US 20230129217A1

a2y Patent Application Publication o) Pub. No.: US 2023/0129217 A1l

a9y United States

Bregman et al.

43) Pub. Date: Apr. 27,2023

(54) REMOVING SOFTWARE OPERATORS
FROM DISTRIBUTED COMPUTING
ENVIRONMENTS

(71)
(72)

Applicant: Red Hat, Inc., Raleigh, NC (US)

Inventors: Arie Bregman, Gan Yavne (IL); Steve
Mattar, Herzliya (IL)

(21) Appl. No.: 17/511,994

(22) Filed: Oct. 27, 2021

Publication Classification

Int. CL.

GO6F 9/48
GO6F 9/50
GO6F 9/54

(51)
(2006.01)
(2006.01)
(2006.01)

(52) US.CL
CPC ... GOGF 9/485 (2013.01); GOGF 9/5077
(2013.01); GOGF 9/5088 (2013.01); GO6F
9/54 (2013.01)
(57) ABSTRACT

The removal of software operators can be managed accord-
ing to some aspects described herein. In one example, a
system can receive a command to remove an operator from
a computing cluster and, in response, determine a set of
actions previously performed in the computing cluster in
relation to adding the operator to the computing cluster.
Each action can involve the creation, modification, or dele-
tion of at least one object in the computing cluster. The
system can also determine a particular order in which the set
of actions were previously performed relative to one another.
The system can then assist with removing the operator from
the computing cluster by causing an inverse of each action
in the set of actions to be performed in the computing cluster
in a reverse order to the particular order.

Client Device 116
114 « (’/100
A
Computing Cluster 102
Container Orchestration Platform 122
E 136
112a &
Sdhld I Operator 110a < APl 134
’/
Pt /
Operator Management ¢ — =~ Operator 110b
System 106
A, R\
138 AN
y AN
~
Management Software 124 \I Operator 110n
I Actions Table 128 l Software Application
132 " 120
H State Information 130 l

Pt N Resource

/ \\s | L 118a
Icurrent State: X4 \‘\ _,_—"" s

] b —— u

\\Target State: YI, ~«_ Object Store 108 T e 118b

~ - e DO

M. S oA db--> objecta &7 e :
ObjectB Me=="1"" .

T e e Fesouee

Apr. 27,2023 Sheet 1 of 7 US 2023/0129217 A1

Patent Application Publication

191

Ugll

22JN0sa8Y

9811
224nosay

BRI
924nosay
44
uoned|ddy siemyos

UOTT 4o1e42d(

TOTT Jo1e0d0 |l ===

BOLT 401842dQ

A
Y

CT uuoie|d uoiieiissydiQ Jaulejuc)

- N 1990

wew

- g 199[00
=Pl VIR0 R=="1
~

—_— ~
80T 24015 930 N

-

o

_ OET uollewJoju| 21e1S

87T 8|ge] suoiny

7T a1em)jos Juawadeuep

——A
8¢T
A 4
FOT walsAg

1uawaBeue JoiesadQ

foar s

Z0T 4218n) Sunndwo)

/ \
.~ A 91815 1984 V

1Y 121R1S Emt:u._
\

00T

,.
’
IIII \\
et
i
~CET
24
201880 JUB1D

Apr. 27,2023 Sheet 2 of 7 US 2023/0129217 A1

Patent Application Publication

¢ 'Ol
1S3 NIV TO:0T 1€ TZ0T ‘8T "1das ze8SEY 919|130 SYTTEZE
1S3 NIV v0:0T 1€ TZ0T ‘8T "1des 0T8Y6Y Ayipo €77€7TT
1S3 NV £0:0T 1€ TZ0T ‘8T "1das 9/9v59 a1eas) €77€7TT
1S3 NIV TO:0T 1€ TZ0T ‘8T "1das 0SEVSS a1eas) €77€7TT
Jaynusp| 19pIo 1pynusp| Palqo 13413U3p| UCIPY 1aynuap| Jojessdo
8¢T

US 2023/0129217 A1l

Apr. 27,2023 Sheet 3 of 7

Patent Application Publication

€ 'Old

b1e1s 5,109[q0 9yl ydeq 1anay

91e1s 5,308[qo ue AjlpolAl

103[qo 2y} a1ea.d-3Y

193[qo ue 813|2Qq

103[qo ayi @18(8Q

103[qo ue a1eal)

Uondy asiand|

uomdy

00¢

Apr. 27,2023 Sheet 4 of 7 US 2023/0129217 A1

Patent Application Publication

¥ 'Old

Ugtt

22IN0saYy

q811
224nosay

ETT

22J4Nn0say

k41
uoneo|ddy a1emyos

UOTT Jo1e40d0

- N 192[g0
- g 338{00
_--p| v®eloo

80T 24015 12lq0

GOTT s01e00d0

G0T WoisAs
wawoadeue Jolesado

A

Y

BOL1 J01e42dQ

{1 Wwiojle|d UuoliesiseydlQ Jouieuo)

ECTL “

Z0T 4935n)D unndwon

_ OET UOIIBULIOJU| 21B1S

8T 8(gel suoiy

YT 24emijos Juawadeueiy

OFT opoN 4ondwo)

ooV

¥itT
221A9Q UBI|D

Apr. 27,2023 Sheet 5 of 7 US 2023/0129217 A1l

Patent Application Publication

SOl

Ugll

22JN0s9Y

9811
224nosay

EQT1

- N 19290

[11)

—— g 198l40
_--p| v®elo

80T 24015 12300

22Jn0saYy

_ OET uollewJoju} 91e1s

(ir41
uonen|ddy s41emyyos

87T ®|ge L suoipy

UOTT 401e40d(

TZT 24emljos juswaseueiy

\
// — A
AN 8ET
/K \ A
G0T WaisAs
qoTT Joresodo «-~--» 1uswoadeuew Jojesadp
*
— \\\
708 1dv > N
< — > BOTT JozelsadQ AR
= s

70T 4215n)) 8unndwo)

00s

¥it
221A9Q JUdIID

Apr. 27,2023 Sheet 6 of 7 US 2023/0129217 A1l

Patent Application Publication

9 'Ol4
| g)
019 ~7~-4 Y82
| P
g9 suoldNJIsu|
Pm———————
|
wow\llllh o9y “
| P
¥09 Aloway
A
Y
> 700 J0Ss9204d

ugtlt

22IN0sSaYy

q8T11
924n0say

EQTT
224n0say

e m———f—— N 33[q0

. 9333[90
- -
- v 192[q0
\
\

- —

80T 24035 1alqo

BOLL JolesadQ

CT Wlojie|d uoljedisaydiQ Jaulejuo)

0T 491sn|D Sunndwo)

A

009

ZT9 puewwo)

Apr. 27,2023 Sheet 7 of 7 US 2023/0129217 A1l

Patent Application Publication

L Ol

JapJo Jenoiied ayy 01 J9PJO 3SIAARJ B Ul pawioilad g 01 suojioe jo Aljedn|d ayy
Ul UO[13E YoEeD JO 3sJaAU] Ue Suisned Ag wuoyie|d Uo[1eJ1SaYdJo JBUIBIUOD 3y} Wod) Jolesado ay3 Suljjelsuiun yum 1sissy
80L

wJoyle|d UOIIBIISSYDIO JBUIBIUOD aY1 03Ul JoleJado ayy Sulj[eisul 03 uope|ad
Ul JaYl0UE 23U 03 dARE[RJ pawlopad Ajsnolraud aJam suoide Jo Aljedn|d Yl Yoiym Ul JapJo Jendiiied e auiwialag
90,

J91sn 2 Suiindwod ay1 ul 129(Co SUO 1SEI| 1E JO UOIID|3P B JO ‘UCIIEDIIPOW
e ‘uoileaJd e SuiAjoAul sUOIlde Jo Alljeanid ay1 ul uollde YJes ‘wJoje|d Uol1BIISaYIIO JUIEIUOD 3Y] 03Ul Jojesado
2y3 Bujjieisul 01 uoieRJ ul J4a1snpd Sunndwod ay3 Ul pawuoad Ajsnoiaaid auam eyl SUOlIde Jo Alljedn|d B sulwWIR1aQ
0L

A

Jaisnp
Buirndwos 3y1 JO S924N0S3J 1USAIdDU puB WOJS 10UISIP 4. 18yl $103[qo a8euew 01 paundijuod 3ulaq Joiesado ayy
‘321sn[2 Su;INdwod B Yiim paleldosse wJole|d uoi1es1say2Jo JaUIBIUOD B JO J01eJ2dO UE ||BISUIUN O] PUBWLIOD B 9AI9I3Y

0L

US 2023/0129217 Al

REMOVING SOFTWARE OPERATORS
FROM DISTRIBUTED COMPUTING
ENVIRONMENTS

TECHNICAL FIELD

[0001] The present disclosure relates generally to software
operators in distributed computing environments. More spe-
cifically, but not by way of limitation, this disclosure relates
to removing a software operator from a distributed comput-
ing environment, such as a cloud computing environment or
computing cluster.

BACKGROUND

[0002] Software resources such as applications and micro-
services can be deployed inside containers within a distrib-
uted computing environment. A container is a relatively
isolated virtual environment that can be generated by lever-
aging resource isolation features (e.g., cgroups and
namespaces) of the Linux kernel. Deploying software
resources inside containers can help isolate the resources
from one another and provide other benefits.

[0003] To help automate the deployment, scaling, and
management of software resources inside containers, some
distributed computing environments may include container
orchestration platforms. Container orchestration platforms
can help manage containers to reduce the workload on users.
One example of a container orchestration platform is Kuber-
netes. Distributed computing environments running Kuber-
netes can be referred to as Kubernetes environments.
[0004] Kubernetes environments can include software
operators (“operators”) for automating various repeatable
tasks, such as deployment, scaling, and backup of software
resources. In the context of Kubernetes, an operator is a
software extension that can manage an assigned software
resource, such as a stateful application. Once deployed,
operators can create, configure, and manage instances of
their assigned software resources on behalf of a user in a
declarative way. For example, an operator can monitor the
state of an assigned software resource and perform a rec-
onciliation operation if a current state of the assigned
software resource does not match a target state, to force the
current state to match the target state.

[0005] Operators can be deployed in a Kubernetes envi-
ronment using an Operator Lifecycle Manager (OLM). The
OLM can assist users in installing, updating, and managing
the lifecycles of operators. The OLM has a user interface
through which users can select operators to install and
uninstall. The OLM can deploy the operators based on
manifest files (e.g., YAML files) defining properties of the
operators.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows a block diagram of an example of a
system for removing software operators according to some
aspects of the present disclosure.

[0007] FIG. 2 shows an example of an actions table
according to some aspects of the present disclosure.
[0008] FIG. 3 shows examples of actions and their
inverses according to some aspects of the present disclosure.
[0009] FIG. 4 shows a block diagram of another example
of a system in which management software is external to a
computing cluster according to some aspects of the present
disclosure.

Apr. 27,2023

[0010] FIG. 5 shows a block diagram of yet another
example of a system that excludes a container orchestration
platform according to some aspects of the present disclo-
sure.

[0011] FIG. 6 shows a block diagram of another example
of a system for managing removal of software operators
according to some aspects of the present disclosure.
[0012] FIG. 7 shows a flow chart of an example of a
process for removing software operators according to some
aspects of the present disclosure.

DETAILED DESCRIPTION

[0013] A distributed computing environment can include
an operator management system for adding, removing, and
updating operators. One example of the operator manage-
ment system can be the Operator Lifecycle Manager (OLM)
in Kubernetes. In some cases, the operator management
system may include an operator catalog that lists operators
deployable in the distributed computing environment. Upon
a user selecting an operator from the operator catalog, the
operator management system can install (e.g., deploy and
configure) the selected operator in the distributed computing
environment. As part of the installation process, the operator
may itself perform one or more actions after it is deployed
in the distributed computing environment. The operator can
perform the actions to allow the operator to properly func-
tion. Examples of such actions can include the creation,
deletion, and modification of objects in the distributed
computing environment. Objects are data structures that are
distinct from and represent software resources in the dis-
tributed computing environment. For example, an object
stored in a database can represent an individual microservice
running in the distributed computing environment. The
operator can monitor, update, and retrieve data from the
object to perform various operations associated with the
microservice in the distributed computing environment.
[0014] To uninstall an operator from a distributed com-
puting environment, the operator management system may
execute one or more actions defined in a preset uninstalla-
tion script, which may be manually drafted by a creator of
the operator. But often times, these scripts are not suffi-
ciently comprehensive and consequently objects that are no
longer being used may be left behind, or left in an undesir-
able state, in the distributed computing environment. This
may not only waste valuable computing resources (e.g., the
memory space consumed by unused objects), but may also
lead to security and performance problems if the unused
objects are left in an insecure or outdated state.

[0015] Some examples of the present disclosure can over-
come one or more of the abovementioned problems by
providing management software that logs the actions per-
formed by an operator in a distributed computing environ-
ment. Since some actions may depend on other actions, the
management software can also log the particular order in
which the actions are performed. The management software
can then assist with the removal (e.g., uninstallation) of an
operator from the distributed computing environment by
determining an inverse of each action performed by the
operator and performing the inverse actions in a reverse
order. Examples of such inverse actions can include deleting
an object that was added by the operator, recreating an object
that was deleted by the operator, or reverting an object back
to a prior state if the object was modified by the operator. In
this way, the management software can assist in removing

US 2023/0129217 Al

the operator, for example to help ensure that objects are not
unintentionally left behind or left in an undesirable state.

[0016] One particular example can involve a computing
cluster that is running Kubernetes as a container orchestra-
tion platform. Kubernetes can include an OLM for manag-
ing operators. A user can interact with the OLM to install a
particular operator in a computing cluster. As part of the
installation process, the OLM may deploy the operator in the
computing cluster according to a predefined manifest file
defining properties of the operator. Once the operator is
running, the operator may then transmit a first command to
an application-programming interface (API) of Kubernetes
for causing a first object to be created in an object database.
The operator may also transmit a second command to the
API for causing a second object to be modified in the object
database. The object database may be part of, and main-
tained by, Kubernetes. The management software can detect
the first and second commands and log their corresponding
actions in an actions table. The management software may
also log the sequential order in which the first and second
commands were issued in the actions table. In some
examples, the management software may further store a
snapshot of the current state of the second object (prior to the
modification), which may allow the second object to be
reverted to its current state during uninstallation of the
operatotr.

[0017] At a later point in time, the user may interact with
the OLM to uninstall the operator. In response to the user
interaction, the OLM can execute a preset uninstallation
script to remove the operator from the computing cluster.
But in some cases, this uninstallation script may not be
sufficiently comprehensive. As a result, the first object may
unintentionally be left behind in the computing cluster or the
second object may be unintentionally left in its modified
state. This may waste storage space and lead to security or
performance problems. To help avoid these issues, in some
examples the OLM can transmit a command to the man-
agement software to initiate a supplementary uninstallation
process. In response to receiving the command, the man-
agement software determine an inverse of each action that
was performed by the operator, along with a sequential order
in which each action was performed by the operator, based
on the actions table. For example, the management software
can determine that the inverse of the creation action is a
deletion action for deleting the first object. And the man-
agement software can determine that the inverse of the
modification action is a reversion action for reverting the
second object back to its prior state (e.g., its state immedi-
ately before the modification occurred). The management
software can then perform the inverse actions in a reverse
order. Performing the inverse actions in the reverse order
may be helpful if certain actions are dependent upon other
actions. For example, the management software can first
transmit a command to the API for causing the second object
to be reverted to its prior state using the snapshot. The
management software may then transmit another command
to the API for causing the first object to be deleted from the
object database. Using these techniques, the management
software can assist the OLM in reverting the computing
cluster back to its prior state before (e.g., immediately
before) the operator was installed, resulting in a cleaner
uninstallation of the operator.

[0018] These illustrative examples are given to introduce
the reader to the general subject matter discussed here and

Apr. 27,2023

are not intended to limit the scope of the disclosed concepts.
The following sections describe various additional features
and examples with reference to the drawings in which like
numerals indicate like elements but, like the illustrative
examples, should not be used to limit the present disclosure.
[0019] FIG. 1 is a block diagram of an example of a
system 100 for managing removal of software operators
according to some aspects of the present disclosure. The
system 100 includes a computing cluster 102 that may be
formed from multiple nodes (e.g., servers or other comput-
ing devices) in communication with one another over one or
more networks. The nodes may communicate with one
another to collectively perform tasks in the computing
cluster. For example, the nodes can communicate with one
another to perform distributed data processing or other
distributed projects in the computing cluster 102.

[0020] The computing cluster 102 includes a container
orchestration platform 122 such as Kubernetes for assisting
with managing (e.g., deploying and scaling) software
resources inside containers within the computing cluster
102. To that end, the container orchestration platform 122
can include an object store 108 for storing objects, which
can be data structures representing the software resources.
The object store 108 can be a database or any other suitable
storage means for storing objects. In the example shown in
FIG. 1, the object store 108 includes objects A-N that
correspond to software resources 118a-n, respectively. That
is, each of the objects A-N represents an individual one of
the software resources 118a-n. In some examples, the soft-
ware resources 118a-r» may collectively form a software
application 120. For example, the software resources 118a-n
can include microservices or serverless functions that col-
lectively implement the overall functionality of the software
application 120.

[0021] The container orchestration platform 122 also
includes an operator management system 106, such as OLM
in the context of Kubernetes. The operator management
system 106 can provide a user interface to allow users to
quickly and easily add (e.g., install) operators to, and
remove (e.g., uninstall) operators from, the computing clus-
ter 102. The container orchestration platform 122 can add
the operators 110a-» to the computing cluster 102 based on
manifest files defining the properties of the operators 110a-
n. Bach operator can have a corresponding manifest file,
which the container orchestration platform 122 can receive
and rely upon to deploy and configure the operator in the
computing cluster 102. The container orchestration platform
122 can remove operators 110a-n from the computing
cluster 102 based on uninstallation scripts 112a-» defining
uninstallation operations. Each operator can have a corre-
sponding, preset uninstallation script, which the container
orchestration platform 122 can receive and execute to
remove the operator in the computing cluster 102.

[0022] In some examples, a user may wish to add an
operator 110a to the computing cluster 102. To do so, the
user can operate a client device 114 to interact with the
operator management system 106. Examples of the client
device 114 can include a desktop computer, laptop com-
puter, or mobile phone. The client device 114 may be
internal or external to the computing cluster 102 and can
communicate with the computing cluster 102 via one or
more networks, such as the Internet. Based on the user
interaction, the operator management system 106 can deploy
the operator 110q in the computing cluster 102. This may

US 2023/0129217 Al

involve the operator management system 106 transmitting
one or more commands to an API 134 of the container
orchestration platform 122 for causing the operator 110qa to
be deployed in the computing cluster 102.

[0023] Once the operator 110q is running in the computing
cluster 102, the operator 110a¢ may perform one or more
actions. Examples of such actions can include adding an
object (e.g., object N+1) to the object store 108, deleting an
existing object (e.g., object N) from the object store, or
modifying the content of an existing object in the object
store 108. To perform said actions, in some examples the
operator 110a can transmit corresponding commands 136 to
the API 134 of the container orchestration platform 122.
[0024] In some examples, management software 124 can
detect the actions initiated by the operator 110a. For
example, the management software 124 can be configured as
a proxy server, which may be conceptually positioned as an
intermediary between the operator 110a and the API 134.
The operator 110a can be configured to transmit commands
136 to the proxy server, which can intercept and analyze the
commands 136 before passing the commands 136 on to the
API 134. By analyzing the commands 136, the management
software 124 can determine the actions initiated by the
operator 110a. As another example, the operator 110a can
output the commands 136 on a messaging bus, which can be
monitored by the management software 124 to detect the
commands 136. One example of software for implementing
a messaging bus can be RabbitMQ™. By detecting and
analyzing the commands 136 on the messaging bus, the
management software 124 can determine the actions initi-
ated by the operator 110a. Other ways of determining the
actions initiated by the operator 110 are also possible.
[0025] The management software 124 can store the
detected actions in an actions table 128. The actions table
128 can be a data table or any other suitable data structure.
The management software 124 can also store information in
the actions table 128 indicating the sequential order in which
the actions were initiated by the operator 110a. One example
of such an actions table 128 is shown in FIG. 2. As shown,
the actions table 128 can include a series of entries. Each
entry can correspond to an individual action initiated by an
individual operator. Each entry can include an operator
identifier that uniquely identifies the operator that initiated
the action, an action identifier that uniquely identifies the
action type (e.g., create, modify, or delete), an object iden-
tifier that uniquely identifies the target object associated with
the action, and an order identifier indicating a position of the
action in a sequential order relative to other actions in the
actions table 128. In some examples, the operator identifier
may be determined based on a header of a command 136
transmitted from the operator 110gq, the action identifier may
be determined based on a payload of the command 136, and
the order identifier may be determined based on transmis-
sion time or receipt time of the command 136. Of course,
other ways of determining this information are also possible.
It will be appreciated that although the order identifier is a
timestamp in this example, other examples may involve
other types of order identifiers such as a sequential numbers.
And other examples may have more, less, or different entry
data than is shown in FIG. 2.

[0026] In some examples, the management software 124
may also store state information 130 associated with one or
more existing objects in the object store 108. For example,
the management software 124 can determine that one of the

Apr. 27,2023

actions initiated by the operator 110a involves deleting an
existing object A from the object store 108. To enable object
A to be recreated upon uninstallation of the operator 110a,
the management software 124 can determine and store the
current state of object A as state information 130. In some
examples, the management software 124 can determine the
state information 130 by retrieving it from the object itself
or from another source. For example, object A may include
a current-state field and a target-state field, as shown in the
dashed circle 132. The current-state field can include the
state information 130 describing a current state of the object,
which may serve as a proxy for the current state of the
corresponding software resource 118a in the computing
cluster 102. And the target-state field can include target-state
information describing a desired state of the object, which
may serve as a proxy for the desired state of the correspond-
ing software resource 118a in the computing cluster 102.
The current state may or may not be different from the target
state. The management software 124 can retrieve the state
information 130 by transmitting a command to the API 134,
which can return the state information 130. The management
software 124 can then store the state information 130, which
can serve as a snapshot of the current state of the object A.

[0027] A similar process can be performed if one of the
operator’s actions involves modifying an existing object B
in the object store 108. To allow the object B to be reverted
to its current state (e.g., its state immediately prior to the
modification) upon uninstallation of the operator 1104, the
management software 124 can determine and store the
current state of object B as part of the state information 130.
The management software 124 can determine the current
state of object B using any of the techniques described
above.

[0028] At a later point in time, the user may decide to
uninstall the operator 110a. To do so, the user can operate
the client device 114 to transmit an uninstallation command
116 to the operator management system 106. In response to
receiving the uninstallation command 116, the operator
management system 106 can execute a preset uninstallation
script 112a to remove the operator 110a from the computing
cluster 102. But in some cases, the uninstallation script 112a
may not be sufficiently comprehensive, which may lead to
various problems. To help prevent the problems from aris-
ing, in some examples the operator management system 106
can transmit an uninstallation command 138 to the manage-
ment software 124 to initiate an additional uninstallation
process. The additional uninstallation process may be
designed to supplement the uninstallation process performed
by the operator management system 106.

[0029] More specifically, the management software 124
can receive the uninstallation command 138 and, in response
to receiving the uninstallation command 138, determine
each action that was performed by the operator 110a. The
management software 124 can determine each action that
was performed by the operator 110a using the actions table
128. The management software 124 can then determine an
inverse of each action that was performed by the operator
110a. The inverse of a given action is referred to herein as
an “inverse action.” In some examples, the management
software 124 can determine the inverse actions by using
preprogrammed relationships between actions and their
inverse actions. The preprogrammed relationships can be
stored in a database or can be stored as preprogrammed
rules. One example of such preprogrammed relationships

US 2023/0129217 Al

between actions and inverse actions is shown in the table
300 of FIG. 3. The management software 124 can use the
preprogrammed relationships to determine which inverse
action to perform to undo a particular action.

[0030] In some examples, the management software 124
can also determine a sequential order in which the actions
were performed by the operator 110a. The sequential order
can be the order in which the actions were performed
relative to one another. The management software 124 can
determine the sequential order based on the order identifiers
in the actions table 128, for example by comparing the order
identifiers (e.g., timestamps or sequential numbers) to one
another. Alternatively, the management software 124 may
skip this step if the sequential order of the actions does not
matter. The sequential order of the actions may not matter if,
for example, the actions are not dependent on one another.
[0031] Having determined which inverse actions to per-
form, the management software 124 can proceed to perform
the inverse actions. Performing an inverse action may
involve transmitting a corresponding command to the API
134 of the container orchestration platform 122 for causing
the container orchestration platform 122 to execute the
inverse action on behalf of the management software 124. In
some examples in which the order of the inverse actions is
important, the management software 124 may perform the
inverse actions in a reverse order. This may involve trans-
mitting commands to the API 134 of the container orches-
tration platform 122 for causing the inverse actions to be
performed in the reverse order. Through this process, the
management software 124 can undo the actions performed
by the operator 110a.

[0032] As noted above, the operator 110a may perform an
action involving deleting an object from the computing
cluster 102. For example, the action can involve deleting the
object from the object store 108. So, the management
software 124 can determine that a corresponding inverse
action involves generating (e.g., re-deploying) the object in
the computing cluster 102. For example, the inverse action
can involve re-creating the object in the object store 108. To
perform the inverse action, the management software 124
can use the stored state information 130 relating to the
object. For example, the management software 124 can
transmit a command that includes the state information 130
to the API 134 for causing the container orchestration
platform 122 to re-create the object such that it has the state
defined in the state information 130.

[0033] Additionally or alternatively, the operator 110a
may perform an action involving modifying an object in the
object store 108 from a first state to a second state. So, the
management software 124 can determine that a correspond-
ing inverse action involves reverting the object back to the
first state. To perform the inverse action, the management
software 124 can use the stored state information 130
relating to the object. For example, the management soft-
ware 124 can transmit a command that includes the state
information 130 to the API 134 for causing the container
orchestration platform 122 to revert the object from its
current state (e.g., the second state or another state) back to
the first state.

[0034] To prevent duplication of work and possible errors,
in some examples the management software 124 may only
undo actions that were not already previously undone by the
operator management system 106 during its uninstallation
process. For example, the management software 124 can

Apr. 27,2023

determine which operations were performed by the operator
management system 106 during its uninstallation process.
This may be achieved by communicating with the operator
management system 106 or monitoring the operations per-
formed by the operator management system 106. Based on
the operations performed by the operator management sys-
tem 106, the management software 124 may determine that
a certain subset of the actions described in the actions table
128 were not undone by the operator management system
106. The management software 124 may then only perform
the inverses of that limited subset of actions, to help “fill in
the gaps” in the uninstallation process and avoid duplication
of work. This may also prevent errors from arising, for
example if the management software 124 attempts to undo
an action that has already been previously undone by the
operator management system 106.

[0035] While the example shown in FIG. 1 has a certain
number and arrangement of components, these are merely
illustrative. Other examples can include more components,
fewer components, or a different arrangement of the com-
ponents shown in FIG. 1. For instance, other examples can
involve a multitude of client devices interacting with any
suitable type of distributed computing environment to install
hundreds or thousands of operators thereon, where the
operators can perform any number of actions. Such actions
can be monitored by the management software 124 for use
in uninstalling the operators in accordance with the tech-
niques described herein.

[0036] Another example of a system 400 for managing
removal of software operators is shown in FIG. 4. In this
example, the management software 124 is located on a
computer node 140 (e.g., a laptop computer, desktop com-
puter, or server) that is external to the computing cluster 102.
The management software 124 can communicate with the
computing cluster 102, such as the API 134 of the container
orchestration platform 122, via one or more networks. An
example of such a network can be the Internet. Other aspects
of FIG. 4 are similar to those of FIG. 1.

[0037] Another example of a system 500 for managing
removal of software operators is shown in FIG. 5. In this
example, the computing cluster 102 excludes a container
orchestration platform, such as the container orchestration
platform 122 of FIG. 1. In some such examples, the system
components may communicate with the API 502 of the
computing cluster 102, rather than the API 134 of a con-
tainer orchestration platform 122, to implement the above-
mentioned functionality. Other aspects of FIG. 5 are similar
to those of FIG. 1.

[0038] FIG. 6 shows a block diagram of another example
of'a system 600 for managing removal of software operators
according to some aspects of the present disclosure. The
system 600 includes a processor 602 communicatively
coupled with a memory device 604. The processor 602 can
include one processing device or multiple processing
devices. Non-limiting examples of the processor 602 include
a Field-Programmable Gate Array (FPGA), an application-
specific integrated circuit (ASIC), a microprocessor, etc. The
processor 602 can execute instructions 606 stored in the
memory device 604 to perform operations. In some
examples, the instructions 606 can include processor-spe-
cific instructions generated by a compiler or an interpreter
from code written in any suitable computer-programming
language, such as C, C++, C#, etc.

US 2023/0129217 Al

[0039] The memory device 604 can include one memory
device or multiple memory devices. The memory device 604
can be non-volatile and may include any type of memory
device that retains stored information when powered off.
Non-limiting examples of the memory device 604 include
electrically erasable and programmable read-only memory
(EEPROM), flash memory, or any other type of non-volatile
memory. In some examples, at least some of the memory
device can include a computer-readable medium from which
the processor 602 can read instructions 506. A computer-
readable medium can include electronic, optical, magnetic,
or other storage devices capable of providing the processor
602 with computer-readable instructions or other program
code. Non-limiting examples of a computer-readable
medium include magnetic disk(s), memory chip(s), ROM,
random-access memory (RAM), an ASIC, a configured
processor, optical storage, or any other medium from which
a computer processor can read the instructions 606.

[0040] In some examples, the processor 602 can receive a
command 612 to remove (e.g., uninstall) an operator 110a
from a computing cluster 102. The operator 110a can be
configured to manage one or more objects A-N that are
distinct from and represent software resources 118a- of the
computing cluster 102. In response to receiving the com-
mand 612, the processor 602 can determine a plurality of
actions that were previously performed in the computing
cluster 102 in relation to adding (e.g., installing) the operator
1104 to the computing cluster 102. For example, the pro-
cessor 602 can determine that actions A-C were performed
by accessing an actions table. Each action can involve a
creation, modification, or deletion of an object in the com-
puting cluster 102. The processor 602 can also determine a
particular order 608 in which the plurality of actions were
previously performed relative to one another. For example,
the processor 602 can determine that actions A-C were
performed in a particular order 608 by analyzing order
identifiers corresponding to actions A-C in the actions table.
[0041] Next, the processor 602 can assist with removing
the operator 110¢ from the computing cluster 102. For
example, the processor 602 can assist with uninstalling the
operator 110a from the container orchestration platform 122
by causing an inverse of each action in the plurality of
actions to be performed. The inverses of actions A, B, and
C are designated as A, B, and C in FIG. 6. The processor 602
can perform these inverse actions in a reverse order 610 to
the particular order 608.

[0042] In some examples, the processor 602 can imple-
ment some or all of the steps shown in FIG. 7. Other
examples can include more steps, fewer steps, different
steps, or a different combination of steps than are shown in
FIG. 7. The steps of FIG. 7 are discussed below with
reference to the components discussed above in relation to
FIG. 6.

[0043] In block 702, the processor 602 receives a com-
mand 612 to uninstall an operator 110a of a container
orchestration platform 122 associated with a computing
cluster 102. In some examples, the command 612 may be
similar to the uninstallation command 116 transmitted by the
client device 114 in FIG. 1. Alternatively, the command 612
may be similar to the uninstallation command 138 transmit-
ted by the operator management system 106 in FIG. 1.

[0044] In block 704, the processor 602 determines a
plurality of actions that were previously performed in the
computing cluster 102 in relation to installing the operator

Apr. 27,2023

110¢ in the container orchestration platform 122. For
example, the processor 602 can determine that the Actions
A-C shown in FIG. 6 were performed by the operator by
accessing an actions table, such as the actions table 128 of
FIG. 1.

[0045] In block 706, the processor 602 determines a
particular order 608 in which the plurality of actions were
performed relative to one another in relation to installing the
operator 110q in the container orchestration platform 122.
For example, the processor 602 can determine that Actions
A-C were performed in the particular order 608 by analyzing
their timestamps in the actions table.

[0046] In block 708, the processor 602 assists with unin-
stalling the operator 110a from the container orchestration
platform 122 by causing an inverse of each action in the
plurality of actions to be performed in a reverse order 610 to
the particular order 608. For example, the processor 602 can
determine that the inverse actions A, B, and C are inverses
of the actions A, B, and C using preprogrammed relation-
ships between actions and inverse actions. The processor
602 can then execute the inverse actions in a reverse order
610 to the particular order 608 (e.g., first C, then B, and
finally A).

[0047] Inother examples where the actions are not depen-
dent on one another, the order in which the inverse actions
are performed may not matter. So in some such examples,
the processor 602 may cause the inverse actions to be
performed in any suitable order, which may be the same as
or different from the reverse order 610.

[0048] In some aspects, software operators can be
removed from a distributed computing environment in
accordance with one or more of the following examples. As
used below, any references to a series of examples is to be
understood as a reference to each of those examples dis-
junctively (e.g., “Examples 1-4” is to be understood as
“Examples 1, 2, 3, or 47).

[0049] Example #1: A non-transitory computer-readable
medium comprising program code that is executable by a
processor for causing the processor to perform operations
including: receiving a command to remove an operator from
a computing cluster, the operator being configured to man-
age objects that are distinct from and represent software
resources of the computing cluster; and in response to
receiving the command: determining a plurality of actions
previously performed in the computing cluster in relation to
adding the operator to the computing cluster, each action in
the plurality of actions involving a creation, a modification,
or a deletion of at least one object in the computing cluster;
determining a particular order in which the plurality of
actions were previously performed relative to one another in
relation to adding the operator in the computing cluster; and
assisting with removing the operator from the computing
cluster by causing an inverse of each action in the plurality
of actions to be performed in the computing cluster in a
reverse order to the particular order.

[0050] Example #2: The non-transitory computer-readable
medium of Example #1, wherein the computing cluster is
configured to maintain the objects in a database, and wherein
the objects each include (i) a current-state field describing a
current state of a corresponding software resource in the
computing cluster and (ii) a target-state field describing a
desired state of the corresponding software resource.
[0051] Example #3: The non-transitory computer-readable
medium of any of Examples #1-2, wherein an action of the

US 2023/0129217 Al

plurality of actions involves creating an object for use by the
computing cluster, and further comprising program code that
is executable by the processor for causing the processor to:
determine that the inverse of the action involves deleting the
object from the computing cluster; and cause the object to be
deleted from the computing cluster.

[0052] Example #4: The non-transitory computer-readable
medium of any of Examples #1-3, wherein an action of the
plurality of actions involves deleting an object from the
computing cluster, and further comprising program code that
is executable by the processor for causing the processor to:
determine that the inverse of the action involves recreating
the object in the computing cluster; and cause the object to
be recreated on the computing cluster using stored state
information, the stored state information describing a state
of the object prior to the object being deleted from the
computing cluster.

[0053] Example #5: The non-transitory computer-readable
medium of Example #4, further comprising program code
that is executable by the processor for causing the processor
to, prior to the object being deleted from the computing
cluster: retrieve state information from a current-state field
of the object, the state information describing a current state
of the object; and store the state information in a storage
device, the state information serving as the stored state
information.

[0054] Example #6: The non-transitory computer-readable
medium of any of Examples #1-5, wherein an action of the
plurality of actions involves modifying an object of the
computing cluster from a first state to a second state, and
further comprising program code that is executable by the
processor for causing the processor to: determine that the
inverse of the action involves reverting the object back to the
first state; and cause the object to be reverted back to the first
state using stored state information describing the first state
of the object.

[0055] Example #7: The non-transitory computer-readable
medium of Example #6, further comprising program code
that is executable by the processor for causing the processor
to, prior to the object being modified from the first state to
the second state: retrieve state information from a current-
state field of the object, the state information describing the
first state of the object; and store the state information in a
storage device, the state information serving as the stored
state information.

[0056] Example #8: The non-transitory computer-readable
medium of any of Examples #1-7, wherein the operator is
configured to execute the plurality of actions by transmitting
a plurality of application-programming interface (API) com-
mands to an API of the computing cluster.

[0057] Example #9: The non-transitory computer-readable
medium of Example #8, further comprising program code
that is executable by the processor for causing the processor
to: generate a plurality of entries in a datastore by, for each
API command of the plurality of AP] commands: determin-
ing an operator identifier based on the API command, the
operator identifier being a unique identifier of the operator
that transmitted the API command; determining an action
identifier based on the API command, the action identifier
indicating a type of action to be executed based on the API
command; determine an order identifier for the API com-
mand, the order identifier indicating an order of the API
command relative to the other API commands in the plu-
rality of APl commands; and creating an entry in the

Apr. 27,2023

datastore that includes the operator identifier, the action
identifier, and the order identifier; determine the particular
order in which the plurality of actions were performed based
on the order identifier in each entry of the plurality of
entries; and determine the inverse of each action in the
plurality of actions based on the action identifier described
in each corresponding entry of the plurality of entries.
[0058] Example #10: The non-transitory computer-read-
able medium of any of Examples #1-9, further comprising
program code that is executable by the processor for causing
the processor to receive the command from an operator
management system that is configured to assist users with
installing and uninstalling operators in the computing clus-
ter.

[0059] Example #11: The non-transitory computer-read-
able medium of Example #10, wherein the operator man-
agement system is configured to uninstall the operator from
the computing cluster by executing an uninstallation process
that is defined in a preset uninstallation script, and wherein
the operations are distinct from the uninstallation process.
[0060] Example #12: The non-transitory computer-read-
able medium of Example #11, further comprising program
code that is executable by the processor for causing the
processor to: determine that the plurality of actions were not
undone by the uninstallation process; and in response to
determining that the plurality of actions were not undone by
the uninstallation process, cause the inverse of each action
in the plurality of actions to be performed in the computing
cluster.

[0061] Example #13: The non-transitory computer-read-
able medium of any of Examples #1-12, wherein the soft-
ware resources are part of, or are configured for use by, a
software application of the computing cluster.

[0062] Example #14: A method comprising: receiving, by
a processor, a command to uninstall an operator of a
container orchestration platform associated with a comput-
ing cluster, the operator being configured to manage objects
that are distinct from and represent software resources of the
computing cluster; and in response to receiving the com-
mand, executing, by the processor, operations including:
determining a plurality of actions that were previously
performed in the computing cluster in relation to installing
the operator into the container orchestration platform, each
action in the plurality of actions involving a creation, a
modification, or a deletion of at least one object in the
computing cluster; determining a particular order in which
the plurality of actions were previously performed relative to
one another in relation to installing the operator into the
container orchestration platform; and assisting with unin-
stalling the operator from the container orchestration plat-
form by causing an inverse of each action in the plurality of
actions to be performed in a reverse order to the particular
order.

[0063] Example #15: The method of Example #14,
wherein the objects are stored in an object store that is
maintained by the container orchestration platform, and
wherein the software resources are used by a software
application of the computing cluster.

[0064] Example #16: The method of any of Examples
#14-15, wherein an action of the plurality of actions involves
deleting an object from the container orchestration platform,
and wherein causing the inverse of the action to be per-
formed involves recreating the object on the container
orchestration platform using stored state information, the

US 2023/0129217 Al

stored state information describing a state of the object prior
to the object being deleted from the container orchestration
platform.

[0065] Example #17: The method of any of Examples
#14-16, wherein an action of the plurality of actions involves
modifying an object of the container orchestration platform
from a first state to a second state, and wherein causing the
inverse of the action to be performed involves reverting the
object back to the first state using stored state information.

[0066] Example #18: The method of any of Examples
#14-17, wherein the operator is configured to execute the
plurality of actions by transmitting a plurality of application-
programming interface (API) commands to an API of the
container orchestration platform, and further comprising:
generating a plurality of entries in a datastore by, for each
API command of the plurality of AP] commands: determin-
ing an operator identifier based on the API command, the
operator identifier being a unique identifier of the operator
that transmitted the API command; determining an action
identifier based on the API command, the action identifier
indicating a type of action to be executed based on the API
command; determine an order identifier for the API com-
mand, the order identifier indicating an order of the API
command relative to the other API commands in the plu-
rality of APl commands; and creating an entry in the
datastore that includes the operator identifier, the action
identifier, and the order identifier; determining the particular
order in which the plurality of actions were performed based
on the order identifier in each entry of the plurality of
entries; and determining the inverse of each action in the
plurality of actions based on the action identifier described
in each corresponding entry of the plurality of entries.

[0067] Example #19: The method of any of Examples
#14-18, further comprising receiving the command from an
operator lifecycle manager (OLM) that is configured to
assist users with installing and uninstalling operators from
the container orchestration platform, wherein the OLM is
configured to uninstall the operator from the container
orchestration platform by executing an uninstallation pro-
cess that is defined in a preset uninstallation script, and
wherein the operations are distinct from the uninstallation
process.

[0068] Example #20: A system comprising: a processor;
and a memory including instructions that are executable by
the processor for causing the processor to perform opera-
tions including: receiving a command to uninstall an opera-
tor of a container orchestration platform associated with a
computing cluster, the operator being configured to manage
objects that are distinct from and represent software
resources of the computing cluster; and in response to
receiving the command: determining a plurality of actions
that were previously performed in the computing cluster in
relation to installing the operator into the container orches-
tration platform, each action in the plurality of actions
involving a creation, a modification, or a deletion of at least
one object in the computing cluster; determining a particular
order in which the plurality of actions were previously
performed relative to one another in relation to installing the
operator into the container orchestration platform; and
assisting with uninstalling the operator from the container
orchestration platform by causing an inverse of each action
in the plurality of actions to be performed in a reverse order
to the particular order.

Apr. 27,2023

[0069] Example #21: A system comprising: a computing
cluster that includes a container orchestration platform for
deploying and managing containerized applications in the
computing cluster, the container orchestration platform
including an operator lifecycle manager (OLM) for manag-
ing installation and uninstallation of operators in the con-
tainer orchestration platform, wherein the OLM is config-
ured to uninstall an operator from the container orchestration
platform by executing a predefined uninstallation process;
and a computer node that includes a processor and a
memory, the memory including instructions that are execut-
able by the processor for causing the processor to: receive a
command from the OLM to uninstall the operator of the
container orchestration platform; and in response to receiv-
ing the command, execute operations configured to assist in
uninstalling the operator from the container orchestration
platform, the operations being distinct from the predefined
uninstallation process and including: determining a plurality
of actions that were previously performed in the computing
cluster in relation to installing the operator into the container
orchestration platform, each action in the plurality of actions
involving a creation, a modification, or a deletion of at least
one object of the container orchestration platform; deter-
mining a particular order in which the plurality of actions
were previously performed relative to one another in relation
to installing the operator into the container orchestration
platform; and causing an inverse of each action in the
plurality of actions to be performed in a reverse order to the
particular order.

[0070] Example #22: The system of Example #21,
wherein the operator is configured to manage objects of the
container orchestration platform, and wherein the objects
represent software resources configured to be used by a
software application of the computing cluster, the objects
being separate from the software resources.

[0071] Example #23: The system of Example #22,
wherein the container orchestration platform is configured to
maintain the objects in a database.

[0072] Example #24: The system of any of Examples
#21-23, wherein an action of the plurality of actions involves
creating an object for use by the container orchestration
platform, wherein the inverse of the action involves deleting
the object from the container orchestration platform, and
wherein the memory further includes instructions that are
executable by the processor for causing the processor to
cause the object to be deleted from the container orchestra-
tion platform.

[0073] Example #25: The system of any of Examples
#21-24, wherein an action of the plurality of actions involves
deleting an object from the container orchestration platform,
wherein the inverse of the action involves recreating the
object on the container orchestration platform, and wherein
the memory further includes instructions that are executable
by the processor for causing the processor to implement the
inverse of the action by causing the object to be recreated on
the container orchestration platform using stored state infor-
mation, the stored state information describing a state of the
object prior to the object being deleted from the container
orchestration platform.

[0074] Example #26: The system of any of Examples
#21-25, wherein an action of the plurality of actions involves
modifying an object of the container orchestration platform
from a first state to a second state, wherein the inverse of the
action involves reverting the object from the second state

US 2023/0129217 Al

back to the first state, and wherein the memory further
includes instructions that are executable by the processor for
causing the processor to implement the inverse of the action
by causing the object to be reverted from the second state
back to the first state using stored state information describ-
ing the first state of the object.

[0075] Example #27: The system of any of Examples
#21-26, wherein the operator is configured to execute the
plurality of actions by transmitting a plurality of application-
programming interface (API) commands to an API of the
container orchestration platform.

[0076] Example #28: The system of Example #27,
wherein the memory further includes instructions that are
executable by the processor for causing the processor to:
generate a plurality of entries in a datastore by, for each API
command of the plurality of API commands: determining an
operator identifier based on the API command, the operator
identifier being a unique identifier of the operator that
transmitted the API command; determining an action iden-
tifier based on the API command, the action identifier
indicating a type of action to be executed based on the API
command; determine an order identifier for the API com-
mand, the order identifier indicating an order of the API
command relative to the other API commands in the plu-
rality of APl commands; and creating an entry in the
datastore that includes the operator identifier, the action
identifier, and the order identifier; determine the particular
order in which the plurality of actions were performed based
on the order identifier in each entry of the plurality of
entries; and determine the inverse of each action in the
plurality of actions based on the action identifier described
in each corresponding entry of the plurality of entries.
[0077] Example #29: The system of any of Examples
#21-28, wherein the memory further includes instructions
that are executable by the processor for causing the proces-
sor to: determine that the plurality of actions were not
undone by the predefined uninstallation process; and in
response to determining that the plurality of actions were not
undone by the predefined uninstallation process, cause the
inverse of each action in the plurality of actions to be
performed.

[0078] Example #30: The system of any of Examples
#21-29, wherein the computer node is external to the com-
puting cluster.

[0079] Example #31: The system of any of Examples
#21-30, wherein the memory further includes instructions
that are executable by the processor for causing the proces-
sor to cause the inverse of each action in the plurality of
actions to be performed in the reverse order by transmitting
a plurality of application-programming interface (API) com-
mands to an API of the container orchestration platform.
[0080] Example #32: A system comprising: means for
receiving a command to uninstall an operator of a computing
cluster, the operator being configured to manage objects that
are distinct from and represent software resources of the
computing cluster; and means for, in response to receiving
the command: determining a plurality of actions previously
performed in the computing cluster in relation to installing
the operator, each action in the plurality of actions involving
a creation, a modification, or a deletion of at least one object
in the computing cluster; determining a particular order in
which the plurality of actions were previously performed
relative to one another in relation to installing the operator
in the computing cluster; and causing an inverse of each

Apr. 27,2023

action in the plurality of actions to be performed in the
computing cluster in a reverse order to the particular order.
[0081] The foregoing description of certain examples,
including illustrated examples, has been presented only for
the purpose of illustration and description and is not
intended to be exhaustive or to limit the disclosure to the
precise forms disclosed. Numerous modifications, adapta-
tions, and uses thereof will be apparent to those skilled in the
art without departing from the scope of the disclosure. For
instance, any example(s) described herein can be combined
with any other example(s) to yield further examples.

1. A non-transitory computer-readable medium compris-
ing program code that is executable by a processor for
causing the processor to perform operations including:

receiving a command to remove an operator from a

computing cluster, the operator being configured to
manage objects that are distinct from and represent
software resources of the computing cluster; and

in response to receiving the command:

determining a plurality of actions previously performed
in the computing cluster in relation to adding the
operator to the computing cluster, each action in the
plurality of actions involving a creation, a modifi-
cation, or a deletion of at least one object in the
computing cluster;

determining a particular order in which the plurality of
actions were previously performed relative to one
another in relation to adding the operator in the
computing cluster; and

assisting with removing the operator from the comput-
ing cluster by causing an inverse of each action in the
plurality of actions to be performed in the computing
cluster in a reverse order to the particular order.

2. The non-transitory computer-readable medium of claim
1, wherein the computing cluster is configured to maintain
the objects in a database, and wherein the objects each
include (i) a current-state field describing a current state of
a corresponding software resource in the computing cluster
and (ii) a target-state field describing a desired state of the
corresponding software resource.

3. The non-transitory computer-readable medium of claim
1, wherein an action of the plurality of actions involves
creating an object for use by the computing cluster, and
further comprising program code that is executable by the
processor for causing the processor to:

determine that the inverse of the action involves deleting

the object from the computing cluster; and

cause the object to be deleted from the computing cluster.

4. The non-transitory computer-readable medium of claim
1, wherein an action of the plurality of actions involves
deleting an object from the computing cluster, and further
comprising program code that is executable by the processor
for causing the processor to:

determine that the inverse of the action involves recreat-

ing the object in the computing cluster; and

cause the object to be recreated on the computing cluster

using stored state information, the stored state infor-
mation describing a state of the object prior to the
object being deleted from the computing cluster.

5. The non-transitory computer-readable medium of claim
4, further comprising program code that is executable by the
processor for causing the processor to, prior to the object
being deleted from the computing cluster:

US 2023/0129217 Al

retrieve state information from a current-state field of the
object, the state information describing a current state
of the object; and

store the state information in a storage device, the state

information serving as the stored state information.

6. The non-transitory computer-readable medium of claim
1, wherein an action of the plurality of actions involves
modifying an object of the computing cluster from a first
state to a second state, and further comprising program code
that is executable by the processor for causing the processor
to:

determine that the inverse of the action involves reverting

the object back to the first state; and

cause the object to be reverted back to the first state using

stored state information describing the first state of the
object.

7. The non-transitory computer-readable medium of claim
6, further comprising program code that is executable by the
processor for causing the processor to, prior to the object
being modified from the first state to the second state:

retrieve state information from a current-state field of the

object, the state information describing the first state of
the object; and

store the state information in a storage device, the state

information serving as the stored state information.

8. The non-transitory computer-readable medium of claim
1, wherein the operator is configured to execute the plurality
of actions by transmitting a plurality of application-pro-
gramming interface (API) commands to an API of the
computing cluster.

9. The non-transitory computer-readable medium of claim
8, further comprising program code that is executable by the
processor for causing the processor to:

generate a plurality of entries in a datastore by, for each

API command of the plurality of API commands:

determining an operator identifier based on the API
command, the operator identifier being a unique
identifier of the operator that transmitted the API
command;

determining an action identifier based on the API
command, the action identifier indicating a type of
action to be executed based on the API command;

determine an order identifier for the API command, the
order identifier indicating an order of the API com-
mand relative to the other API commands in the
plurality of API commands; and

creating an entry in the datastore that includes the
operator identifier, the action identifier, and the order
identifier;

determine the particular order in which the plurality of

actions were performed based on the order identifier in
each entry of the plurality of entries; and

determine the inverse of each action in the plurality of

actions based on the action identifier described in each
corresponding entry of the plurality of entries.

10. The non-transitory computer-readable medium of
claim 1, further comprising program code that is executable
by the processor for causing the processor to receive the
command from an operator management system that is
configured to assist users with installing and uninstalling
operators in the computing cluster.

11. The non-transitory computer-readable medium of
claim 10, wherein the operator management system is con-
figured to uninstall the operator from the computing cluster

Apr. 27,2023

by executing an uninstallation process that is defined in a
preset uninstallation script, and wherein the operations are
distinct from the uninstallation process.

12. The non-transitory computer-readable medium of
claim 11, further comprising program code that is executable
by the processor for causing the processor to:

determine that the plurality of actions were not undone by

the uninstallation process; and

in response to determining that the plurality of actions

were not undone by the uninstallation process, cause
the inverse of each action in the plurality of actions to
be performed in the computing cluster.

13. The non-transitory computer-readable medium of
claim 1, wherein the software resources are part of, or are
configured for use by, a software application of the com-
puting cluster.

14. A method comprising:

receiving, by a processor, a command to uninstall an

operator of a container orchestration platform associ-
ated with a computing cluster, the operator being
configured to manage objects that are distinct from and
represent software resources of the computing cluster;
and

in response to receiving the command, executing, by the

processor, operations including:

determining a plurality of actions that were previously
performed in the computing cluster in relation to
installing the operator into the container orchestra-
tion platform, each action in the plurality of actions
involving a creation, a modification, or a deletion of
at least one object in the computing cluster;

determining a particular order in which the plurality of
actions were previously performed relative to one
another in relation to installing the operator into the
container orchestration platform; and

assisting with uninstalling the operator from the con-
tainer orchestration platform by causing an inverse
of each action in the plurality of actions to be
performed in a reverse order to the particular order.

15. The method of claim 14, wherein the objects are
stored in an object store that is maintained by the container
orchestration platform, and wherein the software resources
are used by a software application of the computing cluster.

16. The method of claim 14, wherein an action of the
plurality of actions involves deleting an object from the
container orchestration platform, and wherein causing the
inverse of the action to be performed involves recreating the
object on the container orchestration platform using stored
state information, the stored state information describing a
state of the object prior to the object being deleted from the
container orchestration platform.

17. The method of claim 14, wherein an action of the
plurality of actions involves modifying an object of the
container orchestration platform from a first state to a second
state, and wherein causing the inverse of the action to be
performed involves reverting the object back to the first state
using stored state information.

18. The method of claim 14, wherein the operator is
configured to execute the plurality of actions by transmitting
a plurality of application-programming interface (API) com-
mands to an API of the container orchestration platform, and
further comprising:

generating a plurality of entries in a datastore by, for each

API command of the plurality of API commands:

US 2023/0129217 Al

determining an operator identifier based on the API
command, the operator identifier being a unique
identifier of the operator that transmitted the API
command;

determining an action identifier based on the API
command, the action identifier indicating a type of
action to be executed based on the API command;

determine an order identifier for the API command, the
order identifier indicating an order of the API com-
mand relative to the other API commands in the
plurality of API commands; and

creating an entry in the datastore that includes the
operator identifier, the action identifier, and the order
identifier;

determining the particular order in which the plurality of

actions were performed based on the order identifier in
each entry of the plurality of entries; and

determining the inverse of each action in the plurality of

actions based on the action identifier described in each
corresponding entry of the plurality of entries.

19. The method of claim 14, further comprising receiving
the command from an operator lifecycle manager (OLM)
that is configured to assist users with installing and unin-
stalling operators from the container orchestration platform,
wherein the OLM is configured to uninstall the operator
from the container orchestration platform by executing an
uninstallation process that is defined in a preset uninstalla-
tion script, and wherein the operations are distinct from the
uninstallation process.

10

Apr. 27,2023

20. A system comprising:
a processor; and
a memory including instructions that are executable by

the processor for causing the processor to perform
operations including:
receiving a command to uninstall an operator of a
container orchestration platform associated with a
computing cluster, the operator being configured to
manage objects that are distinct from and represent
software resources of the computing cluster; and
in response to receiving the command:
determining a plurality of actions that were previ-
ously performed in the computing cluster in rela-
tion to installing the operator into the container
orchestration platform, each action in the plurality
of actions involving a creation, a modification, or
a deletion of at least one object in the computing
cluster;
determining a particular order in which the plurality
of actions were previously performed relative to
one another in relation to installing the operator
into the container orchestration platform; and
assisting with uninstalling the operator from the
container orchestration platform by causing an
inverse of each action in the plurality of actions to
be performed in a reverse order to the particular
order.

