
(19)

(12)

US 2015.0002520A1

United States

(54)

(71)

(72)

(21)

(22)

(51)

Patent Application Publication (10) Pub. No.: US 2015/0002520 A1
Rao (43) Pub. Date: Jan. 1, 2015

ABORTING GRAPHCS PROCESSOR (52) U.S. Cl.
WORKLOAD EXECUTION CPC .. G06T 1/20 (2013.01)

USPC .. 34.5/522
Applicant: Jayanth N. Rao. Folsom, CA (US)

(57) ABSTRACT
Inventor: Jayanth N. Rao, Folsom, CA (US) According to some embodiments, a graphics processor may
Appl. No.: 13/929,856 aborta workload without requiring changes to the kernel code

compilation or intruding upon graphics processing unit
Filed: Jun. 28, 2013 execution. Instead, it is possible to only read the predicate

state once before starting and once before restarting a work
Publication Classification load that has been preempted because the user wishes to abort

the work. This avoids the need to read from each execution
Int. C. unit, reducing the drain on memory bandwidth and increasing
G06T L/20 (2006.01) power and performance in some embodiments.

28

PREDICATE
STATUS

12 26

USER MODE DRIVER SUBMITS GPU WORK TO UMD WRITE TO ABORT COMMAND) THE SCHEDULER WORK QUEUES UMD WRITE TO ABORT COMMAND

GPU WORK LOAD G PU WORK LOAD

GPU READS
PREDCATE
STATUS AND ABORTS 3Ob
IF PREDICATE 24
STATE= FALSE

COMMAND BUFFER
GPU COMMAND #O
GPU COMMAND #1

GPGPU WALKER WITH PREDICATE

GPU, EXECUTES
COMMANDS
N BUFFER

Jan. 1, 2015 Sheet 1 of 5 US 2015/0002520 A1 Patent Application Publication

8ZZI

Patent Application Publication Jan. 1, 2015 Sheet 2 of 5 US 2015/0002520 A1

36

SUBMIT WORK TO QUEUES

WRITE PREDICATE

RECEIVE
PREEMPTION

2

38 42
WORKLOAD ABORT

40
PREDICATE

STATUS = FALSE
2

41

THREAD SPAWNER

WORKLOAD
SUBMISSION

2

Patent Application Publication Jan. 1, 2015 Sheet 3 of 5 US 2015/0002520 A1

12 18 20

UMD SCHEDULER GPU

WORK SUBMT WORK
ARRIVES TO QUEUES

SET PREDICATE READS TRUE
EVAL TO TRUE PREDICATE

BEGINS EXECUTING
WORK

s
RECEIVES

PREEMPTION

SET PREDICATE
EVAL TO FALSE

RESUBMITS
WORK

READS FALSE
PREDICATE

ABORTS WORK

FIG. 5

US 2015/0002520 A1 Jan. 1, 2015 Sheet 4 of 5 Patent Application Publication

08/Z6/ET[\C]O INHOSS300Bd OL 3/1}{T-344
gia ENSITETE ESTER-80, El-?z?

Patent Application Publication Jan. 1, 2015 Sheet 5 of 5 US 2015/0002520 A1

800 N 808

804

802

806

FG. 7

US 2015/0002520 A1

ABORTING GRAPHCS PROCESSOR
WORKLOAD EXECUTION

BACKGROUND

0001. This relates generally to graphics processors.
0002 There are times when graphics processors are per
forming a workload and it is desired to terminate the work
load. Existing techniques for terminating graphics processor
workloads tend to have a substantial impact on performance.
The reason for this is that in order to implement the checks
needed to determine whether to aborta workload, reads must
be issued from each execution unit. This can result in a rela
tively large drain on memory bandwidth and can have an
adverse impact on power and performance.
0003 WebCL is a new application for graphics processor
and multicore central processing unit parallel processing
from within a web browser. A typical usage model is that a
user opens a web page and the active content on the page is
accelerated using the graphics processing unit. However,
while the graphics processing unit is busy processing this
request, the user may decide to go to a new page. Waiting for
the graphics processing unit to complete the work Submitted
is a waste of limited power and a drain on performance.
Therefore, it is desirable to abort the submitted work to the
graphics processing unit.
0004 Current graphics processors treat the graphics pro
cessing unit as a slave device, meaning that work is Submitted
to the graphics processing unit by a host driver and the graph
ics processing unit notifies the host via an interrupt when the
job is completed. Generally there is no need in this scenario to
abortaljob. However, with the advent of WebCL applications,
a need arises to support aborting workloads.
0005 More specifically, the current proposals to support
aborting workloads require that the graphics processing unit
poll a location in memory and when the user modes driversets
a bit at this location, the graphics processing unit exits the
kernel. But this adds a read impact performance on all ker
nels, both aborted and non-aborted kernels. It also impacts the
cache utilization and efficiency. All execution unit threads
would need to read this one bit resulting in cache serializa
tion. Also the driver has to manage its resource resulting in
extra bookkeeping.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. Some embodiments are described with respect to
the following figures:
0007 FIG. 1 is a depiction of a WebCL workload abort
mechanism according to one embodiment;
0008 FIG. 2 is a flow chart for a user mode driver
sequence according to one embodiment;
0009 FIG.3 is a flow chart for a workload abort sequence
according to one embodiment;
0010 FIG. 4 is a flow chart for a thread spawner sequence
according to one embodiment;
0011 FIG. 5 is a composite flow chart showing interac
tions between the user mode driver, Scheduler and graphics
processing unit;
0012 FIG. 6 is a system depiction according to one
embodiment; and
0013
ment.

FIG. 7 is a front elevational view for one embodi

Jan. 1, 2015

DETAILED DESCRIPTION

0014. According to some embodiments, a graphics pro
cessor workload can be aborted without requiring changes to
the kernel code compilation or intruding upon graphics pro
cessing unit execution. Instead, it is possible to only read the
predicate state once before starting and once before restarting
a workload that has been preempted because the user wishes
to abort the work. This avoids the need to read from each
execution unit, reducing the drain on memory bandwidth and
increasing power and performance in some embodiments.
0015. In accordance with some embodiments, when a new
workload arrives, the user mode drive submits the work to
workload queues. Then the user mode driver sets a predicate
evaluation to true. The graphics processing unit reads the true
predicate and then begins executing the work. Then the user
mode driver receives a preemption, for example, because the
user no longer wants the graphical depiction that was previ
ously requested. So the user mode driver sets the predicate
evaluation to false. This causes the scheduler to resubmit the
work. As a result of the work being resubmitted, the graphics
processing unit again reads the predicate, but this time the
predicate is false and so the graphics processor aborts the
workload. Thus, in some embodiments, the workload can be
aborted without requiring lots of execution unit reads, thereby
reducing the memory utilization and improving performance
and power utilization.
0016 A typical use case is that a user, Such as an applica
tion, visits a web page with active content. The browser,
which may be the WebCL client, submits the graphics pro
cessor unit workload as needed by the active content in the
web page. The user mode driver submits the work to the
graphics processing unit. If the graphics processing unit starts
to process that work, but that work takes a longtime, the user
may decide to click on a link that switches to another web
page. The job already started is no longer needed. Continuing
to run this previously requested, but now undesired workload,
adversely impacts performance and power utilization.
0017. So the WebCL client instructs the user-mode driver
that it wants to abort the workload.
0018. In one embodiment, a preemption mechanism uses a
machine state stored in memory. The graphics processing unit
can Switch from one context to another. If a long compute
workload is being run and some other graphical user interface
work is requested, the compute work may be preempted and
submitted to the graphical user interface work and then the
compute work may be rescheduled. The same preemption
mechanism can be used to Support an abort.
0019. Another mechanism is called predication. The
workload can be conditionally executed based on a predicate
state. The state of the predicate is true when the workload is
first submitted. When the workload is aborted by the user, the
predicate state is reset to false and the workload may be
preempted. The scheduler resubmits the workload again, but
this time the predicate evaluation results in aborting the work.
When the work is aborted, the batch buffer operates as though
the work was completed Successfully. The operating system
is notified that the work was completed as originally planned.
The operating system and the kernel mode driver release all
resources and continue to operate as usual. The application is
aware that the work was aborted and that it should not con
sume this work, but instead should discard it.
0020. By using predication and preemption, there may be
no need to poll anabort command bit during kernel execution.
This abort command bit is evaluated as a predicate for the

US 2015/0002520 A1

graphics processing unit processing only at the start of each
job in one embodiment, when the job is first processed and on
resuming after preemption.
0021. In order to preempt work, a workload scheduler
Such as an operating system forces the preempt request. An
OpenCL or WebCL driver builds command buffers for every
workload Submitted to the graphics processing unit. The com
mand buffers contain graphic processing unit commands
needed to execute the work. The GPGPU WALKER com
mand is a command that actually spawns the execution unit
threads that execute the work. The GPGPU WALKER com
mand can be conditionally executed based on the state of a
predicate. This predicate state may be set based on the abort
request. If the predicate is true, GPGPU WALKER spawns
as many execution unit threads as are needed to process the
request. However, if the predicate state is false, then GPGPU
WALKER does not spawn any execution threads and skips
this command and proceeds to the next command in the
buffer.
0022. By using predication for all GPGPU WALKER
commands in the command buffer, a graphics processing unit
workload can be aborted on resubmission.
0023 Referring to FIG. 1, a user mode driver submits
graphics processing unit work to the scheduler 18 via queues
14a-14c as indicated at block 12. Of course there may be
many more work queues than those depicted. Thus a queue
number 1 (also labeled 14a) has a graphics processing unit
workload 16a. The queue number N (also labeled 14c) has a
workload 16b.
0024. The queues feed the scheduler 18 which in turn
provides workloads to the graphics processing unit 20. Each
queue may contain non-WebCL workloads as well as WebCL
workloads. The graphics processing unit Scheduler may arbi
trate workloads across different queues.
0.025 The graphics processing unit executes commands in
the command buffer 24 as indicated at 22. Thus, the command
buffer 24 may have a graphics processing unit command Zero,
labeled 34, a command one, and a GPGP WALKER with a
predicate 32a as one example.
0026. The user mode driver writes an abort command as
indicated in 26 when the user wants to abort the graphics
processing unit workload. Thus the abort command is written
to a predicate status register 28 in one embodiment. The
graphics processing unit reads the predicate status as indi
cated at arrow 30a and aborts if predicate status is false.
0027. Referring to FIG. 2, a sequence for user mode driver
36 may be implemented in software, firmware and/or hard
ware. In software and firmware embodiments it may be
implemented by computer readable instructions stored in
more or non-transitory computer readable media Such as
magnetic, optical or semiconductor storages.
0028. Initially, the sequence Submits graphics processing
unit workloads to the queues 14 shown in FIG. 1 as indicated
in block 38. It also writes the predicate status as indicated in
block 40. When a preemption request is received from an
application, the workload may be resubmitted as indicated by
the yes prong at diamond 41 where the flow may end when
there is no preemption request.
0029 Referring to FIG. 3, a workload abort sequence 42
may be implemented in software, firmware and/or hardware.
In software and firmware embodiments it may be imple
mented by computer executed instructions stored in one or
more non-transitory computer readable media Such as mag
netic, optical or semiconductor storages.

Jan. 1, 2015

0030 The sequence 42 begins at diamond 44 with a deter
mination of whether the predicate status is false. If not, execu
tion begins as indicated at block 48.
0031. Otherwise, the workload is preempted as indicated
in block 46.
0032 Referring to FIG. 4, a thread spawner sequence 50
may be implemented in software, firmware and/or hardware.
In software and firmware embodiments it may be imple
mented by computer executed instructions stored in one or
more non-transitory computer readable media Such as mag
netic, optical or semiconductor storages.
0033. The sequence 50 begins by determining whether a
workload has been submitted as indicated at diamond 52. The
flow iterates, if not, and otherwise, command buffers are built
for each workload as indicated in block 54. A check at dia
mond 56 determines if the predicate is false. If so, the com
mand is skipped as indicated in block 58 and the flow iterates
to the beginning. Otherwise if the predicate is true, the threads
are spawned and the work is completed as indicated in block
60.
0034 FIG. 5 shows a timeline increasing from top to bot
tom to illustrate the interaction between the user mode driver
12, the scheduler 18, and the graphics processing unit 20.
0035. When a workload arrives, the user mode drive 12
submits the workload to the queues. That driver sets the
predicate evaluation to true. The graphics processing unit 20
reads the true predicate and begins executing the work.
0036. Then the user mode driver receives a preemption as
some point thereafter. As a result it sets the predicate evalu
ation to false. This causes the scheduler to resubmit the same
workload. As a result, the graphics processing unit reads the
false predicate and aborts the work.
0037 FIG. 6 illustrates an embodiment of a system 700. In
embodiments, system 700 may be a media system although
system 700 is not limited to this context. For example, system
700 may be incorporated into a personal computer (PC),
laptop computer, ultra-laptop computer, tablet, touch pad,
portable computer, handheld computer, palmtop computer,
personal digital assistant (PDA), cellular telephone, combi
nation cellular telephone/PDA, television, Smart device (e.g.,
Smartphone, Smarttablet or Smart television), mobile internet
device (MID), messaging device, data communication
device, and so forth.
0038. In embodiments, system 700 comprises a platform
702 coupled to a display 720. Platform 702 may receive
content from a content device such as content services device
(s) 730 or content delivery device(s) 740 or other similar
content Sources. A navigation controller 750 comprising one
or more navigation features may be used to interact with, for
example, platform 702 and/or display 720. Each of these
components is described in more detail below.
0039. In embodiments, platform 702 may comprise any
combination of a chipset 705, processor 710, memory 712,
storage 714, graphics subsystem 715, applications 716 and/or
radio 718. Chipset 705 may provide intercommunication
among processor 710, memory 712, storage 714, graphics
subsystem 715, applications 716 and/or radio 718. For
example, chipset 705 may include a storage adapter (not
depicted) capable of providing intercommunication with
storage 714.
0040 Processor 710 may be implemented as Complex
Instruction Set Computer (CISC) or Reduced Instruction Set
Computer (RISC) processors, x86 instruction set compatible
processors, multi-core, or any other microprocessor or central

US 2015/0002520 A1

processing unit (CPU). In embodiments, processor 710 may
comprise dual-core processor(s), dual-core mobile processor
(s), and so forth. The processor may implement the sequence
of FIG. 2 together with memory 712.
0041 Memory 712 may be implemented as a volatile
memory device Such as, but not limited to, a Random Access
Memory (RAM), Dynamic Random Access Memory
(DRAM), or Static RAM (SRAM).
0042 Storage 714 may be implemented as a non-volatile
storage device Such as, but not limited to, a magnetic disk
drive, optical disk drive, tape drive, an internal storage device,
an attached storage device, flash memory, battery backed-up
SDRAM (synchronous DRAM), and/or a network accessible
storage device. In embodiments, storage 714 may comprise
technology to increase the storage performance enhanced
protection for valuable digital media when multiple hard
drives are included, for example.
0043 Graphics subsystem 715 may perform processing of
images such as still or video for display. Graphics Subsystem
715 may be a graphics processing unit (GPU) or a visual
processing unit (VPU), for example. An analog or digital
interface may be used to communicatively couple graphics
subsystem 715 and display 720. For example, the interface
may be any of a High-Definition Multimedia Interface, Dis
playPort, wireless HDMI, and/or wireless HD compliant
techniques. Graphics subsystem 715 could be integrated into
processor 710 or chipset 705. Graphics subsystem 715 could
be a stand-alone card communicatively coupled to chipset
T05.
0044. The graphics and/or video processing techniques
described herein may be implemented in various hardware
architectures. For example, graphics and/or video function
ality may be integrated within a chipset. Alternatively, a dis
crete graphics and/or video processor may be used. As still
another embodiment, the graphics and/or video functions
may be implemented by a general purpose processor, includ
ing a multi-core processor. In a further embodiment, the func
tions may be implemented in a consumer electronics device.
0045 Radio 718 may include one or more radios capable
of transmitting and receiving signals using various Suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net
works. Exemplary wireless networks include (but are not
limited to) wireless local area networks (WLANs), wireless
personal area networks (WPANs), wireless metropolitan area
network (WMANs), cellular networks, and satellite net
works. In communicating across Such networks, radio 718
may operate in accordance with one or more applicable stan
dards in any version.
0046. In embodiments, display 720 may comprise any
television type monitor or display. Display 720 may com
prise, for example, a computer display Screen, touch screen
display, Video monitor, television-like device, and/or a tele
vision. Display 720 may be digital and/or analog. In embodi
ments, display 720 may be a holographic display. Also, dis
play 720 may be a transparent surface that may receive a
visual projection. Such projections may convey various forms
of information, images, and/or objects. For example, Such
projections may be a visual overlay for a mobile augmented
reality (MAR) application. Under the control of one or more
software applications 716, platform 702 may display user
interface 722 on display 720.
0047. In embodiments, content services device(s) 730
may be hosted by any national, international and/or indepen

Jan. 1, 2015

dent service and thus accessible to platform 702 via the Inter
net, for example. Content services device(s) 730 may be
coupled to platform 702 and/or to display 720. Platform 702
and/or content services device(s) 730 may be coupled to a
network 760 to communicate (e.g., send and/or receive)
media information to and from network 760. Content delivery
device(s) 740 also may be coupled to platform 702 and/or to
display 720.
0048. In embodiments, content services device(s) 730
may comprise a cable television box, personal computer,
network, telephone, Internet enabled devices or appliance
capable of delivering digital information and/or content, and
any other similar device capable of unidirectionally or bidi
rectionally communicating content between content provid
ers and platform 702 and/display 720, via network 760 or
directly. It will be appreciated that the content may be com
municated unidirectionally and/orbidirectionally to and from
any one of the components in system 700 and a content
provider via network 760. Examples of content may include
any media information including, for example, video, music,
medical and gaming information, and so forth.
0049 Content services device(s) 730 receives content
Such as cable television programming including media infor
mation, digital information, and/or other content. Examples
of content providers may include any cable or satellite tele
vision or radio or Internet content providers. The provided
examples are not meant to limit embodiments of the disclo
SU

0050. In embodiments, platform 702 may receive control
signals from navigation controller 750 having one or more
navigation features. The navigation features of controller 750
may be used to interact with user interface 722, for example.
In embodiments, navigation controller 750 may be a pointing
device that may be a computer hardware component (specifi
cally human interface device) that allows a user to input
spatial (e.g., continuous and multi-dimensional) data into a
computer. Many systems such as graphical user interfaces
(GUI), and televisions and monitors allow the user to control
and provide data to the computer or television using physical
gestures.
0051 Movements of the navigation features of controller
750 may be echoed on a display (e.g., display 720) by move
ments of a pointer, cursor, focus ring, or other visual indica
tors displayed on the display. For example, under the control
of software applications 716, the navigation features located
on navigation controller 750 may be mapped to virtual navi
gation features displayed on user interface 722, for example.
In embodiments, controller 750 may not be a separate com
ponent but integrated into platform 702 and/or display 720.
Embodiments, however, are not limited to the elements or in
the context shown or described herein.

0052. In embodiments, drivers (not shown) may comprise
technology to enable users to instantly turn on and off plat
form 702 like a television with the touch of a button after
initial boot-up, when enabled, for example. Program logic
may allow platform 702 to stream content to media adaptors
or other content services device(s) 730 or content delivery
device(s) 740 when the platform is turned “off” In addition,
chip set 705 may comprise hardware and/or software support
for 5.1 surround sound audio and/or high definition 7.1 sur
round Sound audio, for example. Drivers may include a
graphics driver for integrated graphics platforms. In embodi
ments, the graphics driver may comprise a peripheral com
ponent interconnect (PCI) Express graphics card.

US 2015/0002520 A1

0053. In various embodiments, any one or more of the
components shown in system 700 may be integrated. For
example, platform 702 and content services device(s) 730
may be integrated, or platform 702 and content delivery
device(s) 740 may be integrated, or platform 702, content
services device(s) 730, and content delivery device(s) 740
may be integrated, for example. In various embodiments,
platform 702 and display 720 may be an integrated unit.
Display 720 and content service device(s) 730 may be inte
grated, or display 720 and content delivery device(s) 740 may
be integrated, for example. These examples are not meant to
limit the disclosure.

0054. In various embodiments, system 700 may be imple
mented as a wireless system, a wired system, or a combina
tion of both. When implemented as a wireless system, system
700 may include components and interfaces suitable for com
municating over a wireless shared media, Such as one or more
antennas, transmitters, receivers, transceivers, amplifiers, fil
ters, control logic, and so forth. An example of wireless
shared media may include portions of a wireless spectrum,
such as the RF spectrum and so forth. When implemented as
a wired system, system 700 may include components and
interfaces Suitable for communicating over wired communi
cations media, such as input/output (I/O) adapters, physical
connectors to connect the I/O adapter with a corresponding
wired communications medium, a network interface card
(NIC), disc controller, video controller, audio controller, and
So forth. Examples of wired communications media may
include a wire, cable, metal leads, printed circuit board
(PCB), backplane, switch fabric, semiconductor material,
twisted-pair wire, co-axial cable, fiber optics, and so forth.
0055 Platform 702 may establish one or more logical or
physical channels to communicate information. The informa
tion may include media information and control information.
Media information may refer to any data representing content
meant for a user. Examples of content may include, for
example, data from a voice conversation, videoconference,
streaming video, electronic mail ("email’) message, Voice
mail message, alphanumeric Symbols, graphics, image,
Video, text and so forth. Data from a voice conversation may
be, for example, speech information, silence periods, back
ground noise, comfort noise, tones and so forth. Control
information may refer to any data representing commands,
instructions or control words meant for an automated system.
For example, control information may be used to route media
information through a system, or instruct a node to process
the media information in a predetermined manner. The
embodiments, however, are not limited to the elements or in
the context shown or described in FIG. 6.

0056. As described above, system 700 may be embodied
in varying physical styles or form factors. FIG. 7 illustrates
embodiments of a small form factor device 800 in which
system 700 may be embodied. In embodiments, for example,
device 800 may be implemented as a mobile computing
device having wireless capabilities. A mobile computing
device may refer to any device having a processing system
and a mobile power Source or Supply, Such as one or more
batteries, for example.
0057. As described above, examples of a mobile comput
ing device may include a personal computer (PC), laptop
computer, ultra-laptop computer, tablet, touch pad, portable
computer, handheld computer, palmtop computer, personal
digital assistant (PDA), cellular telephone, combination cel
lular telephone/PDA, television, smart device (e.g., smart

Jan. 1, 2015

phone, Smart tablet or smart television), mobile internet
device (MID), messaging device, data communication
device, and so forth.
0.058 Examples of a mobile computing device also may
include computers that are arranged to be worn by a person,
Such as a wrist computer, finger computer, ring computer,
eyeglass computer, belt-clip computer, arm-band computer,
shoe computers, clothing computers, and other wearable
computers. In embodiments, for example, a mobile comput
ing device may be implemented as a Smartphone capable of
executing computer applications, as well as Voice communi
cations and/or data communications. Although some embodi
ments may be described with a mobile computing device
implemented as a Smartphone by way of example, it may be
appreciated that other embodiments may be implemented
using other wireless mobile computing devices as well. The
embodiments are not limited in this context.

0059. The processor 710 may communicate with a camera
722 and a global positioning system sensor 720, in some
embodiments. A memory 712, coupled to the processor 710,
may store computer readable instructions for implementing
the sequences shown in FIG. 3 in software and/or firmware
embodiments.

0060. As shown in FIG. 7, device 800 may comprise a
housing 802, a display 804, an input/output (I/O) device 806,
and an antenna 808. Device 800 also may comprise naviga
tion features 812. Display 804 may comprise any suitable
display unit for displaying information appropriate for a
mobile computing device. I/O device 806 may comprise any
suitable I/O device for entering information into a mobile
computing device. Examples for I/O device 806 may include
an alphanumeric keyboard, a numeric keypad, a touch pad,
input keys, buttons, Switches, rocker Switches, microphones,
speakers, Voice recognition device and Software, and so forth.
Information also may be entered into device 800 by way of
microphone. Such information may be digitized by a Voice
recognition device. The embodiments are not limited in this
COInteXt.

0061 Various embodiments may be implemented using
hardware elements, software elements, or a combination of
both. Examples of hardware elements may include proces
sors, microprocessors, circuits, circuit elements (e.g., transis
tors, resistors, capacitors, inductors, and so forth), integrated
circuits, application specific integrated circuits (ASIC), pro
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), logic gates,
registers, semiconductor device, chips, microchips, chip sets,
and so forth. Examples of software may include software
components, programs, applications, computer programs,
application programs, System programs, machine programs,
operating system software, middleware, firmware, Software
modules, routines, Subroutines, functions, methods, proce
dures, Software interfaces, application program interfaces
(API), instruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
or any combination thereof. Determining whetheran embodi
ment is implemented using hardware elements and/or soft
ware elements may vary in accordance with any number of
factors, such as desired computational rate, power levels, heat
tolerances, processing cycle budget, input data rates, output
data rates, memory resources, data bus speeds and other
design or performance constraints.

US 2015/0002520 A1

0062. The following clauses and/or examples pertain to
further embodiments:

0063. One example embodiment may be a method com
prising aborting a graphics workload by initiating resubmis
sion of workload to a graphics processing unit. The method
may also include enabling a user mode driver to receive a
request to abort the workload. The method may also include
enabling the driver to change a setting in response to said
request. The method may also include wherein the graphics
processing unit executes the workload depending on the set
ting. The method may also include changing the setting while
the workload is executing, resulting in resubmission of the
workload. The method may also include enabling said graph
ics processing unit to abort the workload after resubmission in
response to the setting change. The method may also include
enabling the graphics processing unit to read the setting only
once on each Submission of a workload. The method may also
include enabling the user mode driver to set the setting to a
state to enable execution the first time it receives the workload
and to change the setting in response to the request to abort.
The method may also include wherein the request to abort is
a preemption request.
0064. In another example embodiment one or more non
transitory computer readable media storing instructions that
may be executed to cause a processor to perform a sequence
comprising aborting a graphics workload by initiating resub
mission of workload to a graphics processing unit. The media
may further store said sequence including enabling a user
mode driver to receive a request to abort the workload. The
media may further store said sequence including enabling the
driver to change a setting in response to said request. The
media may further store said sequence wherein the graphics
processing unit executes the workload depending on the set
ting. The media may further store said sequence including
changing the setting while the workload is executing, result
ing in resubmission of the workload. The media may further
store said sequence including enabling said graphics process
ing unit to abort the workload after resubmission in response
to the setting change. The media may further store said
sequence including enabling the graphics processing unit to
read the setting only once on each Submission of a workload.
The media may further store said sequence including
enabling the user mode driver to set the setting to a state to
enable execution the first time it receives the workload and to
change the setting in response to the request to abort. The
media may further store wherein the request to abort is a
preemption request.
0065. Another example embodiment may be an apparatus
comprising a user mode driver to Submit workload and a set a
state for the workload, receive a preemption request and
change the State in response to the preemption request, a
graphics processing unit to read the state, execute the work
load and abort the work in response to the state change, and a
scheduler to resubmit workload in response to the state
change. The apparatus may include wherein said user mode
driver to receive a preemption request in the form of a request
to abort the workload. The apparatus may include wherein
said graphics processing unit to execute the workload
depending on the state. The apparatus may include said user
mode driver to change the state while the workload is execut
ing, resulting in resubmission of the workload. The apparatus
may include said graphics processing unit to abort the work
load after resubmission in response to the change in state. The
apparatus may include said graphics processing unit to read

Jan. 1, 2015

the state only once on each Submission of a workload. The
apparatus may include the user mode driver to set the state to
enable execution the first time the user mode driver receives a
workload and to change the state in response to a request to
abort. The apparatus may include an operating system, a
battery and firmware and a module to update said firmware.
0066. The graphics processing techniques described
herein may be implemented in various hardware architec
tures. For example, graphics functionality may be integrated
within a chipset. Alternatively, a discrete graphics processor
may be used. As still another embodiment, the graphics func
tions may be implemented by a general purpose processor,
including a multicore processor.
0067 References throughout this specification to “one
embodiment' or “an embodiment’ mean that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one implementa
tion encompassed within the present disclosure. Thus,
appearances of the phrase “one embodiment' or “in an
embodiment are not necessarily referring to the same
embodiment. Furthermore, the particular features, structures,
or characteristics may be instituted in other suitable forms
other than the particular embodiment illustrated and all such
forms may be encompassed within the claims of the present
application.
0068 While a limited number of embodiments have been
described, those skilled in the art will appreciate numerous
modifications and variations therefrom. It is intended that the
appended claims cover all such modifications and variations
as fall within the true spirit and scope of this disclosure.
What is claimed is:
1. A method comprising:
aborting a graphics workload by initiating resubmission of

workload to a graphics processing unit.
2. The method of claim 1 including enabling a user mode

driver to receive a request to abort the workload.
3. The method of claim 2 including enabling the driver to

change a setting in response to said request.
4. The method of claim 1 wherein the graphics processing

unit executes the workload depending on the setting.
5. The method of claim 4 including changing the setting

while the workload is executing, resulting in resubmission of
the workload.

6. The method of claim 5 including enabling said graphics
processing unit to abort the workload after resubmission in
response to the setting change.

7. The method of claim 6 including enabling the graphics
processing unit to read the setting only once on each Submis
sion of a workload.

8. The method of claim3 including enabling the user mode
driver to set the setting to a state to enable execution the first
time it receives the workload and to change the setting in
response to the request to abort.

9. The method of claim 8 wherein the request to abort is a
preemption request.

10. One or more non-transitory computer readable media
storing instructions that may be executed to cause a processor
to perform a sequence comprising:

aborting a graphics workload by initiating resubmission of
workload to a graphics processing unit.

11. The media of claim 10, said sequence including
enabling a user mode driver to receive a request to abort the
workload.

US 2015/0002520 A1

12. The media of claim 11, said sequence including
enabling the driver to change a setting in response to said
request.

13. The media of claim 10, said sequence wherein the
graphics processing unit executes the workload depending on
the setting.

14. The media of claim 13, said sequence including chang
ing the setting while the workload is executing, resulting in
resubmission of the workload.

15. The media of claim 14, said sequence including
enabling said graphics processing unit to abort the workload
after resubmission in response to the setting change.

16. The media of claim 15, said sequence including
enabling the graphics processing unit to read the setting only
once on each Submission of a workload.

17. The media of claim 12, said sequence including
enabling the user mode driver to set the setting to a state to
enable execution the first time it receives the workload and to
change the setting in response to the request to abort.

18. The media of claim 17, wherein the request to abort is
a preemption request.

19. An apparatus comprising:
a user mode driver to submit workload and a set a state for

the workload, receive a preemption request and change
the state in response to the preemption request;

a graphics processing unit to read the state, execute the
workload and abort the work in response to the state
change; and

Jan. 1, 2015

a scheduler to resubmit workload in response to the state
change.

20. The apparatus of claim 19 wherein said user mode
driver to receive a preemption request in the form of a request
to abort the workload.

21. The apparatus of claim 19 wherein said graphics pro
cessing unit to execute the workload depending on the state.

22. The apparatus of claim 21, said user mode driver to
change the state while the workload is executing, resulting in
resubmission of the workload.

23. The apparatus of claim 22, said graphics processing
unit to abort the workload after resubmission in response to
the change in State.

24. The apparatus of claim 23, said graphics processing
unit to read the state only once on each Submission of a
workload.

25. The apparatus of claim 19, the user mode driver to set
the state to enable execution the first timetheuser mode driver
receives a workload and to change the state in response to a
request to abort.

26. The apparatus of claim 19 including an operating sys
tem

27. The apparatus of claim 19 including a battery.
28. The apparatus of claim 19 including firmware and a

module to update said firmware.
k k k k k

