
(19) United States
US 2005O149760A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0149760 A1
Alam et al. (43) Pub. Date: Jul. 7, 2005

(54) METHODS AND SYSTEMS FOR
PREVENTING SOCKET FLOODING DURING
DENIAL OF SERVICE ATTACKS

(75) Inventors: Bilal Alam, Bellevue, WA (US);
Michael Courage, Kirkland, WA (US)

Correspondence Address:
WORKMAN NYDEGGER/MICROSOFT
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UT 84111 (US)

(73)

(21)

(22)

Assignee: Microsoft Corporation, Redmond, WA

Appl. No.: 11/073,792

Filed: Mar. 7, 2005

Related U.S. Application Data

Continuation of application No. 09/607,500, filed on
Jun. 30, 2000.

(60) Provisional application No. 60/189,096, filed on Mar.
14, 2000.

Publication Classification

(51) Int. Cl. ... H04L 9/00
(52) U.S. Cl. .. 713/201

(57) ABSTRACT

A way of reducing the impact of denial of Service attackS is
presented. For each connection request received by a Server,
the Server attempts to establish a connection to accommo
date the corresponding request. For each connection request
that the Server cannot currently handle, the connection
request is placed in a backlog queue for future handling. If
one or more of the backlog queues have entries, connection
Sockets that have connections but no received request data
are identified and disconnected. Such connection Sockets
would be highly Suspect of being generated as a result of
denial of Service attacks. Upon disconnection, resources are
freed for legitimate requests thereby improving Server per
formance even during denial of Service attacks.

| | SYSTEMMEMORY

PROCESSING
UNIT

12
WIDEO

ADAPTER 14 8
MONTOR

HARD DISK
DRIVE

INTERFACE

MAGNETIC DISK
DRIVE

INTERFACE

OPTICAL
DRIVE

INTERFACE

OPERATING APPLICATION OTHER PROGRAM PROGRAM
SYSTEM 135 PROGRAMS.13.6 MODULES 137 DATA 138

SERA. LOCAL AREA NETWORK
PORT

INTERFACE
NETWORK
INTERFACE

WIDE AREA
NETWORK

REMOTE
COMPUTER

REMOTE
COMPUTER

§ WEISMS

US 2005/0149760 A1 icat Patent Appl

Patent Application Publication Jul. 7, 2005 Sheet 2 of 5 US 2005/0149760 A1

s S
e
92
H
s
L.
e

Co
o

Patent Application Publication Jul. 7, 2005 Sheet 3 of 5 US 2005/0149760 A1

my START
MONITOR NETWORK FOR -30
CONNECTION REQUESTS

DETECT CONNECTION REQUESTS-'

MAP CONNECTION REQUEST-330
TO LISTEN SOCKET

340
ABLE TO

HANDLE CONNECTION
REQUEST

PLACE CONNECTION -350 N BACKLOG QUEUE
N0 FOR FUTURE HANDLING

FOREACH YES
DETECTED

CONNECTION ALLOCATE RESOURCES FOR
REQUEST EXPECTED REQUEST DATA

PROCESS REQUEST DATA

FREE RESOURCES
AND DISCONNECT

FG, 3

360

RECEIVE REQUEST DATA /

380

390

Patent Application Publication Jul. 7, 2005 Sheet 4 of 5 US 2005/0149760 A1

LL
H

a.
Co
e

sa
O
O
ee
e

S

Patent Application Publication Jul. 7, 2005 Sheet 5 of 5

50 MONTOR BACKLOG

DETERMINE IF BACKLOG 520
QUEVE USED

RESETTING ONE
ORMORE IDENTIFYING CONNECTION CONNECTION SOCKETS SOCKETS THAT HAVE

CONNECTIONS BUT NO
RECEIVED DATA 530

DISCONNECT THE
IDENTIFIED
CONNECTION
SOCKETS

FG, 5

540

550

US 2005/0149760 A1

US 2005/0149760 A1

METHODS AND SYSTEMS FOR PREVENTING
SOCKET FLOODING DURING DENIAL OF

SERVICE ATTACKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation applica
tion of commonly-assigned U.S. patent application Ser. No.
09/607,500 filed Jun. 30, 2000, of the same title, which
claims the benefit of U.S. provisional application Ser. No.
60/189,096, filed 14 Mar. 2000, both of which are incorpo
rated herein by reference.

BACKGROUND OF THE INVENTION

0002) 1. The Field of the Invention
0003. The present invention relates to computer net
WorkS. Specifically, the present invention relates to methods
and System for preventing Socket flooding during denial of
Service attackS.

0004 2. Background and Relevant Art
0005 Computer networks, and in particular the Internet,
have transformed the way people communicate and do
business. In these computer networks, computer Systems
may often communicate using a request/response protocol.
For example, a requesting client computer System ("client')
will transmit a request for a Service to a responding server
computer System (“Server”). The responding Server then
uses data from within the request in order to fulfill the
request.

0006 For example, a client may compose a request for a
Web page. In Such a request, there would typically be
request data such as the Uniform Resource Locator (“URL')
identifying the Web page, the address of the client, and any
other data that would be needed or helpful for the server to
retrieve the Web page and transmit that Web page to the
client. For each request, a typical Server would allocate
resources Such as memory Space, processing time or pooled
function calls for receiving the request data. Upon proceSS
ing of the request data, the Server would then free up these
allocated resources.

0007 While the vast majority of individuals use com
puter networks in a responsible manner, there are a few
individuals who maliciously desire to harm others using
computer networks. One particular harmful Scheme is to
impair the operation of another's Server. This may be
accomplished by, for example, repeatedly transmitting
requests to the Server without Sending any request data.
0008 Unaware of the malicious nature of the attack, the
Server will unknowingly attempt to accommodate each
request by allocating memory, processing time and/or
pooled function calls for each request. However, in the
described harmful Scheme, Since no request data is sent, the
Server cannot finish processing the request until it has
received data from the client. Until it has finished processing
the request, the allocated resources are tied up and unavail
able for Subsequent requests. The Server will eventually time
out the connection and reclaim the resources after a certain
time, but the timeout period is relatively long compared to
the time it takes an attacker to flood the computer with
requests. Eventually, during this timeout period, the Server

Jul. 7, 2005

will deplete its ability to allocate resources resulting in
denials of Service for Subsequent legitimate requests during
the timeout period. This effectively shuts down operation of
the Server during the timeout period resulting in a loss of
Service for legitimate requests.

0009. Therefore, what are desired are methods and sys
tems for reducing the incidence of Service denials due to an
attack in which requests are repeatedly made to the Server
without transmitting any request data.

BRIEF SUMMARY OF THE INVENTION

0010. The present invention relates to methods and sys
tems for preventing or at least reducing the impact of denial
of Service attackS. Denial of Service attacks occur when a
client repeatedly sends connection requests to a server
without Sending corresponding request data. Without
adequate protection, the Server will allocate resources for
each connection request. However, Since no request data is
Sent, the Server cannot finish processing the request and sits
idle waiting for data from the client. The resources are hence
not freed up for Subsequent requests. Eventually, the
resources are expended to a point where the Server cannot
respond to any other requests, legitimate or not. Thus, the
server is effectively shut down by the denial of service
attack.

0011. In accordance with the present invention, an effec
tive method of reducing the impact of denial of Service
attackS is presented. In one embodiment, the method is
implemented in large part using Winsock modules. For each
connection request received by the Server from one or more
clients, the Server attempts to establish a connection to
accommodate the corresponding request. In the WinSock
implementation, the Winsock extension Winsock()Accep
tEX() is used to try to establish a connection.
0012 Next, the connection request is mapped to a cor
responding listen Socket. For each connection request that
the Server cannot currently handle, the connection request is
placed in the backlog queue corresponding to the listen
Socket to which the connection request mapped. The backlog
queues are monitored, for example, by calling a Winsock(
)Select() module and passing in those listen Sockets that
correspond to the monitored backlog queues. The backlog
queues are determined to be used, for example, if the
Winsock()select() module returns.
0013 If one or more of the backlog queues have entries,
then the method determines which connection Sockets have
connections but no corresponding request data. This iden
tification may be accomplished using, for example, the
Winsock()getSockopt() module. These connection Sockets
are Suspected to be Serving a malicious connection request
Since there is a connection but no request data received
which is indicative of a denial of Service attack. Thus, these
connection Sockets are disconnected.

0014. The present invention allows for the early detection
of denial of Service attacks by immediately taking action
once the backlog queue has entries, rather than waiting until
the server becomes dysfunctional. If a denial of service
attack were to occur, highly Suspect connection Sockets
corresponding to the denial of Service attack would be
disconnected thereby freeing up resources for legitimate
requests. Even if the denial of Service attack were to

US 2005/0149760 A1

continue, the method would continue to disconnect the
maliciously established connections thereby allowing more
legitimate connection requests to be Satisfied even during the
denial of Service attack. This improves the Security of the
Server against denial of Service attacks and diminishes the
malicious motive for generating denial of Service attacks in
the first place.
0.015 There is some risk associated with closing a con
nection Socket simply when it has a connection but no
received data. For example, the connection Socket may not
have been created as a result of a malicious connection
request. Instead, it may be that the connection request was
legitimate in that the associated connection Socket just
happened to be in a Stage where the connection was just
made but the Soon to arrive request data simply has not
arrived yet. In this case, a legitimate connection request
would be denied.

0016. However, this case would typically be relatively
rare. For example, the legitimate connection request would
not be denied unless the backlog queue had entries in it
which should in itself be relatively rare. Secondly, even
though the backlog queue is full, the period of time between
the time a connection is made and the time the data is
received is relatively brief for a legitimate connection
request. Thus, the chance that the legitimate connection
request would be executing in that brief period is also
relatively small.
0017 Notwithstanding this small risk, the method may be
further optimized to reduce the chances for denying legiti
mate connection requests even further by allowing the
Systems administrator to Specifying a grace period between
the time the backlog queue is determined to be used and the
time the identified connection Sockets are disconnected. If,
during this grace period, the Server is able to handle the
connection requests in the backlog queue, no connection
Sockets will be disconnected.

0.018. Additional features and advantages of the inven
tion will be set forth in the description which follows, and
in part will be obvious from the description, or may be
learned by the practice of the invention. The features and
advantages of the invention may be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims. These and other features
of the present invention will become more fully apparent
from the following description and appended claims, or may
be learned by the practice of the invention as set forth
hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. In order that the manner in which the above-recited
and other advantages and features of the invention are
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its Scope, the
invention will be described and explained with additional
Specificity and detail through the use of the accompanying
drawings in which:
0020 FIG. 1 illustrates an exemplary system that pro
vides a Suitable operating environment for the present inven
tion;

Jul. 7, 2005

0021 FIG. 2 is schematically illustrates a client and
Server communicating using a Standard request/response
protocol,
0022 FIG. 3 illustrates a server-implemented process for
responding to requests,

0023 FIG. 4 illustrates a series of listen sockets imple
ments using a Winsock module as existing on a Server; and
0024 FIG. 5 illustrates a server-implemented method of
protecting against or at least reducing the impact of denial of
Service attackS.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0025 The present invention extends to both methods and
Systems for preventing denial of Services due to Socket
flooding caused by a denial of Service attack. The embodi
ments of the present invention may comprise a special
purpose or general purpose computer including various
computer hardware, as discussed in greater detail below.
0026 Embodiments within the scope of the present
invention also include computer-readable media for carrying
or having computer-executable instructions or data Struc
tures Stored thereon. Such computer-readable media can be
any available media which can be accessed by a general
purpose or Special purpose computer. By way of example,
and not limitation, Such computer-readable media can com
prise RAM, ROM, EEPROM, CD-ROM or other optical
disk storage, magnetic disk storage or other magnetic Stor
age devices, or any other medium which can be used to carry
or Store desired program code means in the form of com
puter-executable instructions or data structures and which
can be accessed by a general purpose or Special purpose
computer. When information is transferred or provided over
a network or another communications connection (either
hardwired, wireleSS, or a combination of hardwired or
wireless) to a computer, the computer properly views the
connection as a computer-readable medium. Thus, any Such
a connection is properly termed a computer-readable
medium. Combinations of the above should also be included
within the Scope of computer-readable media. Computer
executable instructions comprise, for example, instructions
and data which cause a general purpose computer, Special
purpose computer, or Special purpose processing device to
perform a certain function or group of functions.
0027 FIG. 1 and the following discussion are intended to
provide a brief, general description of a Suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions, Such as
program modules, being executed by computers in network
environments. Generally, program modules include rou
tines, programs, objects, components, data Structures, etc.
that perform particular tasks or implement particular abstract
data types. Computer-executable instructions, associated
data Structures, and program modules represent examples of
the program code means for executing Steps of the methods
disclosed herein. The particular Sequence of Such executable
instructions or associated data structures represent examples
of corresponding acts for implementing the functions
described in Such Steps.
0028. Those skilled in the art will appreciate that the
invention may be practiced in network computing environ

US 2005/0149760 A1

ments with many types of computer System configurations,
including personal computers, hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by local and remote processing devices
that are linked (either by hardwired links, wireless links, or
by a combination of hardwired or wireless links) through a
communications network. In a distributed computing envi
ronment, program modules may be located in both local and
remote memory Storage devices.
0029. With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a conventional computer
120, including a processing unit 121, a System memory 122,
and a System buS 123 that couples various System compo
nents including the System memory 122 to the processing
unit 121. The system bus 123 may be any of several types
of bus Structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The System memory includes
read only memory (ROM) 124 and random access memory
(RAM) 125. A basic input/output system (BIOS) 126, con
taining the basic routines that help transfer information
between elements within the computer 120, Such as during
start-up, may be stored in ROM 124.
0030 The computer 120 may also include a magnetic
hard disk drive 127 for reading from and writing to a
magnetic hard disk 139, a magnetic disk drive 128 for
reading from or writing to a removable magnetic disk 129,
and an optical disk drive 130 for reading from or writing to
removable optical disk 131 such as a CD-ROM or other
optical media. The magnetic hard disk drive 127, magnetic
disk drive 128, and optical disk drive 130 are connected to
the system bus 123 by a hard disk drive interface 132, a
magnetic disk drive-interface 133, and an optical drive
interface 134, respectively. The drives and their associated
computer-readable media provide nonvolatile Storage of
computer-executable instructions, data Structures, program
modules and other data for the computer 120. Although the
exemplary environment described herein employs a mag
netic hard disk 139, a removable magnetic disk 129 and a
removable optical disk 131, other types of computer read
able media for Storing data can be used, including magnetic
cassettes, flash memory cards, digital Video disks, Bernoulli
cartridges, RAMs, ROMs, and the like.
0.031) Program code means comprising one or more pro
gram modules may be Stored on the hard disk 139, magnetic
disk 129, optical disk 131, ROM 124 or RAM 125, including
an operating System 135, one or more application programs
136, other program modules 137, and program data 138. A
user may enter commands and information into the com
puter 120 through keyboard 140, pointing device 142, or
other input devices (not shown), Such as a microphone, joy
Stick, game pad, Satellite dish, Scanner, or the like. These and
other input devices are often connected to the processing
unit 121 through a serial port interface 146 coupled to
system bus 123. Alternatively, the input devices may be
connected by other interfaces, Such as a parallel port, a game
port or a universal serial bus (USB). A monitor 147 or
another display device is also connected to System buS 123
via an interface, such as video adapter 148. In addition to the

Jul. 7, 2005

monitor, personal computers typically include other periph
eral output devices (not shown), Such as Speakers and
printers.

0032. The computer 120 may operate in a networked
environment using logical connections to one or more
remote computers, Such as remote computerS 149a and
149b. Remote computers 149a and 149b may each be
another personal computer, a Server, a router, a network PC,
a peer device or other common network node, and typically
include many or all of the elements described above relative
to the computer 120, although only memory Storage devices
150a and 150b and their associated application programs
136a and 136b have been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 151 and a wide area network (WAN) 152 that are
presented here by way of example and not limitation. Such
networking environments are commonplace in office-wide
or enterprise-wide computer networks, intranets and the
Internet.

0033. When used in a LAN networking environment, the
computer 120 is connected to the local network 151 through
a network interface or adapter 153. When used in a WAN
networking environment, the computer 120 may include a
modem 154, a wireless link, or other means for establishing
communications over the wide area network 152, Such as the
Internet. The modem 154, which may be internal or external,
is connected to the system bus 123 via the serial port
interface 146. In a networked environment, program mod
ules depicted relative to the computer 120, or portions
thereof, may be Stored in the remote memory Storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing communica
tions over wide area network 152 may be used.

0034 FIG. 2 illustrates a requesting client computer
System 210 (hereinafter, "a client’) and a responding Server
computer system 220 (hereinafter, “a server”) which com
municate over a network 230. In a typical request/response
communication protocol Such as HyperText Transport Pro
tocol (“HTTP"), the client 210 transmits a connection
request 240 to the server 220 over the network 230. The
Server 240 then provides a connection in response to the
connection request and transmits a connection confirmation
message 250 back to the client 210. The client 210 then
transmits request data 260 to the server 220. The request data
260 includes information helpful in identifying what the
request is as well as information helpful in fulfilling the
request. If appropriate for the request, the Server 220 then
transmits a response 270 back to the client 210 over the
network 230.

0035) The server computer system 220 is a “server”
computer System in that it provides a Service in the form of
a connection and a response to the client computer System
210. The server may also obtain the services of other
computer Systems over the network. In this context, the
server 220 may also be a client computer system. The client
computer system 210 is a “client” computer system in that
it is Served by the Server providing the connection and
generating the response. The client computer System 210
may provide Services to yet other computer Systems. In this
context, the client computer System may also be a server
computer system. The client 210 and the server 220 may

US 2005/0149760 A1

each be structure Similar to the computer 120 or may contain
a subset or superset of the elements described above for the
computer 120.
0036 FIG. 3 illustrates a flowchart of a method 300
performed by the Server 220 when responding to requests
from the client 210. The method is initiated by the server 220
monitoring the network 230 for connection requests destined
for the server 220 (step 310). The method continues as the
server 220 detects such connection requests (step 320). The
remainder of the method 300 is performed for each detected
connection request.
0037 For each connection request, a connection is estab
lished using a means or Step for establishing a connection
request. Specifically, for each connection request, the con
nection request is mapped to a specific listen Socket (Step
330). If the server is implementing the WINDOWS(R) oper
ating System, the Server may call a Winsock module to map
the request to the listen socket. FIG. 4 schematically illus
trates a Winsock module 410 and associated listen sockets
420 and will be used in describing the remaining steps of
FIG. 3. As apparent to those of ordinary skill in the art, a
listen Socket allows the Server to listen for the expected
request data. The Winsock module may create one or more
listen sockets 420A through 420H. Step 330 maps the
request to one of these listen sockets 420.
0.038 If the server is able to accommodate the connection
request (“Yes” in decision block 340), the server allocates
resources (step 360) Such as memory space, processing time
or pooled function calls for receiving and processing the
expected request data. The Server computer System then
receives the request data (Step 370) and processes the
request data (step 380). Once the server has completed
processing the request, the Server frees up the previously
allocated resources and disconnects (step 390).
0039. On the other hand, if the server 220 is unable to
handle the connection request (“No” in decision block 340),
then the connection request is placed in a backlog queue for
future handling (step 350). As shown in FIG. 4, each listen
socket 420A through 420H has a corresponding backlog
queue 430A through 430H. If the server cannot handle the
connection request, the connection request is passed into the
queue corresponding to the listen Socket that the connection
request mapped to in Step 330. Although each listen Socket
has a request queue in FIG.4, in an alternative embodiment,
a more general backlog queue may be shared between one
or more or all of the listen Sockets. In this alternative, the
Server computer System may map the request to the listen
Socket after the connection request is drawn from the
backlog queue during future processing.

0040. The method 300 will now be explained in the
context of a WINDOWSCR operating system using a Win
Sock module to establish connections. For each detected
connection request, the Winsock module maps the connec
tion request to a listen socket (step 330). To establish a
connection to the listen Socket, a module may be called that
accepts connections and waits for request data before com
pleting. For example, an extension of the Winsock module
called Winsock()AcceptEX() is called and the correspond
ing listen Socket is passed in along with the new connection
Socket that represents the connection to the listen Socket.
The Winsock()AcceptEx() is completed when request data
is beginning to be received from the network in step 370.

Jul. 7, 2005

0041 Winsock may allocate a pool having a fixed num
ber of Winsock()Accept() calls available for creating new
connections. If the entire pool of Winsock()Accept() calls
are already processing new connections, then the Server is
not currently able to Satisfy Subsequent connection requests
(“No” in decision block 340). In this case, the connection
request is placed in the backlog queue corresponding to
listen socket (step 350).
0042. In normal operation, it should preferably be very
rare that the Server 220 cannot currently handle a connection
request. However, a denial of Service attack may often result
in the Server being unable to currently handle connection
requests. In this description and in the claims, a “denial of
Server attack” is defined as the repetitious transmission of
connection requests without a Subsequent transmission of
request data needed to process the requests. In Such a denial
of service attack, the method 300 of FIG. 3 will proceed
through step 360 in which resources are allocated. However,
the Server does not receive Subsequent request data as in Step
370. Therefore, the allocated resources are never freed up in
Step 390. Since connection requests are repeatedly made, the
amount of allocated resources rises until the Server can no
longer allocate resources and thus must deny legitimate
requests for Service.

0043. In the context of the Winsock module, the repeated
connection requests will result in repeated calls of the
Winsock()AcceptEx() module. However, none of the
Winsock()AcceptEX() modules will complete since no
request data is Sent during a denial of Service attack. Thus,
the pool of Winsock()AcceptEx() modules will gradually
deplete. Eventually, the server 220 will not be able to handle
new connection requests, legitimate or not, and the connec
tion requests will be placed in the backlog queue. Eventu
ally, the backlog queue will also be filled up and thus new
connection requests will not be saved and thus will never be
handled.

0044 FIG. 5 illustrates a flowchart of a method 500 that
prevents or at least reduces the impact of these denial of
Service attacks. As mentioned above, when the server 220
cannot currently handle a connection request, the connection
request is place in a backlog queue. The method 500
monitors this backlog queue (Step 510). Accordingly,
embodiments within the Scope of the present invention
include a means and/or Step for monitoring the backlog
queue. Any method of monitoring the backlog queue will
Suffice So long as the method is capable of determining
whether of not there are entries in the backlog queue. In the
example shown in FIG. 4, each listen Socket has a corre
sponding backlog queue. The method 500 may monitor
these backlog queues by, for example, calling modules that
Scan the backlog queues to determine usage. On Such
module is a Winsock extension called Winsock()select(). A
list of listen sockets is passed into the Winsock()select()
function. The Winsock()select() module monitors the
backlog queue of each of the listens Sockets in the list of
listen Sockets passed into the Winsock()Select() module.
0045 Next, the method 500 determines if the backlog
queue is being used (step 520). Any method for determining
that the backlog queue is being used will Suffice. In the
above example where the Winsock()select() extension of
Winsock is used to monitor the backlog queue, the deter
mination is made by the very fact that the Winsock()select(

US 2005/0149760 A1

)extension module returns. The Winsock()select() exten
Sion module returns when one or more of the listen Sockets
have entries in their corresponding backlog queues.
0046) Next, the method 500 resets one or more connec
tion Sockets upon notification that the backlog queue is
being used (step 530). Accordingly, embodiments within the
Scope of the present invention include a means and/or Step
for resetting one or more connection Sockets upon notifica
tion that the backlog queue is being used.
0047 As part of the step for resetting one or more listen
sockets, the method 500 includes a step of determining
which connection Sockets have established connections, but
have not received any data (step 540). In the context of using
Winsock, the server computer system 220 enumerates all the
connection Sockets that have been created using a currently
called Winsock()AcceptEx() function. For each of these
currently called Winsock()AcceptEX() connection Sockets,
the extension Winsock()getsockopt() is used to determine
whether or not a connection has been established. If a
connection has been established, then the connection Socket
is Suspected of being caused by a malicious connection
request Since a connection has been made, yet no request
data has been sent (otherwise, the Winsock()AcceptEx()
module would not be currently called but would have been
completed). Thus, this connection Socket may be discon
nected (step 550) Since it is assumed that a connection Socket
having a connection but no request data is most likely the
result of a denial of Service attack.

0.048. There is some risk associated with closing a con
nection Socket Simply because it has a connection but no
received request data. For example, the connection Socket
may not have been created as a result of a malicious
connection request. Instead, it may be the connection request
was legitimate in that the associated connection Socket just
happened to be in a Stage where the connection was just
made but the Soon to arrive request data simply has not
arrived yet. In this case, a legitimate connection request
would be denied.

0049. However, this case would typically be relatively
rare. For example, the legitimate connection request would
not be denied unless the backlog queue had entries in it
which should in itself be relatively rare. Secondly, even
though the backlog queue is full, the period of time between
the time a connection is made and the time the data is
received is relatively brief for a legitimate connection
request. Thus, the chance that the legitimate connection
request would be executing in that brief period is also
relatively small. On the other hand, using this method would
Substantially reduce the impact of denial of Service attackS.
Thus, the advantages of the method in reducing the impact
of denial of Service attacks would typically outweigh the
relatively Small risk of denying legitimate connection
requests.

0050. Notwithstanding this small risk, the method may be
further optimized to reduce the chances for denying legiti
mate connection requests even further. For example, the
server computer system 220 may be configured to allow for
a specified, grace period after entries are detected in the
backlog queue before connections are disconnected. If,
during this grace period, the Server handles the connection
requests in the backlog queue, no connection Sockets are
disconnected.

Jul. 7, 2005

0051. The present invention may be embodied in other
Specific forms without departing from its Spirit or essential
characteristics. The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
Scope.

What is claimed and desired to be secured by United States
Letters Patent is:
1. A computer program product comprising one or more

computer-readable media having computer-executable
instructions for implementing a method for reducing denials
of Service during a denial of Service attack in a networked
environment, wherein the network includes one or more
client computer Systems that make requests for information
from a server computer System, the Server computer System
providing information in response to the requests from the
one or more client computer Systems, and the Server com
puter System includes one or more listen Sockets and a
backlog queue for queuing connection requests that the
Server computer System cannot currently handle, and
wherein the method comprises:

receiving a denial of Service attack comprising a plurality
of connection requests from a client computer System
without receiving any associated request data for the
plurality of corresponding connection requests,

establishing a connection Socket for at least one of the
plurality of connection requests without placing the
connection request in a backlog queue,

for each connection request for which the Server computer
System cannot currently establish a connection Socket,
placing the connection request in the backlog queue
without then establishing a connection Socket; and

identifying and disconnecting one or more of the connec
tion Sockets that are Suspected to be Serving a malicious
connection request and that have not received associ
ated request data for the one or more corresponding
connection requests, So as to reduce any affect of the
denial of Service attack.

2. A computer program product as recited in claim 1,
wherein the one or more identified connection Sockets are
disconnected only upon determining that the backlog queue
is being used.

3. A computer program product as recited in claim 2,
wherein the one or more identified connection Sockets are
disconnected only after waiting a predetermined period of
time after determining that the backlog queue is being used.

4. A computer program product as recited in claim 1,
wherein the backlog queue is capable of containing connec
tion requests that include associated request data and con
nection requests that do not include associated request data

5. A computer program product as recited in claim 1,
wherein identifying connection Sockets that have no
received request data includes identifying connection Sock
ets that are Suspected to be Serving a malicious connection
request.

