadata %at?
112 >
- 114
7 y
/
e s 3
Nod _ =" Hierarchy
Level 120 oal 118
(Key Portion 1)

Level

122

(Key Portion 2)

Level

124

(Key Portion 3)

N

Node
122A

[\

Node
122B

Node
124A

Node
124B

Node| | Node | | Node
124C| | 124D | 124E

Patent Application Publication Jul. 4,2019 Sheet 1 of 8 US 2019/0205255 A1

System 100
T

Data Store
106

Application Server
102
User Network
System S Interface C;agge
110 Request 116 108 —
/[\
Key 118: Key Portion 1/Key Portion 2/Key Portion 3 / \
Metadata %aet?
£ 114
y; A
e ’;z’ierarchy
Level 120 g’ggz il 118
(Key Portion 1)
Nooe \No?de'
Level 122
(Key Portion 2) 122A 1228
Level 124 / . \4
] Node | | Node Node| | Node | | Node
(Key Portion 3) - V'yosnl| |1248| |124C| | 124D | 124E

FIG. 1

Patent Application Publication Jul. 4,2019 Sheet 2 of 8

Cache 200
Hash
M eé%%ata Information
== 204
Data Set Program
206 Code
== 208

FIG. 2

US 2019/0205255 A1l

Patent Application Publication Jul. 4,2019 Sheet 3 of 8 US 2019/0205255 A1

Key Portion 332 Key Portion 334

Key Portion 3‘?&v \ / ()Key Portion 336

Key 300: AppVersion/OrgID/UserlD/ObjectlD
Key 310: AppVersion40/0rglD1/UserID1/Object!D1

Key 320: AppVersion40/0rglD2/User!D2/ObjectiD2

FIG. 3A
Level 360 ~
; AppVersion40
(Key Portion 330) Hierarchy
T3

Level 362
(Key Portion 332) Org]D?l Ogibz) -
ke ;g‘g%gg‘z\? 34) User1 | User2 | ... | Usert | User2
Ker Porton 336) ObjectiDt Objectib?

FIG. 3B

US 2019/0205255 A1l

Jul. 4,2019 Sheet 4 of 8

00r

Patent Application Publication

81980/ 9GHPOPPEL/9p6LL60PILELE _
‘FpL yseH " polgosequoseq | . inofetequoseg
99441840005222896055£L49,9088/} | R AN
‘aphy yseH “ i
]
—]
i Ly #4LPOBOPESIE(046691I96969588¢G !
¢InoAe18quoseq Nl 45eH “ !
]
{6BGHOZPPIGEPGEORE8/ G601 2RLEDT _ m z4sn | 1 esn zJosn | 14080
pinoAe7equoseq ‘Gh L ysey “ "
_ "
A 0r6E0R.L9P 804G LP2902E£9008040G !
cInofetequoseq o L5 USel] “ "
]
Zhy s yser | i
zinoAe1equoseq L oLy fey m 2aibio 1Q1bi0
| f ! |
1]
HnofeTequose@ pnofetequossq | \.\< ™
/118Ny PIBIOuOISIOAddy 80y
. uosssepddy AyasesoiH
lllllllllllllllllllllllllllll DR S
907 707 “ 207
JeS eleg uonBWLIoM| YSBH | elepelopy
|
4 V¥ ‘Ol

US 2019/0205255 A1l

Jul. 4,2019 Sheet 5 of 8

palg0SaquIsaq

JnoAeTequossq

05y

Patent Application Publication

|
|
|
|
|
|
|
|
_ 15y Aoy
| 4
I i
I t /inoAeTequossqg i
_ 12/95n/1piBIO/uoISIoAddy m

cinofetequaseq _ T "
I l !

pInoAe1eqUse(“ " m. ¢48sM) | | 488 ¢48sn | L48sn
| | !
_ | !

ginoAerequoss(I I |
| | !
| | !

zZinoAe7aquose(g _ I H
_ 6 N@ i zabio | | +aibio
| 4 1

[Inofetequossq _ \Sgwqmﬁ 10860 i - | / \ J
_ /148801 pIbIO/uOISIONddy worsiaddy 905

uuuuuuuuuu e e e Ayoriel
907 “ 707 " 207
Jos ejeq I uonewIojul yseH | ejepejepy
| l
\ gy Old

Patent Application Publication Jul. 4,2019 Sheet 6 of 8 US 2019/0205255 A1

500

Implementing a cacheofgr a database system
902

\ 4

Storing metadata for the cache, where the metadata includes nodes organized in a hierarchy in
which different levels of the hierarchy correspond fo different portions of the corresponding keys
for the ggta set
504

A\ 4

Receiving a request to invalidate one or more keys of the cache
506

vy

Based on a key value corresponding o the request, invalidating a particular node within the
metadata, where the invalidating results in a cache miss for a subsequent request for data
corresponding to a key having a poﬁg%corresponding to the particular node

FIG. 5

US 2019/0205255 A1l

Jul. 4,2019 Sheet 7 of 8

Patent Application Publication

4019
JesM

== 1 === -1
gelgueusy) vci9jueus]

I I

aor9 b 2019 8019 v0I9 _
198N Iy 188N J9sN 19sN |

_ _

———— e D e o | _r IIIIIIIIIIIIIIIII J

Oc¢l9 jueus]

J8sM)

N¢09

1oMI8S uoiedlddy

g¢09
Jonieg uoneslddy

ve09
Joniag uoneolddy

N909
eseqeje(

009 WwajsAs Jeindwo)) jueus [-Hny

¥909
eseqejeq

I
I
o9 |
I
I

9 9l

Patent Application Publication

Jul. 4,2019 Sheet 8 of 8

US 2019/0205255 A1l

Memory
740

Interconnect

700

70
Interface
760

70
Devices
70

Processor
Subsystem
720

0
780

FIG. 7

US 2019/0205255 Al

KEY INVALIDATION IN CACHE SYSTEMS
BACKGROUND

Technical Field

[0001] This disclosure relates generally to cache systems,
and more specifically to invalidating keys in cache systems.

Description of the Related Art

[0002] A computer system may provide computing
resources to numerous users. For example, a computer
system may include application servers configured to host
software applications for, as well as provide related data,
code, and other information to, users of the computer
system. In implementing the software applications for the
users, the computer system may store data to, and read data
from, a data store, such as a database. The process of storing
and retrieving data to a data store, however, may be rela-
tively slow, and may degrade the performance of the com-
puter system.

[0003] In some instances, a computer system may imple-
ment a data cache to facilitate the storage and retrieval of
data. For example, a data cache may store frequently-used or
infrequently-changing data, from the data store, in a data
cache at the application server. Implementing the data cache
may allow for access to the cached data that is faster than
retrieving that data from the data store. A data cache may be
implemented using a key-value organization, such that a
given key references a given data item stored in the data
cache. In various instances, data stored in the data cache may
need to be removed, e.g., based on eviction policies, changes
to the underlying data at the data store, etc. In such instances,
it may be desirable to invalidate the keys associated with the
data being removed from the data cache.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram illustrating an example
system, according to some embodiments.

[0005] FIG. 2 is a block diagram illustrating an example
cache, according to some embodiments.

[0006] FIG. 3A depicts example keys associated with a
cache, according to some embodiments.

[0007] FIG. 3B depicts an example hierarchy of nodes,
according to some embodiments.

[0008] FIGS. 4A and 4B depict example block diagrams
corresponding to a cache, according to some embodiments.
[0009] FIG. 5 is a flow diagram illustrating an example
method for invalidating one or more keys of a cache,
according to some embodiments.

[0010] FIG. 6 is a block diagram illustrating an example
multi-tenant computing system, according to some embodi-
ments.

[0011] FIG. 7 is a block diagram illustrating an example
computer system, according to some embodiments.

DETAILED DESCRIPTION

[0012] Referring to FIG. 1, a block diagram illustrating an
example system 100 is depicted, according to some embodi-
ments. As shown in FIG. 1, system 100 includes application
server 102, data store 106, and network interface 108. In
various embodiments, system 100 may be configured to
provide computing resources to various users, such as a user
of user system 110. For example, system 100 may be used

Jul. 4,2019

to host software applications (e.g., using application servers
102) and store data (e.g., using data store 106) for various
entities, such that the software applications and data may be
remotely accessible to a given user of user system 110. As
described in more detail below with reference to FIG. 6, in
some embodiments, system 100 may be a multi-tenant
computer system that provides computing resources for a
plurality of tenants, each of which may include various
users. Note that, although only one application server 102,
data store 106, etc. are shown in FIG. 1 for clarity, other
configurations of system 100 (e.g., such as a datacenter
implementing numerous application servers and/or data
stores) may be implemented according to various embodi-
ments of this disclosure.

[0013] As part of providing computing resources, appli-
cation server 102 may read data from data store 106. In
various embodiments, however, the process of retrieving
data from data store 106 may be relatively slow or compu-
tationally expensive. Thus, in some embodiments, applica-
tion server 102 may include cache 104, which may facilitate
faster retrieval of data relative to retrieving data from data
store 106. For example, in some embodiments, system 100
may include a plurality of application servers 102, and cache
104 may be a distributed, in-memory cache configured to
operate as a cache for one or more of the application servers
102 in the plurality. Further, in embodiments in which data
store 106 is a multi-tenant data store, such as a multi-tenant
database, the data set 114 stored by cache 104 may include
data items for a plurality of tenants of the multi-tenant
database system.

[0014] In various embodiments, cache 104 may be orga-
nized such that a data item stored in the data set is specified
by a corresponding key. That is, cache 104 may be organized
in a key-value manner such that a given key references
(either directly or indirectly) a given data item stored in the
data set. As discussed in more detail below with reference to
FIG. 3A, the keys for cache 104 may be structured such that
a given key has multiple portions, according to some
embodiments. As one example, in embodiments in which
system 100 is a multi-tenant computer system, the keys may
include portions associated with a given tenant, a user
associated with that tenant, a data object, etc. When a request
is made (e.g., by a software application, user system 110,
etc.) to retrieve data from cache 104, the requesting entity
may specify the requested data item using the corresponding
key. For example, as shown in FIG. 1, user system 110 may
send a request 116 for a data item, where the request 116
includes a key 118 having one or more portions. In response
to receiving the request, application server 102 may first
check to see if the requested data item is stored in data set
114 of cache 104. If so, application server 102 may retrieve
the requested data item from cache 104 and return it to user
system 110. If the requested data item is not stored in cache
104, application server 102 may request the data from data
store 106 and, depending on the cache policy in place for
cache 104, may store the retrieved data in cache 104 with a
corresponding key.

[0015] In various instances, data in data set 114 may need
to be replaced, for example due to eviction policies for cache
104 (e.g., least recently used, etc.), changes in the underly-
ing data stored by data store 106, etc. In such instances, the
corresponding keys for the data to be replaced may need to
be invalidated, such that the keys no longer reference the
removed data items. In various embodiments, however,

US 2019/0205255 Al

cache 104 may include a large number (e.g., millions) of
keys, and the process of invalidating a large number of those
keys may be time consuming. For example, in a conven-
tional key-value index organization, cache 104 may have to
scan through a high percentage of the keys for cache 104 to
invalidate all of the relevant keys. Further, in some embodi-
ments, cache 104 may be a single-threaded program such
that cache 104 cannot service other requests (e.g., GET
requests, PUT requests, etc.) while it is invalidating keys.
Thus, in various embodiments, the process of atomically
invalidating a large number of keys may be prohibitively
slow, degrading the ability of system 100 to provide com-
puting resources to users. According to various embodi-
ments of the present disclosure, however, cache 104 may be
configured to address these and other problems associated
with the operation of cache 104.

[0016] As shown in FIG. 1, cache 104 may be configured
to store metadata 112. In various embodiments, metadata
112 may include information indicative of the data set 114
stored by cache 104. That is, metadata 112 may self-describe
the data stored by cache 104 such that information about the
data stored in data set 114 may be inferred from the structure
of metadata 112. For example, as shown in FIG. 1, metadata
112 may include a plurality of nodes organized in a hierar-
chy 118 in which different levels (e.g., levels 120-124) of the
hierarchy 118 correspond to different portions of the corre-
sponding keys for data set 114. As described in more detail
below with reference to FIG. 3B, metadata 112 may include
nodes organized according to various structures, such as a
directed acyclic graph, a B-tree, B+ tree, binary search tree
(BST), etc. Note that, although metadata 112 is stored by
cache 104 in the embodiment depicted in FIG. 1, this
embodiment is provided merely as an example and is not
intended to limit the scope of the present disclosure. In other
embodiments, for example, metadata 112 may be stored in
a secondary memory source (not shown for clarity) available
to application server 102.

[0017] In various embodiments, metadata 112 may be
used to efficiently invalidate a large number of keys for
cache 104, reducing the amount of time spent on the
invalidation process. By more quickly and efficiently invali-
dating keys, cache 104 may be able to service other cache
requests more quickly, improving the functioning of cache
104 and the operation of system 100 as a whole.

[0018] Consider, for example, an embodiment in which
application server 102 receives a request to invalidate the
following set of keys: 120A/122B/124C; 120A/122B/124D;
and 120A/122B/124E. In a conventional system that does
not implement metadata 112 as described herein, the process
of invalidating the above-identified keys may require cache
104 to scan all or many keys in a key index associated with
cache 104 to find the keys that match those patterns. Further,
while cache 104 is scanning for these keys, other requests to
cache 104 may be blocked from being performed.

[0019] According to the disclosed systems and methods,
however, cache 104 may simply invalidate node 122B in
hierarchy 118, which may in turn invalidate all keys that are
based on node 122B. Stated differently, cache 104 may,
based on one or more keys included in the request to
invalidate, identify node 122B as being a “root node” in
hierarchy 118 relative to a key portion that is common to all
keys in the set. As used herein, the term “root node” is used
to refer to a node in hierarchy 118 that is both at a higher
level in hierarchy 118 than, and connected to, one or more

Jul. 4,2019

child nodes of the root node. For example, with reference to
hierarchy 118, note that the key portion 122B is present in
each of the three keys that were requested to be invalidated,
but is not present in other keys not in the set (e.g., keys based
on node 122A). Additionally, note that node 122B is both at
a higher level (e.g., level 122) than its child nodes 124C-
124E (e.g., level 124) and is connected to each of its child
nodes 124C-124E. In this way, node 122B may be referred
to as a “root node” relative to the nodes 124C-124E. Thus,
rather than scan all of the keys of cache 104 (such as keys
based on node 122A) cache 104 may simply invalidate root
node 122B, and all of the keys based on node 122B (e.g.,
keys 120A/122B/124C; 120A/122B/124D; and 120A/122B/
124F) may be deemed invalidated.

[0020] Note that node 122B would not be considered a
root node relative to nodes 124A or 124B because, while at
a higher level in the hierarchy 118, node 122B is not
connected to either of nodes 124A or 124B. The term “root
node” is not used herein simply to refer to the top node in
hierarchy 118. Instead, as explained in more detail below
with reference to FIG. 3B, hierarchy 118 may include
multiple root nodes relative to different parts of the hierarchy
118. Therefore, the term “top root node” is used herein to
refer to the top node within hierarchy 118, as to distinguish
the top root node from root nodes relative to different
portions of hierarchy 118.

[0021] In various embodiments, invalidating the set of
keys may result in subsequent requests for data items
associated with the set of keys (e.g., a GET request that
specifies key 120A/122B/124C) results in a cache miss.
Note, however, that invalidating a given key within cache
104 does not render the given key “invalid” indefinitely. For
example, subsequent to key 120A/122B/124C being invali-
dated, cache 104 may store a new data item in data set 114
with 120A/122B/124C as the corresponding key.

[0022] The disclosed systems and methods may provide
various improvements to the function of cache 104, as well
as improve the operation of system 100 as a whole. For
example, when invalidating a large number of keys (e.g., all
keys associated with a user, a tenant, a software application,
etc.) for cache 104, the disclosed systems and methods may
utilize metadata 112 to invalidate those keys in a manner that
is faster and more computationally efficient than conven-
tional approaches. Rather than scanning all keys associated
with cache 104, the disclosed systems and methods may
identify and invalidate a root node within hierarchy 118
relative to a key portion that is common to the keys being
invalidated. In various embodiments, this may result in the
quicker invalidation of the keys for cache 104, which may,
in turn, permit application server 102 and cache 104 to better
service requests for computing resources from users of
system 100.

[0023] Turning now to FIG. 2, a block diagram illustrating
an example cache 200 is depicted, according to some
embodiments. As shown in FIG. 2, cache 200 includes
metadata 202, hash information 204, data set 206, and
program code 208. In various embodiments, cache 200 of
FIG. 2 may correspond to cache 104 of FIG. 1. For example,
data set 206 may correspond to data set 114, and may include
data that corresponds to data stored by a data store 106 of
FIG. 1. Additionally, metadata 202 may correspond to
metadata 112 of FIG. 1, and may include information
indicative of the data set 206 stored by cache 200. The

US 2019/0205255 Al

organization of metadata 202 will be discussed in more
detail below with reference to FIG. 3B.

[0024] Cache 200 further includes hash information 204.
As described in more detail below with reference to FIG.
4 A, hash information 204 may be used, in conjunction with
the keys stored in metadata 202, to identify data items stored
in data set 206. That is, in some embodiments, a given key
may point to a given hash value included in hash information
204, and the given hash value may, in turn, point to a given
data item in data set 206.

[0025] Cache 200 further includes program code 208. In
various embodiments, program code 208 may be executable
to “rebuild” or “replenish” data items in the data set 206 of
cache 200. That is, a user may provide program code 208
that, when executed, is operable to perform operations (e.g.,
retrieve data from data set 206, manipulate the retrieved
data, etc.) to generate a data item corresponding to a
particular key. For example, subsequent to invalidating one
or more keys of cache 200, it may be desirable to preemp-
tively store updated data in data set 206, such that subse-
quent cache requests may result in a cache hit, rather than
being required to retrieve the requested data from data store
106. Note that, in some embodiments, the process of replen-
ishing the data set 206 may be performed “in the back-
ground,” that is, while cache 200 is not servicing other
requests. In one embodiment, a user (such as an adminis-
trator associated with a given tenant of multi-tenant system
100, according to some embodiments) may provide program
code 208 that may be operable to generate a value for a key
when the value for that key is null or otherwise unavailable.

[0026] For example, in some embodiments, in response to
a request for a data item associated with a particular key,
cache 104 may first determine whether a valid (e.g., non-
expired) data item is stored in data set 206 for that particular
key. If so, the requested data item may be retrieved and
provided to the requesting user or application. If not, how-
ever, cache 104 may determine whether there is program
code 208 associated with the particular key stored by cache
200. If there is, that program code 208 may be retrieved and
executed to generate the data item associated with the
particular key. For example, in one embodiment, program
code 208 associated with the particular key may be stored as
a byte array in hash information 204, and the byte array may
be fetched and de-serialized to produce executable program
code 208 that specifies operations to generate the value for
a provided key.

[0027] Further, in some embodiments, subsequent to
invalidating a set of keys, cache 200 may retrieve program
code 208 associated with a given key of the set of keys.
Application server 102 may then execute program code 208,
where executing may include retrieving data from data store
106, according to some embodiments. For example, in some
embodiments, executing program code 208 may include
replaying API calls that were previously used to build the
data in data set 206. Having retrieved the data item for the
given key from data store 106, application server 102 may
store the retrieved data item in cache 200 and may update
metadata 202 to include one or more nodes in the hierarchy
corresponding to the given key. Further, in some embodi-
ments, this process of executing program code 208 to
replenish a value for a given key may be repeated, such as
for each of the keys previously invalidated, in response to
keys of cache 200 expiring, etc.

Jul. 4,2019

[0028] Note, however, that in some embodiments, it may
be desirable to limit the rate at which cache 200 is replen-
ished via program code 208. For example, consider a
situation in which cache 200 has invalidated a large number
of keys (e.g., 10,000), as described herein. In such a situa-
tion, attempting to immediately replenish the values for each
of the invalidated keys may be computationally expensive.
Further, as noted above, cache 200 may be a single-threaded
program, according to various embodiments, and the attempt
to replenish cache 200 may result in a prolonged interruption
of service for users of system 100, similar to a denial-of-
service (DoS) attack. Thus, in various embodiments, the rate
at which the data for the invalidated keys are replenished
may be limited, e.g., based on tenant-specific policy rules,
the availability of cache 200 or application server 102 to
perform such operations, policy rules implemented by an
operator of system 100, etc.

[0029] Referring now to FIG. 3A, example keys associ-
ated with a cache are shown, according to some embodi-
ments. More specifically, FIG. 3A includes keys 300, 310,
and 320. Key 300 depicts a basic format of a key, with
multiple portions 330-336, that a given cache 104 may
utilize, while keys 310 and 320 depict example keys accord-
ing to the format of key 300, in accordance with one
embodiment.

[0030] As noted above, system 100 may be a multi-tenant
computer system that provides computing resources for a
plurality of users associated with a plurality of tenants,
according to some embodiments. In such embodiments, the
keys for cache 104 may be formatted to reflect the multi-
tenant nature of system 100 and data store 106. For example,
as shown in FIG. 3A, key 300 includes four portions: key
portion 330 corresponding to an application version, key
portion 332 corresponding to an organization identifier, key
portion 334 corresponding to a user identifier, and key
portion 336 corresponding to an object identifier. The format
of'’key 300 may be used to specify a data item stored in a data
set 114 of cache 104 in such a multi-tenant computer system,
according to some embodiments. Note that, although four
portions are shown in the format of key 300, this format is
provided merely as an example and keys with more or less
key portions may be implemented in a cache 104, according
to various embodiments.

[0031] Keys 310 and 320 depict two example keys that
utilize the format shown in key 300. Keys 310-320 may be
used, for example, to specify two data items stored in data
set 114 of cache 104. For example, key 310 (“AppVer-
siond0/OrgID1/UserID1/ObjectID1”) may be wused to
specify a first data item associated with a first user of a first
tenant of a multi-tenant system. Similarly, key 320 (“App-
Version40/OrglD2/UserID2/Object]D2”) may be used to
specify a second data item associated with a second user of
a second tenant of the multi-tenant system.

[0032] Turning now to FIG. 3B, an example hierarchy 350
is shown, according to some embodiments. In various
embodiments, hierarchy 350 may correspond to hierarchy
118 of FIG. 1, and may be stored on cache 104 of system
100. In the embodiment depicted in FIG. 3B, hierarchy 350
corresponds to a logical organization of nodes correspond-
ing to the different portions of key 300. That is, as shown in
FIG. 3B, hierarchy 350 includes four levels 360-366, where
each level of the hierarchy 350 corresponds to a different
portion 330-336 of key 300.

US 2019/0205255 Al

[0033] As used herein, the term “hierarchy™ is used to
refer to a parent/child organizational structure for nodes that
correspond to portions of keys for a cache. For example, in
various embodiments, the nodes of hierarchy 350 may be
organized such that different levels of the hierarchy 350
correspond to different portions of the corresponding keys,
such as keys 310-320 of FIG. 3A. One of ordinary skill in
the art with the benefit of this disclosure will recognize,
however, that embodiments of the present disclosure may
implement hierarchy 350 using various data structures. For
example, in some embodiments, hierarchy 350 may include
a directed acyclic B tree graph, capable of having multiple
child nodes for various nodes in the graph. In such embodi-
ments, a given leaf node of the tree may include a pointer to
a given hash value, which may be usable to retrieve a given
data item from data set 114, as described in more detail
below with reference to FIG. 4A. In other embodiments,
however, the organization structure of hierarchy 350 may
vary, for example, based on the format of the keys used the
particular cache 104. For example, in some embodiments,
hierarchy 350 be structured as a B+ tree, a BST, or any other
suitable structure such that the invalidation of a single node
within hierarchy 350 may invalidate multiple keys associ-
ated with that node.

[0034] In various embodiments, hierarchy 350 may be
used to efficiently invalidate a large number of keys of cache
104, reducing the total amount of time spent on the invali-
dation process. For example, consider an instance in which
cache 104 receives a request to invalidate all keys associated
with a first tenant of the multi-tenant system. For the
purposes of this example, assume that the first tenant is
represented in hierarchy 350 by the “OrglD1” node, and the
users associated with the first tenant are represented by the
“User 1,” “User 2,” etc. nodes shown below the OrglD1
node. In such a situation, rather than scanning through all of
the keys associated with data set 114, cache 104 may
identify the OrgID1 node as the root node in hierarchy 350
for the first tenant. Cache 104 may then invalidate the
OrgID1 node, such that a subsequent data request for a data
item associated with the first tenant results in a cache miss
within cache 104. For example, if, immediately after having
invalidated the OrgID1 node, cache 104 received a request
for a data item specified by the key “App Version40/OrgID1/
UserID1/ObjectID1,” cache 104 may traverse hierarchy 350
and, upon finding the OrgID1 node invalidated, determine
that the requested data item is not stored in cache 104. Stated
differently, cache 104 may invalidate the OrgID1 node, for
example by removing the OrgID1 node from hierarchy 350,
such that the nodes beneath the OrgID1 node (e.g., the User
1 node) may also be considered invalidated.

[0035] By invalidating the single OrgID1 node, cache 104
may invalidate four keys (e.g., “AppVersiond0/OrglD1/
UserID1/ObjectID1,” “App Version40/OrglD1/UserID1/Ob-
jectlD2,” “App Versiond0/OrgID1/UserID2/ObjectlD1,”
and “AppVersiond40/OrglD1/UserID2/Object]D2”). Note
that, in some implementations of system 100, a given tenant
may have many (e.g., thousands) of users and, in such
implementations, invalidation of a root node for the first
tenant may result in the efficient invalidation of a large
number (e.g., millions) of keys.

[0036] Similarly, consider an embodiment in which cache
104 receives a request to invalidate keys for all data items
associated with a first user (e.g., “User 1) of a first tenant
of the multi-tenant system. In such an embodiment, cache

Jul. 4,2019

104 may identify the “User 1” node, associated with the
“OrglD1” node, as the root node in hierarchy 350 for the first
user. In such an embodiment, cache 104 may invalidate the
“User 1” node such that a subsequent data request for a data
item associated with the first user results in a cache miss
within cache 104.

[0037] Note that the invalidation of a node within hierar-
chy 350 may be performed according to various techniques.
For example, in one embodiment, invalidating a given node
in hierarchy 350 may include setting a flag of a particular
field associated with the given node. This embodiment,
however, is provided merely as an example and any suitable
method for invalidating a node in hierarchy 350 may be used
in various embodiments, such as deleting the given node
from metadata 112, removing pointers from the given node
to any child nodes, etc.

[0038] Further note that, although FIGS. 3A and 3B have
been described in the context of a multi-tenant system, this
embodiment is provided merely as an example. One of
ordinary skill in the art with the benefit of this disclosure will
recognize that the disclosed systems and methods are not
limited to multi-tenant systems and may be implemented in
other environments (e.g., client/server environments, cloud
computing environments, etc.) as desired.

[0039] Referring now to FIG. 4A, an example block
diagram 400 depicting various aspects of a cache is shown,
according to some embodiments. In the embodiment of FIG.
4A, block diagram 400 includes sections for metadata 402,
hash information 404, and data set 406, which may corre-
spond to metadata 202, hash information 204, and data set
206, respectively, of FIG. 2.

[0040] Block diagram 400 depicts the relationship
between metadata 402, hash information 404, and data set
406 in the operation of a cache, such as cache 200, according
to various embodiments. As discussed above, a given data
item stored in data set 406 may be specified by a corre-
sponding key. For example, key 410 (“AppVersiond0/
OrgID1/UserID1/Describelayout”) may be a key that speci-
fies a data item associated with a data object (e.g., a
“Describelayout” object) that is, potentially, stored in data
set 406. Using this key, hierarchy 408 may be traversed to
both determine whether the requested data item is stored in
the cache 200 and, if so, retrieve the requested data item. In
various embodiments, keys in metadata 402 may point to
hash values 414 in hash information 404. The hash values
414, in turn, may then point to the actual data items in data
set 406. For example, in some embodiments, hierarchy 408
may be a tree structure (e.g., a directed acyclic B-tree) where
a given leaf node of the tree structure includes a pointer to
a given hash value 414, where the given hash value is usable
to retrieve a requested data item in data set 406. As shown
in table 400, key 410 points to hash 414 A, which points to
the requested data item (“DescribeLayout1”) in data set 406.
[0041] Turning now to FIG. 4B, an example block dia-
gram 450 corresponding to a cache is shown, according to
some embodiments. In FIG. 4B, block diagram 450 depicts
the relationship between metadata 402, hash information
404, and data set 406 in an embodiment in which a node of
hierarchy 408 has been invalidated.

[0042] In the depicted embodiment, the “Describelayout”
node associated with a first tenant has been invalidated. This
node may be invalidated for various reasons. For example,
in one embodiment, a user (e.g., an administrator) associated
with the first tenant may make a change to a data object

US 2019/0205255 Al

associated with a layout of a software application (e.g., the
DescribeLayout object). Upon making this change, the data
associated with the previous version of this data object that
is stored in data set 406 may be stale, and thus may need to
be replaced. Accordingly, the keys in metadata 402 associ-
ated with the stale data items for the DescribelLayout data
object may need to be invalidated. Note, however, that this
embodiment is provided merely as an example and is not
intended to limit the scope of this disclosure. In other
embodiments, for example, cache 104 may receive a request
to invalidate keys associated with a given software applica-
tion, a given version of a software application, a given
namespace, a user or set of users, etc.

[0043] In FIG. 4B, the “Describelayout” node may be
invalidated such that the keys (e.g., keys 452 and 454)
associated with this data object, for the first tenant, no longer
point to hashes in hash lists 456 and 458, which in turn may
prevent the corresponding data items stored in data set 406
from being retrieved using the keys 452-454. Thus, in
various embodiments, the invalidation of a single node
within hierarchy 408 may result in the invalidation of
multiple keys for cache 200.

[0044] Note, however, that other keys associated with the
“DescribelLayout” node may still be valid for data items in
cache 200, according to some embodiments. For example,
data items associated with a second tenant (represented in
hierarchy 408 by the “OrglD2” node) may also correspond
to a Describel.ayout data object associated with the second
tenant. Note that, in various embodiments, data objects for
different tenants may vary such that, despite having the same
name and being specified by a similar key, the underlying
data for those data object may be different for a first tenant
than for a second tenant. Thus, in such embodiments, the
modification of the “Describelayout™ object for the first
tenant may not affect the “DescribeLayout” object for the
second tenant, such that the second tenant’s data for that data
object may not need to be removed from data set 406 due to
the first tenant’s modification. Accordingly, in such embodi-
ments, a key associated with the “Describel.ayout” object
for the second tenant (e.g., App Version40/OrgID2/UserID2/
Describelayout) may still point to a hash value in hash
information 404, which may, in turn, point to a data item in
data set 406.

[0045] Referring now to FIG. 5, a flow diagram of an
example method 500 for invalidating one or more keys of a
cache is shown, according to some embodiments. In various
embodiments, method 500 may be implemented, for
example, by one or more application servers 102 in system
100 of FIG. 1. FIG. 5 includes blocks 502-508. While these
blocks are shown in a particular order for ease of under-
standing, other orders may be used.

[0046] Block 502 includes implementing a cache for a
database system. For example, in some embodiments, appli-
cation server 102 may implement a cache 104 for data store
106. In some embodiments, cache 104 may store a data set
corresponding to data stored by data store 106. For example,
in some embodiments, it may be desirable to store in cache
104 data from data store 106 that is used frequently, data that
changes infrequently, etc. In various embodiments, the data
set stored by cache 104 may be organized such that a stored
data item of the data set is specified by a corresponding key
having one or more portions.

[0047] Method 500 then proceeds to block 504, which
includes storing metadata for the cache, where the metadata

Jul. 4,2019

includes nodes organized in a hierarchy in which different
levels of the hierarchy correspond to different portions of the
corresponding keys for the data set. For example, the stored
metadata may include nodes organized in a hierarchy. A
hierarchy (such as hierarchy 350 of FIG. 3B) may be
organized such that different levels of the hierarchy corre-
spond to different portions of the keys for the cache.
[0048] Method 500 then proceeds to block 506, which
includes receiving a request to invalidate one or more keys
of the cache. For example, in one embodiment, an admin-
istrator of a given tenant may update a particular object (e.g.,
an object associated with the layout of a software applica-
tion). In such an embodiment, the data stored in cache 104
for that particular object for the given tenant may no longer
be valid. Accordingly, the keys of cache 104 that point to the
stored (now stale) data may need to be invalidated, and the
request of block 506 may correspond to a request to invali-
date one or more keys associated with that particular data
object, according to one embodiment.

[0049] Method 500 then proceeds to block 508, which
includes, based on a key value corresponding to the request,
invalidating a particular node within the metadata, where the
invalidating results in a cache miss for a subsequent request
for data corresponding to a key having a portion correspond-
ing to the particular node. Note that, in some embodiments,
invalidating the particular node may include identifying the
particular node as a root node in the hierarchy relative to a
key portion that is common to all keys in the set of keys
being invalidated, and then invalidating that particular node.
For example, referring to the example discussed above with
reference to FIG. 1, in response to a request to invalidate a
set of keys (e.g., keys 120A/122B/124C; 120A/122B/124D;
and 120A/122B/124E) method 500 may include identifying
node 122B as a root node relative to nodes 124C-124E.
Method 500 may then include invalidating the particular
node, which in turn may invalidate the set of keys such that
subsequent requests for data items associated with the set of
keys (e.g., a request including the key 120A/122B/124C)
results in a cache miss.

[0050] Further, in some embodiments, method 500 may
include, subsequent to invalidating the set of keys, deleting
data items corresponding to the set of keys from the data set.
For example, subsequent to invalidating the set of keys (e.g.,
keys 120A/122B/124C; 120A/122B/124D; and 120A/122B/
124E), cache 104 may delete the data items associated with
those invalidated keys from data set 114.

[0051] Turning now to FIG. 6, a block diagram illustrating
an example multi-tenant computing system (MTCS) 600 is
shown, according to some embodiments. In some embodi-
ments, MTCS 600 may correspond to system 100 of FIG. 1.
As shown in FIG. 6, MTCS 600 includes application servers
602 and databases 606. In the embodiment of FIG. 6,
databases 606 may be multi-tenant database systems con-
figured to store data for a plurality of tenants associated with
MTCS 600.

[0052] In various embodiments, MTCS 600 may be con-
figured to provide computing resources to various users 610
associated with various tenants 612 of MTCS 600. For
example, MTCS 600 may host software applications (e.g.,
using application servers 602) and store data (e.g., via
multi-tenant database systems 606) for a plurality of tenants
612 such that users 610 associated with the tenants 612 may
access the software applications and data via network 608.
Network 608 may be a LAN (local area network), WAN

US 2019/0205255 Al

(wide area network), wireless network, point-to-point net-
work, star network, token ring network, hub network, or any
other appropriate configuration. In various embodiments,
tenant data (e.g., stored in databases 606 or cache 604) may
be arranged such that the data of one tenant (e.g., tenant
612A) is kept separate from the data of another tenant (e.g.,
tenant 612C) such that the separate tenants do not have
access to the other’s data, unless such data is expressly
shared.

[0053] As shown in FIG. 6, MTCS 600 further includes
cache 604. In various embodiments, application servers 602
may be configured to implement cache 604 to facilitate
faster access to data stored by databases 606. For example,
in some embodiments, cache 104 may be a distributed,
in-memory cache implemented by one or more application
servers 602 and configured to store data associated with
various tenants 612 of MTCS 600. In various embodiments,
access to data stored in cache 604 may vary, for example
based on the user requesting the data, the nature of the
requested data, etc. For example, in some embodiments, a
data item stored to cache 604 may only be accessible to the
user for which that data item was initially stored. Further, in
some embodiments, the data items stored in cache 604
associated with a given tenant may be accessible to all users
associated with the given tenant, a subset of the users
associated with the given tenant, etc. Further still, in some
embodiments, some data items may be accessible to users in
different tenants, such as user 610C associated with tenant
612A and user 610D associated with tenant 612B. Access to
data stored in cache 604 may be determined, for example, by
tenant-specific policy rules, system-wide policy rules imple-
mented for some or all of the tenants associated with MTCS
600, etc.

Example Computer System

[0054] Referring now to FIG. 7, a block diagram of an
example computer system 700 is depicted, which may
implement one or more computer systems, such as an
application server 102 of FIG. 1, according to various
embodiments. Computer system 700 includes a processor
subsystem 720 that is coupled to a system memory 740 and
1/0 interfaces(s) 760 via an interconnect 780 (e.g., a system
bus). 1/O interface(s) 760 is coupled to one or more I/O
devices 770. Computer system 700 may be any of various
types of devices, including, but not limited to, a server
system, personal computer system, desktop computer, lap-
top or notebook computer, mainframe computer system,
server computer system operating in a datacenter facility,
tablet computer, handheld computer, workstation, network
computer, etc. Although a single computer system 700 is
shown in FIG. 7 for convenience, computer system 700 may
also be implemented as two or more computer systems
operating together.

[0055] Processor subsystem 720 may include one or more
processors or processing units. In various embodiments of
computer system 700, multiple instances of processor sub-
system 720 may be coupled to interconnect 780. In various
embodiments, processor subsystem 720 (or each processor
unit within 720) may contain a cache or other form of
on-board memory.

[0056] System memory 740 is usable to store program
instructions executable by processor subsystem 720 to cause
system 700 perform various operations described herein.
System memory 740 may be implemented using different

Jul. 4,2019

physical, non-transitory memory media, such as hard disk
storage, floppy disk storage, removable disk storage, flash
memory, random access memory (RAM-SRAM, EDO
RAM, SDRAM, DDR SDRAM, RAMBUS RAM, etc.),
read only memory (PROM, EEPROM, etc.), and so on.
Memory in computer system 700 is not limited to primary
storage such as system memory 740. Rather, computer
system 700 may also include other forms of storage such as
cache memory in processor subsystem 720 and secondary
storage on I/O devices 770 (e.g., a hard drive, storage array,
etc.). In some embodiments, these other forms of storage
may also store program instructions executable by processor
subsystem 720.

[0057] 1/O interfaces 760 may be any of various types of
interfaces configured to couple to and communicate with
other devices, according to various embodiments. In one
embodiment, 1/O interface 760 is a bridge chip (e.g., South-
bridge) from a front-side to one or more back-side buses. I/O
interfaces 760 may be coupled to one or more /O devices
770 via one or more corresponding buses or other interfaces.
Examples of /O devices 770 include storage devices (hard
drive, optical drive, removable flash drive, storage array,
SAN, or their associated controller), network interface
devices (e.g., to a local or wide-area network), or other
devices (e.g., graphics, user interface devices, etc.). In one
embodiment, I/O devices 770 includes a network interface
device (e.g., configured to communicate over WilFi, Blu-
etooth, Ethernet, etc.), and computer system 700 is coupled
to a network via the network interface device.

[0058] Although the embodiments disclosed herein are
susceptible to various modifications and alternative forms,
specific embodiments are shown by way of example in the
figures and are described herein in detail. It should be
understood, however, that figures and detailed description
thereto are not intended to limit the scope of the claims to the
particular forms disclosed. Instead, this application is
intended to cover all modifications, equivalents and alter-
natives falling within the spirit and scope of the disclosure
of'the present application as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description.

[0059] This disclosure includes references to “one
embodiment,” “a particular embodiment,” “some embodi-
ments,” “various embodiments,” “an embodiment,” etc. The
appearances of these or similar phrases do not necessarily
refer to the same embodiment. Particular features, struc-
tures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

[0060] As used herein, the term “based on” is used to
describe one or more factors that affect a determination. This
term does not foreclose the possibility that additional factors
may affect the determination. That is, a determination may
be solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B is a factor that is used to determine A or that affects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase is also intended to cover an embodi-
ment in which A is determined based solely on B. As used
herein, the phrase “based on” is synonymous with the phrase
“based at least in part on.”

US 2019/0205255 Al

[0061] As used herein, the phrase “in response to”
describes one or more factors that trigger an effect. This
phrase does not foreclose the possibility that additional
factors may affect or otherwise trigger the effect. That is, an
effect may be solely in response to those factors, or may be
in response to the specified factors as well as other, unspeci-
fied factors. Consider the phrase “perform A in response to
B.” This phrase specifies that B is a factor that triggers the
performance of A. This phrase does not foreclose that
performing A may also be in response to some other factor,
such as C. This phrase is also intended to cover an embodi-
ment in which A is performed solely in response to B.

[0062] As used herein, the terms “first,” “second,” etc. are
used as labels for nouns that they precede, and do not imply
any type of ordering (e.g., spatial, temporal, logical, etc.),
unless stated otherwise. For example, in a multi-tenant
computer system, the terms “first tenant” and “second ten-
ant” may be used to refer to any two tenants of the
multi-tenant computer system.

[0063] When used in the claims, the term “or” is used as
an inclusive or and not as an exclusive or. For example, the
phrase “at least one of x, y, or z”” means any one of X, y, and
z, as well as any combination thereof (e.g., x and y, but not
7).

[0064] It is to be understood that the present disclosure is
not limited to particular devices or methods, which may, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting. As
used herein, the singular forms “a,” “an,” and “the” include
singular and plural referents unless the context clearly
dictates otherwise. Furthermore, the word “may” is used
throughout this application in a permissive sense (i.c., hav-
ing the potential to, being able to), not in a mandatory sense
(i.e., must). The term “include,” and derivations thereof,
mean “including, but not limited to.” The term “coupled”
means directly or indirectly connected.

[0065] Within this disclosure, different entities (which
may variously be referred to as “units,” “circuits,” other
components, etc.) may be described or claimed as “config-
ured” to perform one or more tasks or operations. This
formulation—{entity] configured to [perform one or more
tasks]—is used herein to refer to structure (i.e., something
physical, such as an electronic circuit). More specifically,
this formulation is used to indicate that this structure is
arranged to perform the one or more tasks during operation.
A structure can be said to be “configured to” perform some
task even if the structure is not currently being operated. A
“memory device configured to store data” is intended to
cover, for example, an integrated circuit that has circuitry
that performs this function during operation, even if the
integrated circuit in question is not currently being used
(e.g., a power supply is not connected to it). Thus, an entity
described or recited as “configured to” perform some task
refers to something physical, such as a device, circuit,
memory storing program instructions executable to imple-
ment the task, etc. This phrase is not used herein to refer to
something intangible.

[0066] The term “configured to” is not intended to mean
“configurable to.” An unprogrammed FPGA, for example,
would not be considered to be “configured to” perform some
specific function, although it may be “configurable to”
perform that function after programming.

Jul. 4,2019

[0067] Reciting in the appended claims that a structure is
“configured to” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. § 112(f) for that claim
element. Accordingly, none of the claims in this application
as filed are intended to be interpreted as having means-plus-
function elements. Should Applicant wish to invoke Section
112(f) during prosecution, it will recite claim elements using
the “means for” [performing a function]| construct.

[0068] Although specific embodiments have been
described above, these embodiments are not intended to
limit the scope of the present disclosure, even where only a
single embodiment is described with respect to a particular
feature. Examples of features provided in the disclosure are
intended to be illustrative rather than restrictive unless stated
otherwise. The above description is intended to cover such
alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.

[0069] The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or implicitly), or any generalization thereof,
whether or not it mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu-
lated during prosecution of this application (or an applica-
tion claiming priority thereto) to any such combination of
features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of the independent claims and features from
respective independent claims may be combined in any
appropriate manner and not merely in the specific combi-
nations enumerated in the appended claims.

What is claimed is:
1. A method, comprising:

implementing, by a computer system, a cache for a
database system, wherein the cache stores a data set and
is organized such that a stored data item of the data set
is specified by a corresponding key having one or more
portions;

storing, by the computer system, metadata for the cache,
wherein the metadata includes nodes organized in a
hierarchy in which different levels of the hierarchy
correspond to different portions of the corresponding
keys for the data set;

receiving, by the computer system, a request to invalidate
one or more keys of the cache; and

based on a key value corresponding to the request, invali-
dating, by the computer system, a particular node
within the metadata, wherein the invalidating results in
a cache miss for a subsequent request for data corre-
sponding to a key having a portion corresponding to the
particular node.

2. The method of claim 1, wherein the database system is

a multi-tenant database system, and wherein the data set
includes data items for a plurality of tenants of the multi-
tenant database system.

3. The method of claim 2, wherein the request to invali-
date one or more keys is a request to invalidate keys for all
data items associated with a first tenant of the multi-tenant
database system.

4. The method of claim 3, further comprising:

identifying within the hierarchy, by the computer system,
a root node for the first tenant; and

US 2019/0205255 Al

invalidating, by the computer system, the root node for
the first tenant such that a subsequent request for a data
item associated with the first tenant results in a cache
miss within the cache.

5. The method of claim 2, wherein the request to invali-
date one or more keys is a request to invalidate keys for all
data items associated with a first user of a first tenant of the
multi-tenant database system.

6. The method of claim 5, further comprising:

identifying within the hierarchy, by the computer system,

a root node for the first user associated with the first
tenant; and

invalidating, by the computer system, the root node for

the first user such that a subsequent request for a data
item associated with the first user results in a cache
miss within the cache.
7. The method of claim 1, wherein the metadata includes
the nodes structured as a directed acyclic graph.
8. The method of claim 7, wherein the directed acyclic
graph is arranged as a tree structure; and wherein a given
leaf node of the tree structure includes a pointer to a given
hash value, wherein the given hash value is usable to retrieve
a given data item of the data set.
9. The method of claim 1, wherein the particular node is
a root node in the hierarchy relative to a portion that is
common to each of the one or more keys; and wherein
invalidating the one or more keys of the cache is performed
without scanning all keys associated with the cache.
10. A non-transitory, computer-readable medium having
computer instructions stored thereon that are capable of
being executed by a computer system to cause operations
comprising:
implementing a cache for a database system, wherein the
cache stores a data set and is organized such that a
stored data item of the data set is specified by a
corresponding key having one or more portions;

storing metadata for the cache, wherein the metadata
includes nodes organized in a hierarchy in which dif-
ferent levels of the hierarchy correspond to different
portions of the corresponding keys for the data set;

receiving a request to invalidate one or more keys of the
cache; and

based on a key value corresponding to the request, invali-

dating a particular node within the metadata, wherein
the invalidating results in a cache miss for a subsequent
request for data corresponding to a key having a portion
corresponding to the particular node.

11. The non-transitory, computer-readable medium of
claim 10, wherein the request to invalidate the one or more
keys is a request to invalidate all keys for data items
associated with a given application.

12. The non-transitory, computer-readable medium of
claim 10, wherein the database system is a multi-tenant
database system, and wherein the data set includes data
items for a plurality of tenants of the multi-tenant database
system.

13. The non-transitory, computer-readable medium of
claim 12, wherein the request to invalidate one or more keys
is a request to invalidate keys for all data items associated
with a first tenant of the multi-tenant database system.

14. The non-transitory, computer-readable medium of
claim 13, further comprising:

identifying within the hierarchy, by the computer system,

a root node for the first tenant; and

Jul. 4,2019

invalidating, by the computer system, the root node for
the first tenant such that a subsequent request for a data
item associated with the first tenant results in a cache
miss within the cache.

15. The non-transitory, computer-readable medium of
claim 12, wherein the request to invalidate one or more keys
is a request to invalidate keys for all data items associated
with a first user of a first tenant of the multi-tenant database
system.

16. The non-transitory, computer-readable medium of
claim 15, further comprising:

identifying within the hierarchy, by the computer system,

a root node for the first user associated with the first
tenant; and

invalidating, by the computer system, the root node for

the first user such that a subsequent request for a data
item associated with the first user results in a cache
miss within the cache.
17. A method, comprising:
maintaining, by a computer system, a distributed cache
that stores a data set corresponding to a data store,
wherein the cache is organized such that a stored data
item of the data set is specified by a corresponding key
having one or more portions;
storing, in the cache, metadata corresponding to the
cache, the metadata including a plurality of nodes
organized in a hierarchy in which different levels of the
hierarchy correspond to different portions of the cor-
responding keys for the data set;
receiving, by the computer system, a request to invalidate
a set of keys of the cache;

identifying, by the computer system based on a key value
associated with the request, a particular node in the
metadata, wherein the particular node is a root node in
the hierarchy relative to a portion that is common to all
keys in the set of keys; and

based on the particular node, invalidating, by the com-

puter system, the set of keys of the cache such that
subsequent requests for data items specified by the set
of keys results in a cache miss.

18. The method of claim 17, further comprising:

subsequent to invalidating the set of keys, retrieving, by

the computer system, program code associated with a
first key of the set of keys;

executing, by the computer system, the program code,

wherein the executing includes retrieving data from the
data store;

storing, by the computer system, the retrieved data in the

cache; and

updating, by the computer system, the metadata to include

one or more nodes in the hierarchy corresponding to the
first key.

19. The method of claim 17, further comprising:

subsequent to invalidating the set of keys, the computer

system deleting, from the data set, data items corre-
sponding to the set of keys.

20. The method of claim 17, wherein the data set stored
by the cache includes data items for a plurality of tenants;
and wherein the request to invalidate the set of keys is a
request to invalidate all keys associated with a first tenant of
the plurality of tenants.

#* #* #* #* #*

