
(19) United States
US 20090254714A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0254714 A1
Nayyar et al. (43) Pub. Date: Oct. 8, 2009

(54) METHOD AND APPARATUS FOR
EXPLOITING PARALLELISMACROSS
MULTIPLE TRAFFIC STREAMS THROUGH A
SINGLE CHANNEL

Raman Nayyar, Hillsboro, OR
(US); Suvansh Krishen Kapur,
Portland, OR (US)

(75) Inventors:

Correspondence Address:
INTEL/BSTZ.
BLAKELY SOKOLOFF TAYLOR & ZAFMAN
LLP
1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040 (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(21) Appl. No.: 12/478,522

CPI

OO

I/O Hub 115

CAM
Queueing

Logic 65

Write
Protocol
Logic

Channel Queues 170
P NPCMPBLK

2,7476 A8

Channel Queues
NP CMP BK

82.84 8688

(22) Filed: Jun. 4, 2009

Related U.S. Application Data

(63) Continuation of application No. 1 1/348,171, filed on
Feb. 6, 2006, now Pat. No. 7,562,194.

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)
G06F 3/8 (2006.01)

(52) U.S. Cl. 711/151; 711/E12.001

(57) ABSTRACT

Methods of obtaining, enqueueing and executing several
memory transactions are described, where the memory trans
actions may be generated in a first order but executed in a
second order. Despite the relaxed ordering, essential pro
gramming paradigms such as producer-consumer relation
ships are not affected. Chipsets and systems using the meth
ods are also described and claimed.

Cortiroiler

05

Execution
Logic

85

8 O

Virtualization

tographic 4.
ccelerator Processing

45 Engine 150

Patent Application Publication Oct. 8, 2009 Sheet 1 of 3 US 2009/0254714 A1

CPU Controller

OO 105

I/O Hub 115

Bus Interface Inito

CAM Channel Queues 170
P NP CMPBLK

1.65 727476.78

Channel Queues 180
P NPCMPBLK

18284.8688

Queueing
Logic

Virtualization

Signaling Signaling DMA Cryptographic
3E $E Engine ccelerator Processing

30 135 140 45 Engine 150

Oct. 8, 2009 Sheet 2 of 3 US 2009/0254714 A1 Patent Application Publication

28
R10

26 27 25

200
1.

2O5

214

W

R4 c25
22 213

2 e

22O 22 219

Queueing Results:

© tro

After Executing

US 2009/0254714 A1 Oct. 8, 2009 Sheet 3 of 3 Patent Application Publication

After Executing

US 2009/0254714 A1

METHOD AND APPARATUS FOR
EXPLOITING PARALLELISMACROSS

MULTIPLE TRAFFIC STREAMS THROUGH A
SINGLE CHANNEL

CROSS REFERENCE TO RELATED
APPLICATION

0001. The present application is a continuation applica
tion of patent application Ser. No. 1 1/348,171, filed Feb. 6,
2006.

FIELD OF THE INVENTION

0002 The invention relates to memory write performance
in cache-coherent architectures.

BACKGROUND

0003 Programs executing on data processing systems
often rely on peripheral devices to send, receive, or manipu
late data. A program may view the peripheral's operations as
atomic units (i.e. indivisible, starting at a first time and fin
ishing sometime later) but the peripheral may actually have to
perform many sub-tasks to complete the work requested of it.
For example, a network interface instructed to send a data
packet may be required to execute a number of memory
transactions to obtain all the data for the packet from memory.
0004. In a computer system where several threads of
execution are proceeding concurrently (either truly simulta
neously on multiple processors or logically simultaneously
by time-slicing), a constant stream of memory transactions
may be generated, executed and retired by various Sub
systems. In general, the Subsystems cannot know how the
transactions are related, and therefore the system must
execute transactions in the same order they were generated to
avoid causing incorrect program operation.
0005. The basic programming semantic supported by this
strict ordering requirement is called the producer/consumer
(“P/C) relationship. P/C relationships can appear in many
complex forms, but a simple example shows how ordering
changes can cause errors. Imagine two programs executing
on a system. The first program produces data and the second
operates on (“consumes”) the data. In a canonical P/C rela
tionship, the first program produces a quantity of data, then
sets a flag to indicate to the second program that there is data
for it to process. The second program monitors the flag, and
when it is set, begins to consume the data. However, both
“data” and “flag may simply be values in computer memory
shared between the processes—and indistinguishable to a
peripheral that sets them. If the first program generates a
sequence of memory transactions that result in data being
placed in memory, then generates a final memory transaction
to set the flag, but the system re-orders the transactions so that
the flag is set before all the data is ready in memory, then the
second program may begin working prematurely and con
Sume data that has not yet been produced. Thus, re-ordering
memory transactions can break P/C relationships.
0006 Nevertheless, the ability to re-order memory trans
actions can provide tremendous flexibility to a computer sys
tem. For example, if a first transaction involves a resource
(such as a cache location) that is temporarily unavailable, a
system that can execute a second transaction that was gener
ated after the first transaction can make forward progress,
rather than stalling all execution until the resource becomes
available to complete the first transaction. Identifying and

Oct. 8, 2009

exploiting circumstances in which re-ordering transactions is
safe can produce overall system performance gains.

BRIEF DESCRIPTION OF DRAWINGS

0007 Embodiments of the invention are illustrated by way
of example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an or
“one' embodiment in this disclosure are not necessarily to the
same embodiment, and Such references mean "at least one.”
0008 FIG. 1 is a block diagram of some parts of a system
that implements an embodiment of the invention.
0009 FIGS. 2 and 3 show a sample sequence where
memory transactions are generated in a first order but
executed in a second order.

DETAILED DESCRIPTION

0010 Memory transactions are collected and placed on
one of several pending work queues based on characteristics
of the transactions. Then, transactions are selected from the
queues and executed. The endueueing and selecting are
designed to permit transactions to be executed out-of-order
(with respect to the order in which they were generated)
without risk of breaking producer/consumer relationships
(and other logically-equivalent paradigms).
0011. The ideas and operations of embodiments of the
invention will be described primarily with reference to a
chipset to interface between the memory of a computer sys
tem and one or more peripheral devices. ("Chipset is a col
lective noun that refers to a circuit or group of circuits to
perform functions of use to a computer system. Embodiments
of the invention may be incorporated within a single micro
electronic circuit or integrated circuit (“IC) or aggregated
with other circuits into a larger system. Alternatively, func
tions that may be combined to implement an embodiment of
the invention may be distributed among two or more separate
circuits that communicate over interconnecting paths.) How
ever, it is recognized that the queueing and re-ordering
described here can also be performed by software, or by a
combination of hardware and software, to obtain similar ben
efits.
0012 FIG. 1 shows a portion of a data processing system,
including a central processing unit (“CPU, also called a
“processor.) 100, a cache controller 105 and a memory 110.
One of the functions of cache controller 105 is to manage
other modules interactions with memory 110 so that the
cache's contents are reliably consistent (“coherent') with
memory. The storage for the cache itself may be elsewhere
(for example, within CPU 100), and the cache controller may
monitor modules interactions and produce signals to invali
date certain cache entries when the underlying memory con
tents have changed.
0013 The functional blocks surrounded by dashed-line
115 implement methods of embodiments of the invention by
providing interface services between internal or external
peripherals and system memory 110. The blocks can be
thought of as an input/output (“I/O”) hub to manage input and
output transactions from one or more peripheral devices. Bus
interface unit 120 consolidates data transactions from other
modules and communicates with memory 110 by way of
cache controller 105. Signaling units 130 and 135 provide
signals and implement protocols for interacting with periph
erals connected to I/O hub 115 through industry-standard

US 2009/0254714 A1

hardware interfaces such as Peripheral Component Intercon
nect (“PCI), PCI-Express, and Accelerated Graphics Port
(AGP). The peripherals themselves may be, for example, a
network interface card (“NIC) 190 or a mass storage inter
face card 195. Other peripherals that implement an appropri
ate hardware interface may also be connected to the system.
For example, a graphics adapter ("video card') might be
connected through an AGP interface. (AGP interface and
Video card not shown in this figure.)
0014. Other peripheral devices might be implemented
within I/O hub 115 itself. For example, direct memory access
(“DMA) engine 140 may be used to copy blocks of data from
one area of memory 110 to another area, or to move data
between memory 110 and one of the other modules in I/O hub
115. Cryptographic accelerator 145 is another representative
peripheral device that might be incorporated in I/O hub 115 to
manipulate (e.g. encrypt or decrypt) data traveling between
another module or external device and memory 110. A com
mon feature of signaling units 130 and 135, DMA engine 140
and cryptographic accelerator 145 that is relevant to embodi
ments of the invention is that all of these modules may send
data to “upstream” modules such as CPU 100, cache control
ler 105, or memory 110.
0.015 Virtualization engine/packet processing engine
(“VE/PPE) 150 is an interesting module that may be incor
porated in some systems to Support an operational mode
called “virtual computing.” A full description of virtual com
puting is beyond the scope of this disclosure, but briefly:
hardware, firmware and Software within a physical comput
ing system can cooperate to create several "virtual comput
ing environments. “Guest” software executes within one of
these environments as if it had a complete, independent physi
cal system at its sole disposal, but in reality, all the resources
the guest sees are emulated or shared from the underlying
physical system, often under the control of low-level software
known as a “hypervisor.” VE/PPE 150 may contribute to the
creation of virtual machines by presenting virtual instances of
other modules. For example, VE/PPE 150 may use signaling
unit 130 and its connected NIC 190 to create several logical
NICs that can be allocated to guest software running in dif
ferent virtual machines. All low-level signaling and data
transfer to and from the network may occur through the
physical NIC 190, but VE/PPE 150 may associate memory
transactions for inbound and outbound traffic with the logical
NIC to which they were directed. Similarly, VE/PPE 150 may
be able to associate or tag other memory transactions for other
virtual devices with a logical “stream' identifier so that trans
actions for one virtual machine can be distinguished from
transactions for another virtual machine. Since each virtual
machine and its guest software operate as independent enti
ties, these logical stream identifiers can reliably distinguish
memory transactions that cannot possibly be related. There
fore, re-ordering transactions from different streams cannot
harm a producer/consumer relationship.
0016. It is appreciated that some peripherals may be able
to tag their memory transactions with a logical stream iden
tifier, even though they are not, strictly speaking, associated
with a virtual machine. For example, a network interface may
tag data directed to a different protocol addresses or Media
Accesss Control (MAC) addresses with different logical
streams. In this case, data are grouped together by logical
stream (a "data-centric' view), rather than by virtual machine
(a “hardware-centric' view).

Oct. 8, 2009

0017 Queueing logic 155 accepts memory transactions
from the various modules and places them on one of the
queues in block 160. Then, execution logic 185 selects trans
actions from the queues and passes them to bus interface unit
120 for execution. Embodiments of the invention are not
concerned with data flow from memory to I/O hub 115; that
data arrives and may be processed through different path
ways. Instead, embodiments operate to identify and exploit
opportunities to execute hub-to-memory transfers in a differ
ent and more-favorable order than the order in which they
were generated, without risk of breaking producer/consumer
and analogous logical relationships.
(0018 FIG. 1 shows two “channel queues.” 170 and 180,
which are groups of individual queues of memory transac
tions. Channel queues for channels that can distinguish logi
cal streams will have a content-addressable memory
(“CAM) 165 to help queueing logic 155 place the transac
tions on an appropriate queue. Channels that cannot distin
guish logical streams (e.g. the channel associated with chan
nel queues 180) do not need a CAM.
0019. The four individual queues shown in channel queues
170 and 180 are labeled “P” (172, 182) for “Posted,” “NP”
(174, 184) for “Non-Posted,” “CMP (176, 186) for
“Completion.” and “BLK” (178, 188) for “Blocked.” Differ
ent types of memory transactions are endueued on each of the
four queues within a channel (each channel operates the
same, so only one channel's operation will be described).
CAM 165 tracks the logical streams associated with posted
transactions on “P” queues, and permits the identification of
non-posted and completion transactions that must be blocked
until a posted transaction from the same stream is completed.
(0020. A “Posted” transaction may be a simple “write”
operation: a peripheral wishes to transfer data to an addressed
location in memory, and no further interaction is expected or
required. A “Non-Posted transaction may be a “read
request: a peripheral wishes to obtain data from an addressed
location in memory, and the NP transaction initiates that
process. A reply (containing the data at the specified address)
is expected to arrive later. A "Completion” transaction may be
the response to an earlier “read request from the processor to
the peripheral: it contains data the peripheral wishes to return
to the system. Finally, the “Blocked' queue contains memory
transactions that cannot be executed immediately because of
ordering rules. Blocked transactions will become unblocked
after a corresponding Posted transaction executes, and may
be executed then. Queueing logic 155 and execution logic 185
use the information in CAM 165 to ensure that memory
transactions are endueued, selected, executed, and retired
according to the following ordering rules:

0021 Posted transactions can pass any transaction
except another posted transaction (nothing can pass a
posted transaction)

0022. Non-posted transactions can pass other non
posted transactions or completion transactions

0023 Completion transactions can pass other comple
tion transactions or non-posted transactions.

“Passing refers to issuing a transaction out of the order it was
generated. For example, if transaction 1 is generated and
enqueued, then transaction 2 is generated and enqueued, but
transaction 2 is executed before transaction 1, then transac
tion 2 has passed transaction 1. Note that non-posted and
completion transactions can pass each other freely, so they are
equivalent for re-ordering purposes and might be consoli
dated into a single class (and a single queue). The embodi

US 2009/0254714 A1

ment described here separates them for other administrative
reasons. Similarly, posted transactions might be separated
into two or more classes if it is convenient to do so, where all
of the classes observe the stated passing rules.
0024 Observing the foregoing rules ensures that pro
ducer/consumer relationships are not affected by re-ordering
memory transactions, and provides some flexibility in trans
action issuing order that may help the system make progress
when some of the queues are blocked by flow-control
requests from upstream components, or when Some transac
tions cannot be completed immediately for other reasons.
However, a supplemental rule that may be applied by embodi
ments of the invention greatly expands the re-ordering possi
bilities. That rule is: transactions associated with different
logical streams have no ordering restrictions between them.
0025. The logical stream identifiers permit related
memory transactions to be grouped together, and no ordering
rules need be respected between transactions from different
groups. Grouping transactions this way exposes parallelism
between the streams which may be exploited by embodi
ments of the invention that execute the transactions in a dif
ferent order than they were generated.
0026. The rules presented above permit relaxed ordering
of memory transaction execution in a system that generates
and then retires transactions as described. However, the final
rule that transactions from different logical streams may be
executed in any order has much broader applicability. Any
system that can identify separate logical streams can exploit
that logical independence to re-order operations on data for
those streams without affecting the logical correctness of
Software or hardware to manipulate the data stream.
0027 FIGS. 2 and 3 show how transactions might be gen
erated, enqueued and issued according to an embodiment of
the invention. Each transaction 200 has two parts that are
relevant to the operations described: a type 202 (which may
be “R” for “read,” “W for “write” or “C” for “completion');
and a logical stream identifier 205. Transactions will also
contain other information (Such as a memory address and data
to be written at the address) but that other information is not
important to this discussion. The transactions (211 through
221) are generated in the order shown at 210, then enqueued
as follows.
0028 Queueing logic 155 obtains memory transaction
W/4(211) and places it on queue P 172 because its transaction
type is “W.” An entry in CAM 165 signals the transaction on
logical stream 4. Next, W/5 (212) arrives, is enqueued on P
172, and another entry is made in CAM 165. Rf4 (213)
arrives, but its stream (4) yields a "hit' in CAM 165, so the
transaction is placed on the blocked queue 178 and flagged
(225) to indicate that it cannot be executed yet. Also, an
“unblock” (“U”) request 230 is added to P queue 172 so that
flag 225 on R/4(213) will be cleared. U/213 (230) is not really
a memory transaction, but the queue hardware provides a
convenient way to ensure that the unblock request will be
executed at an acceptable time. In some embodiments, differ
ent unblocking logic may be used so that blocked transactions
can be unblocked as soon as the blocking transaction
executes. In the embodiment described here, note that U/213
(230) will not reach the front of P 172 until after W/5 (212) is
executed. Therefore, R/4 (213) will remain blocked for
slightly longer than is strictly necessary.
0029. The remaining memory transactions 214-221 are
generated and enqueued in a similar fashion: C/25 (214) finds
no CAM entry, so it is enqueued on CMP 176. R/7 (215) is

Oct. 8, 2009

placed on NP 174. W/2 (216) and W/4 (217) are appended to
P 172 (with corresponding CAM entries), and R/10 (218) is
appended to NP 174. The next transaction to be placed on
BLK 178 and flagged is C/5 (219), which hits the CAM entry
corresponding to W/5 (212).
0030 Execution logic 185 may choose and issue an entry
from any of P 172, NP174, or CMP 176, and may also choose
the first entry from BLK 178 if its flag has been cleared.
Upstream logic (e.g. cache controller 105) can send a flow
control message to control execution logic to stop it from
issuing transactions from the P 172 or NP/CMP (174/176)
queues, but transactions from other queues may still be
executed.

0031) If execution logic 185 issues W/4 (211) from P 172,
the queues change as shown in the lower part of FIG. 2.
Transaction W/4 (211) has been removed from the head of P
172. The execution logic could subsequently choose any of
W/5 (212), R/7 (215) or C/25 (214) to issue next. Even if
upstream logic pauses the issuance of posted transactions
from the P dueue, forward progress can be made by issuing a
request from the NP. CMP, or BLK queues, although those
requests would be out-of-order with respect to W/5 (212).
Since they belong to different logical streams, no P/C error
can result.

0032 Continuing in FIG. 3, if execution logic 185 issues
W/5 (212), then U/213 (230) will reach the head of P 172.
This unblock request may be performed immediately: as
shown in the lower portion of FIG. 3, the “blocked' flag on
R/4 (213) has been cleared (see element 300). Now, execution
logic may choose any of W/2 (216), R/7 (215), C/25 (214) or
R/4 (213).
0033. The queueing and execution logic described above
may be useful in a system where a cache controller imposes
requirements on Subsystems that wish to write data to
memory. In such a system, a would-be writer must transmit a
protocol request, identifying the address it wishes to write,
before performing the write. The cache controller will
arrange cache operations so that the would-be writer "owns'
the corresponding cache line, then respond to the protocol
request with a protocol response authorizing the writer to go
ahead. Once the writer receives this response, it can transmit
the data to be stored in memory. (Write protocol logic iden
tified as 125 in FIG.1 may implement the would-be writer's
side of this protocol.) Since write requests may span several
cache lines, a writer may have to issue several protocol
requests and wait for several protocol responses before writ
ing the data. However, the cache controller may transmit
responses out-of-order with respect to the order of the proto
col requests. If this occurs, the writer may generate memory
transactions in an unusual order. If the transactions could not
be re-ordered or interleaved with transactions from other
logical streams, system progress might be impaired. Embodi
ments of the invention may relax memory ordering require
ments and improve overall performance.
0034. In some systems, the component described above as
cache controller 105 may be part of a larger subsystem called
a memory controller hub (MCH) that manages data flow
among processor(s), I/O hubs, and memory. Memory trans
actions may be generated, enqueued and executed by mod
ules within the MCH, and some of those modules may be able
to distinguish logical streams within those memory transac
tions. In such an MCH, embodiments of the invention can be
used to exploit parallelism that appears at that point.

US 2009/0254714 A1

0035 An embodiment of the invention may be a machine
readable medium having stored thereon instructions which
cause a processor to perform operations as described above.
In other embodiments, the operations might be performed by
specific hardware components that contain hardwired logic.
Those operations might alternatively be performed by any
combination of programmed computer components and cus
tom hardware components.
0036. A machine-readable medium may include any
mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer), including but not
limited to Compact Disc Read-Only Memory (CD-ROMs),
Read-Only Memory (ROMs), Random Access Memory
(RAM), Erasable Programmable Read-Only Memory
(EPROM), and a transmission over the Internet.
0037. The applications of the present invention have been
described largely by reference to specific examples and in
terms of particular allocations of functionality to certainhard
ware and/or software components. However, those of skill in
the art will recognize that memory transactions can be re
ordered to permit more efficient processing by Software and
hardware that distribute the functions of embodiments of this
invention differently than herein described. Such variations
and implementations are understood to be apprehended
according to the following claims.
We claim:
1. A method comprising:
obtaining a plurality of memory transactions in a first order,

each transaction to be associated with a logical identi
fier;

enqueuing each memory transaction on one of a plurality
of work queues, the work queue to be selected based on
a type of the memory transaction and the logical identi
fier of the memory transaction; and

executing the plurality of memory transactions in a second
order.

2. The method of claim 1 wherein the second order is
different from the first order.

3. The method of claim 1 wherein a logical identifier com
prises an identifier of a virtual machine that issued the trans
action.

4. The method of claim 1 wherein a logical identifier com
prises an identifier of a data stream to which the transaction
pertains.

5. The method of claim 1 wherein the type of a memory
transaction is one of a first type or a second type; and wherein
the ruleset permits:

a transaction of the first type to pass a transaction of the
second type;

a transaction of the second type to pass another transaction
of the second type; and

a transaction of either type to pass another transaction of
either type if the transactions are associated with differ
ent logical identifiers.

6. The method of claim 1 wherein the plurality of work
queues includes a queue to hold transactions of a first type, a
queue to hold transactions of a second type, and a queue to
holdblocked transactions.

7. The method of claim 1, further comprising:
unblocking a blocked memory transaction after executing

a blocking memory transaction.
8. The method of claim 1, further comprising:
Selecting a next transaction to execute from a head of one of

the plurality of queues, wherein a transaction at the head

Oct. 8, 2009

of a first queue may be executed at any time, and a
transaction at the head of a second queue may be blocked
pending an execution of a blocking transaction.

9. The method of claim 1 wherein executing a memory
transaction comprises one of

transmitting data from a hardware peripheral to a memory
through a cache controller; or

transmitting a request for data from the memory through
the cache controller.

10. A chipset comprising:
a plurality of targets to generate memory transactions;
a virtualization engine to associate a logical stream with a
memory transaction;

abus interface unit to issue memory transactions to a cache
controller, and

queueing logic to preserve an ordering relationship
between a plurality of generated memory transactions
and a plurality of issued memory transactions.

11. The chipset of claim 10, further comprising:
a content-addressable memory (“CAM) to indicate

whether a pending memory transaction references a
logical stream identical to a logical stream of a newly
generated memory transaction.

12. The chipset of claim 10, further comprising:
unblocking logic to unblock a blocked memory transac

tion.
13. The chipset of claim 10, further comprising:
a plurality of queues to hold memory transactions pending

execution, wherein a first queue holds transactions of a
first type, a second queue holds transactions of a second
type, and a third queue holds transactions that are
blocked by an earlier-received transaction on the first
queue.

14. The chipset of claim 10, further comprising:
a signaling unit to communicate with a peripheral device

according to an interface protocol, wherein
the signaling unit generates memory transactions; and
the virtualization engine produces an appearance of a plu

rality of logical devices like the peripheral device.
15. The chipset of claim 14 wherein the interface protocol

comprises one of Peripheral Component Interconnect
(“PCI), PCI-Express, or Accelerated Graphics Port
(AGP).

16. The chipset of claim 14 wherein the peripheral device
comprises one of a network interface card (“NIC), a mass
storage device interface, a graphics adapter, or a crypto
graphic accelerator.

17. The chipset of claim 10, further comprising:
write protocol management logic to execute a write proto

col before issuing a memory transaction.
18. The chipset of claim 17 wherein the write protocol

comprises:
transmitting a request to obtain ownership of a cache line;

and
receiving a response granting ownership of the cache line.
19. The chipset of claim 18 wherein a plurality of protocol

requests transmitted in a first order elicits a plurality of pro
tocol responses received in a second order.

20. A system comprising:
a memory;
a cache controller to maintain data coherency between the
memory and a cache;

a plurality of peripheral devices; and

US 2009/0254714 A1

a hub to exchange data between the memory and the plu
rality of peripheral devices; wherein

a plurality of memory transactions from a peripheral device
are generated in a first order; and

the plurality of memory transactions are executed in a
second order.

21. The system of claim 20 wherein the hub comprises:
a signaling unit to communicate with a peripheral device;
a virtualization engine to produce an appearance of a plu

rality of virtual devices like the peripheral device;
queueing logic to hold a plurality of memory transactions

pending execution; and
execution logic to select a next memory transaction to

eXecute.

22. The system of claim 21 wherein the virtualization
engine is to associate a virtual device with a memory trans
action of the peripheral device; and

the ordering logic is to maintain an order in which memory
transactions associated with one virtual device are
executed.

Oct. 8, 2009

23. A computer-readable medium containing instructions
to cause a processor to perform operations comprising:

receiving a plurality of memory requests in a first order;
sorting the memory requests according to a type and a

group of the request;
queueing the sorted memory requests on a plurality of

queues for later execution; and
executing a memory request from one of the plurality of

queues.
24. The computer-readable medium of claim 23 wherein a

first-received of the plurality of memory requests is different
from a first-executed of the plurality of memory requests.

25. The computer-readable medium of claim 23 wherein
the plurality of queues comprises:

a first queue to hold requests of a first type;
a second queue to hold requests of a second type; and
a third queue to hold blocked requests, and wherein
a request is blocked if another request of an identical group

is on the first queue.
c c c c c

